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Abstract

We describe and prove the correctness of an algorithm that theoretically computes the
K-rational torsion subgroup of an abelian variety defined over a number field K. We make
this concrete for Jacobians of genus 2 curves over number fields and implement this in
Magma. The algorithm is largely based on work by Michael Stoll. Using this algorithm
we look into various applications, such as finding unknown torsion structures and finding
isogenies between abelian varieties.
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Notation

Let us first introduce some notation. Let K be a number field and define:

• d := [K : Q],

• OK ring of integers of K,

• p a prime ideal of OK lying above some prime number p,

• e(p) and f(p) the ramification index and residue field degree of p over p,

• vp : K → Z ∪ {∞} the discrete valuation induced by p,

• Kp the completion of K with respect to vp,

• Op the valuation ring of Kp,

• mp the maximal ideal of Op,

• If k is a field, k̄ denotes an algebraic closure of k.
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1 Introduction

If K is a number field and A/K is an abelian variety, the K-rational torsion subgroup
A(K)tors is finite by the Mordell-Weil theorem. In case A is an elliptic curve, it is known
how to compute the torsion subgroup [Cre97]. Moreover, for K = Q and A the Jacobian of
a genus 2 curve, [Sto98] gives an algorithm to compute the torsion subgroup. A theoretical
extension of this algorithm to arbitrary A/Q is due to [MR23]. In addition, [vB23] gives
an algorithm that computes the torsion subgroup of Jacobians of non-hyperelliptic curves
of genus 3. However, there is not yet a practical algorithm that computes the torsion
subgroup of A/K where K is any number field. This thesis presents such an algorithm
in a theoretical setting and implements it in practice for Jacobians of genus 2 curves over
number fields. Our algorithm extends the algorithm by [Sto98] which uses a p-adic ap-
proach to determine the rational torsion subgroup. If J denotes the Jacobian of a genus 2
curve over Q, [Sto98] reduces J modulo some prime number to obtain points over a finite
field. Moreover, [Sto98] derives a bound on the height of torsion points using the height
difference between the canonical and the naive height. In order to determine which of
the points of J over the finite field lift to Q-rational torsion points, the Kummer variety
K := J/{±1} is used together with the theory of heights and the LLL algorithm. The
main issue when generalizing this to number fields is that the height of a point P does
not relate easily to the absolute values of the coordinates of the point P considered on
the Kummer variety. Since the height on projective space over Q is simply the maximum
of the absolute values of the coordinates, we can directly bound the individual coordinate
sizes when a height bound is given. In contrast, for the height on projective space over
number fields this is not immediately clear. We combine the results of [Tur13] and [FF00]
to obtain such a relation. This allows us to generalize Stoll’s algorithm since the required
theory on heights described in [Sto98] also applies to number fields. The Magma [BCP97]
code for the implementation of the algorithm for Jacobians of genus 2 curves over number
fields can be found on https://github.com/MaxPosthumus/MasterProject/blob/main/.

Using the algorithm we compute for different number fields K, the K-rational torsion sub-
groups of Jacobians of various genus 2 curves defined over K. For elliptic curves over Q,
Mazur’s theorem [MG78] asserts that all rational torsion subgroups must be isomorphic to
one of 15 distinct groups. For elliptic curves over number fields of small degree analogues of
Mazur’s theorem have been proven, see for example [Sut12]. Additionally, [Mer96] proved
the uniform boundedness conjecture for elliptic curves over number fields. For a number
field K and E/K an elliptic curve, this bounds |E(K)tors| in terms of the degree of K.
However, for abelian varieties of dimension g ≥ 2, the uniform boundedness conjecture
remains a conjecture. Intermediate steps have been made by for instance [CX08]. Hence,
it is interesting to determine what torsion structures occur for the Jacobians of genus 2
curves over number fields. Furthermore, the Birch and Swinnerton-Dyer conjecture for
abelian varieties over a number field K contains also the order of the K-rational torsion
subgroup (see e.g., [Jor05, Conjecture 3.15]).
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Section 2 introduces the necessary definitions and theorems. Section 3 describes and proves
the correctness of the algorithm. Section 4 concretizes the algorithm for Jacobians of genus
2 curves over number fields. In Section 5 we apply the algorithm to the Jacobians of the
66158 genus 2 curves of the L-functions and Modular Forms Database (LMFDB) [LMF23]
over various number fields and consider a few applications of the algorithm. Lastly, we
make some concluding remarks in Section 6.
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2 Preliminaries

This section introduces the necessary preliminaries regarding algebraic geometry and alge-
braic number theory. We will mainly follow [HS00]. Subsections 2.1, 2.2 and 2.3 provide
us with the tools to briefly discuss the idea of the algorithm in Subsection 2.4 after which
Subsections 2.5 and 2.6 complete the required preliminaries.

2.1 Hyperelliptic curves and abelian varieties

This section introduces hyperelliptic curves and their Jacobian with corresponding Kummer
varieties. Unless stated otherwise, k will denote any field.

2.1.1 Hyperelliptic curves

In this paragraph we will heavily rely on [Sto14].

Definition 2.1. Let g ∈ Z≥0. The weighted projective plane P2
g = P2

(1,g+1,1) is the geometric
object consisting of the set of all 3-tuples

(ξ, η, ζ) ∈ A3(k)\{0, 0, 0}

modulo the equivalence relation given by

(ξ, η, ζ) ∼ (ξ′, η′, ζ ′)

if there is some λ ∈ k̄× such that (ξ′, η′, ζ ′) = (λξ, λg+1η, λζ). We denote the corresponding
equivalence class by (ξ : η : ζ).

Definition 2.2. Let k be a perfect field with char(k) ̸= 2 and let g ∈ Z≥2. A hyperelliptic
curve of genus g over k is the subvariety C of P2

g defined by the equation y2 = F (x, z)
where

F (x, z) = f2g+2x
2g+2 + f2g+1x

2g+1z + · · ·+ f1xz
2g+1 + f0z

2g+2 ∈ k[x, z] (2.1)

is homogeneous of degree 2g + 2 and squarefree.

For the remainder of this paragraph we will assume that C is a hyperelliptic curve as in
Definition 2.2 and that k is a perfect field to work with simpler definitions. Note that C
is guaranteed to be smooth. If we also allowed fields of characteristic 2, the equation of
a hyperelliptic curve takes on a more general form. However, if the characteristic is not
equal to 2 this can be transformed into the form as in Definition 2.2.

Remark 2.3. Every genus 2 curve is a hyperelliptic curve of genus 2. See for example
[Ber10, Proposition 12.4].
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The set of k-rational points of C is given by

C(k) = {(ξ : η : ζ) ∈ P2
g(k) | η2 = F (ξ, ζ)}.

We define the affine variety Caff as the intersection of C with the affine patch of P2
g defined

by z = 1, i.e., Caff is defined by the equation y2 = F (x, 1) =: f(x). In order to reconstruct
F (x, z) from f(x) we need deg(f) ∈ {2g + 1, 2g + 2}. But this always holds, since if
f2g+2 = f2g+1 = 0 we would be able to write F (x, z) = z2H(x, z) for some H(x, z) ∈ k[x, z]
contradicting that F is squarefree.
The points at infinity of C are the points obtained by setting z = 0 and x = 1 in (2.1),
i.e., solutions to the equation y2 = f2g+2. If f2g+2 = 0 there will be exactly one such point,
namely (1 : 0 : 0). Otherwise, (1 :

√
f2g+2 : 0) and (1 : −

√
f2g+2 : 0) are the two points at

infinity. Depending on whether k contains
√
f2g+2 these may be k-rational points.

Definition 2.4. The map

ι : C → C, (ζ : η : ξ) 7→ (ζ : −η : ξ)

is called the hyperelliptic involution of C.
Furthermore, the points that are fixed by ι, that is, points P ∈ C such that ι(P ) = P , are
called Weierstrass points.

Definition 2.5. The coordinate ring of C over k is the quotient ring k[C] := k[x, y, z]/⟨y2−
F (x, z)⟩ with induced grading from k[x, y, z].

Definition 2.6. The function field of C over k, denoted by k(C), is the subfield of the
field of fractions of k[C] defined as

k(C) := {φ1/φ2 : φ1, φ2 ∈ k[C] are homogeneous of the same degree}.

Let k̄ be an algebraic closure of k and recall that we assume that k is perfect, so k̄ is a
separable extension of k.

Definition 2.7. Let Gal(k) denote the absolute Galois group of k, that is, the group of
all automorphisms of k̄ that fix k. Then we can define an action of Gal(k) on the points
of C(k̄) as follows:

Gal(k)× C(k̄) → C(k̄)

(σ, (ζ : η : ξ)) 7→ (σ(ζ) : σ(η) : σ(ξ)).

For φ ∈ k[x, y, z], P ∈ P2
g and σ ∈ Gal(k) we have φ(σ(P )) = σ(φ(P )). Hence, points of

C(k̄) are indeed mapped to C(k̄) since C is defined over k.

Definition 2.8. The divisor group of C, written as DivC , is the free abelian group gener-
ated by the k̄-points of C. A divisor D ∈ DivC is of the form

D =
∑

P∈C(k̄)

nPP,
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where nP ∈ Z for all P ∈ C(k̄) and nP = 0 for all but finitely many points P .
The degree of D is the sum of the integers nP , that is, deg(D) :=

∑
P∈C(k̄) nP . The set of

divisors of degree zero is denoted by Div0C . This is in fact a subgroup of DivC since the
degree of divisors is a homomorphism of groups.

The Galois action in Definition 2.7 induces an action on DivC which we will use in the
following definition.

Definition 2.9. A divisor D ∈ DivC is k-rational if it is fixed by the action of Gal(k).

Definition 2.10. For P ∈ C(k̄), the local ring of C at P is defined as

k̄[C]P := {φ1/φ2 ∈ k̄(C) : φ2(P ) ̸= 0}.

Definition 2.11. The valuation on k̄[C]P is given by

vP : k̄[C]P → Z≥0 ∪ {∞}

φ 7→


0 if P is not a root of φ,

m if P is a root of φ of multiplicity m,

∞ if φ = 0.

This can be extended to k̄(C) by defining vP (φ1/φ2) := vP (φ1)− vP (φ2).

The valuation in Definition 2.11 makes k̄[C]P a discrete valuation ring (DVR).

Definition 2.12. For ϕ ∈ k̄(C)×, define the divisor of ϕ as

div(ϕ) =
∑

P∈C(k̄)

vP (ϕ)P.

A divisor D ∈ DivC is called principal if D = div(ϕ) for some function ϕ ∈ k̄(C)×. Write
PrincC for the set of principal divisors. Now consider the map

k̄(C)× → DivC ,

ϕ 7→ div(ϕ).

This is a group homomorphism since vP is a valuation which implies that for ϕ1, ϕ2 ∈ k̄(C)×

we have vP (ϕ1ϕ2) = vP (ϕ1) + vP (ϕ2). Hence its image, i.e., the set of principal divisors, is
a subgroup of DivC .

Definition 2.13. Define the Picard group of C as

PicC = DivC/PrincC .
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Consider the class of the divisor D in PicC , which we will denote by [D]. Then by definition
of PicC we can write every element D′ in [D] as D′ = D + div(ϕ) for some ϕ ∈ k̄(C)×.
For ϕ ∈ k̄(C)× and σ ∈ Gal(k) we have div(σ(ϕ)) = σ(div(ϕ)), which implies that

σ(D + div(ϕ)) = σ(D) + σ(div(ϕ)) = σ(D) + div(σ(ϕ))

and thus leads us to the group action

PicC ×Gal(k) → PicC

([D], σ) 7→ [σ(D)].

We write PicC(k) for the subgroup of PicC fixed by this action; its elements are again
called k-rational. For each class in PicC we can compute its degree as the degree of any
of the representatives since the degree of elements in PrincC is zero. Similarly as for the
divisor group, we define Pic0C to be the subgroup of PicC consisting of divisors of degree
zero.

2.1.2 Jacobian

Definition 2.14. An algebraic group defined over k is a variety A defined over k, a point
e ∈ A(k) and morphisms +: A× A → A and − : A → A such that + satisfies the axioms
of a group law with identity element e and inverses are given by −. For more details see
[HS00, §A.1.4].

Since morphisms are rational maps and A is defined over k, the set A(k) of k-rational
points inherits a group structure.

Definition 2.15. An abelian variety is a projective variety that is also an algebraic group.

Example 2.16. An elliptic curve is an abelian variety of dimension 1.

Two important results regarding abelian varieties are presented in the following theorem:

Theorem 2.17. Let A be an abelian variety.

(1) A is a commutative algebraic group.

(2) A is smooth.

Proof.

(1) See [HS00, Lemma A.7.1.3].

(2) See [HS00, §A.7.1].

We will write A(k)tors for the k-rational torsion subgroup of A and A[m] for the m-torsion
subgroup of A if m ∈ Z.
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Theorem 2.18. (Mordell-Weil) Let K be a number field and A an abelian variety defined
over K. Then A(K) is finitely generated.

Proof. See [Mor22] and [Wei29].

Consequently, we have

A(K) ∼= A(K)tors × Zr,

where r ∈ Z≥0 is called the rank of A and A(K)tors is finite.

Theorem 2.19. Given a hyperelliptic curve C/k of genus g, there exists an abelian variety
over k with dimension g such that for each k ⊂ L ⊂ k̄ we have J(L) ∼= Pic0C(L).

Proof. See [HS00, §A.8].

The extension L is guaranteed to be a perfect field so Pic0C(L) is well-defined.

Definition 2.20. The abelian variety J is called the Jacobian variety (or just Jacobian)
of the curve C.

Given a point P0 ∈ C(k), there is a morphism of algebraic varieties

i = iP0 : C → J, P 7→ [P − P0]

which is injective if g > 0 and maps C(k) to J(k). For details see [HS00, §A.8.1].

Remark 2.21. Let C be a hyperelliptic curve over some number field K and denote its
Jacobian by J . Assume P0 ∈ C(K) and define iP0 as above. If rank(J(K)) = 0, Theorem
2.18 implies that J(K) ∼= J(K)tors so we can use J(K)tors to compute C(K).

2.1.3 Kummer variety

Definition 2.22. Let A be an abelian variety. The Kummer variety is defined as K :=
A/{−1}.

Example 2.23. If A = E is an elliptic curve given by a Weierstrass equation y2 =
x3 + ax+ b, the Kummer variety K is equal to P1 and is obtained by only considering the
x-coordinate of each point P ∈ E. After doing so we can no longer differentiate between
P and −P .

Theorem 2.24. Let K be the Kummer variety of an abelian variety of dimension g. Then
K is an algebraic variety and can be embedded in P2g−1.

Proof. See [BL04, Theorem 4.8.1].
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Once we fix an embedding of K into P2g−1, denote the quotient map by

κ : A→ K ⊆ P2g−1. (2.2)

We will always assume that κ maps 0 ∈ A to (0 : 0 : · · · : 1), the origin of the Kummer.
For P ∈ A, κ(P ) and κ(−P ) coincide. Hence, κ is 2 : 1 except for points of order 1 or 2
where it is injective. Consequently, the group structure from A is lost in K. However, we
can still define multiplication by n for each n ∈ Z. Firstly, for the abelian variety A and
P ∈ A we already have multiplication by n. In particular, if n > 0 define

[n](P ) = P + P + · · ·+ P︸ ︷︷ ︸
n times

.

If n < 0, define [n](P ) = [−n](−P ) and set [0](P ) equal to the identity element of A. Now
note that [−1] ◦ [n] = [n] ◦ [−1] because the group law is commutative. Consequently, we
can define multiplication by n on the Kummer, denoted by [[n]], such that the following
diagram commutes:

J J

K K

[n]

κ κ

[[n]]

Assume that we have an algorithm to present K as a variety in P2g−1. Then for Q ∈ K
we will need an algorithm to compute [[n]](Q). For P ∈ A, let κ(P ) = (x1 : x2 : · · · : x2g)
denote the image of P on the Kummer. We start by doubling points on K, that is, com-
puting [[2]]κ(P ) = κ([2]P ) for P ∈ A. However, if n is odd we need some way to add
distinct points as well. To that end, we want to use the group structure of A to add points
on the Kummer. However, consider κ(P1), κ(P2) ∈ K and suppose we want to determine
κ(P1+P2) when P1, P2 are not known. We know that κ−1(P1) ∈ {P1,−P1} and similarly for
P2. Hence, using addition on A we can compute the set {κ(P1+P2), κ(P1−P2)}. However,
we do not know which of the elements in the set represents κ(P1 + P2). Consequently, ad-
dition on the Kummer is not well-defined, but we can use something called pseudo addition
which requires more information. More specifically, given κ(P1), κ(P2), κ(P1 − P2) pseudo
addition computes κ(P1 + P2). Together with the map [[2]] this leads to an algorithm to
compute [[n]](Q) for Q ∈ K as described in [MR23, Algorithm 2.1].

