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Abstract 

 

Protein aggregation is a key phenomenon in neurodegenerative diseases. Since decades, 

researchers attempted to capture the dynamics of prion protein propagation with 

mathematical models. Key mechanisms of protein propagation are elongation of misfolded 

protein aggregates by the recruitment of monomers and, accordingly, breakage into daughter 

filaments that can elongate again. It is especially these breakage mechanisms that are 

important to model. An increasing body of research shows that the breakage rate of linear 

protein aggregates follows a non-linear relationship with fibril length. Next, it is proposed that 

the breakage rate depends on the position along which a fibril breaks. Furthermore, there are 

several treatment options that can be incorporated into a mathematical model, such as 

chaperones and interferons. The combination of these is important, because different 

breakage mechanisms may modulate the effect of treatments in different ways. The current 

study tries to separately implement both length and position-dependent breakage parameters 

combined with chaperones or interferons as treatment options into a predictive model. We 

find that a moderate length-dependent breakage or breakage at the center contributes most 

to measures of (pathogenic) protein fibril propagation. The results are discussed in light of 

empirical results and clinical practice. 
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Introduction 
 

     Prion diseases or transmissible spongiform encephalopathies (TSE) and amyloid-related 

neurological diseases are neurodegenerative diseases that are always fatal. Several attempts have 

been made to better understand the dynamics of these diseases. These dynamics are often described 

with the nucleation-polymerization model. Although there are multiple types of protein aggregates 

(see review of Balchin, Hayer-Hartl, & Hartl, 2016), we focus here on linear aggregates that grow in 

one direction. These are the so-called fibrillar aggregates or filaments. In essence, the dynamics are 

that two or more misfolded protein molecules form a nucleus. This nucleus then ‘infects’ healthy 

proteins and hence elongates. The infectious fibrils that arise may then break to form more infectious 

fibrils (Garzón et al., 2021; Masel, Jansen, & Nowak, 1999). Besides biomolecular research (Abdelaziz, 

Abdulrahman, Gilch, & Schatzl, 2019; Kawahara, Kato-Negishi, & Tanaka, 2021) there is the 

computational field of research on protein aggregation. 

     The latter field is concerned with generating mathematical models in order to better understand 

mechanisms behind protein aggregation. To date, multiple studies have tried to capture the population 

dynamics of the interaction of the normal endogenous prion protein (PrPC) with its misfolded, 

infectious and protease-resistant variant (PrPSc). This was often done in combination with practical 

experiments. In this article, I first give a state-of-the-art overview of the literature on the dynamics of 

(infective) protein fibril aggregation. In this review, I focus on literature that addressed the nucleated 

polymerization model of protein fibril aggregation. Next, I come up with a model that combines aspects 

of multiple articles on protein fibril aggregation. This model includes several aspects of breakage and 

treatment. The set up is to validate this model and assess the separate influences of breakage 

mechanisms and treatments on protein aggregation dynamics. After that, the interaction between 

breakage mechanisms and treatment is tested. 

 

Review of the literature 
 

The nucleated polymerization model and first uses 
     The nucleated polymerization model is a model to describe the aggregation of common, misfolded 

prion or amyloid proteins. In essence, the first step that is assumed to happen is the nucleation step. 

This is a step in which two or more (infectious) protein monomers bind together to form a dimer or 

oligomer. This small aggregate can then form polymers with other monomers. The polymers make the 

monomers misfold and aggregate with them. In this way the protein aggregate grows bigger. 

Eventually, it can break into two shorter aggregates that can elongate again. In this way, protein fibers 

duplicate and the population of fibers can grow. The first studies that assessed the dynamics of protein 

aggregation with a nucleated polymerization population model for prions were the studies of Nowak, 

Krakauer, Klug and May (1998) and Masel, Jansen and Nowak (1999). In their research, they made use 

of a nucleated polymerization model. According to this model, incoming monomeric susceptible 

normal cellular prion protein (PrPC) can be converted to prion protein scrapie (PrPSc) after interaction 

with polymeric PrPSc. In this way, an infectious PrPSc polymer is able to elongate with a constant rate 

(Masel et al., 1999; Nowak et al., 1998). In a later phase, the PrPSc polymers break into smaller polymers 

with a certain rate and the process of elongation is repeated. The breakage rate was assumed to be 

independent of polymer length. In their model, they did allow for some degradation of PrPSc. In order 

to mimic resistance to degradation (Silveira et al., 2005; Weber et al., 2007), this degradation rate was 



determined much smaller than the natural degradation rate of PrPC (Masel et al., 1999; Nowak et al., 

1998). The resulting theoretical distribution of polymer length was right skewed, showing that smaller 

lengths dominated in their simulated sample (Masel et al., 1999; Nowak et al., 1998). Furthermore, 

with help of their model, Masel and colleagues could estimate the reproductive ratio 𝑅0 of several 

prion protein strains. Here, 𝑅0 is a measure for how efficient prions can propagate throughout their 

environment (the brain). The higher 𝑅0 is, the more efficient prions can propagate. An 𝑅0 below 1 

causes misfolded prions to extinct, whereas an 𝑅0 above 1 causes misfolded prions to propagate and 

accumulate (Masel et al., 1999). 

 

Statistical aspects of protein fibril aggregation 
     The theoretical results of these and other works concur partly with empirical chemical findings on 

proliferation of (PrPSc) fibrils (Masel et al., 1999; Nowak et al., 1998; Rubenstein et al., 2007). For 

example, it was shown that denaturized PrPC formed aggregates following a certain right-skewed 

length distribution (Prigent et al., 2014). Several other empirical studies showed the same 

phenomenon. For instance, with the help of atomic force microscopy it was found that the length of 

amyloid fibrils could be described with a log-normal distribution (Baldwin et al., 2008; Morris et al., 

2013; Sorci, Grassucci, Hahn, Frank, & Belfort, 2009), an exponential distribution (van Raaij, van Gestel, 

Segers-Nolten, de Leeuw, & Vinod Subramaniam, 2008) or with a right-skewed Weibull distribution 

(Arosio, Beeg, Nicoud, & Morbidelli, 2012; Sorci, Silkworth, Gehan, & Belfort, 2011; Xue & Radford, 

2013; Xue, Homans, & Radford, 2009). 

 

Time dynamics of protein fibril aggregation 
     While the above paragraph describes a statistical aspect of protein aggregation, there are several 

dynamic aspects of aggregation as well. Firstly, theoretical protein aggregation models are able to 

describe a logistic decay and growth of monomers and polymers (aggregates), respectively (Nowak et 

al., 1998; Greer, Pujo-Menjouet, & Webb, 2006; Greer, van den Driessche, Wange, & Webb, 2007; 

Rubenstein et al., 2007). And indeed, with fluorescence microscopy, it could be observed that the 

population of free monomers mimicked a logistic decay curve over time (Shvadchak, Claessens, & 

Subramaniam, 2015). Conversely, it could be shown that the population of the protein polymers over 

time followed a logistic growth curve (Alvarez-Martinez et al., 2011; Collins, Douglass, Vale, & 

Weissman, 2004; Marchante et al., 2017; Nicoud, Lazzari, Barragán, & Morbidelli, 2015; Xue & Radford, 

2013). Secondly, theoretical models show that the mean length of (prion) protein fibrils over time 

follows a biphasic trajectory. Initially, the mean length increases drastically before it gradually comes 

to a hold. After this, it decreases until a stable equilibrium length is reached (Arosio, Beeg et al., 2012; 

Greer et al., 2006; Nowak et al., 1998). Experimental results also confirm this. An explanation for this 

is that fibrils become more prone to break as they grow. This gives rise to a phase in which elongation 

of fibrils is more prominent. What follows is the phase in which breakage is more prominent as a 

consequence of elongation (Arosio, Beeg et al., 2012; Nicoud et al., 2015; Schreck & Yuan; 2013; Xue 

& Radford, 2013). 

