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Abstract

In this paper we look at Random Geometric Graphs, these are graphs constructed from
random distributed points on a space and with vertices connected by an edge if they are
sufficiently close to each other. We are specifically interested in the case where the vertices
are distributed on the plane.

We also give attention to the special case where the distribution is the uniform distribu-
tion on the unit-square. Furthermore, the threshold distance for connecting pairs of vertices
is chosen such that it fixes the expected average degree of each vertex.

In these Random Geometric Graphs, we are interested in several graph invariants. Our
main focus lies on the clique number ω, the maximum number points that are all pair-wise
connected, and the chromatic number χ, the minimum number of colours needed to colour
the vertices such that no two adjacent vertices are of the same colour. A large part of
this paper is inspired by the paper of McDiarmid [Colin McDiarmid. “Random channel
assignment in the plane”. In: Random Structures and Algorithms 22.2 (Mar. 2003)].
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1 Introduction

The book from Mathew D. Penrose [7], covers many results of random geometric graphs, also on
the clique number, chromatic number and maximal degree within the graphs. It also considers
several definitions for random geometric graphs. It also provides applications within statistics
and computer science. However The article that this thesis is mainly based on is the article
from McDiarmid, Random Channel Assignments in the Plane [4]. This thesis aims to simplify
the proofs and give insight into the structure of them. Besides giving a concise overview of the
subject, the thesis integrates a graph invariant from [6] into the results of [4]. And the proof of
the upper bound in the ”dense case” is simplified by removing the concept of a triangular lattice
from [4].

Let us start with the definition of the planar random geometric graphs, mostly known
as random scaled unit disk graphs. For n ∈ N consider the following random geometric graph
Gn = G(Vn, d) containing n vertices. We have a common probability distribution X over the
plane, where X is a continuous distribution. We have the i.i.d. points X1, X2, . . . , distributed
according to the distribution X. The set of vertices Vn contains the first n of these points. We
also have a threshold distance d for connecting vertices of the graph, where any pair of vertices
is connected when the Euclidean distance between them is smaller than the threshold distance
d. We let νmax denote the supremum of the values that the distribution function X takes. This
definition of random geometric graphs is also used in [4], for other definitions see [7].

We are only interested in the case where d→ 0 as n→ ∞. We differentiate between a sparse
case and a dense case. The sparse case assumes that d2n is o(lnn) and no(1), while the dense

case assumes that d2n
ln(n) → ∞ as n → ∞. We also give special attention to the case where the

expected degree of every vertex stays constant as n→ ∞, more on that in section 2.1.
We need the following definitions for sets in the probability space: For a Lebesgue-set S, let

λ(S) be the area of S and let ν(S) be the probability that X is an element of S.
Consider the following definitions for graph invariants on an arbitrary graph G. These defi-

nitions are inspired by [4], except for the definition of the stability quotient ψ, which can be
found in [6]. Despite [4] only giving results for the other five graph invariants, my contribution
includes extending these results to also apply to this stability quotient ψ.

Let ω− denote the hitting number, defined as the maximum number of points X1, . . . , Xn

in an open disk in the plane of diameter d centred around any point P in the plane: ω− :=
maxP∈R2 |{x ∈ X1, . . . , Xn | x ∈ B(P, d2 )}|.

Let ω be the clique number, the maximum number of points of V all pair-wise connected by
an edge.

Let ψ be the stability quotient, as also defined in [6], as the supremum over all subgraphs H of

G of |H|
α(H) , where the stability number α(H) denotes the order of the largest independent subset

of H. So we define ψ := supH⊂G
|H|
α(H) [prox].

Let χ be the chromatic number, the minimum number of colours in all vertex-colourings of
Gn such that all pairs of neighbouring vertices have distinct colours.

Let δ∗ be the degeneracy of the graph G, where δ∗ is the smallest integer for which all sub-
graphs H ⊂ G have a vertex of degree at most δ∗.
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Let ∆ denote the maximal degree of the graph G.

In Lemma 1, we have an ordering for the aforementioned graph invariants within Gn. The
first inequality only applies to proximity graphs, while the other inequalities are true within
any arbitrary graph G. The main focus of the thesis is the clique number ω and the chromatic
number χ. However, the other graph invariants are used for finding the required upper and lower
bounds.

Lemma 1. ω− ≤ ω ≤ ψ ≤ χ ≤ δ∗ + 1 ≤ ∆+ 1

This lemma is essential for introducing the main results that are Theorem 1 and Theorem
2.Now consider the following notation. For probability functions A(n) and B(n) with variable

n ∈ N, we write A(n) ∼ B(n) when as n → ∞ we have A(n)
B(n) → 1 in probability. Which leads

us to the main two theorems, we follow the distinction by [4] of a sparse case and a dense case.
Where it is also mentioned that these terms do not hold the usual definition from graph theory.
We first give the results of the sparse case:

Theorem 1. Suppose that as n→ ∞ we have d→ 0 and we have that d2n is o(lnn) and no(1).
Let

Kn =
lnn

ln
(
lnn
d2n

) ,
We have Kn → ∞ as n→ ∞, and we have for the aforementioned graph invariants:

ω−(Gn) ∼ Kn, ω(Gn) ∼ Kn, ψ(Gn) ∼ Kn, χ(Gn) ∼ Kn, δ
∗(Gn) ∼ Kn and ∆(Gn) ∼ Kn.