2.2 Valuations and absolute values

Definition 2.25. A valuation on a field k is a function v : k → R ∪ {∞} such that
for all x, y ∈ k

(1) v(xy) = v(x) + v(y),

(2) v(x+ y) ≥ min{v(x), v(y)},
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(3) v(0) = ∞.

Moreover, one can show that for x, y ∈ k with v(x) ̸= v(y), one has v(x+y) = min{v(x), v(y)}.
Call v discrete if v(k×) = δZ for some δ ∈ R.

Definition 2.26. An absolute value on a field k is a function | · | : k → R≥0 such that
for all x, y ∈ k

(1) |x| = 0 ⇐⇒ x = 0,

(2) |xy| = |x||y|,

(3) |x+ y| ≤ |x|+ |y|

If in addition | · | satisfies |x+ y| ≤ max{|x|, |y|}, call | · | non-archimedean. Otherwise, call
| · | archimedean.

We can use a valuation to define an absolute value in the following way.

Example 2.27. Given 0 < α < 1 and a valuation v on k we can define a non-archimedean
absolute value

| · | : k → R≥0, x 7→

{
0 if x = 0,

αv(x) else.

In case k = Q we can define a valuation as follows. For a prime p and x ∈ Z\{0}, define
the p-adic valuation as vp(x) = max{n ≥ 0 : pn | x} and set vp(0) = ∞. Moreover, we
can extend vp to Q by defining vp(

a
b
) := vp(a)− vp(b) for

a
b
∈ Q with a, b ∈ Z. By setting

α = 1/p in Example 2.27, we obtain the p-adic absolute value on Q:

| · |p : Q → R≥0, q 7→ p−vp(q).

Now let K be a number field with integers OK . Note that OK is Dedekind and that in
Dedekind domains every nonzero prime ideal is invertible which leads to unique prime
ideal factorization. Let β ∈ OK\{0}. Then we can write βOK = pe11 · · · pess for prime ideals
p1, . . . , ps of OK . Define a discrete valuation

vp : OK → Z≥0 ∪ {∞}, β 7→ sup{n ≥ 0 : x ∈ pn}.

We can extend this to K by using that every element inK can be written as a
b
for a, b ∈ OK

and setting vp(
a
b
) = vp(a)− vp(b). For m ∈ N we have vp(β) = m ⇐⇒ β ∈ pm\pm+1.

Example 2.28. Let K = Q(i) with OK = Z[i]. In K we have

5 = (1 + 2i)︸ ︷︷ ︸
=:p1

(1− 2i)︸ ︷︷ ︸
=:p2

.

Then vpi |Q = v5 for i ∈ {1, 2} but vp1(1− 2i) = 0 and vp1 = (1 + 2i) = 1.
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We define the (normalized) non-archimedean absolute value on K with respect to p by
setting α = 1/N(p) in Example 2.27, which leads to

| · |p : K → R≥0, x 7→ N(p)−vp(x).

For a discussion on normalization of absolute values see [Mil08, §7].

For K we can actually describe how the absolute values on K arise. Call absolute values
| · |1, | · |2 equivalent if there exist c > 0 such that | · |1 = | · |c2.

Theorem 2.29. (Ostrowski) Every nontrivial absolute value on K is equivalent to exactly
one of the following:

(1) A non-archimedean absolute value coming from a valuation corresponding to a unique
prime ideal in OK as described above.

(2) An archimedean absolute value coming from a real or complex embedding of K.

Proof. See [HS00, Proposition B.1.3].

We call the set of absolute values in (1) the finite places of K and the set of the absolute
values in (2) the infinite places of K.

Given an absolute value | · | on a field k, we can complete k with respect to | · |. In
case k = Q, completing with respect to the p-adic absolute value yields Qp, the field of
p-adic numbers. In case of a number field K, denote the completion of K with respect
to | · |p by Kp. Let p be the unique prime number in p. Then by [Wri14, Corollary 38.2],
[Kp : Qp] <∞.

Definition 2.30. Let Kp be the completion of a number field K with respect to | · |p. Then
define the valuation ring of Kp, denoted by Op, as

Op := {x ∈ Kp : |x|p ≤ 1}

with unique maximal ideal given by

mp = {x ∈ Kp : |x|p < 1}.

Moreover, define the residue field of Op, denoted by kp, as kp := Op/mp.

Elements of Op can be uniquely expressed as a sequence (xn)n≥1 with xn ∈ OK such that
xn+1 = xn mod pn for all n ≥ 1.

Remark 2.31. Let x ∈ Op. Now consider x mod pm for some m ≥ 1. This will give a
truncation y of x with y ∈ OK such that y ≡ x mod pm.

An important isomorphism is given by the following theorem:

14



Theorem 2.32. Let n ≥ 1. Then OK/p
n ∼= Op/m

n
p . The isomorphism is given by the map

OK/p
n → Op/m

n
p

x+ pn 7→ x+mn
p .

Proof. See [Wri14, Theorem 29.1].

The choice of prime ideal affects the structure of OK/p and Kp. It is useful to state some
general results regarding residue fields and completions of K. Firstly, for a prime ideal I
of OK , we have that OK/I is a field. Now define the map

φ : Z/pZ → OK/p, a+ p 7→ a+ p.

Note that φ is a well-defined field homomorphism since Z ⊂ OK and p ∩ Z = pZ. Con-
sequently, OK/p is an extension of Z/pZ which is finite since OK is a finitely generated
Z-module. In particular, OK/p ∼= Fpf(p) where f(p) denotes the residue class degree of p.
Secondly, let us study the completion Kp more closely.

Lemma 2.33. Let p be a prime ideal lying above the prime p. Then

[Kp : Qp] = e(p)f(p),

where e(p) and f(p) denote the ramification index and residue class degree respectively of
p over p.

Proof. See [Wri14, Theorem 38.2].

In order to work with Qp, we will select p such that Kp
∼= Qp. In fact, we will work in

practice with split primes p such that e(p) = f(p) = 1.
If p is such that e(p) = f(p) = 1, we have

(i) OK/p ∼= Z/pZ.

(ii) Kp
∼= Qp.

We can generalize (i) as follows.

Lemma 2.34. Let n ≥ 1 and assume e(p) = f(p) = 1. Then OK/p
n ∼= Z/pnZ.

Proof. Let π be uniformizer of mp. Then we have p = πm · u for some m ∈ Z and unit u.
Now note that e(p) = vp(p) = vp(π

m · u) = m =⇒ m = 1. Using that Kp
∼= Qp, which

implies that Op
∼= Zp, this leads us to the following chain of isomorphisms:

OK/p
n ∼= Op/m

n
p
∼= Zp/π

nZp
∼= Zp/p

nZp
∼= Z/pnZ.
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2.3 Reduction

From now on, K denotes a number field with integers OK and [K : Q] = d. Let v be a finite
place of K and note that v corresponds to a non-archimedean absolute value | · |p : K → R
as described in Subsection 2.2. In addition, let p be the unique prime number in p.
Using the natural reduction map ¯ : Op → Op/mp we can define the map

¯: Op[x, z] → (Op/mp)[x, z]∑
ai,jx

izj 7→
∑

āi,jx
izj, āi = ai mod mp.

Let C/Kp be a hyperelliptic curve of genus g defined by y2 = F (x, z) and assume (possibly
after scaling) that F (x, 1) ∈ Op[x]. Write C̃ for the curve over Op/mp defined by y2 =
F̄ (x, z). This is not necessarily a hyperelliptic curve. For any P = (ξ : η : ζ) ∈ P2

g(Kp),
after dividing by some λ ∈ Kp, we can choose a representative (ξ′, η′, ζ ′) of P such that
max{|ξ′|p, |η′|p, |ζ ′|p} = 1. We must keep in mind that we are working in weighted projective
space, so if |η|p is the largest amongst the absolute values of the coordinates divide by ηg+1

and otherwise divide by ξ or ζ depending on which absolute value is largest. Hence, every
point in P2

g has some representative with all coordinates in Op and at least one coordinate
not in mp. This leads us to reduction on weighted projective space:

:̃ P2
g(Kp) → P2

g(Op/mp), (ξ : η : ζ) 7→ (ξ̄ : η̄ : ζ̄).

Let P = (ξ : η : ζ) ∈ C(Kp). Using the above map we reduce P to obtain P̃ ∈ P2
g(Op/mp)

and in fact P̃ ∈ C̃(Op/mp). This gives rise to the reduction map

ρp : C(Kp) → C̃(Op/mp), (ξ : η : ζ) 7→ (ξ̄ : η̄ : ζ̄).

Remark 2.35. Similarly as above we can define a reduction map

PN(Kp) → PN(Op/mp) for all N ≥ 1.

Let A be an abelian variety over Kp. Since A is a projective variety, it can be embeddded
in projective space PN(Kp) for some N ≥ 1. Consequently, we can also define a reduction
map

ρp : A(Kp) → Ã(Op/mp).

Definition 2.36. Let C/Kp be a hyperelliptic curve defined by y2 = F (x, z) and assume
that F (x, 1) ∈ Op[x]. Then C has good reduction if F̄ is squarefree and p ̸= 2. Otherwise, C
has bad reduction. For C/K we say C has good reduction at p if C/Kp has good reduction
and otherwise C has bad reduction at p.
For a definition of good reduction for general smooth projective varieties see [HS00, §A.9].
In particular, if A/K is the Jacobian variety of C/K then A/K has good reduction if C
has good reduction but the converse does not always hold [HS00, §A.9.4].
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Remark 2.37. If A has good reduction at p, the reduction map ρp : A(Kp) → Ã(Op/mp)
is a group homomorphism.

Theorem 2.38. Let A/K be an abelian variety and let v be a finite place of K at which
A has good reduction. Without loss of generality assume that v corresponds to a non-
archimedean absolute value | · |p with p lying above the prime p. Then for any m ≥ 1 for
which p ∤ m, the restriction of the reduction map

ρp : A(Kp) → Ã(Op/mp)

to A(Kp)[m] is injective. In other words, the only torsion in

ker(ρp : A(Kp) → Ã(Op/mp))

is torsion divisible by p.

Proof. See [HS00, Theorem C.1.4 & Theorem C.2.6].

Hence the reduction map is also injective on the m-torsion of A(K) since K ⊂ Kp. Denote
the kernel of the reduction map ρp restricted to A(Kp)tors by H. Then H actually contains
only p power torsion. To see this, let x be an element of H and let ord(x) = m for m = pnq
with gcd(p, q) = 1. Then ord(xp

n
) = ord(x)/ gcd(ord(x), pn) = pnq/pn = q. If q > 1, this

would imply that H contains a nontrival q-torsion element with p ∤ q which contradicts
Theorem 2.38. Consequently the reduction map is injective if there is no p-power torsion
in the kernel of the reduction map. The following lemma provides a condition on the
reduction map being injecive.

Lemma 2.39. Let p be a prime ideal at which A has good reduction and denote the ram-
ification index of p by e(p). In addition, assume that the unique prime p in p satisfies
e(p) < p − 1. Then the restriction of reduction map ρp : A(Kp) → Ã(Op/mp) to A(K)tors
is injective.

Proof. See [Kat80, Appendix].

Consequently, if e(p) < p − 1 we have that #A(K)tors | #Ã(Op/mp) since the reduction
map is a group homomorphism. We can use this to derive an upper bound on #A(K)tors
as follows. Select a set of prime ideals S such that each p ∈ S satisfies e(p) < p− 1, where
p is the unique prime lying below p. Then computing #Ã(Op/mp) for all p ∈ S leads to

#A(K)tors | gcd
p∈S

#Ã(Op/mp). (2.3)

Example 2.40. Let p and q be prime ideals of OK satisfying the conditions in Lemma
2.39. Suppose that #Ã(Op/mp) and #Ã(Oq/mq) are coprime. Then we can conclude that
A(K)tors is trivial.

Remark 2.41. Besides computing the gcd as in (2.3) we can sometimes infer a better
bound by using the groups structure of Ã(Op/mp) as well (see Example 4.13).
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We know now when the reduction map is injective, but we want the reduction map to be
surjective as well. Given a point P̃ ∈ Ã(Op/mp) we want to know if there exists some
P ∈ A(Kp) such that P reduces to P̃ . The following lemma helps us in that regard.

Lemma 2.42. (Hensel) Let f1, . . . , fr ∈ Op[x1, . . . , xd] with r ≤ d and a ∈ Od
p such that

fi(a) ≡ 0 mod mp for 1 ≤ i ≤ d and rank
(

∂fi
∂xj

(a) mod mp

)
1≤i≤r
1≤j≤d

= r.

Then there exists a unique b ∈ Od
p satisfying

fi(b) = 0 for 1 ≤ i ≤ d and b ≡ a mod mp.

Proof. See for example [Con20, Theorem 3.3].

We can use Lemma 2.42 to prove that the reduction map ρp : A(Kp) → Ã(Op/mp) is
surjective. Following [HS00, Exercise C.9], let P̃ ∈ Ã(Op/mp) and assume that P̃ is
nonsingular. Since we can embed A in projective space PN(Kp) for some N ≥ 1, we can find
a set of generators f1, . . . , fr ∈ Op[x1, . . . , xN+1] of A. Reducing these generators modulo
mp yields generators for Ã. Using that P̃ is nonsingular we can verify that both conditions
of Lemma 2.42 are satisfied. Hence, there exists P ∈ A(Kp) that reduces modulo mp to P̃ .
Consequently, the reduction map is surjective onto the smooth points of Ã(Op/mp) which
implies that if A has good reduction at p, the reduction map ρp : A(Kp) → Ã(Op/mp)
is surjective. Moreover, in case A has good reduction at p, we already concluded that
ρp is injective on m-torsion for m coprime to p. In fact, following [Sto98, §11], each
P̃ ∈ A(Op/mp)[m] has a unique lift P ∈ A(Kp)[m] if m is coprime to p and A has good
reduction at p.

2.4 The set-up

Now that we have described some of the preliminaries we can make more precise how
the algorithm is set up. In Subsection 2.3 we saw that every P̃ ∈ A(Op/mp)[m] has a
unique lift P ∈ A(Kp)[m] for a prime of good reduction p lying above a prime p such that
p ∤ m. This prompts the question of how to determine whether P ∈ A(K)tors ⊂ A(Kp)tors.
Firstly, by Theorem 2.32 we can work with OK/p instead of Op/mp. Similarly to κ in
(2.2), define κ̃ : Ã(OK/p) → K(OK/p) and define R̃ := κ̃(P̃ ). Then for any N ≥ 1, we
can use Hensel lifting on the Kummer variety to obtain a point R̃N ∈ K(OK/p

N) that
reduces to R̃ and thereby approximates κ(P ) (see also Remark 2.31). Next we construct a
lattice that contains all lifts of R̃N to A(Kp) and use the theory of heights in Subsection 2.6
to determine what precision is necessary to conclude whether P̃ lifts to a point in A(K)tors.
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2.5 Lattices

In this subsection we will outline the main ideas used in the Lenstra–Lenstra–Lovász (LLL)
lattice basis reduction algorithm. Furthermore, we describe OK-lattices and how they can
be related to the usual notion of a lattice. We will use || · || to denote the Euclidean norm
on Rn.

Definition 2.43. Let b1, . . . , bk ∈ Rn be R-linear independent. Then

Λ =
k⊕

i=1

Zbi ⊂ Rn

is a (Z)-lattice of rank k and b1, . . . , bk is a basis of Λ.

Definition 2.44. Let Λ ⊂ Rn be a lattice of rank k. For 1 ≤ i ≤ k, the i-th successive
minimum of Λ is

Mi(Λ) := min

{
λ > 0 :

there exist R-linearly independent x1, . . . , xi ∈ Λ
such that ||xj||2 ≤ λ for 1 ≤ j ≤ i.

}
.

Additionally, theminimal distance, denoted by µ(Λ), is defined by µ(Λ) := minx∈Λ\{0}{||x||}.

Remark 2.45. The quantities defined in Definition 2.44 are related in the following way:

M1(Λ) = µ(Λ)2 and M1(Λ) ≤M2(Λ) ≤ · · · ≤Mk(Λ).

Given a basis b1, . . . , bk of a lattice Λ we can find an orthogonal basis b∗1, . . . , b
∗
k via Gram-

Schmidt orthogonalisation:

b∗1 := b1, µi,j :=
⟨bi, b∗j⟩
||b∗j ||2

and b∗j := bj −
i−1∑
j=1

µi,jb
∗
j .

where ⟨·, ·⟩ denotes the usual inner product on Rn.

Given a lattice Λ, we want to find a “useful” basis, i.e., a basis that satisfies certain
properties and that can be computed relatively easily. For example, if we can relate its
basis vectors to the successive minima, we can say something about the length of the
vectors in Λ. Additionally, it is often convenient if the basis vectors are orthogonal or
“nearly orthogonal”, see for example [Gal12, Example 16.3.3]. To address the first issue,
we ideally want to find a basis b1, . . . , bk of Λ such that ||bi|| = Mi(Λ) for 1 ≤ i ≤ k.
However, as mentioned in [NS04, §2.2], if k ≥ 5 such a basis may not exist. Instead, LLL
finds a basis with the norm of the i-th basis vector close to Mi(Λ). Moreover, this basis is
“nearly orthogonal”.

