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Abstract

Large patient data is gathered continuously at every hospital. If the digital representation
thereof is in the form of a standardized Electronic Health Record (EHR), reusable and scalable
analytics pipelines using Artificial Intelligence can be developed to uncover data-driven insights
in patient populations. In a sensitive context such as medical decision-support, ideally, these
insights are generated with interpretable models and result in a visual representation which
can be assessed by medical professionals without technical expertise. Digitization of the health
care sector lags behind other economy sectors due to industry specific obstacles like patient
privacy, patient safety, data availability and a lack of allocated resources. Due to these reasons,
neither a nationwide adaptation of EHR nor the following large-scale data analytics pipelines
are currently an everyday reality in European hospitals.

However, in this thesis the foundation is laid to robustly extract data from standardized
EHR, transform it into a time series, learn temporal rules from these hospital encounter histories
and visualize the results in a hierarchical and directed graph. Three models of computational
intelligence, namely (1) a baseline transition matrix, (2) a Temporal Association Rule Mining
and (3) a Dynamic Bayesian Network structure learning approach, are implemented in separate
pipelines and the results are compared across models, datasets and hyperparameters using real-
world lung cancer patient data from Germany.

The baseline transition matrix was found to be suitable for exhaustive representations of
small datasets (N ≤ 10), Temporal Association Rule mining is computationally the most
efficient and thus most suitable for very large data (N ≥ 10000) and the Dynamic Bayesian
Network structure learning approach was identified to be the most robust computational model
and resulted in the most meaningful rules for medical decision-making. While all models were
found to have their potential use cases, if sufficient computational resources are available,
learning the structure of a Dynamic Bayesian Network from data in cooperation with a medical
expert should be the preferred option.
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Table 1: List of relevant Abbreviations.

Abbreviation Meaning

UKE Universitätsklinikum Hamburg-Eppendorf
IAM Institute of Applied Medical Informatics
DAG Directed Acyclical Graph
JPD Joint Probability Distribution
SDG Synthetic Data Generation
EHR Electronic Health Records
FHIR Fast Healthcare Interpretable Resources
OMOP Observational Medical Outcomes Partnership
CDM Common Data Model
PADASER Publicly Available Data Approach to the Realistic Synthetic EHR
ESMO European Society of Medical Oncology
MM Markov Model
ARM Association Rule Mining
TARM Temporal Association Rule Mining
DBN Dynamic Bayesian Network
SVAR Structural Vector Autoregressive Model
SCM Structural Causal Model
SEM Structural Equation Modeling
GCM Graphical Causal Model



Chapter 1

Introduction

Recent years have brought immense technological advancements by Data Science and Artificial
Intelligence (AI), progressing the effectiveness and precision of work by use of Big Data in
industry sectors like autonomous driving [1, 2], finance [3, 4, 5] and marketing [6, 7, 8]. However,
the healthcare industry received the least attention and benefit so far, which becomes evident
through official government reports in Germany [9], the country this project is performed in.

Besides the healthcare sector holding a special industry standard in terms of customer
privacy and safety [10, 11, 12], the development of AI in healthcare still needs to gain more
traction compared to the rest of industry [9]. The arguably most prevalent use case of AI
in healthcare are computer vision tasks such as medical image analysis [13, 14, 15], but the
digital use of local patient records is less established [16]. This could be due to the fact that
for the efficient usage of patient records technological and policy requirements have to be in
place. For example, all medical information of a patient has to be in a centralized and digital
resource. Also, this digital resource has to be standardized to enable second-use analytical tools
to be efficient and scalable. However, given these prerequisites, the large patient data which
continuously accumulates within a hospital could be used to analyze disease, comorbidity,
treatment, prescription and recovery history of anonymous patient subpopulations and thereby
serve as a knowledge base and mirror the hospital’s daily work.

The past resistance observed in the healthcare sector to incorporate analytic tools of AI
on patient records and thereby close to medical decision-making stands to reason, as trust in
such a system has to be established beforehand. In order to establish trust, the transparency
of the model is non-negotiable. In other words, it is imperative that healthcare providers,
policymakers, and patients understand the decision procedure of the AI model and have access
to information about how the model operates. These so-called ”white-box” models are essential
to ensure that the decisions made by the system are well-founded and ethically sound. Actually,
with the General Data Protection Regulation (GDPR) in force in Europe [17], an individual has
the right to an explanation when an algorithm makes a decision about her or him [18]. While
AI models should and likely never will make medical decisions without a human expert, the
need for transparency is highlighted once more by legal restrictions. Therefore, to ensure that
the benefits of AI are introduced to the realm of medical patient records safely and ethically,
the first step necessary is to approach the issue with an interpretable and transparent white-box
model.

If the technological prerequisites are fulfilled and the transparency of the model is guaran-
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teed, the use cases and benefits of AI tools can be wide-ranging. Firstly, statistical analyses of
patient subpopulations can extract useful knowledge for clinicians and researchers while secur-
ing the privacy of an individual’s sensible information. Secondly, the extracted knowledge can
be used to improve patient treatment on a structural level. Lastly, the extracted knowledge
can be used to mirror the hospital’s inner workings, validate or falsify cause-effect relationships
and uncover unexpected dependencies between medications, treatments and disease progres-
sion. While it is noteworthy that such applications still have a long way to go before they
become real-world medical tools, learning and visualizing the disease and treatment process of
individual disorders can constitute a promising starting point.

Building up on this, the current research project focuses on learning and extracting rules
from medical observational data as a time series to comprehensively present the disease pro-
gression in a data-driven fashion. To achieve this, 11641 real-world pulmonary cancer patient
records registered at the Universitätsklinikum Hamburg Eppendorf (UKE) in Germany will be
mapped onto a digital and standardized format for Electronic Health Records (EHR). Subse-
quently, three transparent models of computational intelligence capable of learning rules from a
time series will be implemented, compared and evaluated. For each model, an extract, transform
and load (ETL) process is designed which enables rule learning directly from the standardized
EHR. After learning, these rules will be visualized in a digital ontology which ideally mirrors the
disease and treatment progression in pulmonary cancer patients in a comprehensible manner.
Hence, the system is able to learn and visualize disease progressions across patients, disease
patterns and institutions.

1.1 Research Questions

To summarize, this thesis focuses on the following objectives:

Theoretical Research Objectives

Q1. Is it possible to learn and extract temporal rules from standardized EHRs such
that healthcare professionals can interpret them without prior knowledge about
the underlying model of computational intelligence?

Q2. Are there models which demonstrate relatively robust performance for varying data
set sizes and varying data dimensionality using real-world medical records?

Medical Research Objectives

Q1. Are the inferred dependencies in the patient data what we would expect considering
the official medical treatment guidelines in Germany?

1.2 Thesis Outline

The thesis is structured as follows. In chapter 2, relevant concepts from the scientific litera-
ture are presented. Chapter 3 summarizes the different data formats and datasets used in this
research, while chapter 4 outlines the chosen models mathematically and their respective im-
plementation details. In chapter 5 the experiments and their evaluation methods are described.
In chapter 6 the experimental results are portrayed before the discussion and conclusion of the
study is presented in chapter 7.



Chapter 2

Background

The theoretical background of this research can roughly be divided into two sub-parts. Firstly,
the need and context of this research is highlighted by outlining the status quo of data in-
teroperability and AI usage in the healthcare sector in Germany. Afterwards, the reader will
be familiarized with relevant concepts of digital healthcare. For this, the Fast Healthcare In-
teroperability Resources (FHIR®) [19] and The Observational Medical Outcomes Partnership
(OMOP) Common Data Model (CDM) will be introduced as standards for Electronic Health
Records (EHR). In addition, it is important to investigate the Synthetic Data Generation (SDG)
tool Synthea to highlight its role in the motivation and utility of this research project. In the
second step, the concept of rule learning on time series using Artificial Intelligence (AI) will be
addressed in general terms, before eligible models for this research will be assessed conceptu-
ally. The section will end by incorporating the background knowledge into the current research
objective to concisely familiarize the reader with the intentions of performing this study.

2.1 Digital Healthcare & Tools

The official report from the German Ministry of Economy and Energy has released statistics [9]
displaying the Health Care industry in Germany to be the worst-performing industry in terms
of digitization and digital innovation. The rankings per industry are shown in Figure 2.1.
Noteworthy, queried healthcare institutions in Germany reported no relevance or application of
Artificial Intelligence (AI) in their work [9] so far. However, the UKE in Germany is viewed as
one of the most progressive health care institutions in Europe. With the newly founded IAM
(2021) the aim is to further progress towards digitization, interoperability and application of AI
through research to advance on the aforementioned systematical disadvantage of the healthcare
sector. In the following, two digital healthcare tools used at the IAM will be presented which
lay the foundation for this research project, namely standardized EHR and Synthea.

2.1.1 FHIR & OMOP

An important form of digitization in the healthcare industry displays the shift from paper-
based to digital documentation. The benefits stand to reason, as patient data in a digital
format are more readily available, distributed and accessible than traditional patient records.
In addition, representing the data in digital format allows to build tools and applications on

10
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Figure 2.1: Official statistics of the German Ministry ranking the digital development per
industry [9]. The healthcare sector (”Gesundheitswesen”) ranks last for 2017 and 2022 with a
digitization score of 37-39 out of 100.

top of it which can exploit the data. Standardized digital health records like FHIR and OMOP
hereby facilitate the scalability of such tools and applications across domains and distributions.
In the following, both data formats will be presented to assess their individual qualities.

FHIR has the objective of reducing implementation complexity without losing information
integrity [20]. To achieve this a set of so-called resources, the basic components of FHIR (e.g.
patient, observation, condition), is built and application programming interfaces (API) are
developed to access and use these resources [20]. An EHR of a patient in FHIR thus is an
aggregation of resources and can be represented in either JSON, XML, or RDF files [21]. The
fact that the user is able to access and perform operations on the resources on a granular level
sets FHIR apart from other standardization formats for EHR. The FHIR standard may thus be
one of the most promising digital formats for EHR, highlighted by the fact that in 2018 world-
leading tech companies including Microsoft, Google, IBM, and Amazon signed a commitment
to remove the barriers of healthcare interoperability in which FHIR was explicitly mentioned
as emerging standard [20] [22].

Another data standard for EHR is the Observational Medical Outcomes Partnership (OMOP)
Common Data Model (CDM), or the OMOP cdm in short. The OMOP cdm is standardized
in terms of content and structure, such that it facilitates efficient analysis [23]. Medical ter-
minology regarding drugs, conditions, procedures, devices, observations and measurements are
encoded in a vocabulary which further allows for standardization and organization of medical
terms within the database [24]. The vocabulary was created by the OHDSI, the Observational
Health Data Science and Informatics initiative, which intended to optimize secondary use of ob-
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servational data by harmonizing and standardizing clinical data and creating scalable analytical
tools [16, 25, 26].

Noteworthy, the two mentioned data standards belong to the most common formats in
clinical practice. Also, EHRs in one data standard are easily transferred into the other and vice
versa [27]. In this project, the unstructured hospital data will be mapped into OMOP cdm and
the analytical data pipelines are thus built assuming the OMOP data standard. However, the
pipelines developed during this project may also be used if the data is in another clinical data
standard by prior mapping of, for example, the data within a FHIR database to OMOP cdm.

2.1.2 Synthea

Synthea is a SDG tool that is able to synthesize large patient data sets from disease modules
in the form of digital ontologies. The Synthea community, which is part of the larger MITRE
corporation, has built several such modules based on the PADARSER framework, the Publicly
Available Data Approach to the Realistic Synthetic EHR. The PADARSER framework uses
health incidence statistics, clinical practice guidelines and medical coding dictionaries to create
digital ontologies by hand [28]. Figure 2.2 visualizes the PADARSER framework in detail.
See Figure 1 and Figure 2 in the Appendix for the two official Synthea modules regarding
pulmonary cancer.

Figure 2.2: The PADASER framework [28]. It
defines the conceptual process of creating Synthea
graphs by hand.

Patient privacy and data confidential-
ity are essential objective during SGD in
the clinical context. As the PADARSER
framework assumes that real EHR data
is unavailable, it circumvents one of the
major challenges of the field. However,
this framework also embodies one ma-
jor disadvantage, namely scalability. The
man-made ontologies are not scalable
across geographics, as the expert knowl-
edge may be influenced by environmental
factors. For example, the Synthea ontol-
ogy for the most common cause of death
in the United States is based on expert
knowledge and health statistics gathered
in Massachusetts [28]. An ontology cre-
ated based on a patient population in Massachusetts will most likely not provide meaningful
insight for a Hospital in Germany. Therefore, a system which learns rules from a specific sub-
population of standardized EHRs may effectively distribute the benefits of digital ontologies
and the subsequent SDG.

Essentially, the current research aims to address the gap in a larger pipeline between two
existing tools in digital healthcare. More precisely, by building up on a standardized EHR
format, the developed intelligent system is scalable across patients, diseases and institutions.
By modelling the learnt rules into a digital ontology with the same format as the Synthea
modules, one can create a pipeline which synthesizes artificial EHR from real and standardized
EHR. A schematic overview is depicted in Figure 2.3. Unstructured clinical source data is



CHAPTER 2. BACKGROUND 13

Figure 2.3: Visualization of the larger pipeline the thesis project is embedded in. The un-
structured hospital data is mapped to a standardized EHR to enable reusable analytical data
pipelines.

gathered in a standardized EHR. Then, an analytical pipeline extracts information from the
standardized patient data. Finally, the learnt temporal rules are modelled into a Synthea graph.
Note that Figure 2.3 depicts three distinct analysis pipelines which differ in the computational
model used. All three approaches will be introduced in the following sections.

2.2 Pulmonary Cancer

The project will be performed on EHR of real patients registered for treatment of pulmonary
cancer at the UKE. Therefore, some key points regarding pulmonary cancer and its causes,
prevalence and treatment guidelines will be addressed. Pulmonary, or lung, cancer represents
the most important cause of cancer death worldwide. More precisely, it is the most common
cause of cancer death in men and the second most common cause of cancer death in females [29].
It has been the most common cancer in the world for several decades already and accounted for
around 18% of all cancer deaths in 2018 and 2020 [30, 31]. Whereas lung cancer can be traced
back to several causes like ionizing radiation, environmental air pollution, infection and obesity,
the dominant driving factor is clearly direct tobacco smoking, followed by indirect second-hand
smoke (SHS) [29]. Smoking accounts for more than 80% of lung cancer cases in the western
world, thereby making it the leading preventable cause of death worldwide [32].

The European Society for Medical Oncology (ESMO) continuously develops and publishes
Clinical Practice Guidelines (CPG), which serve as the consensus of expert recommendation and
provide a specific treatment structure per type of cancer. Non-small cell lung cancer (NSCLC)
is hereby recommended to be treated with surgery, systemic therapy, adjuvant chemotherapy,
primary radiotherapy, radio-frequency ablation and postoperative radiotherapy in early-stage
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NSCLC (Stages I and II) [33]. Locally advanced NSCLC (Stage III) will be resected if a
Multidisciplinary Team (MDT) evaluates a complete resection of the tumor to be possible,
otherwise systemic treatment is provided. As these treatments represent a consensus regarding
lung cancer treatment across Europe most of them should be rediscovered in the data gathered
at the UKE, which will be used to learn disease and treatment progressions through models of
computational intelligence.

