
Adaptive In-Network Queue Management
based on the Stochasticity

of Network Flows

Bachelor Thesis
University of Groningen

Author: Sunny Shu

Student No.: S3925447

Primary Supervisor: Prof. Dr. Boris Koldehofe

Secondary Supervisor: Saad Saleh

November 16, 2023



2 CONTENTS

Contents
Page

Abstract 4

Acronyms 5

1 Introduction 6
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background Literature Review 9
2.1 Random early detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Controlled Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Proportional Integral controller Enhanced . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Fair/Flow Queue Controlled Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 CoDel BLUE Alternate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Section Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Traffic Distribution Models 14
3.1 Poisson distribution process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Pareto Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Weibull Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Constant Bit Rate and Variable Bit Rate . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Section Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Proposed Technique 19
4.1 Higher-order derivatives Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Higher-order derivatives of Sojourn Time . . . . . . . . . . . . . . . . . . . 20
4.1.2 Higher-order derivatives of Buffer Size . . . . . . . . . . . . . . . . . . . . 22

4.2 Working Principle and Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Operational Design and Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Stage 1: Enqueue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.2 Stage 2: Dequeue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.3 Stage 3: Packet Drop Mechanism . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.4 Dropping Phase and Non-dropping Phase . . . . . . . . . . . . . . . . . . . 30
4.3.5 Choices of Uniform Dropping Conditions . . . . . . . . . . . . . . . . . . . 30

5 Simulations Setup 31
5.1 Tools and Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Configurations and Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Traffic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.3 AQM Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.4 Traffic Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



CONTENTS 3

5.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Performance Analysis 39
6.1 HTTP CBR Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1.1 Tailoring Guidance for dAQM Configuration . . . . . . . . . . . . . . . . . 39
6.2 Flows under various Traffic Distributions . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.1 Poisson Distributed Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.2 Various Distribution Models . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Short and Long Flows under Varying Network Parameters . . . . . . . . . . . . . . 50
6.3.1 Drop Rate Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.2 Offered Load Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3.3 Packet Size Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.4 Section Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Conclusion and Future Work 60
7.1 Key Research Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Acknowledgements 62

Submitted Research Paper 63

Bibliography 64

Appendices 69
A Performance Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



4

Abstract
There is a vast growing trend in the number of Internet users and Internet of Things (IoT) devices,
however, due to buffer bloat and buffer overflow issues, ensuring a consistent Quality of Service
(QoS) to the end-users cannot be guaranteed. Active Queue Management (AQM) techniques are des-
ignated to address these buffer issues, yet, they have some challenges in accurately estimating the
current congestion level within the network buffers. Like Controlled Delay (CoDel), drop packets
based on a fixed interval, while Random Early Detection (RED), drops packets based on the calcula-
tion of its average queue length. The state-of-the-art algorithms proved to have limited traffic features
in indicating the congestion level precisely. Furthermore, they also have limited programmability and
configurability. This motivates our research for an innovative AQM technique called Derivative-based
Active Queue Management (dAQM). It provides an understanding of the rate of change of congestion
in the current network, using the calculation of high-order derivatives of sojourn time and buffer size.
The dAQM algorithm uses eight advanced traffic features, including the constant value, and the first,
second, and third derivatives of sojourn time and buffer size. Each of the eight traffic features provides
unique programmability and configurability for their drop rates, thresholds, and drop durations.

In this thesis, we perform network simulations for five state-of-the-art AQMs (RED, Proportional
Integral Controller Enhanced (PIE), CoDel, Fair/Flow Queue CoDel (FQ-CoDel), CoDel and BLUE
Alternate (COBALT)) in conjunction with the dAQM under various traffic distribution models (Pois-
son, Pareto, Weibull, Constant Bit Rate (CBR) and Variable Bit Rate (VBR)). In addition, we would
evaluate the effectiveness and adaptiveness of the dAQM algorithm for various flow categories (File
Transfer Protocol (FTP), Streaming, Hypertext Transfer Protocol (HTTP), Voice over Internet Pro-
tocol (VoIP) and Gaming), and under different transportation layer protocols (Transmission Control
Protocol (TCP) & User Datagram Protocol (UDP)). Additionally, we would also evaluate the per-
formance of dAQM under varying network parameters, such as dAQM drop rate, load, and packet
size. The performance analysis shows that dAQM is particularly efficient in employment with TCP
protocol, since TCP’s congestion control mechanism can increase variations in the sojourn time and
buffer size, thus aiding its higher-order derivatives calculation. The performance of AQM techniques
is highly influenced by the traffic patterns. dAQM has shown superior effectiveness under Pareto-
distributed traffic, CBR traffic, and VBR traffic, for both short and long flows. Additionally, dAQM
adapts well across varying network parameters and conditions, dAQM consistently ranks among the
top performers in key metrics such as low Packet Loss Ratio (PLR), or low queue length, sojourn
time, and delay, showing its adaptiveness and robustness.
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Acronyms
AQM Active Queue Management.