Definition 2.46. A basis b1, . . . , bk of a lattice is LLL-reduced if
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(1) |µi,j| ≤ 1/2 for 1 ≤ j < i ≤ k.

(2) ||b∗i + µi,i−1b
∗
i−1||2 ≥ δ||b∗i−1||2, where 1/4 < δ < 1.

Mostly δ = 3
4
is used.

Theorem 2.47. Let b1, . . . , bk be LLL-reduced as in Definition 2.46 with δ = 3/4. Then

||b1|| ≤ 2
n−1
2 µ(Λ).

Proof. See [Gal12, Lemma 17.2.12]

We can use the LLL-algorithm (see e.g., [Gal12, Algorithm 25]) to compute an LLL-reduced
basis for a given lattice Λ.

When working with number fields we can define lattices as well.

Definition 2.48. An OK-lattice M is a finitely generated, torsion free module over OK .
In fact, M is free if OK is a principal ideal domain (PID).

Lemma 2.49. Let M be an OK-lattice. Then there exists a1, . . . , an ∈ M and nonzero
fractional ideals a1, . . . , an of OK such that

M =
n⊕

i=1

aiai.

Proof. See [Coh00, Corollary 1.2.25]

The representation (ai, ai) as in Lemma 2.49 is called a pseudo-basis of M . We cannot
use the LLL algorithm directly for OK-lattices. Instead, we want to represent OK as a
Z-lattice as in Definition 2.43. To that end, fix an integral basis of K, that is,

OK = Zω1 ⊕ Zω2 ⊕ · · · ⊕ Zωd, for ω1, . . . , ωd ∈ OK .

This defines a group isomorphism

δZ : OK → Zd

d∑
i=1

aiωi 7→ (a1, . . . , ad).
(2.4)

Defining ∆Z := Zd we see that OK is isomorphic to the Z-lattice ∆Z.
On the other hand, we can define the Minkowski embedding as

δR : OK → Rd

α 7→
(
σ1(α), . . . , σr1(α),

√
2Re(σr1+1(α)),

√
2Im(σr1+1(α)), . . . ,

√
2Im(σr1+r2(α))

) (2.5)
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One can show that δR injects into Rd and that δR(OK) is a full lattice in Rd, see for
example [Mol99, Theorem 3.10]. Moreover, if we denote the lattice δR(OK) by ∆R, then
δR : OK → ∆R is a group isomorphism. This induces a third group isomorphism

ψ : ∆Z → ∆R, x 7→ δR ◦ δ−1
Z (x) = A · x, (2.6)

where A = (δR(ω1), . . . , δR(ωd)).

Now let M = ⊕n
i=1aiai be an OK-lattice as in Lemma 2.49 and assume that a1, . . . , an

are nonzero integral ideals. Since every ideal is a free Z-module of rank d, there exist
β
(i)
1 , . . . , β

(i)
d ∈ ai such that ai = ⊕d

j=1.Zβ
(i)
j for all 1 ≤ i ≤ n. Hence, we can write

M = ⊕i,jZβ(i)
j ai. Relabeling the basis vectors leads to

M = ⊕nd
i=1Zbi for bi ∈ Om

K and some 1 ≤ m ≤ n.

Using the maps in (2.4) and (2.5) we can embed the bi’s to Rmd in two different ways.
Hence, we have two ways to consider an OK-lattice as a Z-lattice. To circumvent precision
problems when determining the image of δR, we follow [FF00, §4] and use δZ to construct
a Z-lattice. Nevertheless, we will use δR to determine bounds on the coefficients of the
elements of the Z-lattice in §3.2.2.

Let a be an integral ideal such that a = ⊕d
i=1Zai and note that δZ(a) is a sublattice of Zd.

Writing (
a1 · · · ad

)
=

(
ω1 · · · ωd

)
·B, for B ∈ Zd×d (2.7)

we see that the columns B1, . . . , Bd of B form a basis of the Z-lattice δZ(a).
We will not present the construction for general OK-lattices but instead assume that M is
an OK-lattice such that

M = OK

a11...
a1k

⊕ · · · ⊕ OK

an1...
ank

 , (2.8)

with aij ∈ OK for 1 ≤ i ≤ n and 1 ≤ j ≤ k.
Note that aijOK is an integral ideal for all 1 ≤ i ≤ n and 1 ≤ j ≤ k. For each aijOK let

Bij ∈ Zd×d denote the matrix in (2.7) and write B
(m)
ij for the m-th column of Bij. Then

define

L :=


B

(1)
11

B
(1)
12
...

B
(1)
1k

⊕ · · · ⊕ Z


B

(d)
11

B
(d)
12
...

B
(d)
1k

⊕ · · · ⊕ Z


B

(1)
n1

B
(1)
n2
...

B
(1)
nk

⊕ · · · ⊕ Z


B

(d)
n1

B
(d)
n2
...

B
(d)
nk

 ⊂ Znd. (2.9)

Since these matrices may not be very clear, it is useful to consider a small example.
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Example 2.50. Assume d = 2 and consider

M = OK

(
a
b

)
⊕OK

(
c
e

)
for a, b, c, e ∈ OK .

Using the integral basis we can write:

aω1 = a11ω1 + a12ω2, aω2 = a21ω1 + a22ω2,

bω1 = b11ω1 + b12ω2, bω2 = b21ω1 + b22ω2,

cω1 = c11ω1 + c12ω2, cω2 = c21ω1 + c22ω2,

eω2 = e11ω1 + e12ω2, eω2 = e21ω1 + e22ω2,

for some aij, bij, cij, eij ∈ Z for 1 ≤ i, j ≤ 2.
We can already write down the matrices Ba, Bb, Bc, Be but for illustration purposes note
that

aOK = a(Zω1 ⊕ Zω2) = Zaω1 ⊕ Zaω2 = Z(a11ω11 + a12ω2)⊕ Z(a21ω1 + a22ω2).

Hence,

(
a11ω1 + a12ω2 a21ω1 + a22ω2

)
=

(
ω1 ω2

)(a11 a21
a12 a22

)
=:

(
ω1 ω2

)
Ba.

The other matrices Bb, Bc, Be can be defined in exactly the same way. Hence

L = Z


a11
a12
b11
b12

⊕ Z


a21
a22
b21
b22

⊕ Z


c11
c12
e11
e12

⊕ Z


c21
c22
e21
e22

 .

Lemma 2.51. Let M be an OK-lattice as in (2.8) and L its corresponding Z-lattice as in
(2.9). Then M and L are isomorphic as Z-modules.

Proof. Since in the general case it is rather cumbersome to write down the isomorphism,
we will only prove the lemma forM and L as defined in Example 2.50 but the general proof
is analogous. To that end, let α, β ∈ OK such that α = α1ω1 + α2ω2 and β = β1ω1 + β2ω2

and consider the map

φ : M → L

α

(
a
b

)
+ β

(
c
d

)
7→ α1


a11
a12
b11
b12

+ α2


a21
a22
b21
b22

+ β1


c11
c12
d11
d12

+ β2


c21
c22
d21
d22

 .
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Firstly note that φ is well-defined. Moreover, we have

φ
(
α

(
a
b

)
+ β

(
a
b

))
= φ

(
(α + β)

(
a
b

))

= (α1 + β1)


a11
a12
b11
b12

+ (α2 + β2)


a21
a22
b21
b22


= φ

(
α

(
a
b

))
+ φ

(
β

(
a
b

))
.

Furthermore, for k ∈ Z we have

φ
(
kα

(
a
b

))
= kα1


a11
a12
b11
b12

+ kα2


a21
a22
b21
b22


= kφ

(
α

(
a
b

))
.

Note that φ is surjective by construction. Lastly, φ must be injective since the B
(m)
ij ’s form

a basis of the Z-lattice δZ(aijOK).

We will always use M to refer to an OK-lattice and L for its corresponding Z-lattice as in
(2.9).

Remark 2.52. By Lemma 2.51, vectors in M and L are in one-to-one correspondence.
We can make this explicit as follows. Assume M ⊂ ON+1

K for some N ∈ Z≥0 and consider
γ = (γ0, . . . , γN) ∈M ⊂ ON+1

K . Then for 0 ≤ i ≤ N we can write

γi =
(
γi1 · · · γid

)T (
ω1 · · · ωd

)
and yi :=

(
γi1 · · · γid

)
∈ Zd.

Now consider the map

ϕ : M → L

γ 7→

 yT
0
...

yT
N .

 .

and note that elements of M are indeed mapped to L. We will use this map in §3.2.2.
Specifically, for arbitrary x ∈M we will always denote ϕ(x) by xL.
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2.6 Heights

In this subsection we describe the necessary theory on heights. For v a place of K, let
Kv denote the completion of K with respect to v. If v is an infinite place then either
Kv = R or Kv = C. On the other hand, if v is a finite place of K it corresponds to an
absolute value | · |p for p ⊂ OK a prime ideal and we have Kv = Kp. In addition, let
Qv denote the completion of Q with respect to v restricted to Q. In case v is an infi-
nite place we have Qv = R and if v is a finite place we have Qv = Qp for p the unique
prime number in the ideal p corresponding to v. Lastly, let A/K be an abelian variety of
dimension g with corresponding Kummer variety K and fix an embedding κ of K into P2g−1.

2.6.1 Height definition

Definition 2.53. Let N ∈ Z≥1 and P = (x0 : · · · : xN) ∈ PN(K). Then the height of P is
defined by

HK(P ) :=
∏
v

max{||x0||v, . . . , ||xN ||v},

where v runs through the places ofK and ||·||v is the normalised absolute value ||x||v = |x|nv
v

where nv = [Kv : Qv].

In fact,

Kv = R =⇒ ||x||v = |x|R,
Kv = C =⇒ ||x||v = |x|2C,
Kv = Kp =⇒ ||x||v = N(p)−vp(x).

Definition 2.54. Let P ∈ PN(K). Then (x0, . . . , xN) ∈ KN+1 is called a representative of
P if P = (x0 : · · · : xN). Moreover, (x0, . . . , xN) is called an integral representative of P if
additionally (x0, . . . , xN) ∈ ON+1

K . By scaling we can always find an integral representative
of P .

Definition 2.55. If r1 is the number of real embeddings of K let

σi : K →

{
R, 1 ≤ i ≤ r1,

C, r1 + 1 ≤ i ≤ d,

denote the field embeddings of K, where we sorted them to satisfy σr1+i = σr1+r2+i.

Lemma 2.56. (Product formula) Let α ∈ K× and PK = {p ⊂ OK prime}. Then

d∏
i=1

|σi(α)|
∏
p∈PK

N(p)−vp(α) = 1
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Proof.

|N(α)| = N(αOK) =
∏
p∈PK

N(p)vp(α) and |N(α)| = |
d∏

i=1

σi(α)|.

Using Lemma 2.56 we conclude that for x ∈ K×∏
v

||x||v = 1.

Consequently the height of P is independent of the choice of representative for P .

Example 2.57. In case K = Q, the height definition simplifies. Scale P = (x0, . . . , xN) ∈
PN(Q) such that xi ∈ Z for all 1 ≤ i ≤ N and gcd(x0, . . . , xN) = 1. Recall the definition
of the p-adic valuation on Q from Subsection 2.2. Then |xi|p ≤ 1 for all 1 ≤ i ≤ N and
|xi| = 1 for at least one i. This implies all nonarchimedean absolute values | · |p do not
contribute to the product in HQ(P ). Hence, we are left with

HQ(P ) = max{|x0|, . . . , |xN |}.

Define the logarithmic height hK by hK(P ) := logHK(P ). Now we can define a height
function on the K-rational points of abelian varieties using that abelian varieties can be
embedded in PN for some N ∈ Z≥1.

Definition 2.58. Recall that A/K denotes an abelian variety defined over K. Let P ∈
A(K). The naive height of P with respect to κ is the map HK,κ : A(K) → R≥0 defined by
HK,κ(P ) := HK(κ(P )). In addition, define the naive logarithmic height hK,κ by hK,κ(P ) :=
log(HK,κ(P )).

In what follows we will drop the subscript κ from HK,κ and hK,κ since with the exception
of §2.6.2 we work only with heights of points on abelian varieties. Next to the naive height
we define the canonical height which is well-defined by [HS00, Corollary B.3.4].

Definition 2.59. The canonical height ĥ on A associated with hK is defined by

ĥ(P ) = lim
n→∞

hK([n]P )/n
2.

Important properties of the canonical height are given in the following theorem:

Theorem 2.60. (Néron-Tate)

(1) ĥ([n]P ) = n2ĥ(P ) for all n ∈ Z and P ∈ A(K̄).

(2) For P ∈ A(K̄), we have ĥ(P ) = 0 ⇐⇒ P ∈ A(K̄)tors.
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(3) The set {P ∈ A(K) : ĥ(P ) ≤ B} is finite for every constant B ≥ 0.

(4) The height difference |ĥ(P )− hK(P )| is bounded for all P ∈ A(K̄).

Proof. For (1) and (4) see [HS00, Theorem B.5.1], for (2) see [HS00, Proposition B.5.3]
and (3) follows from [HS00, Corollary B.5.4.1].

It follows that if we are able to derive an actual bound for the height difference, we
immediately bound the height of a torsion point since the canonical height of torsion
points is zero by (2) of Theorem 2.60.

Corollary 2.61. Assume that |ĥ(P ) − hK(P )| ≤ β for all P ∈ A(K) for some β ∈ R≥0.
Then for all P ∈ A(K)tors we have hK(P ) ≤ β.

2.6.2 Heights and norms

As explained in Subsection 2.4, given a point P̃ ∈ Ã(OK/p) the idea of the algorithm is
to construct a lattice that contains all possible lifts of P̃ to A(Kp). In order to use the
lattice to find torsion points, we need some relation between the height bound on torsion
points and the length of the lattice vectors. In particular, given a height bound, we want
to derive an upper bound on the length of the first vector of an LLL-reduced basis of the
lattice (see Subsection 2.5). This is trivial for Q but not clear for K. One key ingredient
is provided by [Tur13], who proves the existence of a representative of a point such that
the size of the representative is bounded in some way. We will outline this approach here.

Firstly, let us take a closer look at the definition of the height function. To that end, define
the functions H∞ : KN+1 → R and Hf : K

N+1 → R by

H∞(x0, . . . , xN) =
∏
v|∞

max{||x0||v, . . . , ||xN ||v},

Hf (x0, . . . , xN) =
∏
p

max{|x0|p, . . . , |xN |p}.

Then by definition of HK , for any point P = (x0 : · · · : xN) ∈ PN(K) we have:

HK(P ) = H∞(x0, . . . , xN)Hf (x0, . . . , xN).

Call H∞ and Hf the infinite and finite height respectively.

Lemma 2.62.

HK(P ) = H∞(x0, . . . , xN)/N(a),

where a is the fractional ideal of OK generated by x0, . . . , xN .
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Proof. (This is also proved in [Sil07, Theorem 3.7].) We have∏
p

max{|x0|p, . . . , |xN |p} =
∏
p

max{N(p)−vp(x0), . . . , N(p)−vp(xN )}

= 1/
∏
p

min{N(p)vp(x0), . . . , N(p)vp(xN )}

= 1/
∏
p

N(p)min{vp(x0),...,vp(xN )}

= 1/N(a),

where we used that

N(a) = N(x0OK + · · ·+ xNOK)

= N(gcd(x0OK , . . . , xNOK))

= N(gcd(
∏
p

pvp(x0), . . . ,
∏
p

pvp(xN ))

= N(p)min{vp(x0),...,vp(x0)}.

Similarly to §2.6.1, let h∞ = logH∞ and hf = logHf denote the logarithmic infinite and
finite height respectively. Hence, for x = (x0, . . . , xN) such that P = (x0 : · · · : xN), we
have:

hK(P ) = h∞(x) + hf (x).

The values of h∞ and hf vary depending on which representative for P we choose. Selecting
a representative such that hf is maximal leads to a minimal value of h∞. This is useful
since h∞ can be related to the size of x. Before explaining what we mean exactly by the
size of x, let us consider how to maximize hf . Specifically, we want to find an integral
representative such that hf is maximal. Given the class group of K, select from each of
its classes an integral ideal that has minimal norm amongst the integral ideals in its class.
Denote the collection of these ideals by B and note that |B| = |CL(K)|. Moreover, define
NK := maxb∈B N(b).

Lemma 2.63. Every P ∈ PN(K) has an integral representative x = (x0, . . . , xN) ∈ ON+1
K

such that I(x) ∈ B, where I(x) is the content ideal of x, that is, I(x) = ⟨x0, . . . , xN⟩.