 

Uses of protein aggregation model assumptions in theoretical research 
     As with every theoretical model, protein aggregation models do have some particular assumptions 

that may lead to limitations. Below, we list common model assumptions and describe their relevance. 



After that, the assumptions are validated against findings from empirical studies. Some often used 

model assumptions include: 

1) The breakage rate is constant or linearly dependent on the length of the protein fibril; 

2) The likelihood of breakage is independent of the position of the breakage; 

3) The intrinsic elongation rate above a critical size is constant; 

4) Degradation rate 

5) Fibril-fibril association 

Note that assumptions 1) and 2) are tightly connected to each other, assumption 2) implies assumption 

1). In the model of Masel and colleagues (1999), it was assumed that the likelihood of a breakage of 

the fibril to occur is independent on the site in the fibril. This means that the fragmentation rate of 

infectious protein fibrils is linearly dependent on the fibril length. Since then, this type of modelling 

had been replicated in other publications (Davis and Sindi, 2015; Morris et al., 2013; Engler, Prüss, & 

Webb, 2006; Prüss, Pujo-Menjouet, Webb, & Zacher, 2006). A limitation of this assumption is that it 

requires modelers to implement a set of equations for each fibril length, as the fragmentation rate 

differs per fibril length. This can eventually lead to a situation in which there is an infinite number of 

differential equations to be solved. Garzón et al. (2021) used a constant fragmentation rate for all fibril 

lengths to overcome this problem, which leads to a system with a finite number of equations. This 

virtually means that each protein fibril has only one breakage site and is equally likely to break. In this 

way, a model would not be able to capture any relationship between fibril length and breakage rate. 

Another solution is to model the fibril length as a continuous variable. With this, both the linear length-

dependence and mathematical tractability can be retained (Greer et al., 2006, 2007; Engler et al., 2006; 

Prüss et al., 2006). The third assumption is that there is a constant elongation rate (Arosio, Beeg et al., 

2012; Davis & Sindi; Engler et al., 2006; Garzón et al., 2021; Greer et al., 2006, 2007; Masel et al., 1999; 

Nicoud et al., 2015; Nowak et al., 1998; Prüss et al., 2006; Schreck & Yuan, 2013). There are, however, 

few studies that take into account a polymer length-dependent elongation rate (Calvez et al., 2009, 

2010). These assumptions are advantageous in the sense that they are simpler to implement in a 

model. However, such assumptions in their simplicity can lead to theoretical results that differ from 

empirical findings. 

 

Model assumption 1 
     First of all, while most models assume a linear-dependent breakage rate of protein fibrils, empirical 

data suggest differently. In an article of Beal et al., (2020), it turned out that empirical data on fibril 

fragmentation showed non-linear relationships between breakage rate and fibril length. In contrast to 

other models, the model in this study allowed for a more general relationship between breakage rate 

and fibril length, a so-called power law: 

 

𝐵(𝑥) ∝ 𝑥𝛾      (1); 

 

where 𝑥 is the length of the fibril (be it discrete or continuous). A value of 𝛾 = 1 would mean that the 

relationship between fiber breakage rate and length is linear. However, it was found that mean values 

of 𝛾 varied between 1.7 and 5.7, depending on the protein strain. Obviously, these values imply a non-

linear relationship (Beal et al., 2020; Xue and Radford, 2013). Other studies found that a value near 

𝛾 = 3 fitted their data (Arosio, Beeg et al., 2012; Collins et al., 2004). Others found a length-dependent 



relationship that was also strain-dependent, but did not specify the value for the exponent in the 

power law (Nicoud et al., 2015). Hence, it is important in this research to take into account the value 

of the power in relationship (1). The assumption of a mere linear relationship may also be too 

simplistic. This is also important from a biological perspective. Namely, recently it was implied that the 

power law in (1) influences the length distribution of the protein fibril population (Beal et al., 2020). It 

was also shown that infectivity of fibrils was length dependent (Silveira et al., 2005). Therefore, 

assumptions on the power law may also have implications for the biological infectivity of the 

(theoretical) protein fibril population. Thus, an overly simplistic relationship may give wrong estimates 

for the infectivity of the fibril population and possibly also for treatment potentials. 

 

Model assumption 2 
     Secondly, empirical results with regard to the breakage location in relation with the likelihood of 

the breakage are in concordance with results on relationship (1). The non-linear relationship between 

fibril length and breakage rate was repeatedly accompanied by a site-dependent likelihood of breakage 

of  the fibril. It was observed that this site-dependent likelihood was also dependent on the protein 

strain. Some strains were more likely to break in the middle (centrally), whereas other strains had a 

higher chance of breaking at the end (i.e., by eroding) (Nicoud et al., 2015). In one study, it could be 

observed that, the higher the value of 𝛾, the more likely it was for a protein fibril to break in the center 

(Beal et al., 2020). Therefore, we can conclude that assumption 2) may be too simplistic for our 

predictive model. We pay further attention to assumption 2 in this work. 

 

Model assumption 3 
     Thirdly, one can make assumptions about the intrinsic elongation rate as well, based on empirical 

data. With the intrinsic elongation rate, we mean the elongation rate of a fibril irrespective of external 

influences, such as the concentration of monomers. However, the way in which assumption 3) can be 

reviewed is a bit less straightforward. Next to resistance to digestion by proteinase kinase there is the 

converting activity that indicates the potential infectivity of a prion protein fibril. It is thought that this 

converting activity is a measure of the elongation rate of a protein fibril (Calvez et al., 2009). Modelers 

usually assume that fibrils below a critical size have a negligible tendency to grow, because of instability 

of small aggregates (Garzón et al., 2021; Masel et al., 1999; Prüss et al., 2006). This is in line with 

experimental evidence that shows that very short fibrils have nil converting activity (Silveira et al., 

2005; Kim et al., 2012). There is also some evidence that very short fibrils are unstable, which would 

explain their very low converting activity (Pieri, Madiona, & Melki, 2016). Hence, whenever a protein 

fibril below a critical size arises (due to breakage), it is assumed that it immediately degrades into non-

infectious monomers that can again be incorporated into fibrils (Garzón et al., 2021; Greer et al., 2006; 

Masel et al., 1999). Fibrils above a critical size are thought to be more stable and can therefore elongate 

further. From practical studies it turns out that there is a non-linear relationship between the 

propensity of a prion fibril to propagate and its length above critical size. By way of example, it was 

found that both very short and lengthy fibrils had a relatively low converting activity. On the contrary, 

a peak in the converting activity was seen for fibrils of short length (Silveira et al., 2005). It is also known 

that agitation of an infectious protein solution can cause fibrils to break and shorten (Sakunthala et al., 

2022; Tarutani et al., 2016; Weber et al., 2007; Weber, Reznicek, Mitteregger, Kretzschmar, & Giese, 

2008). And indeed, when prion fibrils are exposed to agitation, their propensity to propagate increases, 

as is indicated by increased seeding efficacy (Tanaka, Collins, Toyama, & Weissman, 2006). This implies 

that short fibrils have a higher tendency to elongate than longer fibrils. Very recently, some researchers 

found that the length of fibril seeds correlated strongly and negatively with their elongation rate (𝑘+) 



(𝑅2 = 0.99) (Sakunthala et al., 2022). This relationship between fibril length and elongation rate seems 

robust. A similar relationship was found in two studies of a decade earlier for a different protein strain 

(Xue, Hellewell et al., 2009; Xue, Hellewell, Hewitt, & Radford, 2010). However, authors claim that this 

inverse relationship is not due to an intrinsic property of short fibrils to elongate faster. Also, they 

seemingly did not measure the elongation rate per fibril (per capita growth rate), but the total 

elongation rate. In their experimental procedure they added a sample of sonicated fibrils to a new 

solution of monomers each time. It is more likely that short fibrils in such a sample are more 

outnumbered than longer fibrils. This leads to a situation with more elongation-potent fibril ends. As 

the authors of these studies state, it is this mechanism that explains the higher elongation rate of 

shorter fibrils (Sakunthala et al., 2022; Xue, Hellewell et al., 2009). Rather, researchers find a simple 

linear relationship between the length of individual fibrils and the elapsed time. This indicates that the 

rate of elongation is constant (Eves et al., 2021; Goldsbury, Kistler, Aebi, Arvinte, & Cooper, 1999; 

Qiang, Kelley, & Tycko, 2013; Zimmermann et al., 2021). In this work, we thus assume that the intrinsic 

elongation rate of protein fibrils is constant. 