CAKE Common Applications Kept Enhanced.

CBR Constant Bit Rate.

CDF Cumulative Distribution Function.

COBALT CoDel and BLUE Alternate.

CoDel Controlled Delay.

CWMD Congestion Window.

dAQM Derivative-based Active Queue Management.

DRR Deficit Round Robin.

FCT Flow Completion Time.

FIFO First-In-First-Out.

FQ-CoDel Fair/Flow Queue CoDel.

FQ-RED Fair Queueing with Random Early Detection.

FTP File Transfer Protocol.

HTTP Hypertext Transfer Protocol.

IID Independent and Identically Distributed.

IoT Internet of Things.

PDF Probability Density Function.

PDP Packet Drop Probability.

PIE Proportional Integral Controller Enhanced.

PLR Packet Loss Ratio.

QoS Quality of Service.

RED Random Early Detection.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

VBR Variable Bit Rate.

VoIP Voice over Internet Protocol.
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1 Introduction
Network system has become an integral part of our daily lives, enabling us to communicate, access in-
formation, and carry out various tasks. The IoT allows everyday objects, beyond standard computing
devices, such as vehicles and cameras, to connect to the network. According to the statistics, there
is an exponential increase in the number of Internet users, rising from 4.12 billion since 2019 [1],
with projections to 7.5 billion by 2030 [2]; and growing demand for high-speed connectivity, IoT
connections are expected to grow by 242% from 2019 to 2030 [3].

1.1 Motivation

The connection of these devices requires the provision of high QoS, to ensure efficient and reliable
network performance [4, 5]. However, due to the growing number of devices, maintaining a con-
sistent QoS cannot be guaranteed [6]. The main shortfalls in the optimal management of network
queues. In the network system, a buffer is used to temporarily hold the data before it gets transmitted
from one place to another. As Gettys [7] points out, problems like the full buffer issue and buffer
bloat are evident consequences of buffers that are too large. When packets accumulate in these large
buffers, the time they spend waiting to be transmitted or processed increases, leading to increased
latency. In reference to the dominant protocol TCP, it uses packet loss as a primary indication of
network congestion [7]. When it detects packet loss, it assumes there’s congestion and accordingly
adjusts its data transmission rate. However, this can be problematic in the context of buffer bloat.
Large buffers will delay the packet loss, hence also preventing TCP from recognizing and responding
to congestion. Additionally, problems like buffer overflows occur when more data is received than
the physical memory can handle, resulting in packet loss [8, 9]. Both buffer bloat and buffer overflow
cause degradation to the service quality, such as longer delays, lower connectivity speed, loss of data,
and unstable network connection, hence, reducing user experience.

AQM techniques are based on routers or switches, they are effectively controlling congestion, by
seeking to control packet drop before a buffer becomes full, thereby reducing latency and improving
the QoS.

Furthermore, it is important to offer the right QoS to various types of network traffic. Each traf-
fic category, whether it’s video streaming, data transfers, or other types, has its own QoS require-
ments [10, 11, 12]. These requirements can only be met with precise network traffic modeling and
analysis.

AQM Techniques like RED can help diminish persistent queues, yet there’s a lack of clear guidance
on its parameter configuration in the current network settings, and challenges remain in buffer siz-
ing [13]. As noted by Feng et al. [14], while queue length has been historically used, it’s not always
an accurate predictor of congestion. In [15], it highlights the problems with mechanisms like RED
and CoDel. Such mechanisms, relying heavily on baseline queue statistics, can sometimes result in
excessive packet losses and the global synchronization of sources when multiple packets are dropped
simultaneously [15]. Furthermore, the AQM techniques, including RED, CoDel, PIE, FQ-CoDel,
COBALT, examined in Section 2 offer potential solutions to certain challenges, but they too grapple
with inherent limitations. Predominant issues with many of these techniques are their limited config-
urability and programmability.
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These insights have directed our motivation towards innovative AQM technique. Such technique
should prioritize better accuracy in estimating the current congestion level within the buffer, also ad-
dressing the constraints related to limited features, programmability, and configurability inherent in
most AQMs. We developed a new method to precisely estimate the Packet Drop Probability (PDP)
by leveraging advanced traffic features such as higher-order derivatives of sojourn time and buffer
size [16]. This novel AQM technique is called dAQM. It provides an understanding of the rate of
change of congestion in the current network.