2.3 Computational Intelligence for Rule Learning

Rule extraction and rule learning are fundamental techniques in computational intelligence that
aim to uncover meaningful information from complex data sets. These techniques are widely
used in various domains such as data mining, machine learning, and pattern recognition. Rule
extraction involves the identification of relevant patterns and relationships within data, while
rule learning is the process of constructing a set of rules that describe the data in a compact
and interpretable manner. If one uses the original Synthea module in Figure 2 as guidance,
it becomes evident that an intelligent model for the task at hand has to be capable of rule
extraction and rule learning. In the following, two groups of models with promising qualities for
addressing the task will be investigated with a particular emphasis on learning from time series
data. The two groups of models were identified to possess different mathematical complexity
and dissimilar conceptual approaches to rule learning, which makes a comparison interesting
with respect to the research objectives. Note, however, that this section serves the purpose
of introducing the reader conceptually to the broad approaches, whereas chapter 4 discusses
specific algorithms implemented from a methodological perspective.

2.3.1 Temporal Association Rule Mining (TARM)

Data mining describes the technique of selecting, processing and integrating data and retrieving
useful information from it. Association Rule mining (ARM) hereby is a method of computa-
tional intelligence which serves as analytical tool to categorize and summarize the relationships
among data by identifying correlations and patterns in large relational databases [34]. The
association rules are hereby used to find relationships between objects which are frequently
observed together and are expressed in if/then statements that uncover dependencies in oth-
erwise unrelated data sets [34]. ARM techniques have been around the scientific literature of
computational intelligence for some decades already [35] and have repeatedly supported their
usability in uncovering dependencies from observational data in finance [36, 37], telecommuni-
cation [38, 39], retail marketing [40], but also healthcare specifically [41, 42].

Temporal Association Rule Mining (TARM) extends this idea by identifying relationships
between entities on time series data. In other words, the uncovered if/then relationships by
TARM can be interpreted as ”if A is observed at time t, then B will be observed at the next
time step with a probability of P”. Besides TARM models arguably implying more meaningful
and interesting rules than standard ARM, the literature and code documentation of TARM is
scarce and relatively inaccessible due to a lack of standard terminology [43]. That being said,
one prior research was identified which developed a general methodology for mining temporal
association rules on clinical and administrative hospital data [44]. The lack of visibility of
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TARM research may be counterproductive for the development of such models [43], however,
by taking a closer look at the intuitive and well-documented ARM methodologies, one can get
a better grasp of the underlying idea.

Besides having widespread applicability, the first and most prevalent use case of ARM is
the basket analysis [45], which informs a retailer about products that are frequently purchased
together and thereby can improve marketing and placement of associated products to increase
profit [46]. Transferring this approach to medical diagnosis, one could for example identify
frequent associations between a medication and a certain symptomology. This has been done
before in the context of predicting drug response in cancer [41] and for determining factors which
contribute to heart disease [42]. Taking this idea one step further, by forcing the associations
between entities to be learned across time steps, temporal association rule mining would be
able to uncover relationships between conditions and treatment procedures with a chronological
component. Eventually, these chronological relationships can be compared to actual medical
treatment guidelines to validate or falsify adherence to these.

Thus, a temporal association rule mining approach is implemented in this study as the
scientific literature recognizes it as a robust, computationally efficient and mathematically
transparent approach. Besides only computing rather basic statistical measures, this approach
serves as a benchmark regarding robust computing to more complex, yet also more fragile,
computational models like Dynamic Bayesian Networks.

2.3.2 Dynamic Bayesian Networks (DBN)

Generally, Bayesian Networks (BN) are graphical representations of Joint Probability Distri-
butions (JPD) in the form of a directed graph [47]. A Dynamic Bayesian Network (DBN)
is a probabilistic graphical model that extends the concept of Bayesian networks to capture
temporal dependencies and dynamic behavior in time series data [48]. Interestingly, Bayesian
approaches are not widely used in the medical field [47], however, their theoretical capabilities
seem to match the requirements for transparent learning from patient data. For example, rea-
soning from effect to cause is a special capability of Bayesian modeling which, in combination
with the inherent graph representation of the causal structure, can facilitate diagnostic appli-
cations and improve decision-making support [47, 49]. In addition, the convenience of inducing
expert knowledge makes them interesting for real-world applications in the medical field [47].
However, it is necessary to note that knowledge of Bayesian statistics is required to understand
the model itself, the approach is computationally expensive and evaluation or performance
indicators for DBN structure learning are not consistent across studies and researchers [50].

The graph of a DBN can be created in two ways. Firstly, the graphical structure can
be built one node at a time with pre-initialized distributions set for each node, the so-called
prior distribution in Bayesian Statistics. Secondly, the network structure can be learned in
a purely data-driven approach, which is required for the proposed pipeline of this research
project [see Figure 2.3]. However, the exact learning of a DBN from data, known as structural
learning, is an NP-hard problem [51], meaning it is computationally extremely complex and
may be infeasible for larger feature spaces [52]. Dynamic Bayesian networks have been applied
to problem statements in healthcare before [53, 54], however, these applications predominantly
focus on the prediction of a medical outcome variable rather than unsupervised graph structure
learning.
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In summary, Dynamic Bayesian Networks can provide a great upside for modelling disease
progressions, if applicable to the data. The ability to learn cause-effect relationships is in
demand for medical use cases, but a good performance is strongly dependent on the data set.
Therefore, in this study, a DBN structure learning approach is implemented to investigate its
robustness using real-world medical data.



Chapter 3

Data

Multiple data formats are relevant to this research. First, there is the unstructured source
data called VONKO. VONKO holds real patient data from lung cancer patients in Germany.
This data set was mapped into the standardized EHR format OMOP. After three temporal
rule learning approaches extract and analyze data directly from the OMOP data structure,
each output was transformed into a Synthea graph. Thus, the three data formats of VONKO,
OMOP and Synthea will be introduced chronologically in the following.

3.1 VONKO Data on Pulmonary Cancer

The VONKO dataset is the unstructured source data which is used for analysis after mapping it
into OMOP. This data was gathered by the state cancer registry in the federal state of Schleswig-
Holstein in Germany [55]. Thus, it holds all information about lung cancer patients health care
institutions need to report to the state. It is comprised of seven data tables which themselves
hold information about the tumor, operations, radiotherapy, systemic therapy, disease process,
distant metastases of the primary tumor and distant metastases in the disease process. Whereas
the tumor and the distant metastases table are concerned with summarizing additional medical
observations of a patient, the other five tables hold required information regarding the official
reporting of lung cancer patients to the state.

3.1.1 TNM Classification

The TNM classification was developed by the American Cancer Society [56] and is a vocabulary
which standardizes the medical tumor staging of a patient. The TNM cancer staging vocabulary
was also used in the VONKO data set and will therefore be introduced in the following.

Firstly, the TNM tumor classification is divided into clinical and pathological staging. The
clinical staging of tumor diagnosis depends on physical exams like blood tests, x-rays and
CT-scans and constitutes key insights for determining preliminary treatment methods. In com-
parison, the pathological staging, also called the surgical stage, refers to a more precise staging
classification as it incorporates the clinical staging with potential surgery results. Secondly, the
TNM system is composed of three main variables to define the cancer staging. These describe
the original or primary tumor (T), whether the cancer has spread to nearby lymph nodes (N)
and whether the cancer has metastasized (M) to distant parts of the body. Thirdly, the stage
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of the tumor is defined by Roman numerals from I (1) to IV (4), where lower stages are less
advanced tumors [56]. Therefore, the pulmonary tumor of each patient in the VONKO data
set is classified by some combination of diagnosis type (’c’ for clinical or ’p’ for pathological),
tumor type (’T’, ’M’ or ’N’) and a stage (I-IV).

3.2 OMOP Common Data Model

Electronic Health Records (EHR) have revolutionized the healthcare industry by enabling the
storage and management of vast amounts of patient data. However, the heterogeneity and
complexity of EHR data pose significant challenges for data integration, analysis, and research.
To address these challenges, the Observational Medical Outcomes Partnership (OMOP) Com-
mon Data Model (CDM) has emerged as a widely adopted data standard for harmonizing and
organizing EHR. A concise overview is shown in Figure 3.1.

Figure 3.1: The database architecture of the OMOP
CMD [23].

The OMOP CDM provides a stan-
dardized framework for transforming and
structuring EHR data into a consis-
tent format, facilitating data interoper-
ability and enabling large-scale observa-
tional research across disparate health-
care databases. The CDM is designed
to accommodate diverse data types and
represents the entire healthcare contin-
uum, from diagnosis and procedures to
medications and patient demographics.
Whereas the OMOP CDM also holds in-
formation about the health system and
economics of a medical observation, this
research is focused on the standardized
clinical data [see Figure 3.1]. Further,
the structure of the standardized clinical data revolves around the following domains:

1. Person: This domain captures information about individuals such as demographic char-
acteristics, gender, and birthdate. It serves as the foundation for linking records across
other domains.

2. Visit/Observation Period: The Visit/Observation Period domain records information
related to patient encounters, including admission and discharge dates, as well as the
duration of observation.

3. Condition/Observation: This domain captures information related to medical condi-
tions, symptoms, and observations made during patient encounters. It includes diagnoses,
symptoms, laboratory test results, and other clinical observations.

4. Drug Exposure: The Drug Exposure domain captures information about medications
prescribed or administered to patients, including drug names, dosage, and duration of
exposure.

5. Procedure Occurrence: This domain records details of medical procedures performed
on patients, such as surgeries, treatments, and interventions.
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6. Measurement: The Measurement domain encompasses various clinical measurements
taken during patient encounters, including vital signs, laboratory test results, and other
quantitative measurements.

7. Device Exposure: This domain captures information about medical devices used in
patient care, including implantable devices, imaging studies, and diagnostic procedures.

8. Death: The Death domain captures information related to patient mortality, including
date, cause, and location of death.

All information that was gathered in the unstructured VONKO dataset was mapped into the
OMOP cdm. However, in the context of this study information from only two OMOP domains
will be extracted for analysis, namely the condition domain and the procedure domain. Thus,
the output of each data analyses pipeline proposed in chapter 4 is focused on the rules that
can be learned between and within conditions and procedures of the patients. Nevertheless,
the proposed pipelines can be easily modified to process two different or more than two OMOP
domains for analysis.

Standardized Vocabularies

All information regarding the OMOP cdm and its conventions is summarized in the book of
OHDSI [57]. Within this book, the chapter on standardized vocabularies is central to under-
standing OMOP as well as this research project. Essentially, whereas the OMOP data structure
standardizes the data format, the vocabulary within OMOP standardizes the content.

This being said, there is an extensive amount of different vocabulary sets to categorize med-
ical drugs, conditions, procedures, devices, observations and measurements into unique integers
or keys [24]. The usage of these vocabularies may depend on the demographics, prevalence or
language of the concept names in the vocabulary. Thus, healthcare institutions across the globe
use vastly different vocabularies to encode their medical observation on-site. However, the idea
of OMOP is to define a single standard vocabulary in the data format and enable the mapping
process from some vocabulary to the standardized vocabulary.

The standardized vocabulary used in this project was SNOMED CT [58]. Therefore, all
steps of the analytical process described in chapter 4 is performed on SNOMED codes. Only
after extracting the codes from OMOP, transforming them into a time series and loading them
into one of the models of computational intelligence, the SNOMED codes are mapped to free
text. This eventually results in a graph with English descriptions of the medical observation,
while the whole analytical process is performed on unique vocabulary keys.

3.2.1 ETL process for OMOP analysis

To enable time series data analysis from the OMOP cdm, an individual ETL process is required
for each analysis method. All proposed analysis methods with their corresponding ETL process
are presented thoroughly in chapter 4, however, some parts of the ETL processes are the same
across analysis methods. These similarities are the following:

• The general structure of the time series : For every patient, a time series will be con-
structed from the observational data. To achieve this, the conditions as well as the
procedure observations are extracted from the appropriate OMOP domains, grouped by
patient identifier and ordered by the corresponding time stamp of the clinical observation.
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Therefore, the input data for all three models are N time series, where N is the amount
of patients, with one or multiple clinical observations per discrete time steps, respectively.
Note that the time series vary in length depending on the patient’s hospital history.

• Start and Stop nodes : To every individual patient time series a start and a stop obser-
vation will be attached, which can be compared conceptually to start and end tokens
defining a sentence in NLP. The start observation is always at t=0 and the end node
always extends the original length of the time series by t+1 time steps. By doing so, the
computational models are able to learn which procedures or conditions occur at the initial
hospital encounter and which occur at the end. In addition, it improves the structure
and interpretability of the resulting graph. Also, the Synthea data synthetization tool
requires modules to have a start node and without its inclusion in the computational
process, the start node would have meaningless connections in the Synthea graph.

• Mapping of standardized vocabulary : As explained in section 3.2, the OMOP cdm holds
information about clinical methods, diagnoses and concepts by standardized vocabulary.
The standardized vocabulary represents every possible clinical concept as unique integer.
Therefore, integer values are extracted from the OMOP cdm in all ETL processes and
used for analysis. However, after learning and constructing the graph the standardized vo-
cabularies are mapped to free text to facilitate the interpretability of the resulting graph.
This is done by identifying the necessary vocabulary packages and downloading them from
Athena [59] before implementing a mapping function which transforms the concept id of
the standardized vocabulary to the English description of the medical concept.

3.3 Synthea

After the VONKO source data and the OMOP cdm, the third and last data format relevant
for this project comes from Synthea. Figure 3.2 depicts one of the official Synthea modules
on pulmonary cancer. These official Synthea modules are created in a cumbersome process
by hand, however, they are utilized for two important use cases. First, the ’Module Builder’
developed by Synthea allows for coherent visualization of interpretable, medical guidelines in a
graph structure [60]. Second, these graph structures can be used to sample synthetic patient
EHR. As the sampling of EHR is not in the scope of this research, the following paragraphs
will explain the data format of the Synthea modules with regard to visualization in the Module
builder [60].

Figure 3.2: Official Synthea module on pulmonary cancer [61].

Synthea modules are defined in a JSON file. The specific syntax for node and edge types
are predefined by Synthea [60] and can take on a range of values. More precisely, the graph
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structure can be defined with 6 different edge types and a total of 30 node types [62]. Each
node or edge type has unique properties specifying the sampling process of the synthetic data
generation process. However, this project is focused on visualizing the learned temporal rules
in a coherent format, not on leveraging the full complexity of Synthea graphs for sampling
EHR. Thus, the choice of node and edge types is dependent on displaying distributed and
probabilistic edges between nodes. Nevertheless, the final output of each developed pipeline is
a valid Synthea module and could be used for sampling.

Figure 3.3: Shortcoming in Synthea display of
graphs. Transforming the learned probabilistic rules
into the Synthea graph structure can lead to a dis-
tortion of values.

For the just outlined objective, one
edge type and three node types were
selected. Namely, all edges in the fi-
nal Synthea graphs were defined with
the edge type ’Distributed Transition’
[62]. This edge type is the only type
proposed by Synthea which allowed for
distributed probabilistic edges from one
antecedent node to multiple consequent
nodes. Any other edge type would have
resulted in graphs which display no dis-
tribution or no probabilities. A notewor-
thy constraint to this edge type, however,
is that the distributed transitions from
any antecedent node have to sum to a
probability of 1. Figure 3.3 helps in un-
derstanding this issue. On the left side,
you can see the straightforward case of a
set of rules where the amount of consequents is ≥ 1. Either, the probabilities sum to 1 or they
are proportionally scaled to a sum of 1 during post-processing. However, the shortcoming of
this edge type is visible on the right side of Figure 3.3. Assume the model has learned a single
rule from variable X to Y. Regardless of the learned weight of that rule, Synthea forces a weight
display of 1.0 for that edge.