 

Model assumption 4 
     For the degradation rate, it was mostly assumed that it remains constant, irrespective of polymer 

size (Engler et al., 2006; Garzón et al., 2021; Greer et al., 2006, 2007; Masel et al., 1999; Prüss et al., 

2006; Rubenstein et al., 2007). In just few cases, the degradation rate was considered to be dependent 

on the length of the prion polymer (Prigent et al., 2012). Indeed, experimental studies show that 

resistance to degradation varies with size of the prion polymer (Igel-Egalon et al., 2020; Laferrière et 

al., 2013; Tixador et al., 2010; Tzaban et al., 2002). However, making the degradation rate length 

dependent is difficult, as the degradation rate as a function of length is not well known. Thus, like most 

other studies, we keep the degradation rate of polymers constant.  

 

Model assumption 5 
     Next, there is the joining of fibrils, which can happen with an end-to-end mechanism, as discussed 

in (Greer et al., 2007) or with lateral association. There is some mechanical evidence for the end-to-

end mechanism, but this should be treated with caution as it was only seen in a synthetic, non-

biological protein strain (Arosio, Owczarz et al., 2012). There seems to be mixed evidence for the lateral 

association of fibrils. Some researchers clearly suggest that fibrils can associate laterally with each 

other (Ionescu-Zanetti et al., 1999; Khurana et al., 2003). Others observe this lateral association only 

carefully within specific solution conditions (Nichols et al., 2002) and argue that elongation of fibrils by 

monomer addition is predominant (Qiang et al., 2013). To simplify this complex issue, we assume in 

this article that lateral association of fibrils is a negligible process. 

 

Treatment options 
     Next to the assumptions that we take into account, there is also another important aspect that was 

not added in most models, but should be added in the model of this study. This aspect is the presence 

of treatment options. This aspect is essential, because in this study, we need to assess how breakage 

parameters mediate treatment effects. For example, Garzón et al. (2021) theoretically assessed 

methods of treatment in their model. More precisely, they assessed the influence of combined 

treatment of chaperones and interferons on prion dynamics. In addition to the (negligible) natural 

degradation rate of prions, interferons add an extra degradation term to the normal degradation rate 



in the model. This idea is based on insights from molecular studies that show that interferons impede 

the propagation of prions by facilitating their degradation. Chaperones suppress prion aggregation as 

well [e.g. (Allen et al., 2005; Jin et al., 2000; Park et al., 2017; Son & Wickner, 2020)]. They can do this 

by refolding improperly folded protein monomers (Wu, Stull, Lee, & Bardwell, 2019). This can be 

modeled by adding an equation for the chaperone population and the interaction between chaperones 

and prion monomers. They found that the theoretical administration of either treatment was enough 

to lower the reproductive ratio, such that the proliferation of prions could be curbed. It could be 

observed that the maximal prion concentration reduced as the dose of interferons increased. A 

combined treatment even led to a complete theoretical abolishment of misfolded prion proteins 

(Garzón et al., 2021). However, a critical notion to how Garzón et al. (2021) modelled the role of 

chaperones should be made. They assumed that chaperones bind to healthy monomers and would 

therefore protect these monomers from misfolding. However, empirical and simulation studies show 

that chaperones not only bind to healthy proteins in native state (Petrosyan, Patra, Rezajooei, Garen, 

& Woodside, 2021) but to misfolded proteins as well and refold them to a healthy state again 

(Wyszokowski et al., 2021; Lu et al., 2021). Therefore, in addition to that of Garzón et al. (2021), we 

include an association interaction between misfolded monomers and chaperones as well. 

 

The current study 
 

Global study design 
     The current study tries to combine previous modeling techniques to assess the influence of 

(combined) treatment of chaperones and interferons on prion proliferation dynamics. In contrast to 

other studies, this study relaxes on 2 of the 3 basic assumptions mentioned in the literature review in 

the introduction. The combination of influence of different treatments and the modification of two of 

the three basic assumptions makes this study unique.  

     We introduce the adaptations in a step-wise manner. Doing this, we first reproduce basic prion 

dynamics for every combination of treatment and assumptions, including a logistic decay and growth 

curve over time of monomers and polymers, respectively. We show the (biphasic) dynamics of the 

mean prion fiber length over time and reproduce a probability density function of the prion fiber length 

without treatment and with combined treatment with chaperones and interferons. Secondly, we 

investigate the relationship between the reproductive ratio and increasing treatment doses in the 

same manner. Thirdly, and most important, we show how sensitive the prion propagation dynamics 

are to changes in the position and length dependence of prion breakage. This has important 

implications, as it tells us if neglecting such dependencies influences our estimates of prion 

propagation. Below, we define the assumptions of the literature-based combined model. In addition, 

we restate the methods of treatment: 

 

1) The breakage rate is non-linearly dependent on the length of the protein fibril and follows a 

power law; 

2) The likelihood of breakage is dependent on and follows a parabolic relationship with the 

position of breakage; 

3) The elongation rate above a critical fibril size is constant and fibrils only elongate by monomer 

addition 

 



Then, the methods of treatment are: 

a) A dosage of chaperones 

b) A dosage of interferons 

 

In the next section, the current model is explained in detail. 

 

The prion breakage-elongation dynamic model 
 

Model scheme and parameter definitions 
     Respecting the discussed literature, see the following schematic of the proposed model (Figure 2). 

The gross design of the model is based on Garzón et al. (2021). However, some important changes are 

proposed. For example, we include different length classes for the polymers in our model. Next, we 

have a non-constant breakage rate kernel 𝜅(𝑖, 𝑗) and per-capita elongation rate 𝜀. Here, 𝑖 is the length 

of the protein fibril and 𝑗 is the position of the fibril. In short, 𝜅(𝑖, 𝑗) is a measure for the probability of 

a fibril of length 𝑖 to break at position 𝑗. Hence, the breakage rate may depend upon the length 𝑖 of the 

prion fibril and the position of the breakage 𝑗 in the prion fibril (Beal et al., 2020; Nicoud et al., 2015). 

 



 

Figure 2. The proposed prion aggregation population. See the following sections for an in-depth description of 

the different processes, and differences between the current model and its predecessor developed by Garzón et 

al. (2021). 

 

Table 1. Table of parameters and their description. 