Proof. Firstly, x ̸= (0, 0, . . . , 0) so I(x) ̸= {0}. Assume for a contradiction that I(x) /∈ B.
Let J denote the integral ideal in B with [J ] = [I(x)]. Then we have aJ = bI(x) for some
a, b ∈ OK . Hence, multiplying I(x) by a−1b yields J . Multiplying all coordinates of x by
a−1b still leads to a representative of P . Moreover, since J is an integral ideal we must
have that a−1bxi ∈ OK for 0 ≤ i ≤ N .
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Selecting x as in Lemma 2.63 makes sure that the norm of its content ideal is minimal or
equivalently that hf is maximal. Although the choice of x is not unique, the ideal I(x)
is since there is only one element in B corresponding to I(x). Now define the ideal of P
to be I(P ) := I(x) for x as in the Lemma 2.63. Having dealt with the finite height, we
will now introduce a notion of size for vectors in the lattice in order to relate this to the
infinite height. Recall the field embeddings from Definition 2.55 and let r1 and r2 denote
the number of real embeddings and pairs of complex embeddings respectively.

Definition 2.64. For α ∈ K, define the T2-norm of α by

T2(α) :=
d∑

i=1

|σi(α)|2 =
r1+r2∑
i=1

ci|σi(α)|2, where ci :=

{
1 i ≤ r1,

2 otherwise.

We will use the definition of the ci’s in Definition 2.64 throughout this paragraph.

Lemma 2.65. Let α, β ∈ K. Then

T2(αβ) ≤ T2(α)T2(β).

Proof.

T2(αβ) =
n∑

i=1

|σi(αβ)|2 =
n∑

i=1

|σi(α)|2|σi(β)|2 ≤ (
n∑

i=1

|σi(α)|2)(
n∑

i=1

|σi(β)|2) = T2(α)T2(β).

Lemma 2.66. Let β ∈ OK. Then

|N(β)|2/d ≤ 1

d
T2(β).

Proof. See [FF00, Lemma 4]

The T2-norm is not a norm because it does not satisfy subadditivity, but we can use it to
define a proper norm.

Definition 2.67. For α ∈ K, define

||α|| :=
√
T2(α).

Lemma 2.68. Let || · || be as in Definition 2.67. Then || · || is a norm.
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Proof. We will only prove subadditivity since the other properties are trivial. Let α, β ∈ K.
Then we have

||α + β|| =
√
T2(α + β) =

√√√√ d∑
i=1

|σi(α + β)|2 =

√√√√ d∑
i=1

|σi(α) + σi(β)|2

≤

√√√√ d∑
i=1

(|σi(α)|+ |σi(β)|)2 ≤
d∑

i=1

√
(|σi(α)|+ |σi(β)|)2

=
d∑

i=1

|σi(α)|+ |σi(β)| = ||α||+ ||β||,

where we used the subadditivity of the square root in the second inequality.

We can extend these definitions in the following way. Firstly, for x, y ∈ K define

T2(x, y) =
d∑

i=1

σi(x)σi(y).

In addition, for x, y ∈ KN define T2(x, y) =
∑N

i=1 T2(xi, yi). Lastly, for x ∈ KN define

||x|| :=
√
T2(x, x). (2.10)

Writing out its definition yields the following for x ∈ KN :

T2(x, x) =
N∑
i=1

T2(xi, xi) =
N∑
i=1

d∑
j=1

σj(xi)σj(xi) =
N∑
i=1

d∑
j=1

|σj(xi)|2 =
N∑
i=1

T2(xi).

For λ ∈ Z we have

||λx|| =
√
T2(λx, λx) =

√√√√ N∑
i=1

T2(λxi) =

√√√√|λ|
N∑
i=1

T2(xi) ≤
√
|λ|

N∑
i=1

√
T2(xi).

Hence, contrary to the one-dimensional case, this is not a proper norm if N > 1.

We can relate the infinite height and || · || as in (2.10) in the following way. Let r := r1+ r2
and define

L : K× → Rr, α 7→ (ci log |σi(α)|)1≤i≤r.

One can show that this is a group homomorphism from K× to (Rr,+) with kerL|OK
=

TU(OK), the torsion units of OK (see e.g., [Mol99, Lemma 3.4]). We can extend this to
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(K×)N as follows:

L : (K×)N → RN×r

(x1, . . . , xN) 7→

L11(x) · · · L1r(x)
...

. . .
...

LN1(x) · · · LNr(x)

 ,

where

Lij(x) = cj log |σj(xi)|.

In addition, define

L̂ : (K×)N → Rr, x 7→
(
max

i
Li1(x), . . . ,max

i
Lir(x)

)
.

and denote L̂j(x) = maxi Lij(x). We can relate L̂ to the logarithmic infinite height as
follows: ∑

j

L̂j(x) =
r∑

j=1

cj max
i

log |σj(xi)| = h∞(x). (2.11)

Let z1, . . . , zr be coordinates on Rr and define Π(w) to be the hyperplane
∑

j zj = w in

Rr. For x ∈ (K×)N with h∞ = w, (2.11) implies that L̂(x) ∈ Π(w).
Define the function

µ : Rr → R, (z1, . . . , zr) 7→ (N + 1)
∑
j

cj(exp(zj))
2/cj .

Lemma 2.69. [Tur13, Proposition 3.5] The function µ defined above is convex and satisfies

µ ◦ L̂(x) ≥ ||x||2.

Proof. Let x ∈ KN+1. The inequality follows from:

||x||2 = T2(x, x) =
N+1∑
i=1

T2(xi) =
N+1∑
i=1

r∑
j=1

cj|σj(xi)|2 =
N+1∑
i=1

r∑
j=1

cj exp(Lij(x))
2/cj

≤ (N + 1)
r∑

j=1

cj

(
exp(L̂j(x))

)2/cj
.

Differentiating µ we see that its Hessian matrix is positive definite which implies that µ is
convex.
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The representative x ∈ ON+1
K such that I(P ) = I(x) is unique up to multiplication by

elements of O×
K . Hence, it is interesting to see what the effect of units is on the map L̂.

By Dirichlet’s unit theorem (see e.g., [Ste12, Theorem 5.13]) we know that

O×
K = µOK

× ⟨η1⟩ × ⟨η2⟩ × · · · × ⟨ηr−1⟩,

where µOK
is the group of roots of unity in OK and η1, η2, . . . , ηr−1 are fundamental units.

For β ∈ O×
K we have:

1 = |N(β)| =
d∏

i=1

|σi(β)| =
r∏

i=1

|σi(β)|ci =⇒
r∑

i=1

log ci|σi(β)| = 0.

Hence, L(O×) ⊂ Π(0). Consequently, L(O×) is a lattice of full rank in Π(0) which we will
denote by Λ. Moreover, {L(η1), . . . , L(ηr−1)} forms a basis of this lattice. For a different
set of fundamental units we will get a different basis. Using the definition of L̂, we can
easily verify that for tk ∈ Z≥1 we have

L̂
(∏

k

ηtkk x
)
= L̂(x) + L

(∏
k

ηtkk

)
.

This means that multiplying x by a product of fundamental units shifts the image under
L̂ by the image of L of this product. This leads us to the following action:

Λ× Π(w) → Π(w)

(g, y) 7→ g + y.

Let C(w) be a fundamental domain for the action of Λ on Π(w). For x ∈ (K×)n with
h∞(x) = w, we have L̂(x) ∈ Π(w) by (2.11). Hence, there exists some g ∈ Λ such that
g + L̂(x) ∈ C(w). This is equivalent to the existence of some unit β ∈ O× such that
L̂(βx) ∈ C(w). Consequently, keeping in mind that the domain of L̂(x) is (K×)N+1, we
deduce:

Lemma 2.70. Let P ∈ PN(K) with no zero coordinates. Then there exists a representative
x ∈ ON+1

K for P satisfying

h∞(x) = hK(P ) + log(N(I(P ))),

and

L̂(x) ∈ C(h∞(x)) ⊂ Π(h∞(x)),

where C(h∞(x)) is any fundamental domain for the action of Λ on Π(h∞(x)).
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Lemma 2.71. There exists a fundamental domain C(w) such that for x ∈ C(w) we have:

µ(x) ≤ (N + 1) exp(2w/d)cK ,

where

cK =


∑

j cj
∏

k exp(| log |σj(ηk)||) if r > 1,

2 if r1 = 0, r2 = 1,

1 if K = Q.

Proof. We choose C(w) in such a way that it is a polytope (for details see [Tur13, Propo-
sition 3.7]). We already saw that µ is convex, which implies that µ attains its maximum
on C(w) on one of the vertices of C(w). Evaluating µ at these points yields the result.

Theorem 2.72. ([Tur13, Theorem 3.8]) Let P ∈ PN(K) with no zero coordinates. Then
there exists a representative x ∈ ON+1

K for P satisfying

||x||2 ≤ (N + 1) exp
(2(hK(P ) + log(N(I(P ))))

d

)
cK .

Proof. From Lemma 2.70 it follows that we can choose a representative x ∈ ON+1
K such

that L̂(x) ∈ C(hK(P ) + log(N(I(P ))). The result now follows from the bounds in Lemma
2.69 and Lemma 2.71.

For Theorem 2.72 we assume that P ∈ PK has no zero coordinates. However, one can show
that Theorem 2.72 holds for general points in PN(K) using that if one of the coordinates
of P is zero, we can consider a point P ′ ∈ PN−1(K) with HK(P ) = HK(P

′). For more
details see [Tur13, Lemma 3.9]. This allows us to extend Theorem 2.72 to the following:

Theorem 2.73. Let β > 0. Then every P ∈ PN(K) such that hK(P ) ≤ β has a represen-
tative such that

||x||2 ≤ BL

where

BL = (N + 1) exp
(2(β + log(NK))

d

)
cK .

Proof. See [Tur13, Theorem 3.10].

It is important to remember that the set of fundamental units that we choose will affect
BL. In particular, the value of cK might not be the smallest possible but is likely to be
reasonable as noted in [Tur13, §3.8].
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3 An algorithm to compute the torsion subgroup of

abelian varieties over number fields

In this section we will outline an algorithm that, if assumption 3.1 below is satisfied, can
compute the rational torsion subgroup of abelian varieties over number fields. Let A/K
be an abelian variety of dimension g defined over a number field K with integers OK and
[K : Q] = d. Moreover, fix an integral basis of K, that is,

OK = Zω1 ⊕ Zω2 ⊕ · · · ⊕ Zωd, for ω1, . . . , ωd ∈ OK .

Additionally, let K be the Kummer variety of A with κ as in (2.2).
The algorithm builds upon the algorithms presented in [Sto98, §11] and [MR23, Algo-
rithm 3.15] which compute the Q-rational torsion subgroup of Jacobians of hyperelliptic
curves defined over Q of genus 2 and 3 respectively. Specifically, the algorithm essentially
generalizes the algorithm in [MR23] to abelian varieties over number fields. The main
difference is the construction of the lattice that contains all K-rational torsion points. In
case K = Q, the points in K(Q) can be represented as vectors in a Z-lattice straightfor-
wardly. The height on Q-rational points of A is defined by first mapping the points of A
to K ⊂ P2g−1 and subsequently using the usual height on projective space over Q as given
in Example 2.57. This definition of height naturally relates to the length of vectors in a
Z-lattice. If K is a general number field we can similarly construct a lattice that contains
all K-rational torsion points, although we have to be careful how to represent points of
K(K) as vectors in a Z-lattice. The main issue however is that it is not immediately clear
how the height of points on A relates to the length of vectors in this Z-lattice. Using the
results of [Tur13, §3] and [FF00], this thesis provides a way to do this.

Assumption 3.1. We have algorithms for the following:

(1) The map κ : A → K ⊂ P2g−1 and equations for its image (see Theorem 2.24 and
(2.2)).

(2) Deciding whether a given point R ∈ K(K) lifts to A(K) under κ.

(3) The map [[2]] and pseudo addition as described in §2.1.3.

(4) A height difference bound β as in Theorem 2.60.

(5) Arithmetic in the group Ã(OK/p) for prime ideals p of OK of good reduction, and
enumeration of its elements.

We will introduce the different ingredients of the algorithm one by one before giving the
complete algorithm.
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3.1 Lifting torsion points

The crucial step in computing the K-rational torsion subgroup is deciding whether a point
in the reduction modulo p of A lifts to a K-rational torsion point. The following algo-
rithm provides a way to do this. Firstly, recall the definition of BL from Theorem 2.73.
Additionally, c1 and c2 in Algorithm 3.1 will be defined in the next section in Lemma 3.12.
Lastly, for p a prime at which A has good reduction define κ̃ as κ̃ : Ã(OK/p) → K(OK/p).

Algorithm 3.1:
Input: An abelian variety A/K of dimension g defined over a number field K of
degree d with integers OK , a prime ideal p ⊂ OK at which A has good redution
lying above p such that e(p) = f(p) = 1 and a point Q̃ ∈ Ã(OK/p) of order m > 2
with gcd(p,m) = 1.
Output: TRUE if there is a point Q ∈ A(K)tors ⊂ A(Kp) that reduces to Q̃, else
FALSE.

1 Compute a height bound β such that HK(Q) < eβ for any Q ∈ A(K)tors.

2 Choose M = 1 + am such that p ∤ a.

3 Let R̃0 be κ̃(Q̃), considered on an affine patch in A2g(OK/p) and normalised such
that the first nonzero coordinate is equal to 1. Set r := 1, n := 0.

4 Let N > 1 such that pN >
(
2gd(2(2

gd−1)/2
√
2gd

√
BL · c2)2c1

)d

(4/d)d/2. While

r < N , repeat the following steps:

(a) Set r := min{2r,N}
(b) Let R̃′

n be any lift of R̃n to A2g(OK/p
r).

(c) Set R̃′
n+1 :=

1
M−1

(MR̃′
n − [[M ]](R̃′

n)), where MR̃′
n is obtained by multiplying

the coordinates of R̃′
n by M .

(d) Set n := n+ 1

5 Now consider R̃n =: (r̃1 : · · · : r̃2g) in K(OK/p
N). Let (r1, . . . , r2g) ∈ Z2g reduce to

(r̃1, . . . , r̃2g) modulo pN . Let M be the OK-lattice generated by (r1, . . . , r2g) and
pNe1, . . . , p

Ne2
g
, where ei are the standard basis vectors in O2g

K . Fix an integral
basis of OK and let L denote the corresponding Z-lattice as described in Subsection
3.2. Moreover, let w be the first basis vector of an LLL-reduced basis of L and let
R = Pw be the corresponding point in P2g−1(K).

6 If R /∈ K(K) or H(R) > eβ, return FALSE.

7 If [[m]](R) ̸= κ(0), return FALSE.

8 If κ−1(R) ⊂ A(K), return TRUE. Else return FALSE.
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Theorem 3.2. Algorithm 3.1 terminates and returns TRUE if and only if there is a point
Q ∈ A(K)tors that reduces to Q̃.

Remark 3.3. If we know how to represent points in A(K) explicitly and can determine
κ−1(Q) for any Q ∈ K(K), we can actually return κ−1(R) in step 8 of Algorithm 3.1
instead of only TRUE or FALSE.

Remark 3.4. Note that OK/p
N is not a field if N > 1. However, for all P ∈ P2g−1(K)

we can consider an integral representative s of P and reduce the coefficients of s by pN to
obtain an element in P2g−1(OK/p

n). Hence, R̃n in step 5 of Algorithm 3.1 is well-defined.

Remark 3.5. We need (1) of Assumption 3.1 throughout Algorithm 3.1, (3) in step 4 ,

(4) in step 1 and (2) in step 8 .

It is clear that the algorithm terminates, but in order to show correctness we will prove a
series of lemmas in the next subsection.

3.2 Correctness of the algorithm

Call Q ∈ K an m-torsion point if and only if there is some P ∈ A[m] such that κ(P ) = Q.

Lemma 3.6. After step 4 of Algorithm 3.1, R̃n is the uniquem-torsion point in K(OK/p
N)

that reduces to κ̃(Q̃).

Proof. This follows from Kp
∼= Qp and [MR23, Proposition 3.6].

3.2.1 Lattice construction

We want to construct a lattice that contains all integral points that reduce to R̃n as in step
5 of Algorithm 3.1. A first step is to determine how the points that reduce to R̃n relate to

the vector (r1, . . . , r2g) ∈ Z2g as in step 5 of Algorithm 3.1. Instead of using R̃n directly,
we will use a point P̃ ∈ PN(OK/p

n) for some N, n ∈ Z≥1 and assume that P̃ modulo p is
nonzero. This is purely to ease notation and one can think of P̃ as being R̃n.

Definition 3.7. Let P̃ ∈ PN(OK/p
n). Call (x0, . . . , xN) ∈ ON+1

K an integral representa-
tive of P̃ if (x0, . . . , xN) reduces to P̃ modulo pn. Note that we already defined integral
representatives for points in PN(K) in Definition 2.54.