The three node or ’state’ types used in this project were ’Initial’, ’Terminal’ and ’Encounter’
[62]. The ’Initial’ state is necessary for the graph structure to be a valid Synthea module [62]. As
explained in the previous subsection, start and stop observations were attached to each patient
time series. These eventually constitute the ’Initial’ and ’Terminal’ node of the final Synthea
graph structure. Every other node, so every clinical observation that is involved in the rule
learning process, was defined as ’Encounter’ node in the Synthea module. The ’Encounter’ state
type was chosen mainly because of two reasons. Firstly, the medical observations used in the
temporal rule learning process are actually healthcare encounters of the patient. Secondly, the
’Encounter’ node type in Synthea is the only node type which updates the synthetic patient
EHR during the sampling process. In other words, by using this node type the graph is
conceptually coherent with the medical observations and still holds the potential to allow for
data synthetization eventually.
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Methods

In this study, the aim is to learn and visualize temporal rules between medical entities from
standardized EHR. To investigate and evaluate this scientific problem three pipelines were
implemented. Each pipeline extracts data from the OMOP common data model, transforms
the data into a model-specific time series and loads it into one of the models of computational
intelligence. Finally, the learnt rules are post-processed and transformed into a Synthea graph.
Pipeline 1 serves as manually implemented baseline, which computes the single most basic
if-then rule possible. In Pipeline 2, a Temporal Association Rule Mining algorithm learns
sequential rules. In Pipeline 3, a Dynamic Bayesian Network structure is learnt from the data.
All three models will be explained individually, as well as in the context of their respective
pipeline. The three pipelines differ in the required data transformation, computational model
and output, but the general structure for each of them corresponds to Figure 2.3.

For all three pipelines, consider N independent realizations of time series xn,t ∈ CD, whereD
is the set of all variables in the data. A time series xn, meaning a patient’s hospital encounter
history, can vary along two dimensions. These dimensions are the length of the time series
t ∈ {0, · · · , T} and the size of the set of observations within a time step d = {i, · · · , j} with
d ∈ D. Thus T defines the amount of hospital encounters and d defines the reported medical
entities per hospital encounter. Therefore, a distinct medical observation is referred to in
the form xn,t,d in the following sections. For example, x2,3,i and x2,3,j refer to two distinct
observations that were made for the second patient in the data set at his/her third hospital
encounter. Finally, to ensure coherent notation across models, the autoregressive order of a
model is denoted by the variable p. The autoregressive order refers to the number of past time
points used to predict the current value in the time series model.

4.1 Pipeline 1: Baseline Transition Matrix

The most basic mathematical approach to compute if-then rules is calculating the conditional
probability between two variables of interest A and B. Equation 4.2 depicts the standard
formula for the conditional probability of two variables.

P (A|B) =
P (A ∩B)

P (B)
(4.1)

The aim of the baseline is to set a reference value for more complex probabilistic models.

22
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Thus, the aim of Pipeline 1 is to calculate all conditional probabilities between observations
in D with an autoregressive order of p = 1. A matrix of size D × D that summarizes all
these conditional probabilities is also called a Markov Chain transition matrix. For this reason,
the following section introduces Markov Chains methodologically before a manually developed
algorithm is described, which computes all conditional probabilities on time series data.

4.1.1 Markov Chain

A Markov Chain is a basic stochastic model composed of states within a finite state space and
transition probabilities. In the context of this research, the transition probabilities between
states define probabilistic rules from some state xn,t,i to any other state xn,t+1,j or itself xn,t+1,i

with i, j ∈ D. The transition probabilities between states is therefore defined as the conditional
probability of:

P (xn,t+1,j|xn,t,i) (4.2)

Thus, the described Markov Chain is a discrete-time Markov Chain with the Markov Prop-
erty, which defines that the conditional probability of moving to the next state only depends
on the present state and not on the previous states [63]. Further, because the autoregressive
order equals p = 1, the described transition matrix is a Markov Chain transition matrix of
first order [63]. Such a Markov Chain is summarized in a D × D transition matrix, which
contains conditional transition distributions for every state xn,t,i to any other state xn,t+1,j or
itself xn,t+1,i with i, j ∈ D. The arithmetic mean is computed for all transition probabilities
between any two states across all instances of time series xn with n ∈ {1, · · · , N}, resulting in
one averaged transition matrix per patient population.

Table 4.1: A structural example of the derived transition matrix.

START Xi Xj . . . D STOP

START 0.0 0.0 0.0 . . . 0.0 0.0
Xi 0.2 0.7 0.1 . . . 0.4 0.0
Xj 0.5 0.3 0.1 . . . 0.2 0.0
. . . . . . . . . . . . . . . . . . . . .
D 0.3 0.0 0.8 . . . 0.4 0.0
STOP 0.0 0.0 0.0 . . . 0.0 0.0

In the following explanations, assume Xi and Xj are any two medical observations within
the state space D. Table 4.1 depicts a simplified version of the transition matrices obtained
in this research. Whereas the structure of all transition matrices resemble Table 4.1, it varies
in the size of D depending on the data sample. This is highlighted by the row and column of
dots. The transition matrix is read from column to row. By additionally introducing graph
terminology, one can further ease the reading of the transition matrix. For example, the if-
then rule Xi → Xj can also be defined as an antecedent → consequent relationship. This
observation illustrates that while columns depict the antecedents of an if-then rule, the rows
depict the consequent. Therefore, the column of a variable defines all outgoing conditional
probabilities from an antecedent which sum to 0 or 1. If nothing chronologically follows from
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the antecedent, the column sums to 0. If at least one observation follows from any antecedent
Xi ∈ D, the transition probabilities for that antecedent sum to 1. As an example, the rule
Xi → Xj is denoted by a conditional probability of 0.3. in Table 4.1.

Additional important observations can be made about the transition matrix shown in Ta-
ble 4.1. As mentioned in chapter 3, a ’START’ and ’STOP’ observation is attached to each time
series and included in the computation process. This results in them being the first and last
row and column in every transition matrix. To be precise, as D was defined to be all medical
variables in the data, the computed transition matrices are actually of size (D + 2)× (D + 2).
Also, the row of the ’START’ observation as well as the column of the ’STOP’ observation
always sum to 0. This is due to the fact that the ’START’ observation of a time series is always
at xn,t=0,d, so no prior observation can be used to predict the start node. Vice versa, because
the ’STOP’ node is always at xn,t=T,d, nothing can follow chronologically from it.

The transition matrix can be viewed as a baseline model, as it comprises all conditional
probabilities from any condition or treatment observation to itself or any other symptom or
treatment. In the remaining two pipelines of this experiment, the used computational models
are more complex due to two reasons. Firstly, Pipeline 2 and Pipeline 3 are more complex
in terms of calculating rules with higher autoregressive order, meaning p ≥ 1. Secondly, they
perform mathematically more sophisticated operations between any two observations Xi, Xj ∈
D than calculating the conditional probability. However, the algorithm to extract, transform,
load and analyze the medical observations for this pipeline was designed and implemented
manually. The details will be explained in the following.

4.1.2 ETL Process

As a first step, the relevant OMOP columns were extracted. Because this research is focused
on conditions and treatments, the relevant OMOP tables were condition occurrence and pro-
cedure occurrence. More precisely, from each of the two tables three columns were extracted,
namely the person id, the condition start date or procedure start date and the associated con-
cept id.

After extracting these six columns, the data was restructured to three columns named
patient, observation and date. Hence, this step resulted in a data structure which does not
explicitly discriminate between conditions and procedures. Subsequently, the data was sorted
by personal identifier and within the personal identifier by date. Now, the data was split into
chunks by unique personal identifier and saved in one list, resulting in a list of patient sequences.
The observation dates were turned into integers and observations with the same date were
aggregated into one integer time step. As the patient data is in sequence format now, the original
dates as well as the personal identifier were dropped. Additionally, every patient sequence was
extended by the previously described start and end observation [see subsection 3.2.1]. The final
data structure is thus a list of lists of lists. The outer list holds all patient sequences, the second
level of lists defines each individual patient sequence and the lowest level of lists is a time step
within an individual patient sequence. The hierarchy of this data structure is thus identical
to the prior introduced mathematical notation xn,t,d ∈ D. Building up on this, the algorithm
designed to calculate all conditional probabilities will be presented in the following section.
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4.1.3 Transition Matrix Computation Algorithm

To compute the transition matrix from the proposed time series representation, the occurrences
of item associations across time steps has to be counted algorithmically. The pseudo code of
this process is shown below in Algorithm 1.

Algorithm 1 Counting Item Associations

1: Initialize empty list for association tuples
2: for all n ∈ {0, · · · , N} do:
3: for all t ∈ {0, · · · , T − 1} do:
4: current = xn,t

5: following = xn,t+1

6: for all d ∈ current do:
7: from state = current[d]
8: for all d ∈ following do:
9: to state = following[d]
10: Save tuple (from state → to state)
11: end for
12: end for
13: end for
14: end for

The resulting ordered tuples of items are thus a frequency measure of how often some an-
tecedent at time step t occurs with any consequent at t+1. These counts are performed across
individual patient time sequences, which eventually will allow for averaged transition probabili-
ties across patients. Finally, these frequency counts are turned into conditional probabilities by
summing over all item association frequencies per antecedent and dividing each item association
by the sum of its antecedent. In this way, the algorithm results in conditional probabilities of
the form:

P (consequent|antecedent) = P (antecedent ∩ consequent)

P (antecedent)
(4.3)

where the consequent state of an antecedent state at t is always at t+1 and the conditional
probabilities per antecedent sum to 1. By performing the aforementioned computations per
state as potential antecedent, the transition matrix was filled with conditional probabilities
from each state in the state space to each state in the state space across time with a lag of
1. Item associations which were not present in the data were represented with a 0% transition
probability of the consequent following the antecedent. In simple terms, the resulting transition
matrix answers the question of ”given an antecedent stateXi, what is the conditional probability
of observing consequent state Xj in the next time step?”.

Consider Figure 4.1 as a schematic example of any time series xn ∈ N . The x-axis defines
the discrete time steps, and the y-axis displays d ∈ D. Assume that D = {X, Y, Z,A,B}, which
are the medical interventions that were observed for this patient. As an example, the counting
algorithm proposed in Algorithm 1 would result in an item association count of Y → A = 1.
This is true because the ordered tuple {Y,A} with an autoregressive order of p = 1 occurs
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Figure 4.1: A schematic example of any time series xn, which is a patients hospital encounter
history. The letters are placeholders for some medical observation Xi ∈ D. For example, ’X’
may be a lung cancer diagnosis and ’A’ chemotherapy.

exactly one time in Figure 4.1. In the rule Y → A, Y is the antecedent and A is the consequent.
With this knowledge, Equation 4.3 can be applied to this example.

Y → A = P (A|Y ) =
P (Y ∩ A)

P (Y )
=

1

2
= 0.5 (4.4)

The example in Equation 4.4 displays methodically how Algorithm 1 calculates conditional
probabilities from a discrete time series. As a second example, the only remaining item associ-
ation with antecedent Y in this time series would be Y → STOP = 0.5.

Algorithmic Extension

So far, the proposed algorithm calculates all conditional probabilities between medical obser-
vations on a discrete time series with a lag of 1. However, this approach is rather simplistic
with respect to the overarching goal of learning meaningful rules. In other words, a conditional
probability can entail statistical biases. For example, a high conditional probability of the con-
sequent given the antecedent may not be characterized by high likelihood of events following
each other, but rather by a high base probability of the consequent. The base probability in this
research is defined as the probability of some observation in the state space xn,t ∈ D occurring
during any time step across patients. Therefore, an algorithmic extension was implemented
to account for this bias. This extension subtracts the base probability of the consequent from
each conditional probability. The mathematical notation is depicted below.

threshold ≥ P (consequent|antecedent)− P (consequent) (4.5)

To elaborate on this extension, again refer to Figure 4.1. The temporal rule X → A is
analyzed exemplary. First, we calculate the conditional probability similar to Equation 4.4.

X → A = P (A|X) =
P (X ∩ A)

P (X)
=

2

2
= 1 (4.6)
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Equation 4.6 shows that the consequent A follows the antecedent X with 100% probability.
Now, the algorithmic extension performs the following calculation:

P (consequent) = P (A) =
3

5
,

P (A|X)− P (A) = 1− 3

5
=

2

5
= 0.4

(4.7)

Equation 4.7 therefore post-processes antecedent consequent connections such that the base
probability of each consequent is accounted for. Conceptually, the aim is to reduce bias that
emerges through frequently occurring observations. Because A occurs in 3

5
of time steps, the

high conditional probability of X → A calculated in Equation 4.6 might not be due to the
dependency between the two variables. For example, the rule B → A would similarly result in
a conditional probability of P (A|B) = 1. Without the algorithmic extension, the model would
be 100% certain that observation A always follows after observation X ∨B.

In addition, this algorithmic extensions introduces a hyperparameter to the algorithm. The
threshold in Equation 4.5 is a filter for potential graph edges, where the corrected conditional
probability of the consequent given the antecedent has to be above some percentage. For
example, a threshold of 0.1 means that only conditional probabilities which are larger than
10% after accounting for the base probability of the consequent will be included in the graph.
The link X → A discussed in Equation 4.6 would, for example, pass this threshold and be used
to build the graph.

For this, the links are first rescaled to a probability of 1 per antecedent. Subsequently,
the final antecedent consequent links are used to initialize and direct the edges of the graph.
The scaled conditional probabilities are used as edge weights. Finally, a script was written to
automatically transform the learned if-then rules into a JSON file which constitutes a valid
Synthea module for visualization and sampling.
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4.2 Pipeline 2: Temporal Association Rule Mining

Temporal Association Rule Models (TARM) are models which learn sequential association
rules in large databases. To explain the concept of sequential association rules, one first has
to distinguish it from the concept of sequential association patterns. Sequential association
pattern mining is the task of finding sequences of events that appear frequently in a sequence
database [64]. These association patterns are simply successions of events which are observed
frequently across sequences. On the other hand, the task of sequential rule mining incorporates
probabilities and provides indications that if some event(s) occur, other event(s) are likely to
occur with a certain confidence [64].

Several different rule mining algorithms have been proposed [65, 66], however, in this re-
search CMRules was applied to the time series data and will be elaborated on in the following
[67]. The algorithm was selected for this research, as it adds another level of complexity to
the experiment. Whereas in Pipeline 1 rules were learnt with an autoregressive order of p = 1,
the autoregressive order of this pipeline is 1 ≤ p ≤ T for any hospital history xn. In addition,
rule mining is described as a robust approach in the scientific literature in terms of varying
use cases and data sizes. Hence, its capabilities are deemed suitable for the proposed research
objectives.

4.2.1 CMRules

CMRules mines sequential rules which are common to several sequences. To achieve this, it first
prunes the search space by identifying items which occur jointly in many sequences by mining
association rules. Only thereafter the mined association rules are evaluated with the time
constraint and become temporal or sequential association rules. For this reason, it is necessary
to first define original association rule mining on a transactions database and subsequently
define temporal association rules with regards to how CMRules mines these on a sequential
database.