Name Description 

State variables  
  

𝑆 Susceptible population of PrPC 

𝑇 PrPC proteins treated with 
pharmacological chaperones 

𝑃 PrPSc chains 

𝐿 Mean length of PrPSc polymers 

𝑂 Oligomers smaller than 𝑥0 

𝐶 Pharmacological chaperone 
population 



  

Parameters  

𝜆 Natural production of PrPC 

𝜇𝑆 Degradation rate of PrPC 

𝜇𝑃 Degradation rate of PrPSc polymers 

𝜇𝑅  Degradation rate of PrPSc 
monomers 

𝜇𝐶  Degradation rate of 
pharmacoperones 

𝜇𝐼 Degradation rate of PrPSc due to 
interferons 

𝛼 Binding rate of pharmacoperone to 
PrPSc 

𝑥0 Minimum polymer length 

𝐷 Daily dosage of pharmacological 
chaperones 

𝑘𝐸  Elongation rate constant 

𝑘𝐵1  Breakage rate constant 

𝑘𝐵2  Breakage rate-length power 

𝑘𝐵3  Breakage position preference 
constant 

 

 

Functions, chemical reactions and model definition 
     In this paragraph, important functions are defined. The previously discussed parameters serve as 

building blocks to derive the model. All of the dynamics in the model are based on mass-action kinetics. 

First, we discuss the dynamics of the monomers and their binding with chaperones. Next, the 

formation of fibers is discussed. Finally, the process of fiber breakage is explained. Several rates of 

processes are described, together with relevant chemical reactions. 

 

Model dynamics of the monomers 
     Below, we define and explain the processes that are related to healthy and misfolded monomers. 

Healthy monomers are produced with a rate 𝜆. Healthy monomers and misfolded monomers decay 

with a rate that is proportional to their concentration, 𝜇𝑀𝑀 and 𝜇𝑅, respectively. Here, 𝜇𝑀 and 𝜇𝑅  are 

rate constants. 𝑀 and 𝑅 represent the concentration of healthy and misfolded monomers, 

respectively. 

 

Interactions between monomers and chaperones 
     Monomers interact with chaperones as well. firstly, there is association of monomers with 

chaperones. This happens at rate 𝛼𝑀𝐶𝑀 and 𝛼𝑅𝐶𝑅 for healthy and misfolded chaperones, 

respectively. 𝛼𝑀 and 𝛼𝑅 are association rate constants for healthy and misfolded monomers, 



respectively [rightward arrows of reactions (Ia) and (Ib)]. Here, 𝐶 represents the concentration of the 

chaperones that are administered at rate 𝐷. Next to this, there is also the dissociation of a healthy and 

misfolded monomer from a monomer-chaperone complex. This is represented by 𝛿𝑀𝑇𝑀 and 𝛿𝑅𝑇𝑅, 

respectively. Here, 𝛿𝑀 and 𝛿𝑅 represent the rate constants for the healthy monomers respectively 

[leftward arrows of reactions (Ia) and (Ib)]. Lastly, there is the correct folding rate of misfolded 

monomers into correctly folded (healthy) monomers, 𝜙𝑀𝑇𝑅 . 𝜙𝑀 is the correct folding rate constant 

[see also reaction (II)]. 

 

𝑀 + 𝐶 ⇌ 𝐶𝑀     (Ia) 

𝑅 + 𝐶 ⇌ 𝐶𝑅     (Ib) 

 

𝐶𝑅 → 𝐶 +𝑀     (II) 

 

Polymer kinetics 
     Next, there are the polymer kinetics. Firstly, polymers of length 𝑖 can elongate with one (misfolded) 

monomer, to form a polymer of length 𝑖 + 1. This happens at rate 𝜀𝑀𝑃𝑖 and 𝜀𝑅𝑃𝑖  for healthy and 

misfolded monomers, respectively [see reactions (IIIa) and (IIIb)]. Fibers have a minimal length of 𝑛 

and a maximal length of 𝑁. Furthermore, fibers can decay at a rate (𝜇𝑃 + 𝜇𝐼)𝑃𝑖. Here, 𝜇𝑃 is the natural 

degradation rate constant and 𝜇𝐼 is the degradation rate constant due to interferons. In the next 

paragraph, the polymer breakage kinetics are discussed. 

 

𝑃𝑖 +𝑀 → 𝑃𝑖+1     (IIIa),     𝑛 ≤ 𝑖 ≤ 𝑁 

𝑃𝑖 + 𝑅 → 𝑃𝑖+1     (IIIb),     𝑛 ≤ 𝑖 ≤ 𝑁 

 

Fibril breakage rate and position functions 

     First, there is the discrete breakage rate function 𝛽(𝑖), which is defined as 

𝛽(𝑖) = 𝛽1𝑖
𝛽2     (2); 

Where 𝛽1 is the primary breakage rate constant and 𝛽2 is the power of the relationship between length 

and rate (Nicoud et al., 2015) If 𝛽2 < 0, this would mean that shorter fibers are absolutely more likely 

to break than longer fibers. We do not believe that this is likely because of well-known force-moment 

relationships. Now, there is another function Γ(𝑖, 𝑗) that represents the daughter distribution. This 

distribution describes the probability of an 𝑖-sized fibril to break at a given position 𝑗, with respect to 

all other possible breakage events that an 𝑖-sized fibril may undergo (Nicoud et al., 2015). Nicoud and 

others (2015) derived an easy-to-use kernel to describe the daughter distribution. Here, we used a 

discretized version of their kernel: 

Γ(𝑖, 𝑗) =
1 + 𝑘𝛽3 (

2𝑗 − 𝑖
𝑖

)
2

∑ (1 + 𝑘𝛽3 (
2𝑘 − 𝑖
𝑖

)
2

)𝑖−1
𝑘=1

     (3) 



Paying attention to the constant 𝛽3, we can distinguish the following three cases. If 𝛽3 > 0, then the 

erosion mechanism is in effect, i.e. fibers have a tendency to break at one of the ends. If 𝛽3 < 0, then 

we get a center mechanism and the fiber is more likely to break in the middle. Lastly, if 𝛽3 = 0, the 

fiber can break at any position with equal likelihood. The daughter distribution kernel and breakage 

rate together make up the entire breakage kernel 𝜅(𝑖, 𝑗), which is defined as in (Nicoud et al., 2015), 

but is discrete here: 

 

𝜅(𝑖, 𝑗) = 𝛽(𝑖)Γ(𝑖, 𝑗)     (4) 

 

This breakage kernel is important, as it essentially describes the time evolution of the average fibril 

length for any protein fibril type (Nicoud et al., 2015; Xue & Radford, 2013). 𝜇𝑃 is the polymer 

degradation constant. Below the minimal size 𝑛, we assume that polymers become unstable and fall 

apart (Pieri et al., 2016). 

    Now that we have defined the breakage kernels, we can assign breakage rates to several polymer 

breakage processes. For example, there is the breakage of fibrils of length 𝑖 into smaller fibrils. This 

happens at rate 𝑃𝑖 ∑ 𝜅(𝑖, 𝑗)𝑖−1
𝑗=1 , since there are 𝑖 − 1 possible positions at which a fiber can break. 

Besides, larger fibers of length 𝑗 can break into two fibers, either of which has length 𝑖. This happens 

at rate 𝑃𝑗 ∑ (𝜅(𝑗, 𝑖) + 𝜅(𝑗, 𝑗 − 𝑖))𝑁
𝑗=𝑖+1 . 