The aim of this study is, to investigate the various probabilistic and stochastic traffic models together
with the congestion control techniques, in modeling and analyzing network traffic flows in the real-
world situation. Specifically, the study will evaluate the performance of different traffic models in
simulating real-world network traffic; investigate the applicability of established AQM techniques in
conjunction with the novel proposed algorithm dAQM in regulating network congestion and main-
taining QoS metrics.

1.2 Problem Statement
Previous AQM algorithms, like CoDel, drop packets on fixed intervals, or RED, drop packets if the
average queue size exceeds some thresholds, therefore cannot provide a dynamic and accurate esti-
mation of the congestion level in the network queue. However, with the dAQM algorithm, we can
provide a more precise estimation of the PDP using the calculation of the first, second, and third
derivatives of sojourn time and buffer size [16].

For example, the first derivative of the sojourn time can provide information on the rate of change of
delay, a positive derivative larger than the threshold means the time packets spend waiting in the queue
is increasing, indicating an early stage of congestion. Then, the first derivative of buffer size provides
information on the rate of change of buffer occupancy, a positive derivative larger than the threshold
means the buffer’s filling rate is increasing, also an indication of an early stage of congestion. The
dAQM mechanism drops packets based on the advanced traffic features while indicating congestion.

1.3 Research Questions
To summarize, this thesis focuses on the following problems:

Q1. How can we design a novel AQM mechanism (dAQM) based on the higher-order deriva-
tives traffic features?

Q2. What measurable impact do the enhanced programming ability and configurability of the
proposed AQM algorithm have on network performance (e.g., maximized throughput,
optimized buffer size, minimal delay)?

Q3. How would the dAQM perform under different transportation layer protocols (TCP &
UDP), flow types (short flow vs long flow), and variations in network parameters (dAQM
drop rate, load, packet size)?

Q4. How does the performance of dAQM algorithm compare to traditional AQMs in handling
variable network flows?
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1.4 Thesis Outline
The thesis is structured into seven main sections. Section 1 introduces the background and motivation
of the research and sets out the problem statement, research objectives, and research significance.
Section 2, introduces the literature review of the existing related work of the AQM techniques. Section
3 introduces the relevance of using traffic models in our research, and defines the multiple traffic
models we would use. Section 4, describes the research methodology and proposed solutions to
our problem statement, including the design and implementation of dAQM. Section 5, describes the
simulations setup, including the tools and configurations used. Section 6, analyzes the performance
of the simulations results, discusses research findings, and answers our research questions. Section 7,
concludes the thesis and proposes directions for future research.
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2 Background Literature Review
Congestion control implementation can be broadly categorized into two types: end-to-end congestion
control and router (or switch) based congestion control [17]. The former is accomplished using the
transport layer protocols. For example, TCP uses a sliding window mechanism, which reduces its
transmission rate upon detecting congestion often inferred from variations in the Round-Trip Time
(RTT). The latter is based on (AQM) mechanisms, which actively drop or mark packets to signal the
end system of potential upcoming congestion, and it relies on cooperation with the TCP algorithm to
make the congestion control more effective [18, 19]. AQM mechanisms are designed to effectively
address the buffer bloat and buffer overflow issues as mentioned in the introduction (Section 1.1).

In this thesis, we focus on the various congestion control algorithms based on the router. The aim is
to maintain high throughput and low delay while keeping average queue sizes low. The field of AQM
has been extensively studied in the previous research. This section provides a literature review of the
related work, specifically their queue discipline, features, working principle, and limitations.

2.1 Random early detection
Random Early Detection (RED) is one of the oldest active queue management techniques, developed
in 1993 [18, 20, 21]. It is based on First-In-First-Out (FIFO) queuing discipline. By marking or
dropping packets, RED mechanism signals to end systems of upcoming congestion, which can help
in avoiding or mitigating congestion if the end systems adjust their transmission rate [19].