Association Rule Mining

Association rule mining is a common knowledge discovery technique for uncovering associations
between items or sets of items in a transaction database [45, 64]. The term transaction database
is used for this data structure, because association rule mining has its origin in the retail sector
[40]. However, the concept can be transferred to applications in the health sector. Whereas a
transaction originally defines the set of bought items in a store, in this project a ’transaction’
is defined as the set of all medical observations of any patient. A transaction database is thus a
simplification of the prior time series notation of a hospital history xn,t to xn. It holds the same
observations, however, the transaction database does not specify a time order within a patient
history. That being said, a transaction database TD is formally defined as a set of transactions
T = {x1, x1, · · · , xn} and a set of items D = {i1, i2, · · · , in}, where x1, x2, · · · , xn ⊆ D. The
objective of association rule mining is to learn all rules X → Y , such that

(X, Y ⊆ D) ∧ (X ∩ Y = ∅) (4.8)

meaning the item sets X, Y are subsets of the item set D which do not overlap. The
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association rules of the form X → Y are also filtered in the computation process by some
minimum level of interestingness. This level of interestingness is defined by two statistical
metrics in the CMRules algorithm, namely by support and confidence of a rule. The support
of an item set X ⊆ D is denoted as sup(X) and mathematically defined as the number of
transactions that contain X. The support of an item set can easily be extended to define the
support of a rule, which is defined below in Equation 4.9.

sup(X → Y ) =
sup(X ∪ Y )

|T |
(4.9)

The concept of confidence, however, is the support of either item set X or item set Y divided
by the support of item sets that contain the antecedent item set X. The formula is depicted
in Equation 4.10.

conf(X → Y ) =
sup(X ∪ Y )

sup(X)
(4.10)

Temporal Association Rule Mining

Whereas association rules are mined from transaction databases, sequential association rule
mining is performed on sequential databases [64]. A sequence database is a generalization of
a transaction database, where the occurrence of items contains additional information on the
time of occurrence [68]. A sequential database SD is hereby defined as a set of sequences
xn = {x1,x2, · · · ,xN} and a set of items D = {i1, i2, · · · , id}, where every sequence xn is an
ordered list of transactions xn,t = {xn,1,xn,2, · · · ,xn,T} with xn,t ⊆ D. Thus, a sequential
database SD is of similar format as the list of time series introduced for Pipeline 1. A single
sequence is visualized in Figure 4.1 and an SD can be thought of as a table containing multiple
instances thereof. The definition of a sequential rule is similar to the association rule defined
in Equation 4.8. However, it is extended by the condition that all items of X occur in some
transactions of the sequence before items of the set Y occur in some transactions of the same
sequence. In addition, the concepts of support and confidence of a rule are extended to define
sequential support in Equation 4.11 and sequential confidence in Equation 4.12.

seqSup(X → Y ) =
sup(X□Y )

|S|
(4.11)

seqConf(X → Y ) =
sup(X□Y )

sup(X)
(4.12)

The notation sup(X□Y ) defines the number of transactions where all items of X occur
before all items of Y . Noteworthy, there is no time ordering inside item sets of sequential
rules. Time ordering is only present between the sets X, Y such that X → Y . Now that the
terminology of transaction and sequence databases, as well as association rules and sequential
rules, is defined, the CMRules algorithm will be explained in detail [64]. Throughout the
explanation, Figure 4.2 can be referenced as an intuitive visualization of the CMRules algorithm.

CMRules builds up on one central observation of the relationship between association rules
and sequential rules. This observation is summarized in the fact that if one ignores the time
information of a sequential database SD, a transaction database SD′ is obtained. And for
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Figure 4.2: Schematic visualization of the CMRules algorithm [67]. It concisely shows how only
after applying traditional Association Rule Mining chronological information is used to filter
out temporal association rules.

each sequential database SD and its corresponding transaction database SD′, each sequential
rule r : X → Y of S has a corresponding association rule r′ : X → Y of S ′. Importantly, as
sup(X□Y ) is always lower or equal to sup(X → Y ) [64] the relations depicted in Equation 4.13
always hold for any sequential rule and its corresponding association rule.

sup(r′) ≥ seqSup(r) ∧ conf(r′) ≥ seqConf(r) (4.13)

This observation allows for the functioning of CMRules to discover sequential rules by first
mining association rules. CMRules has three inputs, a sequential database and the thresholds of
minSeqSup and minSeqConf, defining the minimal sequential support and minimal sequential
confidence of rules which should be included in the output. As can be seen in Figure 4.2, the first
step is to transform the input sequential database into a transaction database. Subsequently, an
association rule mining algorithm computes all association rules from the transaction database
with minSup = minSeqSup and minConf = minSeqConf. Because Equation 4.13 holds, the set
of association rules which are mined with minSup = minSeqSup and minConf = minSeqConf
will contain all sequential rules. Finally, as displayed in step 3 of Figure 4.2, CMRules computes
all sequential rules to the corresponding association rules identified in step 2. Afterwards, the
sequential rules which do not meet the minSeqSup and minSeqConf thresholds are eliminated,
resulting in the set of all sequential rules [64].

Finally, the CMRules algorithm has to be differentiated methodologically from the previous
approach described in Pipeline 1. First, CMRules computes rules of the form X → Y across the
whole time series. Whereas Pipeline 1 results in rules with an autoregressive order of p = 1,
Pipeline 2 learns rules with an autoregressive order of 1 ≤ p ≤ T . Note that CMRules does not
define the autoregressive order of the learnt rules explicitly. This is due to the fact that rules
are learnt between sets of variables, and each set X, Y in X → Y is not restricted to a time
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step. For example, a valid TARM rule X → Y could hold all observations of X in timesteps
t1, t2 and t3, whereas the observations of Y are distributed across t4, t6 and t7. Thus, a rule
between sets of variables does not have an autoregressive order. However, because it is not
feasible to automatically transform the learnt rules between sets of items into Synthea graphs,
only rules with a set size of 1 were post-filtered. These theoretically have an autoregressive
order of 1 ≤ p ≤ T , but practically are not part of the CMRules output.

As mentioned above, rules had to be filtered during post-processing such that no set X, Y
in X → Y is > 1. The ultimate goal of each pipeline is a Synthea graph, however, fitting rules
with multiple antecedents or multiple consequent into a graph is a very complex task. The
problem can be explained best by a simple example. Consider the rule {A,B} → {C} with
seqConf(A,B → C) = 0.6. The rule has two antecedents, one consequent and one probability
associated with it. As the Synthea graph structure holds one variable per node, the probability
of such a rule would need to be distributed across two edges. Splitting the seqConf(A,B →
C) = 0.6 into edge weights seqConf(A → C) = 0.3 and seqConf(B → C) = 0.3 would
mathematically not represent the same rule. To achieve this, it is necessary to allow for nodes
in the graph which hold more than one variable. However, this would significantly increase the
complexity of the graph, counteract the interpretability and is not in the scope of this research
project. Rather, this can be thought of as a potential extension in future work.

Also noteworthy, CMRules does not use a sliding-window approach which distinguishes it
from the other two computational models in this research. As a result, CMRules is a compu-
tationally efficient algorithm which can easily be used on large databases. Due to its two-step
procedure shown in Figure 4.2, it is possible to mine association rules and sequential rules with
one algorithm. This can provide additional insight into the data. In essence, the computational
efficiency paired with the relatively basic mathematical operations, makes CMRules arguably
robust and interpretable. Nevertheless, by transforming the rules into a graph a large share of
information that CMRules is able to capture gets lost.

4.2.2 ETL Process

As described in the previous section, to apply CMRules the data needs to be in the format of
a sequence database. Thus, this ETL process was concerned with the extraction of relevant
information from the OMOP cdm, the transformation of that information into a sequence
database and the subsequent training of the CMRules algorithm. The ETL process resulted
in a sequential database structurally similar to the one shown on the top left of Figure 4.2.
However, the set of sequences xn = {x1,x2, · · · ,xN} was defined as the temporal hospital
history of each patient and the set of items D = {i1, i2, · · · , id} was denoted as all medical
treatments or conditions across patients.

Again, the extracted information from the data in OMOP format was condition occurrence
and procedure occurrence. Similar to the ETL in Pipeline 1, the 6 extracted columns are merged
into a data structure containing personal identifiers, observations (containing procedures and
conditions) and the corresponding time stamp of an observation. After sorting these by personal
identifier and within personal identifier by time, a time-ordered list of medical observations per
patient was derived. In order to load these patient sequences into the CMRules algorithm, du-
plicates within a discrete time step of any sequence had to be removed and the observations had
to be transformed into lexicographical order [65]. Finally, these sequences were automatically
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written into a TXT file where all sequences are listed as integers. A new sequence was denoted
as ’-2’ and a new time step was denoted as ’-1’ in this list of observations. This text file was
then used as input for CMRules.

After training the model, post-processing of the output was performed to transform the
sequential rules into a valid and interpretable Synthea graph. For this, the rules X → Y are
filtered such that X and Y only contain one observation respectively. Then, the confidence
of each rule with the same antecedent is scaled to a probability of one, so the final graph
depicts distributed transition probabilities from some antecedent X so all its consequent Y .
Antecedents and consequent were subsequently interpreted as nodes and rules as edges of a
graph. Lastly, the learnt rules of CMRules were automatically written into a JSON file which
defines a valid Synthea module.
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4.3 Pipeline 3: Dynamic Bayesian Network

Dynamic Bayesian Networks constitute the standard approach to modeling discrete-time tem-
poral dynamics in directed graphical models. In comparison to the previous two approaches,
the DBN structure learning approach therefore implicitly results in a graph structure and is
not retrospectively engineered from the learned rules. A recently developed and promising ap-
proach to the issue of DBN structure learning from high dimensional data is called DYNOTEARS

[69]. DYNOTEARS is an extension of the NOTEARS algorithm which addresses the issue of structure
learning of static Bayesian Networks. Both algorithms were developed by QuantumBlack Lab of
McKinsey & Company, which potentially explains the usage of algorithmic methodology which
is common in econometrics. However, transferring this sophisticated methodology to the realm
of EHR analyses may prove beneficial and accelerate the development of patient data analyses.
Therefore, DYNOTEARS will be explained in the following section before the ETL process from
OMOP data to DYNOTEARS is presented.

4.3.1 DYNOTEARS

DYNOTEARS is a score-based optimization approach to learning DBNs from high-dimensional
data. The authors propose that DYNOTEARS is able to learn time series of any order and without
any assumptions about the underlying graph topologies [69]. To achieve this, DYNOTEARS is
building upon an approach extensively used in the field of econometrics, namely structural
vector autoregressive models (SVARM) [70, 71]. Therefore, SVARM models will be introduced
first before the actual DYNOTEARS algorithm is presented.

Structural Vector Autoregressive Models (SVARM)

Figure 4.3: Visualization of intra (solid lines) and
inter (dashed lines) slice dependencies.

In the DYNOTEARS algorithm, the data is
structured using a Structural Vector Au-
toregressive Model (SVAR). Generally,
SVAR is a class of statistical models used
to analyze multivariate time series data
in macroeconomics. The SVAR model
used in DYNOTEARS follows a standard
approach implemented and explained in
multiple scientific studies [70, 71, 72].
More precisely, it models temporal data
in the form shown in Equation 4.14.
Whereas the matrix W represents the
intra-slice dependencies, the matrix Ai

with i ∈ {1, · · · , p} represent the inter -slice dependencies of the DBN visualized in Figure 4.3.
This means the DBN structure is learned assuming variables influence each other within a time
step and across time. Also, the variable z in Equation 4.14 represents a vector of error variables.
The utility of error variables will be discussed in detail in the following subsection.

x⊺
n,t = x⊺

n,tW+ x⊺
n,t−1A1 + · · ·+ x⊺

n,t−pAp + z⊺n,t (4.14)
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As aforementioned, a BN is a directed acyclical graph. In the case of DBNs, the acyclicity
constraint is only concerned with the intra-slice edges of the graph, meaning with the adjacency
matrix W. This is due to the fact that the edges of A only go forward in time and can thus not
create any cycles. In other words, if the edges within a time-step of the graph do not contain
cycles, the graph structure consisting of W and A is assumed to parameterize a DBN [69].
Secondly, it is assumed that the network structure is constant across time and is of the form
shown in Equation 4.15. The effective sample size hereby ism = N(T+1−p). In Equation 4.15,
X is an m×D matrix whose rows are x⊺

n,t and the matrices Y1, · · · , Yp are time-lagged versions
of X.

X = XW+Y1A1 + · · ·+YpAp (4.15)

The structural equation modelling (SEM) in Equation 4.15 can be further simplified by
defining Y = [Y| · · · |Yp] to be the m× pD matrix of time-lagged data and A⊺ = [A⊺| · · · |Ap]

⊺

the pD × p matrix of inter-slice weights. This concise form of the SEM can be seen in Equa-
tion 4.16

X = XW+YA+ Z (4.16)

Given the data in X and Y, the goal is to estimate the weighted adjacency matrices W
and A which constitute the causal structure of the DBN. This problem is formulated as an
optimization problem of minimizing the least-squares loss while holding the acyclicity constraint
for W [69], which is defined as:

min
W,A

L(W,A) s.t.W is acyclical,

where L(W,A) =
1

2n
||X−XW−YA||2F

(4.17)

The optimization problem defined in Equation 4.17 is modified by regularization terms of l1
loss to introduce sparsity to the weighted adjacency matrices W and A. The l1 regularization
term is a hyperparameter of DYNOTEARS and can be defined for each matrix in the terms λW

and λA, respectively. Considering this, the regularized optimization problem becomes:

min
W,A

f(W,A) s.t.W is acyclical,

where f(W,A) = L(W,A) + λW||W||1 + λA||A||1
(4.18)

The major difficulty in the regularized optimization problem statement of Equation 4.18
is the acyclicity of W. This issue is solved by relying on the acyclicity constraint developed
for the predecessor algorithm NOTEARS which is used to learn static BN structures [73, 74].
Score-based structure learning of DBNs usually is defined as a combinatorial problem. Each
potential DAG in the search space is evaluated and ranked based on a discrete score associated
with its fit to the observed data. However, DYNOTEARS reformulates this issue to a continuous
optimization problem. Thereby structure learning is not a NP-hard problem anymore, which
makes DYNOTEARS a scalable approach to real-world structure learning problems.



CHAPTER 4. METHODS 35

This is achieved by reformulating the acyclicity constraint of the graph s.t. the connection
between trace of matrix power and number of cycles in the graph is leveraged [73]. To be precise,
the trace (the sum of its diagonal elements) of a matrix power W k (the matrix multiplied with
itself k times) denoted as tr(W k) corresponds to the amount of cycles in a graph. Therefore
the objective function h(W) of matrix W ∈ RD×D defines a DAG, if and only if:

h(W) = tr(eW◦W )−D = 0 (4.19)

where W ◦W is the Hadamard product of the intra-slice matrix with itself. Reformulating
the acyclicity constraint ofWmakes DYNOTEARS computationally efficient and applicable to high
dimensional real-world data. Essentially, the result of applying structural vector autoregression
to the time series data is a so-called structure model, which is simply a graph with directed
edges. Only by introducing the acyclicity constraint on W and A, the structure model becomes
a DBN.

4.3.2 Cause-Effect Relationships

Importantly, the authors of the used CausalNex library [75] propose the learnt graph struc-
ture should be interpreted as causal structure and the edges as cause-effect relationships [76].
Dynamic Bayesian Networks belong to the class of Structural Causal Models (SCMs) [76] and
the proposed ’causal dependencies’ constitute a major reason why the DYNOTEARS model was
implemented in this project. Namely, cause-effect relationships introduce another level of com-
plexity to the research objective of learning meaningful rules. Especially in the context of
analysing the medical intervention history of patients, cause-effect relationships are arguably
more meaningful than statistical if-then associations. Thus, benchmarking the performance of
a causal model against non-causal models is worthwhile for learning disease progressions. By
contrasting the DBN structure learning approach quantitatively and qualitatively to the prior
two models in Pipeline 1 and Pipeline 2, these assumptions are evaluated.

Generally, establishing causality is a challenging task conceptually and mathematically.
However, the following sections illustrate how DYNOTEARS uncovers cause-effect relationships
and how they are distinct from rules in Pipeline 1 and Pipeline 2. To achieve this, the issue
of bias in statistical dependencies is revisited, the concept of causality is outlined and the
methodology responsible for uncovering cause-effect relationships is explained.