 

 

𝑃𝑗 → 𝑃𝑖 + 𝑃𝑗−𝑖      (IVa), 𝑖, 𝑗 − 𝑖 ≥ 𝑛 

𝑃𝑗 → 𝑖𝑅 + 𝑃𝑗−𝑖      (IVb), 𝑖 < 𝑛 ∧ 𝑗 − 𝑖 ≥ 𝑛 

𝑃𝑗 → (𝑗 − 𝑖)𝑅 + 𝑃𝑖      (IVc), 𝑖 ≥ 𝑛 ∧ 𝑗 − 𝑖 < 𝑛 

𝑃𝑗 → 𝑗𝑅     (IVd), 𝑖, 𝑗 − 𝑖 < 𝑛 

 

 

The total ordinary differential equation model 

     Below, the resulting total model is the following. Of special note are the terms 𝜀𝑀∑ 𝑃𝑖
𝑁−1
𝑖=𝑛  and 

𝜀𝑅 ∑ 𝑃𝑖
𝑁−1
𝑖=𝑛  that denote the incorporation of monomers into fibrils of all length classes. Furthermore, 

there is no inflow of polymers of the smallest length due to elongation, because polymers smaller than 

𝑛 fall apart. In the same way, there is no inflow of polymers of the largest length 𝑁 due to breakage of 

larger polymers. Also, there is no outflow of the largest polymers due to elongation into even larger 

polymers. 

 

𝑑𝑀

𝑑𝑡
= 𝜆 + (𝛿𝑀 + 𝜇𝐶)𝑇𝑀 − (𝛼𝑀𝐶 + 𝜇𝑀 + 𝜀∑𝑃𝑖

𝑁−1

𝑖=𝑛

)𝑀     (5𝑎) 



𝑑𝑃𝑖
𝑑𝑡

= −𝑃𝑖(𝜇𝑃 + 𝜇𝐼 +∑𝜅(𝑖, 𝑗)

𝑖−1

𝑗=1

)+

{
  
 

  
 −𝜀(𝑀 + 𝑅)𝑃𝑛 + ∑ (𝜅(𝑗, 𝑛) + 𝜅(𝑗, 𝑗 − 𝑛))𝑃𝑗

𝑁

𝑗=𝑛+1

, if     𝑖 = 𝑛     (5𝑏)

𝜀(𝑀 + 𝑅)(𝑃𝑖−1 − 𝑃𝑖) + ∑ (𝜅(𝑗, 𝑖) + 𝜅(𝑗, 𝑗 − 𝑖))𝑃𝑗

𝑁

𝑗=𝑖+1

, if 𝑛 < 𝑖 < 𝑁     (5𝑐)

𝜀(𝑀 + 𝑅)𝑃𝑁−1 , if 𝑖 = 𝑁     (5𝑑)

 

𝑑𝑅

𝑑𝑡
= −(𝜇𝑅 + 𝛼𝑅𝐶 + 𝜀∑𝑃𝑖

𝑁−1

𝑖=𝑛

)𝑅 + (𝛿𝑅 + 𝜇𝐶)𝑇𝑅 +∑∑𝑗(𝜅(𝑖, 𝑗) + 𝜅(𝑖, 𝑖 − 𝑗))𝑃𝑖

𝑁

𝑖=𝑛

𝑛−1

𝑗=1

     (5𝑒) 

𝑑𝑇𝑀
𝑑𝑡

= 𝛼𝑀𝐶𝑀− (𝛿𝑀 + 𝜇𝐶 + 𝜇𝑀)𝑇𝑀 + 𝜙𝑀𝑇𝑅     (5𝑓) 

𝑑𝑇𝑅
𝑑𝑡

= 𝛼𝑅𝐶𝑅 − (𝛿𝑅 + 𝜇𝑅 + 𝜇𝐶 +𝜙𝑀)𝑇𝑅    (5𝑔) 

𝑑𝐶

𝑑𝑡
= 𝐷 − (𝛼𝑀𝑀+𝛼𝑅𝑅 + 𝜇𝐶)𝐶 + (𝛿𝑅 + 𝜇𝑅)𝑇𝑅 + (𝛿𝑀 + 𝜇𝑀)𝑇𝑀     (5ℎ) 

 

Data analysis and model read-outs 
     The state variables are the primary model read-outs. These are collected for each timepoint during 

the simulation. The state variables include the healthy (𝑀) and misfolded monomer concentration 
(𝑅), all of the polymer concentrations of length 𝑖, with 𝑛 ≤ 𝑖 ≤ 𝑁 (𝑃𝑖), the chaperone-bound healthy 

(𝑇𝑀) and misfolded monomer concentration (𝑇𝑅), and finally, the chaperone concentration (𝐶). Next 

to these primary read-outs, there are special primary read-outs and exogenous variables. 

     The reproductive ratio is an a special case of a read-out variable and is calculated as follows. First, a 

healthy equilibrium was created by setting the initial conditions such that only monomers were in the 

solution. Next, this healthy equilibrium was then used to initiate a next simulation session. During the 

first timestep of this simulation, a small amount of polymers was added to the solution. Next, the 

model was run in a loop and values were updated. For each timestep we calculated the normalization 

factor as the quotient between the initialized concentration of polymers and the density of all the 

fibers for each time step. Then, the negative logarithm of 𝑅0 was calculated by taking the logarithm of 

the normalization factor divided by the length of the interval between two timesteps. Then 𝑅0 is 

calculated by exponentiating the former. The entire formula for 𝑅0 is written down below 

 

𝑅0 = 𝑒

ln(
𝑅(𝑡)+𝑇𝑅(𝑡)+∑ 𝑖𝑃𝑖(𝑡)

𝑁
𝑖=𝑛

[𝑃]𝑖𝑛𝑖𝑡
)

Δ𝑡 ⇔ 

𝑅0 = (
𝑅(𝑡) + 𝑇𝑅(𝑡) + ∑ 𝑖𝑃𝑖(𝑡)

𝑁
𝑖=𝑛

[𝑃]𝑖𝑛𝑖𝑡
)

1
Δ𝑡

     (6) 

 

On the other hand, exogenous variables of the model are variables that are calculated after the 

simulation is finished. Here, exogenous variables include: total protein fibril concentration; [𝑃𝑇𝑜𝑡𝑎𝑙], 

total protein fibril mass; 𝑍𝑃, total infected mass; 𝑍𝐼𝑛𝑓, total biological mass; 𝑍𝑇𝑜𝑡𝑎𝑙, mean length;  𝐿̅ 

and mean breakage rate  𝜅̅. The definitions of these variables are listed below: 

 



[𝑃𝑇𝑜𝑡𝑎𝑙(𝑡)] =∑𝑃𝑖(𝑡)

𝑁

𝑖=𝑛

     (7) 

𝑍𝑃(𝑡) =∑𝑖𝑃𝑖(𝑡)

𝑁

𝑖=𝑛

     (8) 

𝑍𝐼𝑛𝑓(𝑡) = 𝑅(𝑡) + 𝑇𝑅(𝑡) +∑𝑖𝑃𝑖(𝑡)

𝑁

𝑖=𝑛

     (9) 

𝑍𝑇𝑜𝑡𝑎𝑙(𝑡) = 𝑀(𝑡) + 𝑅(𝑡) + 𝑇𝑀(𝑡) + 𝑇𝑅(𝑡) +∑𝑖𝑃𝑖(𝑡)

𝑁

𝑖=𝑛

     (10) 

𝐿̅(𝑡) =
∑ 𝑖𝑃𝑖(𝑡)
𝑁
𝑖=𝑛

∑ 𝑃𝑖(𝑡)
𝑁
𝑖=𝑛

     (11) 

𝜅̅(𝑡) =
∑ 𝑃𝑖 ∑ 𝜅(𝑖, 𝑗)𝑖−1

𝑗=1
𝑁
𝑖=𝑛

∑ 𝑖𝑃𝑖
𝑁
𝑖=𝑛

     (12) 

 

Now that we have clarified the design of the study together with the prion fibril aggregation model, 

we can show the experimental design. 

 

Experimental design 
 

The following experimental design is shaped towards the research questions we want to address. The 

experimental design is partitioned into three parts: model validation, univariate analysis, and bivariate 

or mediation analysis. 