The proof of Theorem 1 can be found in section 2.1, it consists of a lower bound on the
hitting number ω−(Gn) and an upper bound for the maximal degree ∆(Gn). We now continue
with the results on the dense case. For the results on the degeneracy δ∗(Gn) and the maximal
degree ∆(Gn) in the dense case, we refer to Theorem 2.3 of [4]. Where the corresponding proofs
are seperated into lower and upper bounds. The proof on the upper bounds of δ∗(Gn) and
∆(Gn) can be found in Lemma 5.6, the proof of the lower bound of ∆(Gn) in Lemma 5.7 and
Lemma 5.8 and the proof of the lower bound of δ∗(Gn) in Lemma 5.9 and Lemma 5.10, all in
the aformentioned article [4].

Theorem 2. Suppose that as n → ∞ we have d → 0 and also we have d2n
ln(n) → ∞ as n → ∞.

Then for Kn = νmax
π
4 d

2n, we have:

ω−(Gn) ∼ Kn, ω(Gn) ∼ Kn, ψ(Gn) ∼
2
√
3

π
Kn, χ(Gn) ∼

2
√
3

π
Kn.

The proof of this theorem can also be found in section 2.1. The proof consists of lower bounds
on the hitting number ω−(Gn) and the stability quotient ψ(Gn) and upper bounds on the clique
number ω(Gn) and the chromatic number χ(Gn).

2 Results

Here we present the main results of the paper. Most proofs have been inspired by [4], and it can
be assumed that the results are from [4], unless stated otherwise.
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In section 2.1, titled ”Main results” we give proofs on the theorems and lemma provided in
the introduction. The bounds for the proofs of this section are given in the other three sections.
Section 2.2 will provide proofs on two theorems with regard to the sparse case. Meanwhile,
section 2.3 and 2.4 will provide lower bounds and, respectively, upper bounds for the graph
invariants.

2.1 Main results

We first prove the lemma of the ordering of the graph invariants of Gn.

Lemma 1. Suppose that as n→ ∞ we have d→ 0 and we have that d2n is o(lnn) and no(1).
Let

Kn =
lnn

ln
(
lnn
d2n

) ,
We have Kn → ∞ as n→ ∞, and we have for the aforementioned graph invariants:

ω−(Gn) ∼ Kn, ω(Gn) ∼ Kn, ψ(Gn) ∼ Kn, χ(Gn) ∼ Kn, δ
∗(Gn) ∼ Kn and ∆(Gn) ∼ Kn.

Proof Lemma 1. (a) All of the points of X1, . . . , Xn that are in a disk with diameter d also form
a clique in Gn. Therefore no such disk can contain more points than the clique number ω, so we
find ω− ≤ ω.

(b) For a largest clique in the graph Cmax ⊂ Gn we have: |Cmax|
α(Cmax)

= ω, therefore using the

definition of the stability quotient ψ we find ω ≤ ψ.
(c) By definition of χ there is a colouring that partitions Gn into χ stable sets S1, . . . , Sχ.

For any subgraph H ⊂ Gn, the induced sets S′
1, . . . , S

′
χ of S1, . . . , Sχ in H are also stable and

thus each have at most α(H) vertices. The induced sets S′
1, . . . , S

′
χ also form a partition of H,

for the number of vertices |H| we find therefore |H| ≤ χ · α(H). Since the argument holds for

any subgraph H ⊂ Gn we conclude that ψ := supH⊂Gn

|H|
α(H) ≤ χ.

(d) By Proposition 1 of [3], the degeneracy δ ∗ (G) of a graph G, with n vertices, is equivalent
to the smallest integer k for which there is an ordering of the vertices v1, . . . , vn in which the
the degree of every vertex vi is at most k within the induced subgraph of vertex set {v1, . . . , vi}.
Consider such an ordering for the vertices of G, we colour the graph with δ∗ + 1 colours by
giving every vertex, represented as vi in the ordering, a colour different from its neighbours in
the induced subgraph of the vertex set {v1, . . . , vi}. From Proposition 1 in [3] we know that
there are at most δ∗ such neighbours, so for every vertex vi there is a colour that has not been
used before in the ordering. We conclude that χ(G) ≤ δ∗ + 1.

(e) Any vertex in a graph G is smaller than the maximum degree ∆(G), therefore all vertices
of all subgraphs H ⊂ G have degree at most ∆(G). Giving us δ∗ + 1 ≤ ∆+ 1.

The following two theorems will allow us to prove the results on the graph invariants in the
sparse case from Theorem 1. The first theorem provides us with a lower bound for ω−(Gn) and
the second with an upper bound for ∆(Gn). By the graph invariant ordering of Lemma 1, the
result of Theorem 3 is also true for the other graph invariants, namely for the clique number
ω(Gn), the stability quotient ψ(Gn), the chromatic number χ(Gn), the degeneracy δ∗(Gn) and
the maximal degree ∆(Gn). Similarly, the result of Theorem 4 holds for these graph invariants
and the hitting number ω−(Gn) as well.