In the previous two pipelines, the learnt rules were based on statistical relationships between
two variables. As pointed out before, these statistical relationships have biases. A common
example of statistical bias is the confounding variable and an intuitive example is shown in
Figure 4.4. Assume after training some model, the learnt rule suggests ”if someone is carrying a
lighter, then the person is more likely to have lung cancer”. However, this statistical relationship
is explained by a confounding variable, namely that the person is a smoker. Therefore, the
statistical relationship between the explanatory variable and the response variable is biased by
the external, or exogenous, confounding variable. Whereas this is simply unexplained variance
in a statistical model, interestingly, structural causal models mathematically account for the
error caused by exogenous variables.

A structural causal model is composed of three sets, namely (1) a set of endogenous variables,
(2) a set of exogenous variables and (3) a set of structural functions, one per endogenous
variable as a function of other variables. Evidently, a precise distinction between exogenous



36 CHAPTER 4. METHODS

and endogenous variables is crucial. Referring to Figure 4.4, the confounding variable ’Is a
smoker’ is exogenous because it is external to the model. Precisely, an exogenous variable is
not influenced by any other variable in the model [77]. Vice versa, an endogenous variable
is influenced by other variables in the model. Every endogenous variable is a consequent of
at least one exogenous variable. For example, ’Lung cancer’ is an endogenous variable in the
graphical causal model (GCM) of Figure 4.4 and ’Carrying a lighter’ is endogenous if and only
if the edge ’Is a smoker’→ ’Carrying a lighter’ is present.

Figure 4.4: Example of a confounding variable in a
IF-THEN rule.

Part (3) in defining structural causal
models is concerned with a set of struc-
tural modelling equations as defined in
Equation 4.14. Some variable xm,t is
therefore modelled by all other variables
within the same time step through W
and all prior variables within the autore-
gressive order of Ap. By extending on
the previous example, the following para-
graphs walk through the methodology of
DYNOTEARS to identify cause-effect rela-
tionships from observational data.

Assume we have three variables X, Y,
Z within the data that are observed in the
following chronological order:

1. X = Is a Smoker
2. Y = Carrying a Lighter
3. W = Lung Cancer

First, the variables within the model
must be put into causal order. Within a time series, this is simply their chronological order
X → Y → W . Put simply, a potential cause-effect relationship can only go forward in time.
Then, the model is defined by the following structural equations which are of the same form as
the general definition in Equation 4.16:

Xt = α1X + zXt

Yt = β1X + β2Y + zY t

Wt = γ1X + γ2Y + γ3W + zWt

(4.20)

It can be seen that the dynamic of X is influenced by the presence of itself (from other
instances of the time series), the dynamic of Y is influenced by itself and the presence of X
while W is influenced by the presence of itself, Y and X. These influences are endogenous.
However, also exogenous influences, so potential confounding variables, are mathematically
represented in each equation in the form of the error variable z.

The error variable within each structural equation is used to introduce an exogenous, unan-
ticipated event or influence that perturbs the variable’s behavior. These deliberate manipula-
tions are called structural shocks [72]. The effect a shock on some variable X has on all other
variables in the system is subsequently measured to understand its impact. For example, if zXt
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Figure 4.5: Example of structural shocks. Sub-figure (a) displays the dynamics of the observa-
tional data. In (b) a shock is administered to variable X. In (c) the effects of a structural shock
on Y is shown.

is manipulated in Equation 4.20 we distort the likelihood that any person is a smoker. Subse-
quently, the impact this distortion has on whether the person is carrying a lighter or whether
the person has lung cancer is measured. If the magnitude of change in the following variables
of the causal order is significant, X is said to cause Y or W [72].

Figure 4.5 visualizes the effects of structural shocks. Assume Figure 4.5 (a) displays the
dynamics of the actual data. It can be seen that 30% of the data identified as smokers, 40% of
individuals at t = 2 were observed to carry a lighter and 20% have lung cancer. Note that these
probabilistic values are for explanatory purpose only. Now, a structural shock to variable X is
administered in Figure 4.5 (b). Basically, the effect of having no smokers in the data is tested.
While the changes in variable X are gradual in the actual SVAR model, this example illustrates
the method more clearly. The change in X will have an influence on all endogenous variables
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in the causal order following X. If our data represents the true population, the probability of
observing variable W will change because being a smoker has a causal effect on having lung
cancer. In a second step, variable Y is shocked while all other are held constant in Figure 4.5
(c). This shock will not influence the presence of W (Lung cancer).

After the shocks are administered, the magnitude of effects throughout the system is mea-
sured. In the example, it will become evident that a change in variable X (Smoker) will have
a significantly higher effect on the presence of W (Lung Cancer) than variable Y (Carrying
a Lighter). In this way, X is estimated to cause W, rather than Y. Depending on the hy-
perparamter threshold λ, only the most significant cause-effect relationships are extracted.
Whereas this approach should not be viewed as establishing true causality from observational
data, it is a sophisticated method for estimating cause-effect relationships within the mod-
els framework. A confounding variable will not be detected and excluded from the models in
Pipeline 1 and Pipeline 2. However, assuming the right hyperparameter threshold and represen-
tative data, DYNOTEARS will account for these unwanted influences and identify more meaningful
temporal rules than the previous two models.

Besides estimating cause-effect rules, DYNOTEARS can also be differentiated from the models
in the previous two pipelines on other methodological aspects. For example, DYNOTEARS is the
only algorithm that explicitly outputs the autoregressive order p associated with every rule.
Also, it computes intra and inter slice edges between single observations. In comparison, the
baseline computes intra-slice edges between single observations and TARM only computes inter-
slice edges between sets of observations. Another useful aspect of the algorithm can be found
in the whitelist and blacklist which can be defined. Whereas a whitelist of edges computes a
DBN only on those specified edges, a blacklist of edges defines directed edges that should not
be included in the final graph. Especially in the medical context, expert human intervention
through black and whitelists can greatly improve the final results. Finally, a quite obvious
advantage of the DBN structure learning compared to the first two models is that it directly
results in a directed acyclical graph (DAG). While information gets lost during the process of
turning a set of rules into a graph in Pipeline 1 and 2, this issue is not present in Pipeline 3.

4.3.3 ETL Process

In order to perform DBN structure learning from any OMOP database, the relevant concept id
columns have to be extracted. For this study, the focus was on learning dependencies of con-
ditions and procedures. Therefore, the relevant columns from the OMOP cdm were identified
as ’condition concept id ’ from the condition table and ’procedure concept id ’ from the proce-
dure table. Similarly as in the previous pipelines, the concept ids were extracted with the
corresponding personal identifier and the date of the clinical encounter.

After sorting the observations by personal identifier and by date, the conditions and proce-
dures were dummy encoded in a T ×D matrix where D is defined as all clinical observations
across patients and T is defined as time steps T = t1, t2, · · · , tmax, where tmax can vary across
patients. Now assuming N is defined as the total sample size for analyses, the input for the
DYNOTEARS algorithm is a list of N matrices with size T ×D respectively, where observations
are dummy encoded columns and rows are ordered ascending regarding time.
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Experimental Setup

This research is exploratory in the sense that, to the author’s knowledge, there is no previous
study on the subject of comparing temporal rule learning approaches from standardized EHR
with the goal of visualizing them in graphs. That being said, the evaluation of the final graphs
will be approached from a quantitative and a qualitative perspective. The two evaluation
approaches will be discussed below.

5.1 Quantitative Experiments

The quantitative graph evaluation method is concerned with the structure of each graph. The
aim is to obtain an indication under which experimental setting the respective models have
the capacity to learn an interpretable graph from the medical time series. The experimental
settings are manipulated on two dimensions.

The first dimension hereby is concerned with varying the size of data samples. By testing
each model pipeline from chapter 4 on different sample sizes, one can derive evidence for or
against the robustness of a model to varying sizes of data and its dimensionality. Especially
for the real-world use case of learning temporal rules from standardized EHR, a model which
exhibits robust performance independent of the data size is preferred. Thus, five sample sizes
will be compared. An overview is given in Table 5.1. All data samples were derived with a
random seed of 0 to enable reproducibility. Note that Dataset 1 is the complete VONKO data
introduced in chapter 3. Whereas the sample size in Table 5.1 is defined as the amount of
patients and time series, the average sequence length is the arithmetic mean of all time series
per sample. Lastly, the dimensionality of the dataset is defined as the amount of unique medical

Table 5.1: Description of the data samples used for experiments.

Referred Name Sample Size N Average Sequence Length Dimensionality

Dataset 1 11641 5.487 726
Dataset 2 5000 5.513 512
Dataset 3 500 6.130 200
Dataset 4 50 5.720 68
Dataset 5 10 6.400 26

39
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observations across patients per sample.
The second dimension of experimental manipulation is introduced by hyperparameter tun-

ing. Each model pipeline has at least one hyperparameter which defines the granularity level
on which rules are learned. This experimental manipulation also aims to provide an indication
of the robustness of each pipeline. In addition, it can be seen as an investigation of the trade-off
between graph complexity and accuracy. For example, a highly complex graph may be very
accurate and represent all important dependencies in the data but suffer from less accessibil-
ity and transparency. Vice versa, a graph with very low complexity has higher accessibility
and transparency, but it may not display all important rules that represent the data. Hence,
this experimental manipulation aims to investigate the relationship between hyperparameter
granularity and the resulting graph complexity with regards to accessibility and accuracy. To
achieve this, three levels of granularity are defined for each hyperparameter and model. The
settings for Pipeline 1 are shown in Table 5.2, for Pipeline 2 in Table 5.3 and for Pipeline 3 in
Table 5.4. Note that all hyperparameters and their respective utility are explained in chapter 4.

In summary, three hyperparameter settings are tested on five datasets per pipeline. This
results in 45 graphs in total. The following section introduces graph complexity measures which
are used as evaluation method for these experimental settings.

Table 5.2: Enumerated hyperparameter (HP) setting for the MM model.

Setting Threshold

1 0%
2 15%
3 30%

Table 5.3: Enumerated hyperparameter (HP) setting for the TARM model.

Setting MinSup MinConf

1 5% 1%
2 10% 5%
3 20% 10%

Table 5.4: Enumerated hyperparameter (HP) setting for the DBN model.

Setting λ W λ A

1 0.01 0.005
2 0.02 0.01
3 0.04 0.02

5.1.1 Evaluation

Each graph structure is evaluated based on six graph complexity measures. These include the
number of nodes, number of edges, the graph density, the average clustering of the graph, the
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amount of strongly connected components and the flow hierarchy. For the purpose of later un-
derstanding and reasonable interpretation, each of the measures will be shortly introduced here.
Whereas the number of nodes and edges is straightforward, the remaining graph complexity
measures require individual definitions, which are listed below:

• Graph density : Measure of how connected a graph is, representing the ratio of actual
edges to possible edges. It indicates the proportion of connections present in the graph
and can range from 0 (sparse) to 1 (dense), with higher values indicating a higher level
of connectivity.

• Average Clustering : Measures the extent to which nodes in a graph tend to cluster to-
gether. It quantifies the level of local interconnectedness within the graph. It can range
from 0 to 1, where higher values indicate a higher degree of clustering in the graph.

• Amount strongly connected components : A strongly connected component in a directed
graph refers to a subgraph where there is a directed path between every pair of nodes in
the component. The relevant metric in this study is the amount of strongly connected
components.

• Flow Hierarchy : The flow hierarchy of a graph measures the relative influence or impor-
tance of nodes in directing the flow of information within the graph. It indicates the
extent to which certain nodes have a higher influence on the flow compared to others,
with values ranging from 0 (equal influence) to 1 (hierarchical influence).

In addition to these individual graph matrices, the intersection between all graphs will
be calculated as a measure of direct comparison. The intersection of two graphs is defined
as the set of nodes and edges which are present in both graphs. The intersection between
two graphs A and B will be represented as the percentage of overlapping nodes and edges,
respectively. Therefore, the intersection can be viewed as a measure of how similar the learned
rules are within models across experimental settings as well as across models. As the three
models themselves vary in computational complexity, the measure of intersection can be used
to identify if and to what extent models which are mathematically more sophisticated learn
differing rules compared to simple probabilistic models.

5.2 Qualitative Evaluation

After running the above mentioned quantitative experiments, the second step of this research
is to investigate the graphs qualitatively. For this, one graph per model pipeline was selected.
Whereas the quantitative evaluation is used to assess the computational models from a technical
perspective, the qualitative evaluation using expert knowledge is concerned with the medical
relevance of this project. These three graphs will be used to gather expert opinions of two
physicians by means of a questionnaire.

As it is infeasible to gather the expert opinion across results of all experimental settings, one
graph per model pipeline was pre-selected by the researcher. To facilitate the comparability
between models, all three graphs in the questionnaire were selected to have around the same
graph complexity identified in the quantitative experiments. The aim of this was to keep the
graph complexity as constant as possible, while the distinguishing factor of the resulting graph
is the model of computational intelligence. The model of computational intelligence can subse-
quently be argued to have learnt the temporal rules of real world medical data better or worse
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in relation to each other. Good or bad is hereby defined on three metrics of expert knowledge,
namely the interpretability of the graph, how coherent it is with the domain knowledge of
the expert and how many ’unreasonable’ edges are identified. Details on the structure of the
questionnaire are presented in the following.

5.2.1 Questionnaire

For each graph, the experts were presented with four statements regarding their structure
and medical relevance. The questionnaire assesses the expert’s agreement with each of the
statements on a Likert Scale from 1 (’I strongly disagree’) to 5 (’I strongly agree’). The
physicians were advised to answer each question according to their subjective best medical
knowledge. The same four statements were answered for each of the three graphs, resulting
in 12 qualitative indications of medical relevance per expert. The questionnaire was handed
to two physicians at the UKE and the exact statements of the questionnaire are listed below.
Note that question 2 accompanies a definition of graph terminology to ensure the subsequent
statement is interpreted correctly.

1. The graph is interpretable.
2. Definition: A path in a directed graph is defined as a sequence of nodes one gets when

following the directed edges.
Statement: The paths in the graph can be interpreted as chronological sequence of hospital
encounters which are coherent with my medical knowledge about lung cancer.

3. Some direct edges depict reasonable relationships regarding cause-effect in lung cancer
treatment.

4. Some edges within the graph are absurd or display unreasonable connections.

In the last part of the questionnaire, three multiple-choice questions had to be answered.
Whereas the previous Likert Scale questions measure the individual graphs qualitatively, the
following questions were aimed to let the experts compare the graph and pick a choice. Only
one graphs could be selected for each of the following multiple-choice questions:

1. The most interpretable graph was:
2. The graph with the most meaningful rules according to my medical knowledge was:
3. The graph with the most unreasonable connections according to my medical knowledge

was:

The questionnaire was handed to the physicians online via Google Forms with and instruc-
tion manual and the three graphs. There was no time limit and the answers were gathered
anonymously, however, the answers can be grouped per person. This is done to potentially
outline individual response trends.

Finally, as only one graph per model pipeline was included in the questionnaire, the following
list depicts information on HP setting and dataset used for computing each graph. Whereas
the graphs from Pipeline 2 and Pipeline 3 were computed on the complete dataset, note that
Graph 1 from Pipeline 1 was computed on the smallest dataset. This was the only practical
solution as the baseline model otherwise computes graphs which are too large to visualize and
interpret. All three graphs are shown in section B of the Appendix.