 

Model validation 
     The model validation part is simply meant to test whether the state variables follow the dynamics 

as seen in previous studies. As indicated in Figure 1, the blue rectangle with the key parameters 𝛽2, 

𝛽3, 𝜇𝐼 and 𝐷. Here, all state variables (and exogeneous variables as well) are plotted against time. 

Furthermore, the evolution of the length distribution is plotted in a color plot, where distributions are 

taken over time. Here, color represents time. biologically seen, the above means that we assess the 

basic dynamics of the model without any treatment. Furthermore, the breakage rate is set as linearly 

dependent on length of the protein fibril. Also, the likelihood of breakage is assumed equal across all 

fibril sites. 

     In the second part, one of the four key parameters is varied each time: the chaperone dosage (𝐷), 

interferon dosage (𝜇𝐼), length-dependent breakage (𝛽2) or the position-dependent breakage 

parameter (𝛽3). Again, the state variables are plotted against time, grouped by one of the four key 

parameters. The same is done for the stable length distribution; only one time point, but grouped by 

a key parameter. If necessary, the regular plots are clarified with help of contour plots. In Figure 1, the 

second part is called Univariate analysis. 



In the third and last part, we do a Bivariate analysis or mediation analysis. In this part, we look at how 

the breakage parameters mediate the treatment effects on prion propagation. We do this by plotting 

each state variables against different values for treatment parameters, grouped by breakage 

parameter in a regular plot. Here again, contour plots are used if necessary. Unique to this part is that 

we can perform an analysis on the critical value of the reproductive ratio 𝑅0. To clarify, the critical 

value of 𝑅0 is 1. The minimal treatment dose for which 𝑅0 < 1 is called the critical dose. The question 

here is: How do the breakage parameters influence the critical dose? In the next paragraph, the 

hypotheses are stated in more detail. In the next section, a prion breakage-elongation model is 

proposed, based on the reviewed literature. 

     In all of the experimental settings, the default parameter values (not key parameter) were set at 

𝑛 = 4; 𝜆 = 2; 𝛼𝑀 = 0.02; 𝛼𝑅 = 0.4; 𝛿𝑀 = 0.4; 𝛿𝑅 = 0.02; 𝜙𝑀 = 0.4; 𝜇𝐶 = 0.001; 𝜇𝑀 = 0.05; 𝜇𝑅 =

0.05; 𝜇𝑃 = 0.005; 𝜀 = 0.16;𝛽1 = 0.04; 𝛽2 = 1; 𝛽3 = 0. Initial conditions were 𝑀(0) = 500, 

𝑃𝑛→4(0) = 0.001 and all other initial values were set at 0. In case 𝑅0 was calculated, the initial healthy 

equilibrium conditions were 𝑀(0) =
𝜆

𝜇𝑀
, 𝐶(0) =

𝐷

𝜇𝐶
. 



 



 

 



(continued) 

Figure 1. Experimental design and expected results. 

 

Results 
 

Part I – model validation 
 

Chaperones and interferons potentially reduce prion polymer mass 
     The first results show that chaperones and interferons in this model reduce the prion polymer mass. 

The highest polymer mass concentration was reached when there was no treatment. Interferons 

qualitatively reached the same effect, but a bit stronger. Combined treatment led to a (nearly) 

complete abolishment of polymers, according to the model (Figure 1). The critical polymer size was set 

at 4 and the upper bound for polymer size was set at 50. Furthermore, it could logically be seen that 

the number of bound (infected) monomers was increased when chaperones were introduced. 

Remarkably, the concentration of bound monomers became lower when interferons were added. An 

explanation for this is that interferons directly degrade polymers by an extra degradation term. As a 

consequence, there are fewer polymers that can shed off misfolded monomers (Figure S1C). This can 

lead to a situation in which fewer misfolded monomers are bound by chaperones (Figure S1A). 

 

 

Figure 1. Total infected monomer mass concentration plotted against time for four treatment regimes. 

Blue line: no treatment; yellow line: only chaperones; green line: only interferons; red line: combined 

treatment. Relevant parameter settings are, in respective order: (𝐷, 𝜇𝐼) =

{(0,0), (0.040,0), (0,0.015), (0.040,0.015)}. 



Healthy monomers decay under pathological conditions 
     With pathological conditions, it is meant that a tiny amount of linear protein aggregates is present. 

We expected that normal protein monomers decrease in abundance according to partial logistic decay 

curve. This is partial because the nucleation step is not incorporated into the model. Hence, the lag 

phase of monomer depletion will vanish. Thus, as expected, healthy monomers decay under 

pathological conditions. This happens with a near-sigmoidal curve. An explanation for the steep drop 

at already the beginning of time could be that we immediately provide the system with a tiny amount 

of these linear aggregates. This provision step circumvents the more slow formation of a nucleus 

(Figure 2). 

 

Figure 2. Plot of healthy monomer concentration against time. 

 

Infective polymer mass increases under pathological conditions 
          it was expected that prion fibers proliferate according to a logistic growth curve. However, 

infected protein monomers will slowly increase according to a full logistic growth curve. This is because 

the formation of polymers is required first. After that, polymers were expected to break into smaller 

pieces and eventual infected monomers. This indicated that there would be a lag phase in the 

formation of infected monomers. The polymer concentration and polymer mass would increase 

logistically, without a lag phase as the simulation is already initialized with some protein fibers.  

And, roughly as expected, the infective polymer mass increases under pathological conditions. Firstly, 

there is a short lasting lag phase. This was not expected, because a bit of protein aggregates was 

thrown in the solution already at the beginning of the simulation. An explanation for this, is the low 

initial value of 0.001 of just the smallest polymer length class 𝑛. Greater initial concentrations indeed 

cause an abolishment of the lag phase (see Supplementary figure 2A and B). After that, there is 

exponential growth. Stagnation of the total polymer mass occurs in the last phase, due to monomer 

depletion as seen in Figure 2 (Figure 3A, B). For the free infected monomer concentration, there was 

indeed a lag phase (Supplementary figure 3).       



 

A               B 

 

Figure 3. Plot of total polymer concentration A) and mass B) against time. 

 

Linear protein aggregates fragment over time 
     For the mean length of prion fibers, it was hypothesized that it changes in a biphasic manner over 

time. First, the mean length would increase. Then the mean length would decrease and reach 

equilibrium. This mean length is also the mean of a right-skewed probability density of the length of 

prion fibers in general.  And, as can be seen from Figure 4, it became clear that linear protein 

aggregates fragmented as time passed. Firstly, there was the phase of rapid elongation of tiny amounts 

of short aggregates to longer aggregates. Here, elongation of polymers was dominant (Figure 4A). In 

Figure 4B and Figure 4C, it can be seen that there were relatively more fibers of greater length. After 

a while, we see that the mean aggregate (polymer) length drops (Figure 4A). During this phase, 

breakage is dominant, as can be seen by a shift towards shorter polymer lengths in the length 

distribution over time (Figure 4B, C). After this, the mean aggregate length tends towards an 

equilibrium. This can be seen from a flattening line (Figure 4A) and a stabilizing length distribution 

(Figure 4B, C). 

 

A               B 

 

C 



 

Figure 4. A) mean linear protein aggregate length (in monomers) plotted against time. B) Color plot of 

the length distribution of linear protein aggregates with the coloring dependent on the point in time. 

C) Filled contour plot of the length distribution seen from above over time. 