Theorem 3. For any ϵ > 0 there is the following lower bound on the hitting number ω−(Gn):

P[ω−(Gn) < (1− ϵ)Kn] = o(1).
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Theorem 4. For any ϵ > 0 there is the following upper bound on the maximal degree ∆(Gn):

P[∆(Gn) > (1 + ϵ)Kn] = o(1).

The proof of Theorem 3 and Theorem 4 can be found in Section 2.2. We use these theorems
to prove the main result of the sparse case:

Theorem 1. Suppose that as n→ ∞ we have d→ 0 and we have that d2n is o(lnn) and no(1).
Let

Kn =
lnn

ln
(
lnn
d2n

) ,
We have Kn → ∞ as n→ ∞, and we have for the aforementioned graph invariants:

ω−(Gn) ∼ Kn, ω(Gn) ∼ Kn, ψ(Gn) ∼ Kn, χ(Gn) ∼ Kn, δ
∗(Gn) ∼ Kn and ∆(Gn) ∼ Kn.

Proof Theorem 1. By applying the ordering of the graph invariants in Lemma 1 to Theorem 3,
we also find for any ϵ > 0 that the lower bound (1 − ϵ)Kn also holds for the maximal degree
∆(Gn) with probability 1 − o(1). By also applying Lemma 1 to Theorem 4 we similarly find
that the upper bound (1 + ϵ)Kn also holds for the hitting number ω− with probability 1− o(1),

again for any ϵ > 0. We thus find that for any ϵ > 0 we have P[ |ω
−(Gn)
Kn

− 1| ≥ ϵ] = o(1), as

well as P[ |∆(Gn)
Kn

− 1| ≥ ϵ] = o(1). We have the same results for the other invariants in Lemma

1 that are between ω−(Gn) and ∆(Gn). We conclude that the convergence ω−(Gn)
Kn

→ 1 and
∆(Gn)
Kn

→ 1 hold in probability. For the clique number ω, the stability quotient ψ, the chromatic
number χ and the degeneracy δ∗ of Gn we find the same results. This gives us the desired result
of asymptotic equivalence to Kn for these graph invariants of Gn.

Now that we have established all the necessary theorems for the sparse case we are ready to
answer the question raised in the introduction about the special case. The proof of the corollary
is part of my contribution.

Corollary 1. If we have Gn = G(Vn, d), where d(n) is such that d2n = C is constant, then
the expected degree of every vertex X1, . . . , Xn is constant and the following graph invariants
ω−(Gn), ω(Gn), ψ(Gn), χ(Gn), δ

∗(Gn),∆(Gn) are all asymptotically equivalent to Kn as defined
in Theorem 1.

Proof Corollary 1. For any point Xi we have that, almost surely, for sufficiently large n, the disk
D centred around Xi with radius d is contained in the unit square, because the event that Xi

lies on the boundary of the unit square has probability 0. The probability of any vertex being
inside the disk D is proportional to the area λ(D) of the disk: ν(D) = λ(D). For the area of the
disk we find λ(D) = π

4 d
2. So for any vertex Xi we find that for sufficiently large n the expected

order of Xi is given by: E[d(Xi)] = (n − 1) · ν(D) = π
4 d

2(n − 1) → π
4C as n → ∞. This shows

the first part of Corollary 1. The second part follows from applying Theorem 1, since d2n is
both o(lnn) and no(1). To see this, notice that for any constant C we have C

lnn → 0 and also

C = n
lnC
lnn = no(1).

We prove the theorem 2 of the dense case using the following two theorems:
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Theorem 5. Suppose that d→ 0 as n→ ∞. For any 0 < σ < νmax, we have that lower bounds
on the clique number ω−(Gn) and the stability quotient ψ(Gn) hold with probability 1− e−Ω(d2n):

ω−(Gn) ≥ σ
π

4
d2n

and

ψ(Gn) ≥ σ

√
3

2
d2n

Theorem 6. Suppose that as n → ∞ we both have d → 0 and d2n
lnn → ∞. For any νmax < σ,

the following upper bounds on ω(Gn) and χ(Gn) hold with probability 1− e−Ω(d2n):

ω(Gn) ≤
π

4
σd2n

and

χ(Gn) ≤
√
3

2
σd2n

The proof of Theorem 5 can be found in Section 2.3 and the proof of Theorem 6 in section
2.4. From these theorem, we prove the main results of the dense case:

Theorem 2. Suppose that as n → ∞ we have d → 0 and also we have d2n
ln(n) → ∞ as n → ∞.

Then for Kn = νmax
π
4 d

2n, we have:

ω−(Gn) ∼ Kn, ω(Gn) ∼ Kn, ψ(Gn) ∼
2
√
3

π
Kn, χ(Gn) ∼

2
√
3

π
Kn.

Proof Theorem 2. Consider arbitrary σ, σ′ satisfying 0 < σ < νmax < σ′. We apply the graph
invariant ordering of Lemma 1 to Theorem 5 and Theorem 6 to find that the upper bounds of
ω and χ also hold with probability 1− e−Ω(d2n) for ω− and ψ respectively. Similarly, the lower
bounds of ω− and ψ also hold with probability 1− e−Ω(n) for ω and χ respectively. This means
that:

P
[

σ

νmax
Kn ≤ ω− ≤ σ′

νmax
Kn

]
= 1− eΩ(d2n) − e−Ω(n),

and we find the same for ω, π
2
√
3
· ψ and π

2
√
3
· χ. We thus find for arbitrary ϵ > 0 that:

P
[ ∣∣∣∣ω−

Kn
− 1

∣∣∣∣ > ϵ

]
= 1− eΩ(d2n),

and so ω− ∼ Kn. With the same reasoning we find ω ∼ Kn, ψ ∼ 2
√
3

π Kn and χ ∼ 2
√
3

π Kn as
well.