1. Graph 1: MM on the smallest dataset (5) with HP 3
2. Graph 2: TARM on the complete dataset (1) with HP 2
3. Graph 3: DBN on the complete dataset (1) with HP 2
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Results

As proposed in chapter 5, the graphs were evaluated quantitatively and qualitatively. First, the
qualitative results will be presented. The quantitative results are divided into tables describing
the individual graph complexity and tables depicting the intersection of graphs. Thus, the
resulting graphs are evaluated individually as well as across hyperparameters, data samples
and models. Finally, the qualitative results present the expert opinion on the graphs.

6.1 Quantitative Results

The first three tables, namely Table 6.1, Table 6.2 and Table 6.3, depict individual graph
complexity measures grouped by model and hyperparameter (HP) setting on the 5 datasets.
For an overview of HP setting, datasets and complexity measures see chapter 5.

Table 6.1: Resulting graph complexity measures for the MM pipeline per data sample and
hyperparameter (HP) setting.

HP Data Nodes Edges Density Avg. Clustering Components Flow Hierachy

1

1 725 3458 0.006 0.268 453 0.421
2 513 2203 0.008 0.270 367 0.559
3 201 714 0.017 0.187 150 0.613
4 70 200 0.041 0.117 58 0.700
5 28 75 0.099 0.224 23 0.706

2

1 685 1028 0.002 0.005 684 0.993
2 488 718 0.003 0.004 488 0.995
3 194 262 0.006 0.018 193 0.984
4 69 92 0.019 0.021 69 0.967
5 27 32 0.045 0.000 27 1.000

3

1 566 633 0.001 0.000 566 1.000
2 405 454 0.002 0.000 405 0.997
3 167 172 0.006 0.000 167 1.000
4 64 61 0.015 0.000 64 1.000
5 21 22 0.052 0.000 21 1.000
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Table 6.2: Resulting graph complexity measures for the TARM pipeline per data sample and
hyperparameter setting.

HP Data Nodes Edges Density Avg. Clustering Components Flow Hierachy

1

1 19 60 0.175 0.292 16 0.883
2 19 62 0.181 0.328 17 0.919
3 21 89 0.211 0.358 14 0.730
4 20 81 0.213 0.354 15 0.802
5 28 153 0.202 0.428 22 0.777

2

1 14 30 0.164 0.156 14 1.000
2 14 30 0.164 0.142 14 1.000
3 15 41 0.195 0.270 15 0.951
4 14 36 0.197 0.222 13 0.944
5 28 153 0.202 0.428 22 0.777

3

1 7 11 0.261 0.109 7 1.000
2 7 11 0.261 0.109 7 1.000
3 10 19 0.211 0.135 10 1.000
4 8 14 0.250 0.141 8 1.000
5 12 27 0.204 0.212 12 1.000

Table 6.1 depicts the complexity information regarding all graphs from Pipeline 1. The
first dominant observation is the very large amount of nodes and edges Pipeline 1 produces. In
addition, the observed graph density is low. Also striking is the vanishing average clustering
coefficient of the graphs for hyperparameter settings 2 and 3. The amount of strongly connected
components, however, can be observed to be relatively large, as the values approach the amount
of nodes in almost all graphs. Finally, the flow hierarchy is small in the first hyperparameter
setting, but almost always 1 for settings 2 and 3.

Table 6.2 describes the graphs from Pipeline 2. Importantly, the amount of nodes and edges
is significantly less compared to Pipeline 1. The graphs are smaller but have a higher density
and average clustering. The amount of strongly connected components is also high, as almost
every node in each graph is considered to be a strongly connected component. However, the
flow hierarchy is observed to be high across hyperparameter settings and datasets for the results
of Pipeline 2.

Finally, Table 6.3 depicts the individual graph complexity measures for Pipeline 3. The
amount of nodes and edges is similar to Pipeline 2, however, for the smallest dataset (Data 5)
Pipeline 3 computes only about half the amount of edges to be relevant compared to Pipeline
2. The density and average clustering of the graphs is similar to Pipeline 2, and thereby
significantly higher than in Pipeline 1. The amount of strongly connected components is less,
as for example HP 3 on dataset 4 the amount of nodes relative to the amount of strongly
connected components is almost half [see Table 6.3]. Also eye-catching is the low flow hierarchy
across all hyperparameters and datasets of Pipeline 3 compared to both, Pipeline 1 and 2.

The following 5 tables summarize the intersection between any two graphs that were com-
puted on the same dataset. As a reminder, the intersection is the percentage of identical direct
edges. An intersection of ’1.00’ therefore means that the two compared graphs have identical
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Table 6.3: Resulting graph complexity measures for the DBN pipeline per data sample and
hyperparameter setting.

HP Data Nodes Edges Density Avg. Clustering Components Flow Hierarchy

1

1 21 55 0.130 0.246 14 0.400
2 20 53 0.139 0.260 13 0.396
3 20 55 0.144 0.214 13 0.454
4 26 67 0.103 0.233 17 0.462
5 26 82 0.126 0.332 20 0.634

2

1 15 30 0.142 0.161 15 0.733
2 15 29 0.138 0.145 12 0.551
3 15 34 0.161 0.194 11 0.441
4 17 39 0.143 0.245 9 0.307
5 26 74 0.113 0.299 20 0.260

3

1 11 16 0.145 0.068 11 0.680
2 11 17 0.154 0.068 11 0.647
3 10 14 0.155 0.000 10 0.642
4 8 16 0.285 0.111 7 0.562
5 11 25 0.227 0.276 7 0.280

directed edges, disregarding the edge weight. In other words, any cell in the adjacency matrix
shows how much the graph specified in the row overlaps with the graph specified in the col-
umn. In this way, the following tables represent a measure of graph similarity across models
and hyperparameters. Note that the naming of rows and columns of each adjacency matrix
follows the syntax ’Model Hyperparameter’.

The first observation, which holds for all intersection tables, is that they are adjacency
matrices. As commonly observed in adjacency matrices, the diagonal is 1. This is due to
the reason that any graph is compared to itself in these cells. Also noteworthy, within each
model (e.g. MM 1 - 3), the lower triangular matrix is always equal to 1. This is correct, as the
hyperparameters from 1-3, and thereby the granularity of the rules, increases. One would expect
a set of granular rules to be a subset of the rules the same model computes with less granular

Table 6.4: Intersection between all graphs on dataset 1 (N= 11641).

MM 1 MM 2 MM 3 TARM 1 TARM 2 TARM 3 DBN 1 DBN 2 DBN 3

MM 1 1.00 0.30 0.18 0.01 0.00 0.00 0.01 0.01 0.00
MM 2 1.00 1.00 0.62 0.01 0.00 0.00 0.00 0.00 0.00
MM 3 1.00 1.00 1.00 0.01 0.00 0.00 0.00 0.00 0.00
TARM 1 0.63 0.10 0.08 1.00 0.50 0.18 0.43 0.23 0.10
TARM 2 0.53 0.07 0.03 1.00 1.00 0.37 0.37 0.27 0.17
TARM 3 0.36 0.00 0.00 1.00 1.00 1.00 0.55 0.45 0.36
DBN 1 0.82 0.05 0.02 0.47 0.20 0.11 1.00 0.55 0.29
DBN 2 0.80 0.07 0.03 0.47 0.27 0.17 1.00 1.00 0.53
DBN 3 0.75 0.06 0.00 0.38 0.31 0.25 1.00 1.00 1.00
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Table 6.5: Intersection between all graphs on dataset 2 (N = 5000).

MM 1 MM 2 MM 3 TARM 1 TARM 2 TARM 3 DBN 1 DBN 2 DBN 3

MM 1 1.00 0.33 0.21 0.02 0.01 0.00 0.02 0.01 0.01
MM 2 1.00 1.00 0.63 0.01 0.00 0.00 0.00 0.00 0.00
MM 3 1.00 1.00 1.00 0.01 0.00 0.00 0.00 0.00 0.00
TARM 1 0.66 0.10 0.08 1.00 0.48 0.18 0.42 0.23 0.10
TARM 2 0.53 0.07 0.03 1.00 1.00 0.37 0.37 0.30 0.13
TARM 3 0.36 0.00 0.00 1.00 1.00 1.00 0.55 0.45 0.27
DBN 1 0.81 0.06 0.02 0.49 0.21 0.11 1.00 0.55 0.32
DBN 2 0.79 0.07 0.03 0.48 0.31 0.17 1.00 1.00 0.59
DBN 3 0.82 0.06 0.00 0.35 0.24 0.18 1.00 1.00 1.00

thresholded rules. That being said, the most prominent observations for each individual table
will be outlined in the following paragraphs.

Table 6.4 summarizes the intersections between any two graphs that were computed on the
full dataset. Firstly, it can be seen that all DBN rules have a larger overlap (75-82%) with the
MM 1 compared to the TARM (36-63%). Secondly, MM with the HP settings 2 and 3 barely
have any overlap with all other 6 graphs (0.00-0.10%). On the other hand, practically no rules
learned by the baseline model are present in TARM and DBN across all hyperparameters (0.00-
0.02%), which can be seen on the upper right-hand of the matrix. The largest overlap between
models is found between MM 1 + DBN 3 with 82% similar rules.

Table 6.5 depicts the adjacency matrix comparing all graphs trained on dataset 2. The
similarity measures display resemblant patterns as described in Table 6.4. Thus, the main
observation is that resemblance patterns between graphs on the full dataset and on the largest
subsample (N = 5000) only differ selectively in a few percentage points.

The percentage of overlapping edges for all models on the N = 500 subsample is shown
in Table 6.6. Again, the baseline model with HP settings 2 and 3 is observed to have very
low similarity with all other graphs. However, on this dataset similarity between TARM and
DBN graphs increases. This can be seen in the rows of DBN to the columns of TARM, which
increased around 10% for any combination from the previous dataset. In simple words, more

Table 6.6: Intersection between all graphs on dataset 3 (N= 500).

MM 1 MM 2 MM 3 TARM 1 TARM 2 TARM 3 DBN 1 DBN 2 DBN 3

MM 1 1.00 0.37 0.24 0.07 0.03 0.01 0.05 0.03 0.01
MM 2 1.00 1.00 0.66 0.02 0.02 0.00 0.01 0.01 0.00
MM 3 1.00 1.00 1.00 0.03 0.02 0.00 0.01 0.01 0.00
TARM 1 0.56 0.07 0.06 1.00 0.46 0.21 0.40 0.22 0.09
TARM 2 0.59 0.10 0.07 1.00 1.00 0.46 0.46 0.29 0.12
TARM 3 0.47 0.00 0.00 1.00 1.00 1.00 0.47 0.32 0.21
DBN 1 0.67 0.05 0.02 0.65 0.35 0.16 1.00 0.62 0.25
DBN 2 0.62 0.06 0.03 0.59 0.35 0.18 1.00 1.00 0.41
DBN 3 0.57 0.07 0.00 0.57 0.36 0.29 1.00 1.00 1.00
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Table 6.7: Intersection between all graphs on dataset 4 (N= 50).

MM 1 MM 2 MM 3 TARM 1 TARM 2 TARM 3 DBN 1 DBN 2 DBN 3

MM 1 1.00 0.46 0.30 0.22 0.21 0.02 0.23 0.14 0.06
MM 2 1.00 1.00 0.66 0.13 0.12 0.00 0.15 0.09 0.04
MM 3 1.00 1.00 1.00 0.11 0.10 0.00 0.05 0.00 0.00
TARM 1 0.54 0.15 0.09 1.00 0.68 0.17 0.38 0.27 0.12
TARM 2 0.27 0.07 0.04 0.36 1.00 0.09 0.19 0.14 0.04
TARM 3 0.29 0.00 0.00 1.00 1.00 1.00 0.43 0.29 0.21
DBN 1 0.67 0.21 0.04 0.46 0.43 0.09 1.00 0.58 0.24
DBN 2 0.74 0.21 0.00 0.56 0.54 0.10 1.00 1.00 0.41
DBN 3 0.75 0.25 0.00 0.62 0.38 0.19 1.00 1.00 1.00

rules of the DBN graphs are also present in the TARM graphs for this smaller dataset.
Table 6.7 presents the similarity measure of all graphs on dataset 4. It can be seen that now

the graphs learned with the baseline model are more similar to the TARM and DBN graphs
(0.00-0.23%) compared to the previous dataset 3 (0.00-0.07%). Besides, the largest overlap
between models is still found in the DBN rules compared to the MM rules with HP setting 1
(75%).

The similarity measures for graphs of the smallest dataset of N = 10 are shown in Table 6.8.
Generally, it can be observed that the percentages of overlapping edges are higher on average.
Interestingly, the baseline model with HP 2 and 3, which resulted in very different graphs on
the previous datasets, here learns 100% of rules that are found in the TARM graphs with HP 1
and 2. Whereas on larger datasets, almost no intersection was present, on the smallest dataset
all rules of the baseline model are present in TARM graphs. This observation also entails that,
interestingly, the highest intersection between models is not between DBN and MM anymore.

Summarizing the observations from the previous 5 tables, it can be said that the HP settings
2 and 3 for the baseline MM pipeline did result in very dissimilar graphs compared to all others.
Only on the smallest dataset (N = 10), these experimental settings produce comparable results.
Secondly, the highest overlap between models on the same dataset was always found in the
percentage of DBN rules compared to the baseline MM 1. Note that the HP setting for MM 1

Table 6.8: Intersection between all graphs on dataset 5 (N= 10).

MM 1 MM 2 MM 3 TARM 1 TARM 2 TARM 3 DBN 1 DBN 2 DBN 3

MM 1 1.00 0.43 0.29 0.95 0.95 0.15 0.53 0.52 0.23
MM 2 1.00 1.00 0.69 1.00 1.00 0.06 0.50 0.47 0.03
MM 3 1.00 1.00 1.00 1.00 1.00 0.09 0.41 0.41 0.00
TARM 1 0.46 0.21 0.14 1.00 1.00 0.18 0.45 0.41 0.12
TARM 2 0.46 0.21 0.14 1.00 1.00 0.18 0.45 0.41 0.12
TARM 3 0.41 0.07 0.07 1.00 1.00 1.00 0.48 0.41 0.15
DBN 1 0.49 0.20 0.11 0.84 0.84 0.16 1.00 0.88 0.30
DBN 2 0.53 0.20 0.12 0.84 0.84 0.15 0.97 1.00 0.34
DBN 3 0.68 0.04 0.00 0.76 0.76 0.16 1.00 1.00 1.00
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is 0, so practically no filter is applied to the rule learning process. Also noteworthy, the smaller
the dataset, the higher the general resemblance across models and hyperparameters. Finally, it
is important to outline that the similarity between TARM and DBN graphs for large datasets
(≥ 500) is only around 50-60%.

Finally, whereas the previous tables depict the intersection of all graphs per dataset, all
graph intersections per model are shown in section C of the Appendix. Here, only the main
observations will be highlighted. The overview of graph intersections per model provides an
insight into how robust the individual rule learning approaches are across dataset sizes and
hyperparameters.

The most fundamental observation trends are two-fold. Firstly, (1) the larger the dataset,
the larger the graph (e.g. more rules are learnt). Secondly, (2) the less granular the hyper-
parameter setting, the larger the resulting graph. These two trends can be seen especially in
Table 1 (Baseline in Pipeline 1) and Table 3 (DBN in Pipeline 3). This is represented in the fact
that the model on the full dataset with the least granular HP setting computes the graph which
all other graphs have the largest intersections with. Put simply, these graphs are the largest
and the others are subsets of them. In Table 2 (TARM in Pipeline 2), however, a strikingly
different trend can be observed. Whereas observation trend (2) still holds, observation (1) is
reversed. In other words, for the TARM model in Pipeline 2, a smaller dataset resulted in
larger graphs.