The fundamental concept behind the RED algorithm is to reduce congestion by dropping packets
with a specific probability in the early stages of congestion [18]. It works on a Drop-Before-Enqueue
basis. The probability of dropping a new packet upon its arrival, denoted as Pdrop is bounded by four
parameters:

Pmax: the maximum dropping probability
T hmin: the lower threshold
T hmax:the upper threshold

Qavg: the average queue length

The drop probability formula is given by [18, 22]:

Pb =


0 if Qavg ∈ [0,T hmin]

Pmax

(
Qavg−T hmin

T hmax−T hmin

)
if Qavg ∈ [T hmin,T hmax)

1 if Qavg ∈ [T hmax,+∞]

(1)

• When Qavg is below T hmin, Pdrop there is no packet drop, and the drop probability is 0.
• If Qavg is between T hmin and T hmax, Pdrop increases proportionally with the average queue length.
• Otherwise, all incoming packets are dropped. The average queue length, Qavg, is regulated by a
weighting factor.
• wq stands for the queue size weight factor, the current queue length is given by:

Q = (1−wq) ·Qavg +wq ·q (2)
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When multiplex connections reduce their windows at the same time, global synchronization occurs.
RED drops packets from multiple TCP flows at different times, to effectively eliminate the synchro-
nization issue [20]. Additionally, since RED is capable of disrupting TCP flow synchronization, it
reduces the average queue length, and subsequently shortening end-to-end delays [19]. Some features
of RED are designed to be particularly suitable for networks that use the TCP/IP protocol, it can be
gradually implemented to the TCP/IP networks with no additional tempering to the underlying trans-
port protocols, and it can be utilized with various packet scheduling and dropping algorithms [18].

2.2 Controlled Delay
Controlled Delay (CoDel) is an AQM mechanism [13, 23]. Unlike RED, CoDel operates indepen-
dently of network queue size and drop probability [23, 24, 25]. CoDel uses the packet sojourn
time, which is the actual delay experienced by a packet in the router queue, to predict conges-
tion [23, 25, 26].

The fundamental concept behind the CoDel algorithm is to continuously monitor the queuing delay
of packets in the router, signal the congestion if it exceeds the target (by default of 5 ms) [13, 27]. It
works on a Drop-After-Dequeue basis:

In order to distinguish between good and bad queues, CoDel waits for an ‘interval’ of 100 ms (by de-
fault) after detecting a delay above the target. If the sojourn time exceeds the target but does not reach
a 100 ms ‘interval’, no packets would be dropped. Otherwise, CoDel enters the dropping phase, it
maintains a ‘count’ that increases after each (packet) drop. CoDel calculates the next drop time based
on ‘count’. The higher the ‘count’, the more frequently the packets would be dropped. Therefore,
resulting in a linearly increasing packet drop rate. To reduce feedback delay to the sender, CoDel
suggests dropping packets from the head of the queue. When the queuing delay falls below the target
delay, CoDel exits the dropping phase and resets its ‘count’.

There are multiple variants for the formula used to determine the value of the count during the re-
call [27]. One introduced for the next drop time (after the 1st packet has dropped) is calculated
as [23, 25]:

next drop time = time+
interval√

count
(3)

2.3 Proportional Integral controller Enhanced
Proportional Integral controller Enhanced (PIE) is an AQM technique [28, 29]. The technique in-
volves three key components [28]: a) enqueuing with random drops; b) regular updates to drop prob-
ability; c) estimating the rate of dequeuing.

While enqueuing with random drops, PIE randomly drops packets based on a drop probability p,
derived from the ‘drop probability calculation’ component. Similar to RED, PIE also works on a
Drop-Before-Enqueue basis.

At regular updates to drop probability. The queue’s average drain rate, denoted as avgdrate, is derived
from the ‘departure rate estimation’ block. Where the departure rate refers to the rate of successfully
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dequeued packets (not dropped packets). With a high departure rate, it suggests the network is able
to handle the current traffic load, and there is no need to increase the drop probability. The curdel and
olddel , refer to the current and prior estimated queuing delay. Moreover, the drop probability calcu-
lation is influenced by both the current queuing delay estimation and its trend (△(curdel - olddel), 30
ms by default [24]), i.e., whether the delay is increasing or decreasing. When latency is consistent
(curdel = olddel) and matches the target (re fdel , 15 ms by default [24]), the drop probability stabilizes.
The parameter α decides the impact of latency deviation from the target on drop probability, while
β adjusts based on the latency’s direction. The balancing act between latency deviation and jitter is
based on the comparative weight of α and β, where this is the typical Proportional Integral controller
design [28, 30]. Additionally, the parameters are designed to be self-tuning, ensuring PIE is optimized
to its highest performance [28].