For a given P̃ ∈ PN(OK/p
n) we want to find all points P ∈ PN(K) that reduce to P̃ . Every

such point has an integral representative, so it suffices to find all integral representatives of
P̃ . SinceOK is Dedekind we have pn = (π1, π2) for some π1, π2 ∈ OK [Mol99, Exercise 1.46].
Then we can find the integral representatives in the following way.

Lemma 3.8. Let P̃ ∈ PN(OK/p
n) such that P̃ modulo p is nonzero and let s be an integral

representative for P̃ . Then every integral representative of P̃ is given by cs+π1y+π2z for
some c ∈ OK satisfying c /∈ p and some y, z ∈ ON+1

K .
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Proof. Let x be any integral representative of P̃ . Without loss of generality we have:

s = αx+ yπ1 + zπ2,

for some α ∈ K× and y, z ∈ ON+1
K .

Write s = (s0, . . . , sN) and x = (x0, . . . , xN). We will use the valuation induced by p. We
need vp(si) = 0 for some 0 ≤ i ≤ N , otherwise each coordinate of s would be in p and s
would reduce to the zero vector modulo p. However, by construction, reducing P̃ modulo
p is nonzero. Let us now distinguish two cases:

(1) vp(α) > 0. Then we get:

vp(si) ≥ min{vp(αxi), vp(yiπ), vp(ziπ)} > 0 for all i ∈ {0, . . . , N} E,

where we used that xi, yi, zi ∈ OK ⊂ Op and π1, π2 ∈ pn ⊂ p.

(2) vp(α) < 0. Then we can write:

x = α−1s− α−1yπ1 − α−1zπ2.

Hence,

vp(xi) ≥ min{vp(α−1si), vp(α
−1yiπ1), vp(α

−1ziπ2)} > 0 for all i ∈ {0, . . . , N} E,

where we used that vp(α
−1) = −vp(α) and the same reasoning as in (1).

Consequently, we must have that vp(α) = 0, which means that α ∈ O×
p . This allows us to

write:

βs− βyπ1 − βzπ2 = x,

where α−1 =: β ∈ Op.
Reducing modulo mp and noting that π1, π2 ∈ mp, we get:

βsi ≡ xi mod mp for all i ∈ {0, . . . , N}.

Using the isomorphism of Theorem 2.32 and that si, xi ∈ OK , we have:

γsi ≡ xi mod p for all i ∈ {0, . . . , N},

for some γ ∈ OK/p. We can lift this to OK/p
n to get:

γs+ w1π1 + w2π2 = x,

for some w1, w2 ∈ ON+1
K .
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Starting with an integral representative of P̃ , Lemma 3.8 provides a way to find all integral
representatives. We will use this to construct the lattice.

Proposition 3.9. Let n,N ∈ Z≥1 and let P̃ ∈ PN(OK/p
n) such that P̃ modulo p is

nonzero. Let

v := (r0, . . . , rN) ∈ ON+1
K \{0}

be such that R := Pv := (r0 : · · · : rN) ∈ PN(K) lifts P̃ .
Let M be the OK-lattice defined by:

M := OKv ⊕ pne1 ⊕ pne2 ⊕ · · · ⊕ pneN+1.

Then M contains all vectors w such that the corresponding point Pw ∈ PN(K) reduces
modulo pn to P̃ . Let

u := a0v + (π1a11 + π2a12)e1 + (π1a21 + π2a22)e2 + · · ·+ (π1aN+1,1 + π2aN+1,2)eN+1,

with a0, aij ∈ OK for 1 ≤ j ≤ 2 and 1 ≤ i ≤ N + 1.
If a0 /∈ p, then Pu ∈ PN(K) reduces modulo pn to P̃ ∈ PN(OK/p

n).

Proof. We claim that we can obtain all vectors corresponding to points reducing modulo
pn to P̃ by considering v0 := v, and following a combination of either of the following steps
iteratively:

(i) Setting vj+1 := α0vj for α0 ∈ OK\p

(ii) Setting vj+1 := vj + (π1α1 + π2α2)ei for 1 ≤ i ≤ N + 1 and α1, α2 ∈ OK .

Let us justify (i) and (ii). Firstly, we need a0 /∈ p as explained in the proof of Lemma
3.8. Secondly, Lemma 3.8 shows that we can start with any integral representative of P̃
and subsequently find all points reducing to P̃ using the construction in (i) and (ii). In
particular, starting with v suffices. Moreover, the vectors produced by following (i) and
(ii) are clearly in M .

Using that pn = π1OK + π2OK we see that M is in the form as in (2.8). Hence, we can
use the correspondence between OK-lattices and Z-lattices as described by (2.9) to find a
Z-lattice L that is isomorphic to M as Z-modules. Since we will use L extensively, we will
make its construction explicit. To that end, we can express the result of multiplying π1, π2
by elements of OK in terms of the integral basis, that is,

πiωj = a
(1)
ij ω1 + a

(2)
ij ω2 + · · ·+ a

(d)
ij ωk for i ∈ {1, 2} and 1 ≤ j ≤ d and some aij’s ∈ Z.

Now define:

cij = (a
(1)
ij , a

(2)
ij , . . . , a

(d)
ij ) for i ∈ {1, 2} and 1 ≤ j ≤ d.
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Then using these cij’s, we can define:

c
(m)
ij = (0, 0, . . . , 0︸ ︷︷ ︸

m · d times

, cij, 0, 0, . . . , 0︸ ︷︷ ︸
(N − 1) · d−m · d times

) for 0 ≤ m ≤ N − 1.

Additionally, define

b0 = (r0, 0, 0, . . . , 0︸ ︷︷ ︸
d− 1 times

, r1, 0, 0, . . . , 0︸ ︷︷ ︸
d− 1 times

, . . . . . . , rN , 0, 0, . . . , 0︸ ︷︷ ︸
d− 1 times

)

b1 = (0, r0, 0, . . . , 0, 0︸ ︷︷ ︸
d− 2 times

, 0, r1, 0, 0, . . . . . . , 0︸ ︷︷ ︸
d− 2 times

, 0, rN , 0, 0, . . . , 0︸ ︷︷ ︸
d− 2 times

)

...

bd−1 = (0, 0, . . . , 0︸ ︷︷ ︸
d− 1 times

, r0, 0, 0, . . . , 0︸ ︷︷ ︸
d− 1 times

, r1, . . . . . . , 0, , 0 . . . , 0︸ ︷︷ ︸
d− 1 times

, rN)

Finally, we can define the Z-lattice as follows:

L := ⊕d−1
i=0Zbi ⊕i,j,m Zc(m)

ij . (3.1)

Then using Lemma 3.9 and the correspondence between vectors in M and L, we see that
the lattice L contains all vectors u such that its corresponding vectors w in M satisfy that
Pw ∈ Pd(K) reduces to P̃ modulo pn.

Remark 3.10. In case pn is principal, we can use only 1 generator instead of 2. This
reduces the amount of vectors needed to define the lattice L. In practice, this leads to
slightly faster computations.

Example 3.11. Let us now illustrate this in a small example, assume d = 2, N = 1 and
pn = (π). Consider P = (x0 : x1) ∈ P1(K) with x0, x1 ∈ OK reducing to P̃ modulo pn. We
know that Pv = (r0 : r1) with v as in Proposition 3.9 also reduces to P̃ modulo pn. Using
Lemma 3.8, this implies:

x0 = αr0 + πy,

x1 = αr1 + πz,

for α, y, z ∈ OK .
Using the integral basis, we can write α = α1ω1+α2ω2, y = y1ω1+y2ω2 and z = z1ω1+z2ω2

for some α1, α2, y1, y2, z1, z2 ∈ Z. Consequently, we get:

αr0 + πy = (α1ω1 + α2ω2)r0 + π(y1ω1 + y2ω2) = α1r0ω1 + α2ω2v1 + y1πω1 + y2πω2,

αr1 + πz = (α1ω1 + α2ω2)r1 + π(z1ω1 + z2ω2) = α1r1ω1 + α2ω2r1 + z1πω1 + z2πω2.
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Note that

(α1r0ω1, α1r1ω1) = α1b0 ∈ L,

(α2r0ω2, α2r1ω2) = α2b1 ∈ L,

(y1πω1, z1πω1) = y1c
(0)
11 + z1c

(1)
11 ∈ L.

(y2πω1, z2πω1) = y2c
(0)
12 + z2c

(1)
12 ∈ L.

Hence, the vector corresponding to P is indeed contained in the lattice L.

3.2.2 p-adic precision

Now that we have shown that the lattice in (3.1) includes all points reducing to R̃n (as in
Algorithm 3.1), we have to justify the p-adic precision used in the algorithm. We have to
select the p-adic precision such that we can be certain that a point in A(Kp) actually lifts
to A(K). In what follows we will use many of the functions introduced in §2.6.2. Recall
Definitions 2.64 and 2.67 and that for x = (x0, . . . , xN) ∈ ON+1

K we have

||x|| =
√
T2(x, x) with T2(x, x) =

N∑
i=0

T2(xi).

Additionally, define

||x||∞ := max
i

√
T2(xi). (3.2)

Recall that for β ∈ OK ,

||β|| =
√
T2(β)

defines a norm on the 1-dimensional K-vector space K.
Theorem 2.73 asserts that every P ∈ PN(K) such that HK(P ) ≤ eβ has a representative
x ∈ ON+1

K with ||x||2 ≤ BL where BL is defined as

BL = (N + 1) exp
(2(β + log(NK))

d

)
cK . (3.3)

Writing x = (x0, . . . , xN) ∈ ON+1
K , we have the following:

||x||2 = T2(x, x) =
N∑
i=0

T2(xi) ≤ BL =⇒ T2(xi) ≤ BL for all i ∈ {0, . . . , N}.

If x is contained in M we want to relate the norm of x to the norm of its corresponding
integer vector in the lattice L. Recall the definitions of δZ and δR in (2.4) and (2.5)
respectively. As in Subsection 2.5 define the lattices ∆Z := Zd and ∆R := δR(OK). We
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want to define quadratic forms on ∆Z and ∆R. By applying the scalar product of Rn to
the image of δZ we get the following map:

Q∆Z : OK → R≥0

α 7→ (a1)
2 + (a2)

2 + · · ·+ (ad)
2.

Furthermore, we define QR(α) := T2(α).

Lemma 3.12. Recall the definition of ψ and the corresponding matrix A as defined in
(2.6). Then there exist constants c1, c2 ∈ R such that for all x, y ∈ OK

(i) QR(x) ≤ c1QZ(x),

(ii) QZ(y) ≤ c2QR(y).

Here we can take c1 to be the largest eigenvalue of AT · A and c2 to be the inverse of the
smallest eigenvalue of AT · A.

Proof. See [FF00, §4].

Remark 3.13. Note that the eigenvalues of AT ·A are real and positive, which means that
c1 and c2 in Lemma 3.12 are real and positive.

Lemma 3.14. Let γ ∈ OK. If T2(γ) ≤ c, then QZ(γ) ≤ c2 · c.

Proof. See [FF00, Lemma 6].

Finally, let P ∈ PN(K) with HK(P ) ≤ eβ. Let x = (x0, . . . , xN) ∈ ON+1
K be the integral

representative as in Theorem 2.73 and assume that x ∈ M . Then following Remark 2.52,
x corresponds to a vector xL in L, and writing

xi =
(
xi1 · · · xid

)T (
ω1 · · · ωd

)
and yi :=

(
xi1 · · · xid

)
∈ Zd

for 0 ≤ i ≤ N , we have

xL =

yT
0
...
yT
N

 .

Then using Lemma 3.14 we have:

T2(xi) ≤ BL for all i ∈ {0, . . . , N) =⇒ QZ(xi) ≤ BL · c2 for all i ∈ {0, . . . , N}.

Hence,

BL · c2 ≥ QZ(xi) =
d∑

j=1

(yi)
2
j = ||yi||22,
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which implies that
||yi||∞ ≤

√
BL · c2 for all i ∈ {0, . . . , N}. (3.4)

To summarize, if the T2-norm of an element x ∈ M is bounded from above by BL, then
the corresponding vector xL ∈ L has coefficients bounded from above by

√
BL · c2.

Before proving the main proposition, we need an intermediate result which generalizes
[MR23, Lemma 3.12].

Lemma 3.15. Let B ≥ 1 be a real number and let N ∈ Z≥1. Let u, u′ ∈ ON+1
K \{0} such

that

(a) ||u||∞, ||u′||∞ ≤ B (see (3.2) for the definition of || · ||∞),

(b) there is an ideal D ⊂ OK with N(D) > (4B4/d)d/2 such that all ideals generated by

2× 2 minors of the matrix

(
u
u′

)
∈ O2×(N+1)

K are divisible by D.

Then the points Pu and Pu′ in PN(K) represented by u and u′ respectively, are equal.

Proof. Let(
u
u′

)
=

(
u0 u2 · · · uN
u′0 u′2 · · · u′N

)
=⇒ mi := det

(
ui ui+1

u′i u′i+1

)
= uiu

′
i+1 − u′iui+1.

Hence, using the triangle inequality for the norm || · || and Lemma 2.65, we have

||mi|| ≤ ||ui||||u′i+1||+ ||u′i||||ui+1|| ≤ 2B2,

where the last inequality follows from (a) and nonnegativity of the norm.
Now consider an arbitrary 2 × 2 minor and denote it by m. Moreover, denote the ideal
mOK by M . Then by (b) we have that D | M so that there exists an ideal C ⊂ OK such
that M = CD. Taking norms on both sides leads to N(D) | N(M). On the other hand,
using that |NK/Q(m)| = N(M), we have the following:

||m|| ≤ 2B2 =⇒ T2(m) ≤ 4B4

|NK/Q(β)|2/d ≤ 1/dT2(β) for all β ∈ OK (Lemma 2.66)

}
=⇒ N(M) ≤ (4B4/d)d/2.

However, (b) implies that N(D) > (4B4/d)d/2. Consequently, N(M) = 0 which implies
that m vanishes. Therefore, u = λu′ for some nonzero λ ∈ K.

Proposition 3.16. Let R̃n, L, w,R be as in step 5 of of Algorithm 3.1 and define C :=
√
BL · c2. Let N ∈ Z≥1 such that pN >

(
2gd(2(2

gd−1)/2
√
2gdC)2c1

)d

(4/d)d/2. Then

(a) If HK(R) ≤ eβ, then R is the unique point in P2g−1(K) of height ≤ eβ that reduces
to R̃n.
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(b) If HK(R) > eβ, then there are no points of height ≤ eβ that reduce to R̃n.

Proof. We distinguish two cases:

(i) Suppose that ||w||∞ > 2(2
gd−1)/2

√
2gdC. Then if we choose δ = 3

4
in the LLL-

algorithm, Theorem 2.47 asserts that w has euclidean length at most 2(2
gd−1)/2 times

the euclidean length of the shortest nonzero vector. Denote the shortest vector by z.
Then we have:

||w||2 ≤ 2(2
gd−1)/2||z||2 =⇒ ||w||∞ ≤ 2(2

gd−1)/2||z||2 ≤
√
2gd2(2

gd−1)/2||z||∞,

which implies that ||z||∞ > C.
Hence, suppose there exists a vector y ∈ L such that Py has height ≤ eβ. Then by
Theorem 2.73 there exists a representative x = (x0, . . . , x2g−1) ∈ O2g

K of Py such that
||x||2 ≤ BL. Moreover, by Proposition 3.9 this x is contained in the latticeM since x
has coordinates in OK . Consequently, x is also contained in L which we will denote
by xL. For the construction of xL see Remark 2.52. We have ||xL||∞ > C, since
||z||∞ > C. However, by (3.4) we have ||xL||∞ ≤ C. Hence, no point in P2g−1(K) of
height ≤ eβ reduces to R̃n.

(ii) Now suppose that ||w||∞ ≤ 2(2
gd−1)/2

√
2gdC. The idea is to apply Lemma 3.15. Let

u, u′ ∈M . Then using Lemma 3.8 we have:(
u
u′

)
=

(
u1 u2 · · · u2g
u′1 u′2 · · · u′2g

)
=⇒

(
ui ui+1

u′i u′i+1

)
=

(
avi + α1 avi+1 + α2

bvi + β1 bvi+1 + β2

)
for some a, b ∈ OK and α1, α2, β1, β2 ∈ pN .
This implies that

uiu
′
i+1 − u′iui+1 mod pN ≡ avibvi+1 − bviavi+1 = 0 =⇒ uiu

′
i+1 − u′iui+1 ∈ pN

Consequently, all pairs of nonzero vectors inM satisfy the second part of condition (b)
of Lemma 3.15 with D = pN . Moreover, N(D) = N(pN) = N(p)N = (pf(p))N = pN .
Let w′ ∈ L and denote its corresponding vector in M by u′. Then by Lemma 3.12
we have:

√
2gd||w′||∞ ≥ ||w′||2 =

√√√√ 2gd∑
i=1

(w′
i)
2 =

√√√√ 2g∑
j=1

Q∆Z
(aj) ≥

√√√√ 2g∑
j=1

QR(aj)/c1,

where

a1 =
(
w1 · · · wd

)T (
ω1 · · · ωd

)
,

a2 =
(
wd+1 · · · w2d+1

)T (
ω1 · · · ωd

)
,

...
...