2.2 Bounds in the sparse case

Within this section we give proofs on the sparse case, both on the lower bound in Theorem 3 and
on the upper bound in 4, for which we assume that d2n is both o(lnn) and no(1) as n→ ∞. We
start by stating a lemma that is used in the lower bounds, both in the sparse case of Theorem 3
and in the dense case of Theorem 5.
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Lemma 2. Consider a distribution in the plane ν with finite νmax. For any 0 < σ < νmax there
exist ρ > 0 and η > 0, where for all 0 < r < ρ the following holds: there are ηr−2 pairwise
disjoint open disk where each disk D has radius r and satisfies ν(D) > σλ(D).

Proof Lemma 2. For the proof we refer to the proof of Lemma 4.3 in [4]. We include a proof of
the special case of the uniform distribution on the unit square here. We denote this distribution
ν, for which we have νmax = 1. Here we have for any σ < νmax that any ball B that is contained
in the unit square satisfies ν(B) > σλ(B). Any square with sides of length d contains a ball of
diameter d = 2r. So the example can be proven by showing that for some ρ, η > 0 there exist
for any r < ρ at least ηr−2 pairwise distinct squares all contained within the unit square. For
squares with sides of length d, ⌊ 1

d⌋ such squares fit length-wise in the unit square. We have the

following algebraic property for C > 4: ⌈C
2 ⌉ ≤

C
2 + 1 < C − 1 ≤ ⌊C⌋. By applying this property

we deduce that we can fit at least ⌈ 1
2d⌉

2 pairwise distinct squares of side d in the unit square,
when d < 1

4 . So for r < 1
8 we have at least 1

16r
−2 pairwise distinct disks where for each disk D

we have ν(D) > σλ(D), proving the example for ρ = 1
8 and η = 1

16 .

The next lemma gives bounds on the tails of the binomial distribution, the lower bound will
be used in Theorem 3 and the upper bound in Theorem 4.

Lemma 3. For a binomial distribution B(n, p), where n ∈ N and 0 ≤ p ≤ 1, we have the
following bounds on the tails of the distribution: For each integer k with µ := np ≤ k ≤ n, for a
random variable X ∼ B(n, p), we have,( µ

ek

)k
≤ P[X ≥ k] ≤ 2

(eµ
k

)k
.

Proof Lemma 3. For this proof we refer to Lemma 4.4 of [4].

We now state a lemma that simplifies the proof of Theorem 3 and Theorem 4.

Lemma 4. For Kn defined as:

Kn :=
lnn

ln
(
lnn
d2n

) ,
as n→ ∞ we have Kn → ∞. Also, for any function f(n) that is Θ(d2n), we have the following
asymptotic equivalence:

Kn ln

(
Kn

f(n)

)
∼ lnn.

Proof Lemma 4. For the proof that Kn → ∞ as n→ ∞, we refer to Lemma 5.3 in [4].

For the asymptotic equivalence, we first prove that: ln
(

Kn

f(n)

)
∼ ln

(
lnn
d2n

)
. For the first we find

by using f(n) = Θ(d2n):

ln

(
Kn

f(n)

)
= ln

(
Kn

Θ(d2n)

)
= ln

(
Kn

d2n

)
− ln(Θ(1))

= ln

(
lnn

d2n

)
− ln

(
ln

(
lnn

d2n

))
−Θ(1),

8



where the latter follows from applying the definition of Kn and subsequently rewriting the loga-
rithm. Substituting the numerator in the following fraction we find for the limit:

lim
n→∞

 ln
(

Kn

f(n)

)
ln
(
lnn
d2n

)
 = lim

n→∞

(
ln
(
lnn
d2n

)
− ln

(
ln
(
lnn
d2n

))
−Θ(1)

ln
(
lnn
d2n

) )

= lim
n→∞

(
1−

ln
(
ln
(
lnn
d2n

))
ln
(
lnn
d2n

) − 0

)

= lim
ln( lnn

d2n
)→∞

(
1−

ln
(
ln
(
lnn
d2n

))
ln
(
lnn
d2n

) )
= 1,

because as n → ∞ we also have ln
(
lnn
d2n

)
→ ∞. This shows the asymptotic equivalence

ln
(

Kn

f(n)

)
∼ ln

(
lnn
d2n

)
. The Lemma follows by multiplication of Kn on both sides.

By using Lemma 4, we find the following result which appears both in Theorem 3 and
Theorem 4:

Corollary 2. For a function f(n) that is Θ(d2n) we have that:(
Kn

f(n)

)Kn

= n1+o(1).

Proof Corollary 2. Since f(n) is Θ(d2n), we use Lemma 4 to conclude that:(
Kn

f(n)

)Kn

= nKn
ln(Kn/f(n))

lnn = n1+o(1).