 

Part II – univariate analysis 
 

An increasing length-dependent breakage fastens the formation of infected protein mass 

and determines infectivity in a non-linear way 
     The length dependence in the breakage rate tells us how likely it is that long fibers break relative to 

short fibers. A 𝛽2 > 1 tells that long fibers are relatively more likely to break than shorter fibers. In the 

case that 0 < 𝛽2 < 1, shorter fibers are relatively more likely to break than longer fibers. The following 

30 equally spaced values for 𝛽2 were chosen 

𝚩𝟐 = [0,… ,2.9] 

In this experiment, we had the following expectations. The power in the length-dependent breakage 

influences the mean length of the arising prion fibers. A stronger-than-linear power law makes that 

longer fibers are relatively more likely to break than shorter fibers. This results in a smaller mean length 

and a more right-skewed distribution of fiber length. A weaker-than-linear relationship brings about a 

situation in which long fibers are relatively less likely to break. This will result in a larger mean length 

and a less pronounced right skewness. However, it is assumed that long fibers are absolutely more 

likely to break than short fibers. And as expected, a stronger power in the length-dependence 

accelerates the fragmentation and thus the propagation of linear protein aggregates. This can be 

inferred from the fact that the mean aggregate length is lower for a higher 𝛽2 at the same time point 

(Figure 5A, B). For higher values of 𝛽2, there was also a more pronounced right-skewed length 

distribution (Supplementary figure 4). 
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Figure 5. A) The mean polymer length plotted against time grouped by values for 𝛽2 and B) end-

simulation value of the mean length plotted against values for 𝛽2 (power of length-dependence). 

 

     Also, according to this model, the infectivity of a protein aggregate solution is especially determined 

by the amount of linear protein aggregates equal to or greater than the minimal nucleus size. This is 

because only the linear aggregates are able to elongate. Having said this, we  see that there is a global 

increase in the total polymer mass at first sight (Figure 6A). However, when we look at the end-

simulation polymer mass, there is a non-linear relationship with 𝛽2. First, the polymer mass increases, 

reaches a maximum and then decreases (Figure 6B). A possible explanation for this is that weak to 

moderate length-dependence enhances the fragility of long aggregates and thus breakage of long 

aggregates. This contributes to the propagate of linear aggregates. However, when the length-

dependence becomes too strong, fibers in general become more fragile and are likely to fall apart into 

infected monomers anyhow. The latter is supported by the fact that the end-simulation concentration 

of free infected monomers rises as aggregates become more fragile (i.e. have a higher 𝛽2) (Figure 6C, 

D). Thus, a moderate length-dependence stimulates the propagate of linear aggregates. On the 

contrary, a very strong length-dependence hampers the propagate of linear aggregates as they are too 

likely to fall apart in non-infectious monomers. In the same way, this optimality phenomenon of the 

length-dependence has its backlash on the reproductive ratio (Figure 6E). 

 

A      B 
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Figure 6. A) contour plot of the total polymer mass over time (horizontally) and values of 𝛽2 (power of 

length-dependence), B) end-simulation polymer mass plotted against 𝛽2, C) color plot of infected free 

monomer concentration against time grouped by 𝛽2, D) end-simulation concentration of infected free 

monomers plotted against 𝛽2, and E) end-simulation reproductive ratio against 𝛽2. 

 

A center-breakage mechanism favors the propagation and sustention of (shorter) linear 

protein aggregates 
     To remind the reader, center-breakage is stimulated if the position-dependent breakage parameter 

𝛽3 < 0 and erosion is stimulated if 𝛽3 > 0. For this experiment, we used 30 equally spaced values for 

𝛽3: 

𝚩𝟑 = [−0.9, … ,10] 

For the positional breakage parameter, it was expected that the higher the value, the more erosion 

will take place. This leads to a mechanism in which monomers on their own are more likely to be shed 

off the fibril. This leads to a general reduction in the number of fibrils. Hence, the polymer length 

distribution will flatten. Also, the polymer mass and concentration, mean length, breakage rate and 𝑅0 

will drastically reduce as a consequence of erosion. This is because monomers are the atomic units in 

this model. On the other hand, the center mechanism less likely leads to an excess of monomers to 

shed off. This will cause the length distribution to remain intact and the mean length and breakage 

rate to increase as well as 𝑅0 and polymer mass and concentration. Furthermore, a lower (and 

negative) value for the position parameter leads to the opposite of the above. 

The results are mostly in line with the hypotheses. From the simulation results, we get that a center 

mechanism promotes the sustainment of linear aggregates in the solution. This is seen by an increased 



end-simulation aggregate concentration and mass for lower values of 𝛽3 (Figure 7A, B, C, D). 

Furthermore, a center-breakage mechanism promotes the presence of on average shorter polymer 

lengths (Figure 8A, B). Lastly and importantly, the reproductive ratio was also influenced by 𝛽3. To be 

precise, a center-breakage mechanism (𝛽3 < 0) promoted the proliferation of linear aggregates to a 

greater extent than erosion did (𝛽3 > 0) (Figure 9). 
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Figure 7. A) color plot of polymer aggregate concentration against time grouped by values of 𝛽3, B) 

end-simulation polymer aggregate concentration plotted against 𝛽3, C) color plot of polymer aggregate 

mass against time grouped by values of 𝛽3, and D) end-simulation polymer aggregate mass plotted 

against 𝛽3. 
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Figure 8. A) mean polymer length plotted against time grouped by 𝛽3 and B) end-simulation mean 

polymer length plotted against 𝛽3.  

 

 

Figure 9. End-simulation reproductive ratio plotted against 𝛽3.  

 

Chaperones hamper elongation and breakage of linear protein aggregates 
     Chaperones are commonly known to refold misfolded proteins into more properly folded proteins. 

The following 30 equally spaced values for the chaperone dosage were used in the simulation 

experiment 

𝐃 = [0,… 232] 

 

In this simulation experiment, it turns out that chaperones hamper elongation by reducing the mean 

end-simulation length of the linear protein aggregates (Figure 10A). Furthermore, chaperones reduce 



the breakage rate of protein aggregates (Figure 10B). The  irregularity in the graphs of both figures 

may have been a matter of not simulating long enough. 
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Figure 10. A) Mean end-simulation polymer length, and B) mean end-simulation breakage rate. 

 

Interferons reduce reproductive capacity of linear protein aggregates in several ways 
     In this model, interferons are determined to directly degrade linear aggregates by the addition of 

an extra degradation term. Also here, 30 equally spaced values of interferons were chosen: 

𝚳𝑰 = [0,… ,1.45] 

This resulted in a firm reduction  of the end-simulation polymer mass for low doses and a complete 

abolishment of the latter for higher doses (Figure 11A). Furthermore, the infected free monomer 

concentration drops, whereas the healthy monomer concentration is partially preserved after the end-

simulation time point (Figure 11B, C). Also, interferons drastically reduced the reproductive ratio of 

linear aggregates, thereby halting their propagation (Figure 11D). 
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Figure 11. A) contour plot of total polymer mass, B) free infected monomer concentration, and C) 

healthy monomer concentration plotted against time and interferon dosage values. D) end-simulation 

reproductive ratio plotted against interferon dosage.  

 

Part III – mediation analysis 
 

In this part of the analysis, key parameters were varied in the way explained before, with a slight 

change for the range of 𝛽2, namely 𝚩𝟐 = [0,… ,1.7]. 

 

Length-dependent breakage decreases the critical treatment dose for chaperones but 

shows non-linearity in the same for interferons 
     The critical treatment dosage for any treatment option refers to the minimal dosage that causes the 

reproductive ratio to drop below 1. Hence, it is the lowest effective dosage. In general, we see that the 

end-reproductive ratio becomes more dependent on the chaperone dosage as 𝛽2 increases (Figure 

12A). Furthermore, the critical chaperone dosage drops drastically as 𝛽2 increases (Figure 12B). An 

explanation of the above is that more monomers are released as 𝛽2 is increased (see also Figure 6C). 

This makes the protein solution more receptive to chaperone-monomer association and hence more 

protection against further protein aggregation. 