...

a2g =
(
w(2g−1)d · · · w2gd

)T (
ω1 · · · ωd

)
.
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Hence, noting that QR = T2, we have

||w′||∞ ≤ 2(2
gd−1)/2

√
2gdC =⇒ T2(aj) ≤ 2gd(2(2

gd−1)/2
√
2gdC)2c1

for all j ∈ {1, . . . , 2g}, where we used that c1 is real and positive by Remark 3.13.
Consequently,

||w′||∞ ≤ 2(2
gd−1)/2

√
2gdC =⇒ ||u′||∞ ≤

√
2gdc1(2

(2gd−1)/2
√
2gdC).

Since pN >
(
2gd(2(2

gd−1)/2
√
2gdC)2c1

)d

(4/d)d/2 , we can apply Lemma 3.15 with

B =
√
2gdc1(2

(2gd−1)/2
√
2gdC). In particular, this implies that for any vector w′ ∈ L

satisfying ||w′||∞ ≤ 2(2
gd−1)/2

√
2gdC, its corresponding vector in M defines the same

point in projective space as the vector inM corresponding to w does. In other words,
we have Pw′ = Pw = R. Now if there is a point in P2g−1(K) that reduces to R̃n, a
representative of this point must be contained in M by Proposition 3.9 and therefore
in L. Furthermore, if this point has height ≤ eβ, (3.4) implies that the supremum
norm of this point considered on L is bounded by C ≤ 2(2

gd−1)/2
√
2gdC. Hence, if

there is a point in P2g−1(K) that reduces to R̃n and has height ≤ eβ then it must be
R.

Now we have all the ingredients to prove the correctness of Algorithm 3.1.

Proof. (Theorem 3.2) We already noted that the algorithm terminates. Let Q̃ be as in the
algorithm. Then two things can happen:

(i) There exists a point Q ∈ A(K)[m] such that Q reduces to Q̃. Since Q is a torsion
point we have HK(Q) = HK(κ(Q)) ≤ eβ. By Lemma 3.6, R̃n is the unique m-torsion
point in K(OK/p

N) that reduces to κ̃(Q̃). Moreover, by Proposition 3.16, R is the
unique K-rational point of height ≤ eβ that reduces to R̃n. Consequently, we must
have that R = κ(Q). Clearly steps 6 and 7 in the algorithm do not return FALSE

and since κ−1(R) = {Q,−Q} ⊂ A(K) step 8 will return TRUE.

(ii) No point Q as in (i) exists. Then suppose for a contradiction that the algorithm
returns TRUE. The same logic using Lemma 3.6 and Proposition 3.16 as in case (i)
implies that R is the uniquem-torsion point inK(K) that reduces to κ̃(Q̃). Therefore,
κ−1(R) contains a point in A(K)[m] that reduces to Q̃. E
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3.3 Complete algorithm

In the previous subsection we presented an algorithm that determines whether reduced
points lift to K-rational torsion points. We can use this to construct an algorithm that
actually computes the torsion subgroup. We will use the approach as presented in [Sto98,
§11].

Let G be an abelian group of finite order. Then |G| = pn1
1 p

n2
2 · · · pnr

r for some primes
p1, . . . , pr and n1, . . . , nr ∈ Z≥1. Consequently, there exist Sylow pi subgroups with pni

i

elements which we will denote by Hpi for i ∈ {1, . . . , r}. There is at most one Sylow
p-group for every prime p since Sylow p-groups are conjugate and G is abelian. Hence, the
map ∏

p

Hp → G

(h1, h2, . . . , hr) 7→ h1h2 · · ·hr

is an isomorphism. This allows us to write the torsion subgroup as a product of its Sylow
p-groups since it is finite by Theorem 2.18. We call Hq the q-part of G. By Theorem
2.38 the reduction map ρp : A(Kp) → A(OK/p) is injective on the q-parts of A(K)tors for
p | p such that gcd(q, p) = 1. Hence, denoting the q-parts of A(Ok/p) by Hq, the q-part
of A(K)tors is equal to Hq ∩ A(K). Using this, the following algorithm from [Sto98, §11]
computes the q-part of A(K)tors.
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Algorithm 3.2: [Sto98, §11]
Input: An abelian variety A/K for which Assumption 3.1 is satisfied and an odd
prime q.
Output: The q-part of A(K)tors.

1 Let G0 be the q-part of Ã(OK/p) for p | p such that A has good reduction at p
and p ̸= q. Set T0 = {0} ⊂ G and S0 = G0\{0}, S ′

0 = {0}.

2 Set n = 0 and repeat the following steps until Sn = ∅.

(a) Let g ∈ Sn and choose a representative g̃ ∈ G0 of g.

(b) Using Algorithm 3.1, find the smallest m ≥ 0 such that qm · g̃ ∈ A(K)tors.

(c) Set

Tn+1 = ⟨Tn, qm · g̃⟩
Gn+1 = Gn/⟨qm · g⟩,
S ′
n+1 = image of S ′

n ∪ ⟨g⟩ in Gn+1,

Sn+1 = Gn+1\S ′
n+1.

(d) Replace n with n+ 1.

3 Return Tn.

Remark 3.17. Using Algorithm 3.2 we can determine all m-torsion for m ̸= 2. However,
if Q̃ ∈ A(OK/p) has order equal to 2, we cannot use Algorithm 3.1 to decide if Q̃ lifts
since κ(Q̃) is a singular point which means that we cannot use Hensel’s lemma. In order
to determine A(K)[2] we can solve for R ∈ K(K) in the system of equations [[2]]R = κ(0)
(see also [MR23, §3.2.1]). In case A is the Jacobian of a genus 2 curve we can use [Sto01,
Lemma 4.3, Lemma 5.3].

Finally, we now have all the ingredients for the complete algorithm.
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Algorithm 3.3:
Input: An abelian variety A/K for which Assumption 3.1 is satisfied.
Output: Elementary divisors of A(K)tors.

1 Compute a height difference bound β.

2 For some primes p where A has good reduction, compute #A(OK/p) and
compute the gcd of these group orders.

3 For prime divisors q of this gcd determine the q-part of A(K)tors using
Algorithm 3.2 and Remark 3.17.

4 Finally, combining the q-parts and Remark 3.17 deduce the elementary divisors
of A(K)tors. In some cases (see Remark 3.3) we can compute the actual points
in A(K)tors.

From (2.3) it follows that A(K)tors has only q-parts dividing the gcd in 2 of Algorithm
3.3. Hence, Algorithm 3.3 terminates and is correct.

Remark 3.18. For 2 of Algorithm 3.3 we need (5) of Assumption 3.1.

4 Jacobians of curves of genus 2

In this section we will show that Assumption 3.1 is satisfied when A is the Jacobian of
a genus 2 curve over a number field. Furthermore, we will make precise how the height
difference bound is derived in that case. To that end, let J denote the Jacobian of a curve
C/K of genus 2 with corresponding Kummer variety K.

Firstly, the map κ and equations for its image are given by [CF96, §3], in which case K is
a quartic hypersurface in P3. These quartic surfaces were first studied over C and R by
[Kum64] in 1864, and have 16 singular points, namely κ(A[2]). Kummer surfaces were only
later studied over arbitrary fields. Assumption parts (2) and (5) are also satisfied. For the
former see [Sto02, §5] and for the latter see the discussion in [MR23, §3.4].

4.1 Duplication map and pseudo-addition

Explicit formulae for [[2]] are known; see for example [Fly93]. In particular, we can define
the duplication map δ such that

κ([2]P ) = δ(κ(P )) = (δ1(κ(P )), δ2(κ(P )), δ3(κ(P )), δ4(κ(P ))),

where δi are homogeneous polynomials of degree 4.
Let κ = (κ1 : κ2 : κ3 : κ4) and let P,Q ∈ J . Then there exist biquadratic polynomials Bij

46



given in [CF96, Chapter 3.4] such that

Bij(κ(P ), κ(Q)) = κi(P +Q)κj(P −Q) + κi(P −Q)κj(P +Q) for 1 ≤ i, j ≤ 4.

Assume that we have coordinates for either κ(P + Q) or κ(P − Q). We will assume that
κ(P + Q) = (m1 : m2 : m3 : m4) is known. Then, following [FS97, §4], we can compute
coordinates (n1, n2, n3, n4) for κ(P +Q) by setting

ni = 2mjBij(κ(P ), κ(Q))−miBjj(κ(P ), κ(Q))

= 2mj

(
κi(P +Q)κj(P −Q) + κi(P −Q)κj(P +Q)

)
− 2miκj(P +Q)κj(P −Q)

= 2mj

(
miκj(P −Q) + κi(P −Q)mj

)
− 2miκj(P −Q)mj

= 2m2
jκi(P −Q),

where we fixed j such that mj ̸= 0.
The last equality contains 2m2

j for every ni so in projective space the coordinates ni indeed
will be in the equivalence class (κ1(P −Q) : κ2(P −Q) : κ3(P −Q) : κ4(P −Q)). Hence,
we are able to perform pseudo addition, that is, given κ(P ), κ(Q) and κ(P + Q), we can
compute κ(P −Q). This works exactly the same if κ(P −Q) is known instead of κ(P +Q).

4.2 Height bound for genus 2

In this subsection we will follow [Sto98] and outline an approach to derive a height differ-
ence bound as described in (4) of Theorem 2.60. Let C/Kv be a curve of genus 2 and let
J denote its Jacobian with corresponding Kummer variety K. Moreover, assume that C is
given by y2 = F (x, z) with F ∈ Ov[x, z].

Recall the duplication map δ and its corresponding polynomials δi defined in Subsection
4.1. In particular, δ1, δ2, δ3, δ4 ∈ Ov[x1, x2, x3, x4] are homogeneous polynomials of degree
4 in the homogeneous coordinates x1, x2, x3, x4 [Sto98, §2]. Then the local height constant
of C over Kv is defined as in [Sto98, §2] by

cv := min
x=(x1:x2:x3:x4)∈K(Kv)

max{||δ1(x)||v, ||δ2(x)||v, ||δ3(x)||v, ||δ4(x)||v}
(max{||x1||v, ||x2||v, ||x3||v, ||x4||v})4

. (4.1)

The first result concerning the height difference bound is the following:

Theorem 4.1. [FS97, Theorem 4] For all points P ∈ J(K), we have

hK(P ) ≤ ĥ(P ) +
1

3

∑
v

log c−1
v

Let us first consider the local height constants for the finite places of K.
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Lemma 4.2. Let v be a finite place of K and cv as defined in (4.1). Then

cv ≥ |(2λ)4 disc(Fred)|v,

where λ is the content of F and Fred is the primitive part of F , i.e., F = λFred.

Proof. See [Sto98, Proposition 7.1].

This leads us to the following theorem:

Theorem 4.3. [Sto98, Corollary 8.1] For all points P ∈ J(K), we have

hK(P ) ≤ ĥ(P ) +
4

3
[K : Q] log 2− 2 logN(a) +

1

3
log |N(disc(F ))|+ 1

3

∑
v|∞

log c−1
v ,

where a is the content ideal of F .

Proof. For β ∈ OK we have

|β|p = N(p)−vp(β) =⇒
∏

v finite

|β|v =
∏
p

N(p)−vp(β) = 1/N(βOK) = 1/|N(β)|.

By the properties of the discriminant (see e.g., [Ste12, §4]), disc(F ) = λ10 disc(Fred).
Hence, the result now follows from Lemma 4.2 and Theorem 4.1.

All quantities on the right-hand side of Theorem 4.3 can be easily computed with the
exception of the local height constants. In fact, we only need the local height constants for
the infinite places of K. One way to bound these constants is as follows. Firstly, we want
to find an upper bound on the numerator in the definition of cv in (4.1). Specifically, if we
can find a constant µ > 0 such that

max
i

{||xi||v} ≤ µmax
i

{δi(x)||v,

then cv ≤ µ. So instead of expressing δi(x) in terms of the xi’s, we want to express the xi’s
in terms of the δj’s. To that end, let f(x) := F (x, 1) and note that we have deg(f) ∈ {5, 6}.
For the infinite places we have that Kv is either equal to R or to C and we can write

f(x) = c

deg(f)∏
i=1

(x− αi), (4.2)

for some c ∈ C and αi ∈ C for i ∈ {1, . . . , deg(f)}.

Lemma 4.4. Let Q ∈ K and choose P ∈ κ−1(Q) = {Q,−Q}. Then the map

J [2]×K → K
(T,Q) 7→ κ(T + P )

defines an action of J [2] on K.
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Proof. We have κ(T + P ) = κ(−(T + P )) = κ(−T − P ) = κ(T − P ) so the map is
well-defined. The group action axioms are easily verified.

Let Q = (x1 : x2 : x3 : x4) ∈ K and K̄v be an algebraic closure of Kv. Then using Lemma
4.4 we get an action of J [2] on homogeneous polynomials in K̄v[x1, x2, x3, x4]. Define G to
be the group consisting of pairs (ϵ, T ) with ϵ = ±1 and T ∈ J [2] and multiplication given
by

(ϵ, T )(ϵ′, T ′) = (ϵϵ′e(T, T ′), T + T ′),

where e(T, T ′) denotes the Weil pairing of T and T ′ as described in [Sto98, §3].
Similarly to J [2], we can define an action of G on polynomials in K̄v[x1, x2, x3, x4] (see
[Sto98, §3,4]). For y ∈ K̄v[x1, x2, x3, x4] denote the action of g ∈ G on y by g · y. Let
Sym2VKv denote the space of homogeneous polynomials in Kv[x1, x2, x3, x4] of degree 2.
Then it follows from basic representation theory of finite groups (see e.g., [FH91, Chap-
ters 1,2]) that

Sym2Vk =
⊕
{S,S′}

Kv · y{S,S′}

for y{S,S′} ∈ Kv[x1, x2, x3, x4] homogeneous polynomials of degree 2 such that

(ϵ, T ) · y{S,S′} = χ{S,S′}(ϵ, T )y{S,S′},

where χ{S,S′} is a character on G as defined in [Sto98, §4].

Theorem 4.5. For a partition {S, S ′} of the roots of f there exist coordinates ai,{S,S′},
b{S,S′},j such that

x2i =
∑
{S,S′}

ai,{S,S′}y{S,S′}(P ) for i ∈ {1, . . . , 4},

and

y2{S,S′}(P ) =
4∑

j=0

b{S,S′},jδj(P ),

where P = (x1 : x2 : x3 : x4) is a point on K and y{S,S′} ∈ Kv[x1, x2, x3, x4] are homogeneous
polynomials of degree 2 described in [Sto98, §4].

Proof. Explicit formulas for ai,{S,S′} and bj,{S,S′} in terms of the roots of f are given in
[Sto98, Formula 10.2, 10.3].

Hence, the xi’s are defined in terms of the δi’s using the polynomials y{S,S}. Recall that
for an infinite place v the absolute value || · ||v reduces to the usual absolute value on C
which we denote by | · |. The local height constants cv for the infinite places of K can now
be estimated using the following lemma.
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Lemma 4.6. For ai,{S,S′} and b{S,S′},j as in Theorem 4.5 we have

1

cv
≤ max

i

( ∑
{S,S′}

|ai,{S,S′}|

√√√√ 4∑
j=1

|b{S,S′},j|
)2

.

Proof. Using Theorem 4.5 and the triangle inequality we deduce that

|xi|2 ≤
∑
{S,S′}

|ai,{S,S′}| · |y{S,S′}| and |y{S,S′}|2 ≤
4∑

j=0

|b{S,S′},j| · |δj|.

Hence,

max
i

|xi|4 ≤ max
i

( ∑
{S,S′}

|ai,{S,S′}|

√√√√ 4∑
j=0

|b{S,S′},j|
)2

max
j

|δj|.

The result now follows from the definition of cv in (4.1).

Remark 4.7. We can refine this bound as follows. AssumeKv = R and define the function

φ : R4
≥0 → R4

≥0

(d1, d2, d3, d4) 7→
(√√√√√ ∑

{S,S′}

|ai,i,{S,S′}|

√√√√k+1∑
j=1

|b{S,S′},j|dj
)
1≤i≤4

.

It is proven in [MS16, Lemma 16.1] that the sequence

cn :=
4n

4n − 1
log(||φ◦n(1, 1, 1, 1)||∞)

converges to a limit c̃ such that cv ≤ c̃.