The current queuing delay estimation is done through Little’s law [28]:

curdel =
qlen

avgdrate
(4)

Calculate drop probability p as:

p = p+α∗ (curdel − re fdel)+β∗ (curdel −olddel) (5)

Update the prior delay instance:
olddel = curdel (6)

While estimating the rate of dequeuing. The departure rate is only measured when the buffer contains
enough data, specifically, when the queue length is larger than a set threshold. Once reaching this
threshold, it updates the departure count dqcount (the number of bytes departed).

dqcount = dqcount +dqpktsize (7)

If dqcount is larger than dqthreshold , it updates the departure rate and reset the dqcount to zero and start
time to now.

dqint = now− start (8)

dqrate =
dqcount

dqint
(9)

avgdrate = (1− ε)×avgdrate + ε×dqrate (10)

2.4 Fair/Flow Queue Controlled Delay
Fair/Flow Queue Controlled Delay (FQ-CoDel) is an AQM technique as a variant on the CoDel algo-
rithm [31]. The fundamental concept behind the FQ-CoDel algorithm is to establish an even distribu-
tion of capacity [24, 31]:

FQ-CoDel classifies incoming traffic flows by hashing their five-tuple (source IP address, destination
IP address, source port number, destination port number, and protocol number) and assigning them to
one of 1024 sub-queues. The ‘count’ in FQ-CoDel has a similar concept to the ‘count’ in CoDel, but
each of the sub-queues has its own. It manages each sub-queues individually by the CoDel algorithm
and based on a Deficit Round Robin (DRR) queuing mechanism. DRR is a scheduling algorithm that
aims to provide guaranteed bandwidth by using a deficit accumulator to determine whether a packet
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can be transmitted during a scheduling cycle [32]. In each cycle, a fixed amount of data (usually
1500 bytes), is added to the deficit accumulator of each queue. If the size of the pending packet is
smaller than the accumulator value, then the packet is eligible to be transmitted. Once the packet is
transmitted, its size is deducted from the deficit accumulator associated with its queue.

This approach indirectly enables FQ-CoDel to allocate bandwidth fairly across all sub-queues [24].

2.5 CoDel BLUE Alternate
COBALT, stands for “CoDel BLUE Alternate” [33], it is a variation of the CoDel algorithm [13],
integrated with the principles of the BLUE algorithm [14]. COBALT was developed in response to
improve the performance of CoDel. It aims to address the gentle behavior of CoDel when the queue
delay decreases and then swiftly increases, and its difficulty in handling unresponsive flows [33].
Since the drop rate in CoDel increases linearly over time [23], maintaining the queue delay within the
desired range becomes challenging [33].

The fundamental concept behind the COBALT algorithm [33]:

The ‘count’ in COBALT has a similar concept as it was in CoDel. However, COBALT decreases its
‘count’ after exiting the dropping phase instead of resetting it to zero. Leading to a linear reduction
in the dropping frequency without actual drops.

COBALT has an integration with the BLUE algorithm. Unlike CoDel, BLUE uses a packet drop prob-
ability pdrop and adjusts it based on network conditions (queue is idle or queue overflow), making it
more effective against a large numbers of unresponsive flows. BLUE increases pdrop when packets
are dropped due to a full queue and decreases it when the link is idle. It has specific parameters,
such as f reeze−time (time interval 100 ms by default), increment (0.0025 by default), and decrement
(0.00025 by default), to guide its operation.

COBALT seamlessly combines CoDel and BLUE, allowing them to operate concurrently [33]. BLUE
acts only when the queue is at its extremes, ensuring it doesn’t disrupt CoDel’s normal operations [33].

2.6 Section Conclusion
In addition to the above-mentioned AQMs, there is also Fair Queueing with Random Early Detec-
tion (FQ-RED) as a variant of RED using fair queuing [34]. There is the BLUE algorithm which
uses packet drop probability and the queue condition (idle or overflow), mentioned while introducing
COBALT [14]. There is Common Applications Kept Enhanced (CAKE), which combines several
traffic features as an integrated method, using bandwidth shaping, flow isolation and hashing, Diff-
Serv handling, and ACK filtering [35]. Despite the many other queue management techniques, we
would mainly focus on the performance analysis of the five extensively studied models compared to
the new proposed algorithm (dAQM).