     On the other hand, 𝛽2 mediates the critical interferon dosage in a non-linear way. First, the critical 

dosage positively correlates with 𝛽2, after which it drops for higher values of 𝛽2 (Figure 12A, B). This 

result is inherent to the results obtained in Figure 6B and Figure 6E, where 𝛽2 shows a negative 

parabolic relationship with total polymer mass and reproductive ratio. To summarize, for an 

intermediate value of 𝛽2 it is harder for interferons to mitigate the infection if lengthy fibers are fragile 

enough to break easily (thus promoting infection propagate) without falling apart into unstable and 

noninfectious monomers (which hampers infection propagate). 
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Figure 12. A) end-simulation value of the reproductive ratio plotted against chaperone dosage grouped 

by value of 𝛽2, B) section of A at the point where the reproductive ratio equals 1. Critical chaperone 

dosage plotted against values of 𝛽2. C) end-simulation reproductive ratio plotted against interferon 

dosage grouped by value of 𝛽2. D) section of C at the point where the reproductive ratio equals 1. 

Critical chaperone dosage plotted against values of 𝛽2. 

 

Position-dependent breakage increases the critical treatment dose for chaperones but 

decrease the same for interferons 
     Here, we see that the relationship between the chaperone dosage and end-reproductive ratio is 

qualitatively the same for all value of 𝛽3 (Figure 13A). However, when we look more closely at the 

result in Figure 13B, we see that there is a subtle increase in the chaperone dosage for the erosion 

mechanism. An explanation for this is that more misfolded monomers shed off from the linear 

aggregates during erosion. Hence, a higher chaperone dosage needs to be maintained to protect the 

many misfolded monomers from aggregating with polymers. 

     On the other hand, there was a subtle decrease in the critical interferon dosage for the erosion 

mechanism. This is also explained by the lower polymer concentration and mass as seen in Figure 7A, 

B, C, D. 
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Figure 13. A) end-simulation value of the reproductive ratio plotted against chaperone dosage grouped 

by value of 𝛽3, B) section of A at the point where the reproductive ratio equals 1. Critical chaperone 

dosage plotted against values of 𝛽3. C) end-simulation reproductive ratio plotted against interferon 

dosage grouped by value of 𝛽3. D) section of C at the point where the reproductive ratio equals 1. 

Critical chaperone dosage plotted against values of 𝛽3. 

 

Discussion 
     This work introduced two intrinsic fibril breakage parameters in combination with two treatment 

options. The intrinsic fibril breakage parameters were 𝛽2; a length-dependent power law and 𝛽3, a 

position-dependent parameter in a parabolic breakage kernel. The treatment options were 

chaperones or interferons. The results were obtained by means of differential equation modelling. We 

first looked at the validity of the model. After that, we performed an univariate analysis in which we 

varied only one of the four key parameters 𝛽2, 𝛽3, 𝐷, 𝜇𝐼. Lastly, we performed a mediation analysis. 

Here, we looked at how the intrinsic breakage parameters mediate the effect of treatment regimens. 

     To begin with, both treatments individually and combined hampered the global propagation of 

linear protein aggregates, consistent with previous research on a similar model (Garzón et al., 2021). 

The basal dynamics of the model are in line with the hypotheses and with previous research. 

Monomers decayed according to a logistic decay curve (see also Shvadchak et al., 2015). Conversely, 

it could be shown that the population of the protein polymers over time followed a logistic growth 

curve (Alvarez-Martinez et al., 2011; Collins et al., 2004; Marchante et al., 2017; Nicoud et al., 2015; 

Xue & Radford, 2013). The evolution of the mean length over time was also similar in comparison to 



previous research. To conclude, these findings do not seem surprising, as these are only qualitative 

patterns that are very likely to occur in similar models (Arioso, Beeg et al., 2012; Xue, Hellewell et al., 

2009; Xue, Homans et al., 2009; Xue & Radford, 2013). 

     In general, it was shown that higher values of 𝛽2 led to a faster accumulation of linear aggregates. 

Furthermore, 𝛽2 imposed certain constraints on the length-distribution as well. This was seen by a 

more right-skewed length distribution of the linear aggregates. Next, 𝛽2 determined the infectivity in 

a non-linear way. The latter has to do with optimal fragility. This means that long aggregates are fragile 

enough to break into shorter, infectious aggregates without being too fragile to break into non-

infectious monomers. This was also reflected in the relationship between the critical interferon dose 

and 𝛽2. For intermediate values of 𝛽2, a relatively high amount of interferons was needed to halt the 

infection. On the other hand, the critical chaperone dosage dropped drastically as 𝛽2 increased. One 

may conclude from this that manipulation of protein strains, such that they become more fragile (i.e. 

manipulate 𝛽2) may be useful to inhibit protein aggregation. It is understandable that this is very hard, 

as protein aggregates are usually resistant to proteases. However, there is something that we did not 

incorporate into the model. This is that chaperones act as a fragilizing agent for protein aggregates as 

well. This does not seem to be a beneficial pathway, as fragmentation of protein aggregates promotes 

their propagation (see review of Kushnirov, Dergalev, & Alexandrov, 2021). Instead, it is of interest to 

stabilize protein aggregates, so that their propensity to break and propagate is reduced (a reduction 

in 𝛽2). This can be achieved by protein sequestration. This is a method to prevent protein aggregates 

from breaking into smaller aggregates by binding of chaperones to the aggregate. In this way, 

propagation of aggregates can potentially be inhibited (Küffner et al., 2021). Hence, the results of the 

current protein propagation model are in agreement with and motivate concurrent clinical practice to 

inhibit protein aggregation. 

     Furthermore, the position-dependent breakage parameter showed its importance as well. To be 

precise, a center-breakage mechanism favors the propagation of linear protein aggregates. Also, linear 

aggregates on themselves tend to be shorter for the center-breakage mechanism, whereas monomers 

tend to increase in abundance for the erosion mechanism. The latter finding is consistent with earlier 

empirical findings of Beal and colleagues (2020). In future research, it might therefore be useful to 

stimulate erosion of protein aggregates rather than breakage at the center. 
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Supplementary figure 1. A) The amount of monomers bound to chaperones and B) the amount of 

misfolded monomers and C) The total polymer mass plotted against time for each treatment option. 

Relevant parameter settings are, in respective order: (𝐷, 𝜇𝐼) =

{(0,0), (0.040,0), (0,0.015), (0.040,0.015)}. Other parameter settings: 𝑛 = 4; 𝜆 = 2; 𝛼𝑀 =

0.02; 𝛼𝑅 = 0.4; 𝛿𝑀 = 0.4; 𝛿𝑅 = 0.02; 𝜙𝑀 = 0.4; 𝜇𝐶 = 0.001; 𝜇𝑀 = 0.05; 𝜇𝑅 = 0.05; 𝜇𝑃 =

0.005; 𝜀 = 0.16; 𝛽1 = 0.04; 𝛽2 = 1; 𝛽3 = 0. Initial conditions were 𝑀(0) = 500, 𝑃𝑛→4(0) = 0.001 

and all other initial values were set at 0. In case 𝑅0 was calculated, the initial healthy equilibrium 

conditions were 𝑀(0) =
𝜆

𝜇𝑀
, 𝐶(0) =

𝐷

𝜇𝐶
. 
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Supplementary figure 2. A) The polymer concentration and B) mass plotted against time. Here, the 

only difference is the initial condition 𝑃𝑛→4(0) = 1. 

 

 

Supplementary figure 3. Plot of the free infected monomer concentration. 

 



 

Supplementary figure 4. The stable length distribution of polymer lengths. The coloring of the lines 

depend on the value of 𝛽2. 
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