Additionally, if we are dealing with a real place we can do better using that the δj are real,
while some b{S,S′},i may be complex (see [MS16, §16B]). In order to deduce the inequality in
Lemma 4.6 we needed to divide by maxj |δj| so it makes sense to try to find an expression
that bounds y{S,S′} even further while still explicitly including maxj |δj|. In particular, let
us show the following:

Lemma 4.8. Let bi ∈ C and δi ∈ R for 1 ≤ i ≤ 4. Then we have

|b1δ1 + b2δ2 + b3δ3 + b4δ4| ≤ max
i

|δi|max{|b1 + b2 + b3 + b4|, |b1 − b2 + b3 + b4|,

|b1 + b2 − b3 + b4|, |b1 + b2 + b3 − b4|,
|b1 − b2 − b3 + b4|, |b1 − b2 + b3 − b4|
|b1 + b2 − b3 − b4|, |b1 − b2 − b3 − b4|},

50



Proof. For simplicity, we will only prove the lemma in the form

|b1δ1 + b2δ2| ≤ max
j

|δi|max{|b1 + b2|, |b1 − b2|}.

The general case is analogous. Writing b1 = a + bi and b2 = c + di for a, b, c, d ∈ R, we
have:

|b1δ1 + b2δ2|2 = |(a+ bi)δ1 + (c+ di)δ2|2

= (aδ1 + cδ2)
2 + (bδ1 + dδ2)

2

= δ21(a
2 + b2) + δ22(c

2 + d2) + δ1δ2(2ac+ 2bd).

Now note that

|b1 + b2| > |b1 − b2| =⇒ (a+ c)2 + (b+ d)2 > (a− c)2 + (b− d)2

=⇒ 2ac+ 2bd > −2ac− 2bd

=⇒ 2ac+ 2bd > 0.

Hence if |b1 + b2| > |b1 − b2|, we have

|b1δ1 + b2δ2|2 ≤ max
j∈{1,2}

δ2j (a
2 + b2 + c2 + d2 + 2ac+ 2bd)

= max
j∈{1,2}

δ2j |b1 + b2|2.

On the other hand, if |b1 + b2| < |b1 − b2| we have that 2ac+ 2bd < 0. Therefore

|b1δ1 + b2δ2|2 = δ21(a
2 + b2) + δ22(c

2 + d2) + δ1δ2(2ac+ 2bd)

≤ max
j∈{1,2}

δ2j (a
2 + b2 + c2 + d2 − (2ac+ 2bd))

= max
j∈{1,2}

δ2j |b1 − b2|2.

Example 4.9. To illustrate the use of this lemma, assume for sake of simplicity that
b1 = 1, b2 = i, δ1 = 1, δ2 = 2. Then using only the triangle inequality we get:

|b1δ1 + b2δ2| ≤ max
j

|δj|(|b1|+ |b2|) = 2 · (1 + 1) = 4.

However, using the lemma we get

|b1δ1 + b2δ2| ≤ max
j

|δj|max{|b1 + b2|, |b1 − b2|} = 2 ·
√
2.

Hence this leads to a lower bound which in turn sharpens the bound on the height constant.
On the other hand, if we are dealing with a complex place the lemma does not help. For
example let b1 = i, b2 = 1, δ1 = 1, δ2 = i. Then we get the following:

|b1δ1 + b2δ2| = |i+ i| = 2.

However,

max
j

|δj| · |b1 + b2| = max
j

|δj| · |b1 − b2| =
√
2 < 2.
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Although Theorem 4.3 provides a straightforward way to bound the local height constants
at the finite places of K, we can alternatively use the following approach.

Lemma 4.10. Let v be a finite place corresponding to a prime ideal p lying above the prime
p. Then

(1) If J has good reduction at p, then cv = 1,

(2) If vp(disc(F )) = 1 and p ̸= 2, then cv = 1.

Proof. For (1) see [FS97, Lemma 1] and for (2) see [Sto02, Proposition 5.2].

If we use Lemma 4.10 for the finite places of K we only have to consider the contribution
of the places at which J has bad reduction and for which the valuation of disc(F ) is not
equal to 1. Using this, we can improve the bound in Theorem 4.3 as follows.

Lemma 4.11. For all points P ∈ J(K), we have

hK(P ) ≤ ĥ(P ) +
∑

v finite
vp(disc(F ))>1 or p=2

− log(|| disc(F )||v)/4 +
1

3

∑
v|∞

log c−1
v ,

where p | p is the prime ideal corresponding to v.

Proof. See [MS16, Theorem 11.3].

Remark 4.12. Let v be a finite place and assume v corresponds to the prime ideal p.
Then we can rewrite the right-hand side of the equation in Lemma 4.11 as follows:

− log(|| disc(F )||v)/4 = − log(N(p)−vp(disc(F )))/4 = vp(disc(F )) log(N(p))/4.

Using Lemma 4.11 in practice requires factoring disc(F ) which can be time-consuming.
However, a sharper height bound leads to a smaller necessary p-adic precision in the algo-
rithm. In practice, we use Lemma 4.11 to bound the local height constants for the finite
places of K.
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4.3 Example

In order to illustrate how the algorithm works in practice we consider the following ex-
ample. We will refer to the functions defined in https://github.com/MaxPosthumus/

MasterProject/blob/main/TorsionNum.m.

Example 4.13. Define K := Q[t]/(f) with f = t2 − 2 and let C/K be the hyperelliptic
curve defined by

y2 = x6 + 4x4 + 2x3 + 4x2 + 1.

This is isomorphic to the curve with label 294.a.294.1 in the LMFDB database (https:
//www.lmfdb.org/Genus2Curve/Q/249/a/249/1). Let J be the Jacobian of C with cor-
responding Kummer surface K. We will follow Algorithm 3.3 to determine J(K)tors. To
set up this example in Magma we can use the following:

R<t> := PolynomialRing(Rationals ());

K := NumberField(t^2-2);

R<x> := PolynomialRing(K);

f := x^6+4*x^4+2*x^3+4*x^2+1;

C := HyperellipticCurve(f);

J := Jacobian(C);

Kummer := KummerSurface(J);

(1) We first want to compute a height difference bound. To that end, we have two
options:

(i) Using Theorem 4.3,

(ii) Using Lemma 4.11.

For now, disregard the local height constants at infinity. Then for (i) we compute

[K : Q] = 2, disc(F ) = −308281344, a = ⟨1⟩,

where a is the content of F .
This leads to a bound of the local height constants at the finite places of K of
14.88. For (ii) we find 3 finite places at which J has bad reduction and for which the
valuation of disc(F ) is not equal to 1. Using Lemma 4.11 this leads to a bound of the
local height constants at the finite places of K of 9.22. As explained in Subsection
4.2 we use the bound from (ii) in practice. For the local height constants at infinity
note that K has two real field embeddings given by

σ1 : K → R,
√
2 7→

√
2 and σ2 : K → R,

√
2 7→ −

√
2.

In Magma these are given by

Sigma := hom < K -> ComplexField () | Conjugates(K.1)[i]>;
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for i ∈ {1, 2}. Consequently, Kv = R for both infinite places of K. Define f :=
x6 + 4x4 + 2x3 + 4x2 + 1 and write

f = c

6∏
i=1

(x− αi)

for some c ∈ C and αi ∈ C for i ∈ {1, . . . , 6}.
Then using [Sto98, Formula 10.2, 10.3] we can express the coordinates ai,{S,S′} and
b{S,S′}.j in Theorem 4.5 in terms of c and the αi’s. Subsequently, Lemma 4.6 provides
a bound on cv for v one of the infinite places. In addition, we can use Remark 4.7 and
Lemma 4.8 to improve the bound since both places are real. Using HCinfinityNum()
we compute that log c−1

v ≤ 0.94 at both infinite places and moreover

HeightBound(J);

leads us to a height difference bound β ≈ 9.85.

(2) Secondly, we want to bound #J(K)tors by reducing J modulo several good primes p.
Note that OK = Z[

√
2], which we can also find by

OK := Integers(K);

Let S ′ be a set of prime numbers, usually ranging from 3 to 200. For each p ∈ S ′ we
find a prime ideal p ⊂ OK lying above p. Denote the set of all of these prime ideals
satisfying e(p) < p− 1 for p the unique prime lying below p, by S. By Lemma 2.39
the reduction map ρp is injective for all primes p ∈ S at which J has good reduction.
Moreover, if C has good reduction at p then the same applies to J . Hence, we must
find the prime ideals in S at which C has good reduction. Define F as the degree 6
homogenization of f and write f = c6x6+c5x5+· · ·+c1x+c0. Instead of directly using
Definition 2.36, we will check whether |disc(F )|p = 1 and vp(ci) ≥ 0 for 1 ≤ 0 ≤ 6.
This allows us to remove all ideals at which C has bad reduction from S. We can sort
the elements of S by their norms and select the first n elements of minimal norm. In
practice we use n = 20. In Magma we find S using

disc := Discriminant(C);

cofs := {c : c in Eltseq(f)};

S := &cat[[e[1] : e in Decomposition(OK, p) |

e[2] lt p-1] : p in PrimesInInterval(3, 200)];

S := [p : p in S | Valuation(disc , p) eq 0 and

forall{c : c in cofs | Valuation(c, p) ge 0}];

Sort(~S, func <p1, p2 | Norm(p1)-Norm(p2)>);

In this case the prime p := ⟨17, 11+
√
2⟩ lying above 17 is the ideal of minimal norm

in S. Using the isomorphism in Theorem 2.32 we can reduce J(K) modulo p to
obtain J̃(OK/p). In particular,

p := S[1];

F, red := ResidueClassField(p);

JF := BaseChange(J, map <K -> F | a :-> red(a)>);

Invariants(JF);
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informs us that J(OK/p) ∼= Z/6Z×Z/48Z and #J(OK/p) = 288. By computing this
for 7 primes of minimal norm in S we obtain the following non-isomorphic potential
group structures:

Z/6Z× Z/48Z,
Z/2Z× Z/12Z× Z/24Z,
Z/12Z× Z/96Z,
Z/2Z× Z/576Z.

Only taking the orders into account we can deduce that #J(K)tors ≤ 288. However,
using the group structures as well we conclude that #J(K)tors is equal to a subgroup
of Z/2Z× Z/24Z so #J(K)tors ≤ 48.

(3) Thirdly, we consider prime divisors q of 48 = 24 ·3 to determine the q-part of J(K)tors.
We can use Algorithm 3.2 to compute the q-part of J(K)tors for q ∈ {2, 3}. Let
q = 3 and select from S a prime ideal p lying above some prime p that satisfies
e(p) = f(p) = 1 and p ̸= q. Since K is a quadratic number field, the condition
e(p) = f(p) = 1 is equivalent to finding split primes. In this case, simply selecting
p = ⟨17, 11+

√
2⟩ as defined above suffices. For (b) in Algorithm 3.2 it is crucial that

we can determine whether a point of J̃(OK/p) lifts to J(K)tors. From Subsection 2.3
we know that all points of J̃(OK/p) lift to J(Kp). However, in order to determine
whether a point Q̃ ∈ J̃(OK/p) lifts to J(K)tors, we need the bound on the p-adic
precision as described in §3.2.2. To that end, we use Constants() to compute c1
and c2 as in Lemma 3.12 and BL() to compute BL as in (3.3). We get the following
numerical values:

c1 = 4, c2 = 0.5 and BL ≈ 457115.65

Finally, we compute using BM() that
(
2gd(2(2

gd−1)/2
√
2gd

√
BL · c2)2c1

)n

(4/d)d/2 ≈
exp(46.17). Hence, noting that p = 17, the bound on p is given by ⌈46.17/ log(17)⌉ =
17. Now we define the completion Kp with precision equal to the bound on the p-adic
precision as

Kv, map := Completion(K,I);

Kv‘DefaultPrecision := 17;

where I denotes p. This means that coordinates of points in Kp get truncated as in
Remark 2.31. Now we can use Algorithm 3.1 to decide which points in the 3-part
of J̃(OK/p) lift to J(K)tors. This is done by the function LiftTorsionPoint(). We
find that T3 ∼= Z/3Z. The 2-part of J(K)tors can be computed similarly, although we
have to be careful with two-torsion points. In particular, using Remark 3.17 and the
function TwoTorsionSubgroup() (which is already implemented in MAGMA and uses
[Sto98]) we find that T2 ∼= Z/4Z.
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(4) Hence, J(K)tors ∼= Z/12Z. In addition, we found the elements of J(K)tors explicitly
when using Algorithm 3.2. Let P := (1 : −1 : 0) and Q := (1 : 1 : 0) be the two
points at infinity of C. Then a generator of J(K)tors is given by the divisor class
[P −Q].

Remark 4.14. Let C/K be a hyperelliptic curve and denote its Jacobian by J . Then for
any quadratic extension L of K, an alternative approach to determining J(L)tors exists, by
using a quadratic twist C ′ of C. Denote the Jacobian of C ′ by J ′. Then we can determine
J(L)tors by computing J(K)tors and J

′(K)tors. For Example 4.13 this implies that we can
determine J(K)tors by only considering Jacobians of hyperelliptic curves over Q, since in
this case [K : Q] = 2.

5 Applications

Now that we have a working algorithm that can compute the torsion subgroup of Jacobians
of genus 2 curves over number fields, it is interesting to deploy this algorithm in practice.
We will do this firstly by simply computing the torsion structures for a large number of
curves but we will consider some specific applications as well.

5.1 LMFDB, large torsion and unknown torsion structures

In this subsection we will investigate the torsion structures that occur for genus 2 curves
over number fields.

5.1.1 LMFDB database

Our starting point is the LMFDB database (https://www.lmfdb.org/Genus2Curve/Q/)
which contains 66158 genus 2 curves defined over Q. We consider the Jacobian of each of
these curves over some different number fields in order to get an idea of the distribution of
the torsion structures. The fields K1 and K2 (see Table 1) are selected as simple examples
of a real and imaginary quadratic field respectively. Additionally, as in [Tur13, §3.8], K3

is chosen because it has a nontrivial class group. Lastly, we consider K4 as an example of
a number field that arises as the extension of another number field different from Q and
since K1 showed the most promising torsion orders. The results are in Table 1 where the
column Elt. div contains the elementary divisors, the column Order contains the order
of the torsion subgroup and the other columns contain the number of occurrences of each
group structure for the different number fields.
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Elt. div Order K1 K2 K3 K4 Q
1 1 44138 44173 44190 44061 44190
2 2 13826 14380 14681 13866 14681
3 3 2340 2311 2295 2299 2295
2,2 4 1876 1391 1352 1884 1353
4 4 1398 1491 1402 1390 1402
5 5 731 726 725 730 725
6 6 533 580 594 579 595
7 7 97 97 97 97 97

2,2,2 8 113 44 33 123 33
2,4 8 285 243 159 286 159
8 8 242 236 201 242 201
3,3 9 9 8 8 7 8
9 9 30 30 30 38 30
10 10 119 130 131 118 131
11 11 8 8 8 8 8
2,6 12 121 85 66 126 65
12 12 63 72 59 69 59
13 13 7 7 7 7 7
14 14 11 12 12 11 12
15 15 17 17 17 17 17

2,2,2,2 16 6 0 0 6 0
2,2,4 16 22 6 3 23 3
2,8 16 49 37 31 49 31
4,4 16 10 8 3 10 3
16 16 9 3 3 9 3
17 17 1 1 1 1 1

Elt. div Order K1 K2 K3 K4 Q
3,6 18 10 11 6 9 6
18 18 2 3 4 2 3
19 19 1 1 1 1 1
2,10 20 16 9 7 18 7
20 20 7 6 6 7 6
21 21 5 5 5 5 5
22 22 2 2 2 2 2

2,2,6 24 10 3 2 11 2
2,12 24 11 7 4 11 4
24 24 9 6 4 9 4
3,9 27 1 1 1 2 1
27 27 1 1 1 1 1
2,14 28 2 1 1 2 1
28 28 1 1 1 1 1
29 29 1 1 1 1 1

2,2,8 32 6 2 2 6 2
2,18 36 1 0 0 1 0
6,6 36 2 1 1 4 1
3,12 36 1 0 0 1 0
39 39 1 1 1 1 1

2,2,10 40 2 0 0 2 0
2,2,2,6 48 1 0 0 1 0
2,2,12 48 1 0 0 1 0
2,24 48 1 0 0 1 0
5,10 50 1 0 0 1 0
6,12 72 1 0 0 1 0

Table 1: Torsion structure occurrences for the Jacobians of all 66158 curves of the LMFDB

database defined over some number fields. In particular, Ki := Q[t]/(fi) with f1 = t2 −
2, f2 = t2 + 2, f3 = t3 − 59t− 132, f4 = ⟨t2 − 2, t3 − 2⟩.