Using the previous lemmas and Corollary 4, we prove Theorem 3:

Theorem 3. For any ϵ > 0 there is the following lower bound on the hitting number ω−(Gn) of
the graph Gn:

P[ω− < (1− ϵ)Kn] = o(1).

Proof Theorem 3. Consider p := (1− ϵ)νmaxd
2 π
4 , for which we have the distribution Z ∼ B(n, p)

with µ = np = Θ(d2n). We have for sufficiently large n that (1− ϵ)Kn > µ, because if (1− ϵ)K
where O(d2n), then using Lemma 4 we would find for the function f(n) := µ = Θ(d2n) the

following function g(n) := Kn ln
(

Kn

f(n)

)
= O(d2n), with the property that g(n) ∼ lnn, this

contradicts our assumption that d2n = o(lnn). This means that we can apply Lemma 3 for the
lower bound on the tail of the binomial distribution:

P[Z > (1− ϵ)Kn] ≥
(

µ

e(1− ϵ)Kn

)(1−ϵ)Kn

=

(
e(1− ϵ) · Kn

µ

)Kn·−(1−ϵ)

,

for which we apply Corollary 2 with f(n) = µ
e(1−ϵ) = Θ(d2n). Whereby we find:

P[Z > (1− ϵ)Kn] ≥ n−(1+o(1))(1−ϵ) = n−(1−ϵ+o(1)).
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We are interested in a family of pairwise disjoint disks, for which every disk D has radius d and
with ν(D) > (1− ϵ)νmaxλ. By Lemma 2 we can find ηd−2 such disks for some factor η and for
sufficiently large n, such that d < ρ for some ρ > 0. For any specific disk D from the family we
thus have ν(D) > p and therefore the probability that the disk D contains more than (1− ϵ)Kn

vertices is at least P[Z > (1 − ϵ)Kn]. For the hitting number ω− to be less than (1 − ϵ)Kn, all
the disks in the family need to contain less than (1− ϵ)Kn disks. This gives us:

P[ω− < (1− ϵ)Kn] ≤ (1− P[Z > (1− ϵ)Kn])
ηd−2

≤ e−P[Z>(1−ϵ)Kn]ηd
−2

.

We conclude the proof with the notion that d2n is no(1), giving us:

P[ω− < (1− ϵ)Kn] ≤ e−n−(1−ϵ+o(1))ηd−2

= e−
nϵ+o(1)

d2n = e−nϵ+o(1)

= o(1),

thus showing that for every ϵ > 0, we have P[ω− < (1− ϵ)Kn] = o(1).

Using Lemma 3 and Corollary 2, we can proof Theorem 4:

Theorem 4. Suppose that for n → ∞, we have d2n = o(lnn). For any ϵ > 0 we have the
following upper bound on the maximal degree ∆(Gn):

P[∆(Gn) > (1 + ϵ)Kn] = o(1).

Proof Theorem 4. Let ϵ > 0. Let p = νmaxπd
2, meaning that for any disk B of radius d we have

ν(B) ≤ p. We have distribution Z = B(n, p) with µ = np, this means that µ = Θ(d2n). We
have (1+ ϵ)Kn > µ for sufficiently large n, as shown in Theorem 3, so we can apply Lemma 3 to
find the following upper bound on the tail of distribution Z:

P[Z ≥ (1 + ϵ)Kn] ≤ 2

(
Kn

eµ

)−(1+ϵ)Kn

= 2

(
Kn

f(n)

)−(1+ϵ)Kn

,

where we let f(n) = eµ = Θ(d2n). We now apply Corollary 2, so that we find:

P[Z ≥ (1 + ϵ)Kn] ≤ no(1) · n−(1+o(1))(1+ϵ) = no(1)−(1+ϵ).

Now, let the disks D1, . . . , Dn be of radius d and centred around the vertices X1, . . . , Xn of
Gn respectively. In order for the maximum degree to satisfy ∆(Gn) ≥ (1 + ϵ)Kn, at least one
of the disks D1, . . . , Dn needs to contain at least (1 + ϵ)Kn vertices. We find therefore for the
upper bound of ∆(Gn):

P[∆(Gn) ≥ (1 + ϵ)Kn] ≤
∑

D1,...,Dn

P[Di contains at least (1 + ϵ)Kn vertices]

= nP[Z ≥ (1 + ϵ)Kn]

= no(1)−ϵ

= o(1),

meaning that P[∆(Gn) ≥ (1 + ϵ)Kn] → 0 as n→ ∞. We conclude that for any ϵ > 0, the upper
bound ∆(Gn) ≤ (1 + ϵ)Kn holds in probability as n→ ∞.
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2.3 Lower bounds in the dense case

In this section we discuss the proofs of the lower bounds of the hitting number ω−(Gn) and the
stability quotient ψ(Gn) from Theorem 5. The upper bounds for the clique number ω(Gn) and
the chromatic number χ(Gn) will be discussed in the next section. In both sections we assume

that as n → ∞ we have d → 0 and d2n
lnn → ∞. We first give a preliminary result, which is a

simplification of the ”Chernoff Bound” in [4]. This lemma will be used in this section and the
next.

Lemma 5. Let the random variable Y with mean µ have either a binomial distribution or a
Poisson distribution. Let ϵ > 0, we have the following upper bound on the tails of the distribution:

P[ |Y − µ| ≥ ϵµ] ≤ e−Ω(µ)

Proof Lemma 5. The proof follows from the Chernoff bound, which can be found in Lemma 4.5
of [4].