6.2 Qualitative Results

The qualitative results are summarized in Figure 6.1 and Table 6.9. In Figure 6.1 the answers
of the two physicians are contrasted for each graph and statement, where the statement is
provided as a subfigure title. For example, Figure 6.1a shows that both experts rated the DBN
graph as 4 on the statement ’The Graph is interpretable’, where 5 indicates strong agreement.
Table 6.9, however, displays the expert’s picks for the most interpretable graph, the graph with
the most meaningful rules and the graph with the most unreasonable rules.

The first observation for Figure 6.1 is that the subjective opinions vary consistently between
experts. Only one graph was rated the same (see above). Also noteworthy, Expert 1 generally
provided more positive answers. Figure 6.1a, Figure 6.1b and Figure 6.1c are positive statements
and Expert 1 indicates equal or greater agreement in 77% of the cases. In contrast, Figure 6.1d
is a negative statement and Expert 1 agrees less in 2

3
of the cases. The largest difference in

opinion is visible in Figure 6.1c, which assesses whether the graph can be said to depict cause-
effect relationships. Whereas Expert 1 indicates maximal agreement for the TARM and DBN
models to display cause-effect relationships, Expert 2 disagrees.

Table 6.9: Expert picks for most interpretable graph, most meaningful rules and most unrea-
sonable rules.

Expert 1 Expert 2

The most interpretable graph was: TARM DBN
The graph with the most meaningful rules was: TARM DBN
The graph with the most unreasonable rules was: DBN MM
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(a) Statement 1 (b) Statement 2

(c) Statement 3 (d) Statement 4

Figure 6.1: The expert answers summarized by statement and graph.

The overall subjective preference, however, is concisely represented in Table 6.9. Expert 1
chooses the TARM graph from Pipeline 2 for both positively coined phrases, whereas Expert 2
chooses the DBN graph from Pipeline 3. The choice for the negatively coined phrase was the
DBN graph for Expert 1 and the MM (Baseline) graph for Expert 2.



Chapter 7

Discussion

In the following, the three types of results are discussed separately. Following the same structure
as chapter 6, first the individual graph complexity measures are discussed. Subsequently, the
graph intersections are discussed as a measure of similarity. To outline specific trends, first
the graph similarity within datasets is addressed before the graph similarity within models is
discussed. Lastly, the qualitative expert opinion will be elaborated on before the project is
embedded into the current scientific literature. The conclusion concisely integrates all insights
across results and finally, a critical perspective on the project is taken to highlight potential
further research objectives.

7.1 Graph Complexity

Firstly, the graph complexity measures regarding Pipeline 1, so the baseline model (MM),
will be discussed. It was observed that the amount of nodes and edges, so the sizes of all
graphs across HPs and datasets, were significantly higher compared to the latter two models.
This needs to be attributed to the fact that the baseline model is not learning a set of rules
which describes the data in a compact manner. Rather, all conditional probabilities with an
autoregressive order of p = 1 are calculated and also represented in the graph. Actually, this
resulted in graphs which are too large for Synthea to display. This lack of rule reduction in
the baseline model also made it infeasible to qualitatively evaluate graphs from Pipeline 1 for
larger datasets (≥ 500). This is a direct result of the graph complexity growing linearly with
the dimensionality of the dataset [see Table 5.1].

Whereas the baseline model in Pipeline 1 only extracts rules, Pipeline 2 (TARM) learns a
set of rules. As aforementioned, rule extraction involves the identification of relevant patterns
and relationships within data, while rule learning is the process of constructing a set of rules
that describe the data in a compact and interpretable manner. This claim is supported by
the fact that the size of the graph was observed to stay consistent across dataset sizes and
dimensionality. Whereas this holds for datasets 1-4, quite uncommon results were observed for
the smallest dataset (N = 10). Namely, the amount of edges (i.e. the learnt rules) were observed
to grow disproportionately in Pipeline 2. With a closer look at the methodology of the CMRules
algorithm, however, the explanation for this behavior becomes obvious. Rules across the whole
sequence are filtered by the two hyperparameter thresholds support and confidence. These
probabilistic thresholds, especially for HP settings 1 and 2 [see Table 5.3], are met very easily

50



CHAPTER 7. DISCUSSION 51

on a dataset of N = 10. For example, in a dataset with N = 10 and a MinSup = 10% every
single rule that is in the dataset is learnt. This is due to the fact that MinSup = Count(Rule)

N
. In

a dataset of N = 10, any rule which occurs in any time series has a support of 1
10

= 0.1 = 10%.
Thus, one can argue that CMRules is not robust with regards to small datasets.

Lastly, also Pipeline 3 learns a set of compact rules which describe the data. For dataset 1-4
both, Pipeline 2 and Pipeline 3, learn graphs of similar complexity. However, whereas CMRules
in Pipeline 2 does not display robust performance on smaller datasets, DYNOTEARS in Pipeline 3
does so. Another important observation, however, is the significantly lower flow hierarchy of all
graphs from Pipeline 3. As a reminder, a flow hierarchy of 1 indicates a hierarchical structure
of the graph. Arguably, for a graph representing chronological disease progressions, a hierar-
chical graph is preferred. However, the explanation why Pipeline 3 produces less hierarchically
structured graphs is found in two reasons, where both reasons directly depend on the graph
visualization used. More precisely, because the Synthea Module Builder does not explicitly
visualize a time axis, the complexity of DBN rules can not be accounted for appropriately and
create circles in the graph. The first scenario in which a cycle may be constructed is due to
intra-slice edges. Intra-slice edges, which are rules within a time step, disturb the chronological
order of nodes during display. Second, it is possible for the DBN to learn a rule from a variable
X to itself at a later point in time. This will also result in a cycle in Synthea graphs, because
any variable is only represented once without temporal information. These two methodological
obstacles create cycles in the Synthea graphs of Pipeline 3, which in turn decreases their flow
hierarchy.

7.2 Graph Intersection

This section places the measured graph intersections into perspective. The first subsection
answers the question: ”How similar are the learnt rules between models on the same dataset?”.
In contrast, the second subsection addresses the question: ”How similar are the learnt rules
within each model on decreasing sample sizes?”.

7.2.1 Within Datasets

The first major observation is that on almost all datasets, the largest overlap of rules is found
between either any TARM or DBN model and MM 1, meaning the baseline model with HP
setting 1. The explanation for this ties in to the aforementioned lack of rule reduction in the
baseline model. The HP setting 1 does not filter rules, rather it calculates and extensively
represents all conditional probabilities with autoregressive order p = 1. Considering this, it is
not surprising that a majority of TARM and DBN rules overlap with MM 1. Actually, all rules
of TARM and DBN which do not overlap with MM 1 necessarily are rules with autoregressive
order > 1.

Another important observation regarding the algorithmic extension introduced to the base-
line model in chapter 4 needs elaboration. The algorithmic extension was implemented with
the purpose of mathematically relativising the influence of prevalent observations. The aim was
to reduce the statistical bias of conditional probabilities. However, the percentage of overlap
strongly suggests that this algorithmic extension computes rules which are very dissimilar to
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all other models. This suggests that the extension actually introduced a new bias or distorted
the learnt probability distribution to a counterproductive magnitude. Nevertheless, it should
be noted that the algorithmic extension is not present in HP setting 1 (Model MM 1) and the
bias only holds for MM 2 and MM 3. Hence, a valid baseline model was still present in this
study.

The third and last observation worth discussing is the low graph similarity between TARM
and DBN models. Besides on dataset 5 (N = 10), the maximal overlap between TARM and
DBN graphs across hyperparameters is around 50-60%. If one combines this knowledge with
the prior observation that the individual graph complexities of both models are similar, the
logical consequence is that the two models learn qualitatively different rules to some extent.
Both models, however, also approach temporal rule learning with different methodologies as
outlined in chapter 4. The fact that the rules qualitatively differ on the same dataset and
across hyperparameters, can thus be interpreted as evidence for their respective methodology.
Going one step further, the main differences methodologically between the two computational
models are that (1) the DBN learns intra-slice edges and (2) the DBN estimates cause-effect
relationships through structural shocks. Nonetheless, the hyperparameter threshold for intra-
slice edges was intentionally set to a lower granularity, so only extremely prominent intra-slice
edges are included in the graphs of Pipeline 3. Taken together, the results of this study suggest
that the estimation of cause-effect relationships through structural shocks produces qualitatively
different rules compared to simple probabilistic temporal association rule mining.

7.2.2 Within Models

The similarity measure between graphs of the same model and with decreasing sample sizes
resulted in one striking observation. For Pipeline 1 (MM) and Pipeline 3 (DBN), two intuitive
observations hold. These are: (1) The larger the dataset, the larger the graph and (2) the less
granular the HP setting, the larger the graph. Put together, the model learnt on the largest
dataset with the less granular HP settings resulted in the largest graph (e.g. the largest amount
of rules were learnt). Because the decreasing subsamples are randomly drawn from the same
population, these general trends are expected from a robust model. In other words, the set of
rules learnt on the largest dataset represent the population of lung cancer patients to the best
of our knowledge. If the same model is trained on randomly drawn data subsets, one expects
a robust model to learn a subset of the rules. If a model learns significantly more rules on
subsamples of data, the model is representing another underlying probability distribution and
is therefore not robust to varying dataset sizes. This is exactly what was observed for Pipeline
2 (TARM).

The explanation for this model behavior from a methodological perspective ties directly
to the prior mentioned example. More precisely, the rule filtering thresholds of support and
confidence are not functional with decreasing sample sizes. Whereas one could argue that
the algorithm would need hyperparameter tuning depending on the dataset, it is necessary to
note that the other two models perform the desired behavior without hyperparameter tuning.
These observations are very relevant to research objective Q2. While the objective was to
identify models which are able to produce robust results on small sample sizes, it was found
that temporal association rule mining should not be used on small datasets. In addition, the
baseline model was found to be not restrictive enough for large data and thus is not suitable
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for learning graphs from large data. The Dynamic Bayesian Network, however, was identified
as robust in performance and computational efficiency for small and large datasets.

7.3 Expert Opinion

A fundamental insight from the questionnaire was that the more complex models seemingly
justified their computational complexity. One Expert choose the graph of Pipeline 2 (TARM)
and one Expert choose Pipeline 3 (DBN) as the most interpretable and meaningful graph.
Nevertheless, the experts displayed quite opposing opinions on the DBN graph. Whereas it
held the most meaningful information for one, it was the least meaningful according to the
second physician. A possible explanation for this can be attributed to the uncommon overall
structure which the DBN graph displays compared to the remaining graphs. Mainly, the DBN
graph differed in two ways. Firstly, the graph contained circles for the aforementioned reasons.
The resulting decreased flow hierarchy counteracts the thought of chronological observations
and can arguably confuse an interpreting person. Secondly, the start node was not present in
the DBN graph. This distorts the structure and interpretation of the graph and seems like a
mistake without proper methodological explanation.

The explanation for this structural flaw of the missing start node, however, is actually a
supporting argument for the methodology of DYNOTEARS in Pipeline 3. Recall that DYNOTEARS
estimates cause → effect relationships by measuring the effects of structural shocks to the
dynamic system. These shocks are also applied to the start node and the effect that the
presence or absence of the start node has on the dynamical system is measured. Because the
start node is not identified to cause any of the first observations in the chronological order, no
edge from ’START’ → Xt=1 is included in the DBN. As the start node was manually added
during pre-processing of the time-series, it actually should not cause any medical observation.
Thus, the exclusion of the start node supports the claim that Pipeline 3 computes the most
meaningful rules. However, not understanding and negatively interpreting the missing start
node is comprehensible if one assumes no methodological knowledge of the interpreting person.

As a clarifying remark, one can explain why only the start node was missing and not both,
the start and the stop node, as both were added manually during pre-processing. The answer
to this can be again found in the methodology of structural shocks. As it was explained in
chapter 4, the variables are in causal order (e.g. chronological order), so a shock to some variable
Xt=1 can only influence variables Yt>1 at a later point in time. Because the stop node is always
at Xt=T , meaning the last instance of each time-series, the shocks on the stop node can not
have any effect on the dynamic system. In simpler words, the stop node can not be interpreted
as the cause of any other variable, because it is always the last observation. However, it can
be interpreted as an effect, because certain medical observations potentially are estimated to
cause lung cancer hospital histories to end.

In summary, the graphs of Pipeline 2 (TARM) and Pipeline 3 (DBN) were best accepted
by the experts to represent official medical treatment guidelines. In the optional feedback of
the questionnaire, one physician referred to the official medical guidelines for lung carcinoma
in Germany [78], in which he was able to identify parts of each graph. This observation can be
interpreted as support for the final research question of this study. However, this interpretation
needs further differentiation. Learning official medical treatment guidelines from the data can
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be seen as a methodological success of the computational models. Nevertheless, the fact that
not all direct edges are interpreted as meaningful and in line with medical guidelines can be
explained in two ways. Either, the computational model learns irrelevant dependencies that
should not be included in such a chronological visualization of patient histories. The second
option, however, could be that the computational model uncovers chronological dependencies
in the hospital which do not follow the official medical guidelines. Actually, one utility factor of
this project from the perspective of the UKE was to develop a data-driven solution to uncover
whether patients have been treated according to the medical guidelines or not. Therefore, the
interpretation of the relevancy of rules within the graph requires cautious assessment and can
provide an interesting starting point for further research.

7.4 Relation to the Scientific Literature

In this section, the question of how this thesis relates to the rest of the scientific literature
is answered. Whereas to the author’s knowledge no prior study investigated the problem
statement of temporal rule learning from standardized EHR with the goal of creating Synthea
graphs, the methodologically closest studies will be outlined below.

Mainly the differences fall into one or multiple of the following categories. Either, (1)
temporal rule learning is applied to different data than EHRs [69, 79, 80], (2) the model used
is not interpretable (e.g. Deep Learning approaches) [81, 82, 83, 84], (3) the goal of the model
is predictive rather than descriptive [85, 86] or (4) rules are learnt without regards to the time
axis [87]. One study, in particular, was found to have a similar objective in modelling patient
data using Dynamic Bayesian Networks [88]. However, this approach did not build upon a
specific standardized EHR format and had the direct goal of synthetic data generation without
using Synthea. Nevertheless, this study provides some support for the accuracy of modelling
patient data using Dynamic Bayesian networks [88].

7.5 Conclusion

Relating back to the research objective, it can be said that it is possible to extract information
from standardized EHR, transform the data into time-series format and learn temporal rules
which can be interpreted from a medical professional without prior knowledge of the underlying
computational model. Actually, given the right framework, different models may be suitable
for certain situations. Whereas the TARM is computationally very efficient on large data and
still reasonably interpretable, it is a suitable choice for large datasets (≥ 10000). For very small
datasets (< 50), the baseline transition matrix can be useful to provide an extensive overview.
However, the only model which displayed robust performance for varying data set sizes was the
DYNOTEARS in Pipeline 3. In line with what the authors propose [69], DYNOTEARS also displayed
computational efficacy for the complex task of Dynamic Bayesian Network structural learning
on large data (N = 11641).

Concluding, the baseline model in Pipeline 1 should be viewed as such, a model which holds
information about all connections summarized in the transition matrix. This information is
valuable and can be used to gather information on specific dependencies of interest directly from
the transition matrix. Visualizing the transition matrix, however, only makes sense for very



CHAPTER 7. DISCUSSION 55

small datasets. On the other hand, temporal association rule mining is only suitable for large
datasets (≥ 10000), as the risk for inadequate hyperparameter tuning and distorted results
on small data is too high. Finally, while ’meaningfulness’ of learnt rules is not quantifiable
without a ground truth, this study provided some evidence that the use of a Structural Vector
Autoregressive Model (SVARM) for Dynamic Bayesian Network structure learning can lead
to a set of cause-effect relationships with less statistical bias compared to basic probabilistic
models. In combination with DYNOTEARS’s real-life applicability due to computational efficacy,
the approach described in Pipeline 3 should be preferred in further research.