Firstly, note that all torsion structures of the Jacobians of the 66158 curves over Q are
also observed when considering these curves over Ki as defined in Table 1. On the other
hand, there are 8 torsion structures that do not arise when considering the curves over Q.
Comparing with [Nic18, Table 3.1] we see that the torsion orders 50 and 72 have not been
observed yet for genus 2 curves over Q. Secondly, note that the majority of curves have
trivial torsion structure.
Besides the torsion structures, it is also interesting to determine how close the bound in
(2.3) is to #J(K)tors, similarly as is done in [MR23, §5.2]. To that end, we reduce the
Jacobians modulo the first 20 prime ideals of good reduction and compute the correspond-
ing bound on the torsion order which we denote by b. In this case we only considered the
number fields Q(

√
2) and Q(−

√
2). The results are in Table 2 below.
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b/#J(Ki)tors 1 2 3 4 5 6 7 8 9 10 12 15 16
Count K1 61999 3167 437 402 60 40 5 30 6 4 6 2 0
Count K2 62079 3204 408 296 60 44 5 46 7 4 2 2 1

Table 2: Quotient of #J(Ki)tors by the bound b obtained by reducing the Jacobians of all
66158 curves of the LMFDB database defined over Ki := Q[t]/(fi) with f1 = t2−2, f2 = t2+2
modulo the first 20 primes of good reduction.

From Table 2 we see that the bound b already yields the correct torsion structure for the
majority of the Jacobians. Moreover, the prime divisors of b/#J(K)tors (excluding the
trivial case) are all in the set {2, 3, 5, 7}.

5.1.2 Unknown torsion

The previous paragraph provided a rough idea of the frequency of different torsion struc-
tures. In the process we found two previously unknown torsion structures. However, we
can also actively search for unknown torsion structures or for example, for large torsion
orders. Following [How15, §4], we consider curves of the form

y2 + (a3x
3 + a2x

2 + a1x+ a0)y = b2x2 + b1x+ b0,

where the ai’s and bi’s are elements of some number field.
As is mentioned in [How15, §4], all genus 2 curves with a K-rational non-Weierstrass point
(see Definition 2.4) are contained in this family. Using this family we can construct curves
that are not defined over Q. We choose K = Q(

√
2) and let the coefficients vary between

c + d
√
2 for 0 ≤ c, d ≤ 1 for the ai’s and −1 ≤ c, d ≤ 1 for the bi’s. The only torsion

structure we find that was not already found in the previous section is Z/33Z for the curve
given by:

y2 = 2x6 + (2
√
2 + 4)x5 + (4

√
2 + 7)x4 + (6

√
2 + 10)x3 + (10

√
2 + 13)x2

+ (8
√
2 + 10)x+ 2

√
2 + 3.

However, this structure is also observed already in [How15, Table 3.1]. Furthermore, out
of the 139382 curves, 135666 had trivial torsion subgroup. For K =

√
3 we found no new

torsion structures and 136182 curves out of 139388 curves had trivial torsion subgroup.
Next to searching for unknown torsion structures, we try to find large torsion groups by
two different methods:

(1) Firstly, we again consider the Jacobians of the genus 2 curves of the LMFDB database
but now we are only interested in the Jacobians for which the torsion subgroup over
Q has order at least 25; there are 9 such curves. Subsequently, we consider these
9 curves over various number fields from the LMFDB database (https://www.lmfdb.
org/NumberField/). Denoting the class number by |Cl(K)|, we use 1000 number
fields for each d ∈ {2, 3} and |Cl(K)| ∈ {1, 2}. For d ∈ {2, 3} and |Cl(K)| = 2 we
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find no new torsion orders. For d = 2 and |Cl(K)| = 1 we find new torsion orders
in {64, 108, 144} with elementary divisors 2, 4, 8 and 3, 6, 6 and 2, 2, 6, 6 respectively.
For d = 3 and |Cl(K)| = 1 we find new torsion orders in {54, 56} with elementary
divisors 3, 18 and 2, 2, 14 respectively.

(2) Secondly, we start with some of the largest torsion orders found in (1) and by ex-
tending the number fields over which the corresponding Jacobians are defined we try
to enlarge the K-rational torsion group. However, this has not led to new torsion
orders yet.

5.2 Igusa invariants

As we saw in §5.1.2, our algorithm works for curves that are not defined over Q. Let C be
a curve of genus 2 defined by

y2 = f(x) = a0x
6 + a1x

5 + · · ·+ a5x+ a6.

We can associate to f(x) the so called Igusa invariants J2, J4, J6, J10 ∈ Z[1/2, a0, a2, . . . , a6].
For a precise definition of J2, J4, J6, J10 see [Mes91]. The Igusa invariants [J2, J4, J6, J10]
should be treated as elements in weighted projective space with weights equal to 2, 4, 6 and
10 respectively. [Mes91] proved that for given Igusa invariants defined over some field k,
we can define a curve over a field of degree at most 2 over k that has these invariants. So if
the Igusa invariants are defined over Q, there must be a curve with these invariants defined
either over Q or some quadratic number field. We try to use this to find examples of curves
defined over a quadratic number field that are not defined over Q but have Igusa invariants
in Q using the Magma function HyperellipticCurveFromIgusaInvariants(). However,
as is also noted in the Magma documentation, the coefficients of the corresponding curves
can become huge and no straightforward way to reduce these is available. Consequently,
simply running through small values of J2, J4, J4, J10 does not yield satisfactory curves. We
cannot use the algorithm for these curves due to precision issues, see also Section A. On
the other hand, if we are only interested in finding curves with rational Igusa invariants
that cannot be defined over Q, we can consider some of the curves found in §5.1.2 again.
We find the following curve:

y2 = 2x6 + 4
√
2x

defined over K := Q(
√
2) with Igusa invariants given by

(−3840 : 337920 : 10485760 : −391378894848).

The K-rational torsion subgroup of the corresponding Jacobian is isomorphic to Z/5Z.
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5.3 Isogenies

Let A/K be an abelian variety. By Faltings’ finiteness theorem for abelian varieties [Fal83]
the isogeny class of A is finite. As noted in [vBCCK23, §1], besides for elliptic curves
over Q, little is known regarding the isogeny classes of abelian varieties. Therefore we
are interested in all isogenies of A defined over K to get an idea of what the isogeny
classes look like. Let A,B be abelian varieties and ϕ : A → B an isogeny of degree n
over K. Then by [EVdGM12, Proposition 5.12] there exists an isogeny ϕ̂ : B → A over
K such that ϕ̂ ◦ ϕ = [n]. Hence, for P ∈ A we have ϕ̂(ϕ(P )) = n · P . This implies that
kerϕ ⊂ A[n]. Consequently, the subgroups of A[n] yield candidates for kerϕ and therefore
provide information regarding what isogenies of degree n can occur. Using Algorithm 3.3
we can compute A(K)[n], but in general we have the following result.

Lemma 5.1. Let A/K be an abelian variety of dimension g and n ∈ Z≥0. Then

A[n] ∼= (Z/nZ)2g.

Proof. See [HS00, Theorem A.7.2.7].

Let us now make more precise how finding subgroups of A[n] can help in determining the
isogenies. To that end, let A∨ denote the dual abelian variety of A as defined in [HS00,
§A.7.3].

Definition 5.2. Let A be an abelian variety. We call A principally polarized if A is
equipped with a principal polarization. For a definition of a principal polarization see
[vBCCK23, §2.1].

For n ∈ Z, let

ϵn : A[n]× A∨[n] → µn

denote the Weil pairing as in [HS00, Exercise A.7.8].
If in addition A is principally polarized, ϵn gives rise to a pairing en : A[n]×A[n] where en
is also referred to as the Weil pairing.

Definition 5.3. Let n ∈ Z>0 and let G be a proper subgroup of A[n]. Then G is called
maximal isotropic if the following holds

(1) For all S, T ∈ G we have en(S, T ) = 1.

(2) G is a maximal subgroup with respect to property (1), i.e., if H is another proper
subgroup of A[n] that satisfies (1) we cannot have that G ⊊ H.

Definition 5.4. Let A be an abelian variety. Call A typical if EndQ̄(A) = Z.

Lemma 5.5. Let A/K be a typical principally polarized abelian variety. Then every isogeny
from A to another typical principally polarized abelian variety B can be decomposed into a
chain of isogenies ϕ : A → B defined over K such that its kernels are maximal isotropic
subgroups of either A[ℓ] or A[ℓ2] where ℓ is a prime number.
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Proof. See [vBCCK23, Lemma 2.2].

Lemma 5.6. Let J be the Jacobian variety of a curve C/K of genus g. Then J is princi-
pally polarized.

Proof. See [HS00, Corollary A.8.2.3(a)].

Hence, for Jacobians J such that EndQ̄(J) = Z we can find all isogenies by determining
the maximal isotropic subgroups of either J [ℓ] or J [ℓ2] for ℓ a prime number.

Lemma 5.7. Let J be the Jacobian of a curve of genus g and n ≥ 2. Moreover, let
G ⊂ J [n] be isotropic with respect to the Weil paring en. Then G is maximally isotropic if
and only if #G = ng.

Proof. See [Nic18, Proposition 5.2.1].

Remark 5.8. Given the kernel of an isogeny, [LR23] describes how to actually find equa-
tions for the isogeny. Alternatively, see [vBCCK23] for another method to find isogenies
between abelian varieties.

We want to use our algorithm to find isogenies defined over K = Q. Consequently, we can
use that an isogeny ϕ is defined over Q if and only if kerϕ is defined over Q, i.e., is fixed
by the action of the absolute Galois group Gal(Q).
We do one toy example. Define the number field L := Q(

√
2) and let C be the hyperelliptic

curve defined over Q by:

y2 = x6 + 2x5 + 7x4 + 8x3 + 11x2 + 6x+ 5.

Let J denote the Jacobian of C. We compute that J(L)tors ∼= Z/3Z×Z/6Z and J(L)[3] ∼=
Z/3Z × Z/3Z. If J(L)[3] is isotropic then it is maximally isotropic by Lemma 5.7. By
Lemma 5.1 we have J [3] ∼= (Z/3Z)4. Unfortunately, we cannot easily check if J(L)[3] is
isotropic and hence is the kernel of an isogeny ϕ : J → A defined over Q for some abelian
surface A, because there is no implementation of the Weil pairing over number fields in
Magma. So we cannot yet say something about possible isogenies.
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6 Summary and discussion

6.1 Summary

For an abelian variety A defined over a number field K, we described an algorithm that
computes A(K)tors if Assumption 3.1 is satisfied. This algorithm extends the algorithm
presented in [Sto98] which computes the torsion subgroup of Jacobians of genus 2 curves
over Q. In order to extend the algorithm from [Sto98] to number fields, we needed a
way to relate the height of a point to the length of the point considered on a Z-lattice.
To that end, we combined [Tur13] and [FF00] to find such a relation. Furthermore, we
implemented the algorithm for genus 2 curves over number fields. Using the algorithm
we examined the torsion structures of genus 2 curves of the LMFDB database over various
number fields. Besides the distribution of the torsion structures we also found Jacobians
with torsion orders equal to 52 and 72. In addition, we searched for large and unknown
torsion structures. In the end, we found the torsion orders 52, 56, 64, 72, 108, 144 which
were not previously observed.

6.2 Discussion

The algorithm could be changed in various ways. First of all, we only considered primes
p such that e(p) = f(p) = 1. However, we could also consider primes such that Kp is a
proper extension of Qp, although in practice this is unlikely to improve the algorithm since
there are enough primes satisfying our condition already. Secondly, we could more care-
fully analyze what the benefit is of using the height bound as in Lemma 4.10 and Lemma
4.11 compared to Theorem 4.3. Other ways in which the algorithm can be improved are
sketched in Appendix A.
Besides the algorithm we described, one could implement other approaches to find A(K)tors.
For example, [Tur13] uses point enumeration to find all points of bounded height. Alter-
natively, one could also try to work exclusively with OK-lattices. There exists no analogue
of LLL for OK-lattices, but the results in [FF00] and [FS10] could be used instead. In any
case it is interesting to see how our algorithm compares to other approaches. For example,
for Jacobians of genus 2 curves defined over a quadratic number field one could compare
our algorithm to the approach described in Remark 4.14.

In theory, the algorithm works for all abelian varieties but one could try to implement it in
practice for Jacobians of hyperelliptic genus 3 curves over number fields, similar to [MR23].
A height bound for torsion points is already given by [Sto17].
One could use the algorithm to explore more torsion structures of genus 2 curves over
number fields. For example, the torsion structures of the examples in [Kos14, §5] can
be computed. As noted in the introduction, the study of torsion structures of genus 2
curves over number fields could also provide us with more insights regarding the uniform
boundedness conjecture. Next to finding new torsion structures, we could also try to find
points in the rational torsion subgroup with large order. Lastly, as was noted in Subsection
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5.3, there is no implementation of the Weil pairing over number fields in Magma. However,
this would actually not be very difficult to implement, especially for small values of n. The
implementation would then allow one to determine some isogenies.
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A Implementation issues

In this section we will outline some issues regarding the Magma code. As previously noted,
the code can be found on https://github.com/MaxPosthumus/MasterProject/blob/

main/.

• Following Remark 3.10, if pn is principal we can use just 1 generator instead of
2. Since this seems to be slightly faster in practice, we check for this in the code.
Alternatively, we could first check if K is a PID but this seems to be slower. Lastly,
we could also try to find generators with small coefficients with respect to the integral
basis.

• In Algorithm 3.1 we lift κ(Q̃) ∈ K(OK/p) to K(OK/p
N) by sequentially lifting κ(Q̃)

to K(OK/p
r) for r ≤ N . In the code accompanying [Sto98], the Kummer surface is

constructed again for each of these lifts. While this is not a problem over Q, this
does cost a lot of time over K. Therefore, we immediately set the precision of the
completion equal to the necessary precision. In Stoll’s case the default precision is
higher than ”newprec” in the first few iterations.

• In order to define the field embeddings we will first try to use the standard precision
in C of 30. However, it might be the case (especially for number fields of large
discriminant such as K := x2 − x− 510) that the field embeddings will map nonzero
elements to zero. In that case the precision is raised to 150. The same issue occurred
when computing bounds for the height constants at infinity using HCinfinityNum.
This is resolved in the same way.

• Next to the field embeddings we also encountered problems when the coefficients of
F (x, z) are very large. For HCinfinityNum we need to compute the roots ai as in
(4.2), but this leads to problems if the coefficients of F (x, z) become huge such as in
Subsection 5.2.

• In order to get the constant BL we need to compute the class group of K. Since
this can take very long we added an optional parameter that allows one to use
the Generalized Riemann Hypothesis (GRH) to speed up the computations. In the
examples considered so far, we only needed this when we extended the number fields
to find large torsion (see (2) in §5.1.2).

• The definition of BL in (3.3) uses NK := maxb∈B N(b) for B the set of ideals that
has minimal norm amongst the integral ideals in its class. However, in practice we
will just find representatives for each class but not necessarily of minimal norm. The
bound might be slightly increased because of this, but is nevertheless valid.

• Similarly as in [MR23], we try to use doubling when deciding on a value for [[M ]] as
in Algorithm 3.1. This is different from what is done in Stoll’s code. However, the
doubling saves a bit of computation time.
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• When determining a bound on #J(K))tors, we use the extra information on the
torsion structures besides the torsion orders as also done in [MR23].

• The way the step function is computed in the code may seem different from [MS16,
§16] but note that the function φ as defined in [MS16, §16.1] is homogeneous of
degree 1/4, i.e., φ(sx1, . . . , sx4) = s1/4φ(x1, . . . , x4). Now in the code the following
is computed (only the first two terms are presented here):

4 · log(||φ(b0)||∞) + 42 · log
(
||φ

( φ(b0)

||φ(b0)||∞

)
||∞

)
= 4 · log(||b1||∞) + 42 · log

(
||φ

( b1
||b1||∞

)
||∞

)
= 4 · log(||b1||∞) + 42 · log

(
||φ(b1)||b1||−1/4

∞

)
||∞

)
= 4 · log(||b1||∞) + 42 · log

(
||b2||||b1||−1/4

∞

))
= 4 · log(||b1||∞) + 42 ·

(
log(||b2||)− 1/4 log(||b1||∞))

)
= 42 · log ||b2||∞,

where we used that bn+1 = φ(bn) for n ≥ 0.

• We analyzed the code with Magma’s profiler function in order to determine what steps
take the most time and in some cases this led us to change the steps.

• Changing the number of steps used in HCinfinityNum() does not significantly change
the computation time. Therefore, the standard 10 steps is fine.

• There is no large database of Jacobians of genus 2 curves over number fields for
which the K-rational torsion structure is known. Consequently, we cannot verify the
correctness of the algorithm this way. However, we can still do sanity checks. Firstly,
we can try to find curves for which we know already what the torsion structure looks
like and compare this with the results from our algorithm. For example, [How15,
Theorem 3.1] is useful in that regard. Secondly, we can compute the torsion orders of
a set of Jacobians of genus 2 curves over Q. Then if we consider these Jacobians over
some number field, the torsion orders should be at least as large as for the Jacobians
over Q. Finally, we can do stability checks, that is, running the algorithm multiple
times for the same curves to check that we get the same results each time.
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