The next lemma is used in both lower bounds of the hitting number ω−(Gn) and the stability
quotient ψ(Gn) in Theorem 5. It shows for arbitrary K > 0 the existence of a disk D with
diameter Kd containing at least λ(D)τn vertices. This gives us lower bounds for the graph

invariants with probability e−Ω(d2n). For the sake of simplicity, this proof somewhat differs from
Lemma 5.5 of [4], where the existence of ηd−2 many disks is used, for some η > 0. From this the
same lower bound is concluded, holding with probability e−Ω(n) instead.

Lemma 6. For the graph Gn = G(Vn, d) with τ < νmax and K > 0, consider An to be the event
that there exists no disk D of diameter Kd which contains more than λ(D)τn of the vertices

X1, . . . , Xn. The probability of this event occurring is P[An] = e−Ω(d2n).

Proof Lemma 6. Let τ < τ ′ < νmax. By Lemma 2, we have for sufficiently large n that there
exists a disk D of diameter Kd, for which the probability that a vertex is contained in it is
ν(D) ≥ λ(D)τ ′. Consider the distribution Z ∼ B(n, λ(D)τ ′), from the existence of the disk D,
we find that the probability of the event An occurring is P[An] ≤ P[Z < λ(D)τn]. From applying
the Chernoff bound in Lemma 5, we find that the probability that there is no disk that contains
less than λ(D)τn vertices is:

P[An] ≤ P[Z < λ(D)τn] ≤ e−Ω(λ(D)n) = e−Ω(d2n).

Together with the last lemma, Lemma 7 will support the proof of the lower bound of ψ(Gn)
in Theorem 5. This lemma contains a deterministic result for the lower bound of the stability
quotient ψ(G) for some deterministic graph G = G(V, d). Lemma 7 can also be found in Lemma
5.2 of [4], with the addition here that the lower bound applies to the stability quotient as well,
meanwhile [4] uses this bound for the chromatic number χ(Gn).

Lemma 7. For any ϵ > 0, there is a K for which the following is true: if for a proximity graph
G(V, d), with set of points V in the plane and d > 0, there exists a disk D of diameter at least Kd
with at least λ(D)τn of the points of V , then we have the following lower bound on the stability

quotient: ψ(G) ≥ (1− ϵ)(
√
3
2 )τd2n

Proof Lemma 7. Let ϵ be such that 0 < ϵ < 1. By Lemma 5.2 of [4], there is some K for which
the number of disjoint open disks of diameter d that meet a disk D of diameter at least Kd is
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at most λ(D)

(1−ϵ)(
√
3/2)d2

.

Consider the induced subgraph H of G(V, d), such that H consists of all points on the disk D.
The stability number of the subgraph α(H) is the largest independent set of H, meaning that
it is the largest such set that has pairwise distinct disks in the disk representation. Thus α(H)
is at most the maximum number of disjoint open disks of diameter d meeting D. Recall that D
contains at least λ(D)τn points, so we conclude:

ψ(G(V, d)) ≥ |V (H)|
α(H)

≥ (1− ϵ)

√
3

2
τd2n

Lemma 6 and Lemma 7 provide the basis for the proof of the lower bounds of the hitting
number ω−(Gn) and the stability quotient ψ(Gn) in Theorem 5.

Theorem 5. Suppose that d→ 0 as n→ ∞. For any 0 < σ < νmax, we have that lower bounds
on the clique number ω−(Gn) and the stability quotient ψ(Gn) hold with probability 1− e−Ω(d2n):

ω−(Gn) ≥ σ
π

4
d2n

and

ψ(Gn) ≥ σ

√
3

2
d2n

Proof Theorem 5. Consider σ < τ < νmax. For arbitrary K > 0 we have a disk D of radius Kd.
This gives λ(D) = π(Kd

2 )2. Let An be the event that all such disk contain less than λ(D)τn

points. Lemma 6 shows that this event has probability P[An] ≤ e−Ω(d2n). If we let K = 1, then
we find that the lower bound on the clique number ω−(Gn) ≥ σ π

4 d
2n holds with probability

e−Ω(d2n).
What remains is to show the lower bound on the stability quotient ψ(Gn). We use a weaker

variant of Lemma 7, namely that for any ϵ > 0 there is a K such that if there exists a disk D of

diameter Kd that contains at least λ(D)τn points, then the lower bound ψ(Gn) ≥ (1−ϵ)τ
√
3
2 d

2n
holds. Note that there is also such a K when ϵ is such that (1− ϵ)τ = σ. Lemma 6 shows that

for this K the event An has probability P[An] ≤ e−Ω(d2n). In the event of An occurring, the
conditions for applying Lemma 7 are satisfied. We therefore conclude, by Lemma 6 together

with Lemma 7, that the lower bound on the stability quotient ψ ≥ (1 − ϵ)
√
3
2 τd

2n, holds with

probability e−Ω(d2n) as well.