7.5.1 Future Work

To finalize the scientific work, a critical perspective is taken on this research project. Because
no prior study in the field is addressing the same research objective, the project should be seen
as explorative. Hence, the results of this study should be viewed as basis for future research and
used to optimize temporal rule learning from standardized EHR with the purpose of visualizing
disease progressions. That being said, the following sections summarise the opportunities for
improvement identified by the researcher during the course of this project.

Firstly, it needs to be stressed that the mapping of standardized vocabularies in all analytical
pipelines is error prone regardless of the computational model used. The successful mapping
from clinical observations to standardized vocabularies and back to the correct English free
text greatly determines the quality of the resulting graph. Basically, if the wrong concept is
mapped into the OMOP database or the wrong concept is mapped out after learning the rules,
the best computational model will not learn a meaningful graph structure. In this project,
the mapping has been optimized in several feedback loops with physicians and required some
manual quality assurance. Therefore, the mapping of standardized vocabularies in the proposed
analytical pipelines should not be fully automated in further research, but rather be subject to
deliberate processing.

The second point of improvement poses a trade-off for future research objectives. Either,
one focuses on visualization of disease progression and chooses another tool than Synthea for the
repeatedly highlighted reasons. If, however, the goal remains to optimize graph visualization
within the framework of Synthea, the following improvements represent the next steps which
should be undertaken. (1) According to the expert’s feedback, it would be helpful to distinguish
the treatments and procedures as such within the Synthea graph. The most convenient solution
would be to algorithmically determine different Synthea node types depending on the OMOP
domain the data was extracted from. (2) The analytical pipeline, disregarding the model
used, could be extended to give the user the opportunity to select desired OMOP domains for
temporal rule learning. For example, the user could select to learn and visualize the temporal
dependencies between the medication and condition domain. Basically, an extension which
allows for more combinatorial variability between different OMOP domains than just conditions
and treatments is not too far away methodologically and holds great practical benefit for end
users.

Apart from these two major points, a few smaller suggestions for future research building
up on this study can be made. For example, the three models have been identified to each
posses strengths in different scenarios and therefore they should only be used in these. It would
also be interesting to extend the baseline transition matrix to second, third or fourth order to
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evaluate temporal dependencies with a higher autoregressive order. The TARM model pipeline
suffered from rigid post-filtering of rules, which can be overcome by allowing for more flexible
nodes (e.g. nodes which hold information on combinations of observations). The DBN model
would greatly benefit from a visualization on a temporal axis, highlighting clear interactions
along time steps. Finally, although the groundwork for this has been demonstrated in this
study, it is crucial to leverage the full complexity of Synthea graphs (e.g. node and edge types)
with the explicit goal of synthetic data generation in subsequent studies.
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[6] B. Vlacić, L. Corbo, S. Costa E Silva, and M. Dabić, “The evolving role
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66 APPENDICES

Appendices

A Synthea Modules

Figure 1 and Figure 2 display the two official Synthea modules on Lung Cancer that are available
online [61]. The goal of this study is to generate such a Synthea Graph in a data-driven fashion.

Figure 1: Synthea module for statistics on pulmonary cancer.
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Figure 2: Synthea module for pulmonary cancer diagnosis and treatment.
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B Questionnaire Graphs

In this section, 3 out of the 45 generated graphs are shown. These three graphs were included
in the questionnaire that was handed to physicians during the study to investigate the graphs
qualitatively from medical experts without domain knowledge of Artificial Intelligence. Figure 3
was generated with Pipeline 1, Figure 4 was generated with Pipeline 2 and Figure 5 was
generated with Pipeline 3.

Figure 3: Graph from Pipeline 1 included in the Expert Questionnaire.

Figure 4: Graph from Pipeline 2 included in the Expert Questionnaire.

Figure 5: Graph from Pipeline 3 included in the Expert Questionnaire.
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C Graph Intersection within Pipeline

Table 1, Table 2 and Table 3 provide an exhaustive overview of the graph intersections within
models. More precisely, it shows the percentage of overlapping direct edges that the resulting
graphs within each pipeline have across hyperparameters and datasets.



70 BIBLIOGRAPHY

T
ab

le
1:

In
te
rs
ec
ti
on

of
ed
ge
s
b
et
w
ee
n
al
l
gr
ap

h
s
w
it
h
in

P
ip
el
in
e
1
(B

as
el
in
e)
.
T
h
e
ro
w

an
d
co
lu
m
n
n
am

es
fo
ll
ow

th
e
sy
n
ta
x

’d
at
as
et

h
y
p
er
p
ar
am

te
r’
.

10
1

50
1

50
0
1

50
00

1
fu
ll
1

10
2

50
2

50
0
2

50
00

2
fu
ll
2

10
3

50
3

50
0
3

50
00

3
fu
ll
3

10
1

1.
00

0.
39

0.
65

0.
89

0.
93

0.
43

0.
12

0.
16

0.
21

0.
21

0.
29

0.
08

0.
12

0.
12

0.
12

50
1

0.
14

1.
00

0.
69

0.
88

0.
96

0.
07

0.
46

0.
20

0.
25

0.
29

0.
04

0.
30

0.
14

0.
17

0.
21

50
0
1

0.
07

0.
19

1.
00

0.
82

0.
96

0.
03

0.
08

0.
37

0.
21

0.
23

0.
02

0.
05

0.
24

0.
15

0.
15

50
00

1
0.
03

0.
08

0.
26

1.
00

0.
96

0.
01

0.
04

0.
09

0.
33

0.
28

0.
01

0.
02

0.
07

0.
21

0.
18

fu
ll
1

0.
02

0.
06

0.
20

0.
61

1.
00

0.
01

0.
03

0.
07

0.
21

0.
30

0.
01

0.
02

0.
05

0.
13

0.
18

10
2

1.
00

0.
44

0.
72

0.
97

1.
00

1.
00

0.
28

0.
38

0.
50

0.
50

0.
69

0.
19

0.
28

0.
28

0.
28

50
2

0.
10

1.
00

0.
62

0.
85

0.
96

0.
10

1.
00

0.
43

0.
53

0.
62

0.
08

0.
66

0.
32

0.
36

0.
46

50
0
2

0.
05

0.
16

1.
00

0.
78

0.
98

0.
05

0.
15

1.
00

0.
55

0.
60

0.
04

0.
13

0.
66

0.
40

0.
40

50
00

2
0.
02

0.
07

0.
21

1.
00

0.
99

0.
02

0.
07

0.
20

1.
00

0.
82

0.
02

0.
06

0.
16

0.
63

0.
54

fu
ll
2

0.
02

0.
06

0.
16

0.
59

1.
00

0.
02

0.
06

0.
15

0.
57

1.
00

0.
01

0.
05

0.
12

0.
42

0.
62

10
3

1.
00

0.
41

0.
64

0.
95

1.
00

1.
00

0.
32

0.
45

0.
68

0.
64

1.
00

0.
27

0.
41

0.
41

0.
41

50
3

0.
10

1.
00

0.
59

0.
80

0.
97

0.
10

1.
00

0.
56

0.
67

0.
80

0.
10

1.
00

0.
43

0.
54

0.
69

50
0
3

0.
05

0.
17

1.
00

0.
85

0.
98

0.
05

0.
17

1.
00

0.
67

0.
71

0.
05

0.
15

1.
00

0.
59

0.
60

50
00

3
0.
02

0.
07

0.
23

1.
00

1.
00

0.
02

0.
07

0.
23

1.
00

0.
94

0.
02

0.
07

0.
22

1.
00

0.
83

fu
ll
3

0.
01

0.
07

0.
17

0.
61

1.
00

0.
01

0.
07

0.
17

0.
61

1.
00

0.
01

0.
07

0.
16

0.
60

1.
00



BIBLIOGRAPHY 71

T
ab

le
2:

In
te
rs
ec
ti
on

of
ed
ge
s
b
et
w
ee
n
al
l
gr
ap

h
s
w
it
h
in

P
ip
el
in
e
2
(T

A
R
M
).

T
h
e
ro
w

an
d
co
lu
m
n
n
am

es
fo
ll
ow

th
e
sy
n
ta
x

’d
at
as
et

h
y
p
er
p
ar
am

te
r’
.

10
1

50
1

50
0
1

50
00

1
fu
ll
1

10
2

50
2

50
0
2

50
00

2
fu
ll
2

10
3

50
3

50
0
3

50
00

3
fu
ll
3

10
1

1.
00

0.
36

0.
42

0.
35

0.
34

1.
00

1.
00

0.
27

0.
20

0.
20

0.
18

0.
09

0.
12

0.
07

0.
07

50
1

0.
68

1.
0

0.
84

0.
70

0.
67

0.
68

0.
68

0.
49

0.
37

0.
37

0.
31

0.
17

0.
23

0.
14

0.
14

50
0
1

0.
73

0.
76

1.
00

0.
70

0.
67

0.
73

0.
73

0.
46

0.
34

0.
34

0.
30

0.
16

0.
21

0.
12

0.
12

50
00

1
0.
85

0.
92

1.
00

1.
00

0.
95

0.
85

0.
85

0.
66

0.
48

0.
48

0.
44

0.
23

0.
31

0.
18

0.
18

fu
ll
1

0.
87

0.
90

1.
00

0.
98

1.
00

0.
87

0.
87

0.
68

0.
50

0.
50

0.
45

0.
23

0.
32

0.
18

0.
18

10
2

1.
00

0.
36

0.
42

0.
35

0.
34

1.
00

1.
00

0.
27

0.
20

0.
20

0.
18

0.
09

0.
12

0.
07

0.
07

50
2

1.
00

0.
36

0.
42

0.
35

0.
34

1.
00

1.
00

0.
27

0.
20

0.
20

0.
18

0.
09

0.
12

0.
07

0.
07

50
0
2

1.
00

0.
98

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
73

0.
73

0.
63

0.
34

0.
46

0.
27

0.
27

50
00

2
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
97

0.
67

0.
47

0.
63

0.
37

0.
37

fu
ll
2

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
97

1.
00

0.
70

0.
47

0.
63

0.
37

0.
37

10
3

1.
00

0.
93

1.
00

1.
00

1.
00

1.
00

1.
00

0.
96

0.
74

0.
78

1.
00

0.
48

0.
67

0.
41

0.
41

50
3

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
93

1.
00

1.
00

0.
64

0.
64

50
0
3

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
95

0.
74

1.
00

0.
58

0.
58

50
00

3
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
82

1.
00

1.
00

1.
00

fu
ll
3

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
82

1.
00

1.
00

1.
00



72 BIBLIOGRAPHY

T
ab

le
3:

In
te
rs
ec
ti
on

of
ed
ge
s
b
et
w
ee
n

al
l
gr
ap

h
s
w
it
h
in

P
ip
el
in
e
3
(D

B
N
).

T
h
e
ro
w

an
d

co
lu
m
n

n
am

es
fo
ll
ow

th
e
sy
n
ta
x

’d
at
as
et

h
y
p
er
p
ar
am

te
r’
.

10
1

50
1

50
0
1

50
00

1
fu
ll
1

10
2

50
2

50
0
2

50
00

2
fu
ll
2

10
3

50
3

50
0
3

50
00

3
fu
ll
3

10
1

1.
00

0.
41

0.
45

0.
44

0.
44

0.
88

0.
33

0.
32

0.
29

0.
30

0.
30

0.
12

0.
13

0.
16

0.
16

50
1

0.
51

1.
00

0.
67

0.
63

0.
66

0.
46

0.
58

0.
48

0.
40

0.
42

0.
21

0.
24

0.
21

0.
25

0.
24

50
0
1

0.
67

0.
82

1.
00

0.
91

0.
93

0.
60

0.
64

0.
62

0.
53

0.
55

0.
29

0.
27

0.
25

0.
31

0.
29

50
00

1
0.
68

0.
79

0.
94

1.
00

1.
00

0.
62

0.
62

0.
64

0.
55

0.
57

0.
30

0.
28

0.
26

0.
32

0.
30

fu
ll
1

0.
65

0.
80

0.
93

0.
96

1.
00

0.
60

0.
62

0.
62

0.
53

0.
55

0.
29

0.
27

0.
25

0.
31

0.
29

10
2

0.
97

0.
42

0.
45

0.
45

0.
45

1.
00

0.
34

0.
34

0.
31

0.
32

0.
34

0.
14

0.
14

0.
16

0.
16

50
2

0.
69

1.
00

0.
90

0.
85

0.
87

0.
64

1.
00

0.
69

0.
62

0.
62

0.
31

0.
41

0.
33

0.
41

0.
38

50
0
2

0.
76

0.
94

1.
00

1.
00

1.
00

0.
74

0.
79

1.
00

0.
85

0.
88

0.
44

0.
41

0.
41

0.
50

0.
47

50
00

2
0.
83

0.
93

1.
00

1.
00

1.
00

0.
79

0.
83

1.
00

1.
00

0.
97

0.
48

0.
48

0.
48

0.
59

0.
55

fu
ll
2

0.
83

0.
93

1.
00

1.
00

1.
00

0.
80

0.
80

1.
00

0.
93

1.
00

0.
47

0.
43

0.
47

0.
57

0.
53

10
3

1.
00

0.
56

0.
64

0.
64

0.
64

1.
00

0.
48

0.
60

0.
56

0.
56

1.
00

0.
28

0.
32

0.
32

0.
32

50
3

0.
62

1.
00

0.
94

0.
94

0.
94

0.
62

1.
00

0.
88

0.
88

0.
81

0.
44

1.
00

0.
62

0.
69

0.
69

50
0
3

0.
79

1.
00

1.
00

1.
00

1.
00

0.
71

0.
93

1.
00

1.
00

1.
00

0.
57

0.
71

1.
0

0.
93

1.
00

50
00

3
0.
76

1.
00

1.
00

1.
00

1.
00

0.
71

0.
94

1.
00

1.
00

1.
00

0.
47

0.
65

0.
76

1.
00

0.
88

fu
ll
3

0.
81

1.
00

1.
00

1.
00

1.
00

0.
75

0.
94

1.
00

1.
00

1.
00

0.
50

0.
69

0.
88

0.
94

1.
00


	Acknowledgements
	Abstract
	Introduction
	Research Questions
	Thesis Outline

	Background
	Digital Healthcare & Tools
	FHIR & OMOP
	Synthea

	Pulmonary Cancer
	Computational Intelligence for Rule Learning
	Temporal Association Rule Mining (TARM)
	Dynamic Bayesian Networks (DBN)


	Data
	VONKO Data on Pulmonary Cancer
	TNM Classification

	OMOP Common Data Model
	ETL process for OMOP analysis

	Synthea

	Methods
	Pipeline 1: Baseline Transition Matrix
	Markov Chain
	ETL Process
	Transition Matrix Computation Algorithm

	Pipeline 2: Temporal Association Rule Mining
	CMRules
	ETL Process

	Pipeline 3: Dynamic Bayesian Network
	DYNOTEARS
	Cause-Effect Relationships
	ETL Process


	Experimental Setup
	Quantitative Experiments
	Evaluation

	Qualitative Evaluation
	Questionnaire


	Results
	Quantitative Results
	Qualitative Results

	Discussion
	Graph Complexity
	Graph Intersection
	Within Datasets
	Within Models

	Expert Opinion
	Relation to the Scientific Literature
	Conclusion
	Future Work


	Bibliography
	Appendices
	Synthea Modules
	Questionnaire Graphs
	Graph Intersection within Pipeline