2.4 Upper bounds in the dense case

For the dense case we assume that as n → ∞ both d → 0 and d2n
lnn → ∞ hold. In order to find

the upper bounds in Theorem 6 for the clique number ω(Gn) and the chromatic number χ(Gn),
we use partitions of the plane, which we denote here as a tiling consisting of tiles all of the same
area A. In general these tiles are not all required to be of the same shape. But the results here do
depend both on properties on the shape of these tiles as well as the maximum number of vertices
in a tile. The results in Lemma 8 on the clique number ω within tile structures is independent on
the shape of the tiles. For the other results we specifically assume a standardised hexagonal
tiling of the plane. For the standardised hexagonal tiling we differentiate between the distance

12



between the centres of adjacent hexagons being 1 and this distance being scaled by some fac-
tor s > 0. We call the latter the scaled hexagonal tiling. We have the following precise definitions:

Definition of standardised hexagonal tiling: A standardised hexagonal tiling T is a
tiling consisting of tiles which are all regular hexagons. These tiles are all of the same shape, in
fact they are of the size such that the distance between centres of neighbouring tiles is 1. An

intuitive choice for the coordinates of the centres is: k(1, 0) + l( 12 ,
√
3
2 ) for k, l ∈ Z.

Definition of scaled hexagonal tiling: For a factor s > 0, the scaled hexagonal tiling sT
is a hexagonal tiling which is scaled such that the distance between adjacent hexagons is s instead.

In our results we are interested in specific properties of the tiles in the tile structures. We let
a diameter τ of a tile structure be the maximum distance between two points in the same tile.
We let radius r of a tile structure be the smallest number such that any tile has a point P for
which the tile is contained in a disk Dr(P ) with radius r centred around P . For the standardised

(and the scaled) hexagonal tiling, the area of the tiles are A =
√
3
2 (and As =

√
3
2 s

2). We have a
diameter of τ = 2√

3
(and τ = 2√

3
s) and a radius of r = 1√

3
(and r = 1√

3
s).

We continue by giving upper bounds on the clique number ω(G) and the chromatic number
χ(G) for the proximity graph G(V, d) of a deterministic set of points V . These upper bounds
depend on the maximum number of points in a single tile of a tile structure. The results will
form a basis for the proof on the upper bounds of the clique number ω(Gn) and the chromatic
number χ(Gn) in graphs with random points.

Lemma 8. For a tile structure in the plane with tiles each of area A, and the diameter of the
structure τ , where each tile contains at most one of the points of a set of points in the plane V ,
then the clique number ω(G) of the proximity graph G = G(V, d) with threshold distance d has
upper bound:

ω(G) ≤ π

4
(d+ 2τ)2A−1

Proof Lemma 8. Let C be the union of the tiles associated with the points in largest clique of
G(V, d). The diameter of C is at most d + 2τ , (for τ the maximum diameter of the tiles) since
for any pair of points in C, the points both have a distance of at most τ to points in their
tiles that are in the clique of G(V, d), therefore the total distance between the points of the pair
is at most d+2τ . The area of C is therefore (by Lemma 9 of [6]) at most π

4 (d+2τ)2. We conclude:

A · ω(G) ≤ π

4
(d+ 2τ)2

Lemma 9. For a (deterministic) set of points V in the plane, with threshold distance d, we have
the proximity graph G = G(V, d). For arbitrary δ > 0, we let s = δd be the distance between
centres of adjacent hexagons of a scaled hexagonal tiling sT . For a finite maximum number of
points in each tile M, we have the following upper bounds on ω(G) and χ(G):

ω(G) <
π

2
√
3
· M(δ−1 + 3)2

χ(G) <M(δ−1 + 3)2

13



Proof Lemma 9. We have the scaled hexagonal tiling, with each of its tiles having an area of

As =
√
3
2 s

2 and a diameter of τ = 2√
3
s. This satisfies the conditions in Lemma 8 for applying

the upper bound on the clique number ω(G). We adjust Lemma 8 since each tile can contain at
most M vertices, doing this we find:

ω(G) ≤ Mπ

4

(
d+ 2 · 2√

3
s

)2
(√

3

2
s2

)−1

=
π

2
√
3
· M

(
δ−1 +

4√
3

)2

the weaker upper bound on ω(G) follows.

For the upper bound on χ(G) we build clusters of the standardised hexagons as described in
[1]. These identical clusters will form a repeating pattern partitioning the plane. In fact, here
we can build such clusters with the centres of their outer hexagons all lying on a rhombus.

Choose an arbitrary hexagon H to be at the centre with label A. We consider hexagons of other
clusters to have the same label if they have the same relative position in the cluster. For H we
now look for another closest hexagon H ′ with the same label A. There will be six such hexagons,
all within different clusters. From our choice on the shape of the clusters, there is a straight
chain of hexagons between H and H ′. We want the centres of H and H ′ to be at least d + 2r
apart with r being the radius of the scaled regular hexagon. This way, no two points anywhere
in the hexagons H and H ′ will have a distance less than d between them. Doing this means that
the colours of any hexagon can be reused in any other cluster, namely for the hexagons that have
the same label. Since the maximum number of vertices in any hexagon is M, we need at most
M different colours per hexagon of a cluster. What is left is to find the number of hexagons per
cluster. Since the distance between the centres of adjacent hexagons is s, the chain from H to
H ′ needs to consist of at least ⌈d+2r

s ⌉ hexagons. By formula (1) of section IV of [1], the number

of hexagons in each cluster is ⌈d+2r
s ⌉2, with the radius of the hexagon r = 1√

3
s we find:

χ(G) ≤ M⌈d+ 2r

s
⌉2 ≤ M

(
δ−1 +

2√
3
+ 1

)2

,

from which the weaker upper bound on χ(G) follows as well.

Using the previous Lemmas we can prove Theorem 6 on the upper bounds of the clique num-
ber ω(Gn) and the chromatic number χ(Gn) in the dense case.

Theorem 6. Suppose that as n → ∞ we both have d → 0 and d2n
lnn → ∞. For any νmax < σ,

the following upper bounds on ω(Gn) and χ(Gn) hold with probability 1− e−Ω(d2n):

ω(Gn) ≤
π

4
σd2n

and

χ(Gn) ≤
√
3

2
σd2n

Proof Theorem 6. Choose a τ such that νmax < τ < σ. We let δ > 0 be arbitrary and we let
s = δd be the factor by which the standardised hexagonal tile structure is scaled. For the area

of each tile we thus have As =
√
3
2 s

2. Let Yn denote the maximal number of points X1, . . . , Xn
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in a tile. Our aim is to show that the upper bound τAsn for Yn holds with probability 1−e−Ω(d2n).

Let p(n) = Asνmax, so we have for any tile H that ν(H) ≤ p. We partition the plane into
at most 2

p sets, where for each set S in the partition we have p
2 < ν(S) ≤ p. We denote this

partition as P. We obtain P by starting with the partition of the hexagonal tile structure and by
repeatedly unionising sets S for which ν(S) ≤ p

2 . The maximal number of points in a hexagonal
tile is therefore at most the maximal number of points in a set of P.

Consider the distribution Zn ∼ B(n, p). Since τAsn = τ
νmax

np > np we can apply the
Chernoff bound of Lemma 5:

P[Zn > τAsn] = e−Ω(d2n),

giving τAsn as the upper bound for Zn with probability 1 − e−Ω(d2n). For any set S in the
partition P we have ν(S) ≤ p. Therefore, for any such S, the distribution Zn also gives the up-
per bound τAsn for the number of vertices X1, . . . , Xn contained in S, holding with probability
1− e−Ω(d2n).

We return to our aim of finding for Yn the upper bound τAsn to hold with probability
1 − e−Ω(d2n). Recall that the maximal number of vertices in a tile is less then the maximal
number of vertices in sets of the partition P. Therefore:

P[Yn > τAsn] ≤
∑
S∈P

P[S contains more than τAsn vertices of Gn] ≤
(
2

p

)
P[Zn > τAsn],

from which we find that the upper bound for Yn, holds with probability e−Ω(d2n):

P[Yn > τAsn] ≤ eln(
2
p )−Ω(d2n) = eO(1)−2 ln(d)−Ω(d2n) = e−Ω(d2n),

which shows that for Yn, the maximal number of points X1, . . . , Xn in a tile, the upper bound
τAsn holds with probability 1− e−Ω(d2n). Let δ be specifically such that (1 + 3δ)2τ = σ. Also,
notice that when the upper bound for Yn holds, we can apply Lemma 9 to find upper bounds on
the clique number ω(Gn) and the chromatic number χ(Gn). So for the clique number ω(Gn) we
find the upper bound:

ω(Gn) <
π

2
√
3
· τAsn · (δ−1 + 3)2 =

π

2
√
3

(√
3

2
s2

)
· (δ−1 + 3)2τn,

which we simplify to be:

ω(Gn) <
π

4
d2(1 + 3δ)2τn =

π

4
σd2n,

holds with probability 1 − e−Ω(d2n). Similarly, for the chromatic number χ(Gn), we find the
upper bound:

χ(Gn) < τAsn · (δ−1 + 3)2 =

(√
3

2
s2

)
· (δ−1 + 3)2τn,

which we also simplify:

χ(Gn) <

√
3

2
d2(1 + 3δ)2τn =

√
3

2
σd2n.

also holds with probability 1− e−Ω(d2n), concluding the theorem.

15



The upper bound of the dense case differs from the upper bound provided in [4], since the
concept of a triangular lattice is not mentioned here, instead we have results for vertices anywhere
within the hexagonal tiles.

3 Generalisations

If not for time constraints, the first generalisation to have been integrated into this thesis would
be the following: we have a probability variable p, where pairs of vertices that are sufficiently
close to each other, are only connected with a probability p. However, there is no guarantee
that the bounds presented within this thesis would provide precise results for the different graph
invariants.

Another generalisation of these results for random geometric graphs in the plane, is by con-
sidering more than two dimension, as is often already done. This may already be applied to
proofs within this thesis, for example by considering n-dimensional balls instead of disks, as they
are used in most proofs here.

The results can also be extended to different distance norms, as is for example done in [7].
However, with the application of channel assignments in the plane [4], the chromatic number
may mostly have applications in two dimensions.

In the article [4], McDiarmid shows an interest in results between the sparse case and the
dense case. For this results on the ratio of the chromatic number and the clique number χ

ω have
been found in [5].

One might also look for results on other graph invariants in random geometric graphs. An
example of this is the k-improper chromatic number χk, studied in [2].

I want to thank both the first supervisor Gilles Bonnet, for all the thoughtful comments, as
well as the second assessor Tobias Müller.
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