The choice of the congestion control model depends on the network characteristics, traffic patterns,
and QoS requirements. The congestion control techniques may have limitations in ensuring fairness
when multiple traffic flows share a congested network link. This is because the algorithms may
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prioritize certain flows over others, resulting in an unfair distribution of traffic. Furthermore, decisions
for the parametric fitting, modeling assumptions, and the simplicity versus the complexity of the
model are significant. For example, for RED it is hard to determine the queue threshold parameters
for packet drops, and for FQ-CoDel the bandwidth distribution for different flows. The type of the
network may also suggest which queue management technique and queue mechanism to use, thus
affecting their performance.
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3 Traffic Distribution Models
Analyzing the performance of the various AQM techniques requires deploying them under various
traffic distribution models. The traffic models allow for mimicking the complexity and diversity of
real-world network traffic and traffic patterns. Traffic distribution models can aid in understanding the
performance of AQM under different conditions. Network traffic can be categorized into many types,
each with its own traffic pattern, such as FTP, (Video) Streaming, HTTP (Web browsing), Gaming,
VoIP (Voice call), etc. Using the traffic models, we can perform simulations under a controlled en-
vironment, to understand the behavior of AQMs under real-world conditions. Such as their stability,
robustness, adaptiveness, etc., in response to different network conditions (idle traffic, constant traffic,
or bursty traffic), and provide insights into the configuration and parameterization of AQMs.

Network traffic modeling can be categorized into two mathematical representations: Continuous-
Time Source Models and Discrete-Time Source Models [20]. In continuous time, traffic is represented
by its time-varying rate X(t), or the sequence of packet arrival times {t1, t2, . . .}. In discrete time, the
interest lies in the non-negative stochastic process Xn as a representation of the source rate sampled at
discrete times n = 1,2, . . . . Since users’ actions are completely random, network traffic is generated
continuously over time in nature. Sometimes with a sudden increase (burst) in the traffic, or with little
or no traffic (idle). Thus, we need models that take these features into consideration. Continuous-
Time Source Models are useful in terms of capturing the changes in network traffic dynamics, and
they support simulations over a long period, i.e., a day, or a few days. Discrete-time models assume
traffic is transmitted in discrete intervals, useful for simulations over a short period. However, the
arrivals of packets in discrete intervals are a less realistic reflection of the real-world network. Yet,
they remain popular models due to the ease of handling discrete data, whereas the Continuous-Time
Source Models are usually used for their better precision in modeling and analysis.

3.1 Poisson distribution process

The Poisson distribution process is originally used for data and voice traffic modeling [20]. It is also
the most used stochastic process model [36]. The packet arrivals are assumed to be exponentially dis-
tributed with arrivals rate λ, and arrivals are Independent and Identically Distributed (IID). The The
expected time between each packet arrivals is 1/λ. The derived process from the Poisson Distribution
to the Exponential distribution associated with a Poisson process will be shown below [37].

Given the Poisson distribution equation, the probability of observing k events in a fixed interval of
time is [37, 38]:

f (k;λ) = Pr(X = k) =
λke−λ

k!
(11)

Now, replacing the unit time interval by an interval of arbitrary length t.

f (k;λt) = Pr(X = k) =
λtke−λt

k!
(12)

In particular, the probability of no point in an interval of length t is k = 0, thus,

P(X = 0) = e−λt (13)
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Figure 1: Poisson Distributions with Different λ.

In continuous-time source models like the exponential distribution, packets can arrive at any contin-
uous moment rather than at fixed discrete times. If we are interested in the probability that the time
until the first event is less than or equal to t, we have:

1− e−λt (14)

Differentiating this Cumulative Distribution Function (CDF) with respect to t gives the Probability
Density Function (PDF) of Exponential distribution associated with a Poisson process [20, 37]:

f (t;λ) = λe−λt , t ≥ 0 (15)

Fig. 1 shows the Poisson process distribution with different λ values. The Poisson process model has
these characteristics:

• It is ‘memory-less’, the past arrival rate does not interfere with its future arrival.
• Summing two independent Poisson processes with rates λ1,λ2, is equivalent to a Poisson process
with rate λ1 +λ2.

An arrival process refers to a single or a sequence of packets arriving over time. The ‘memory-
less’property suggests the arrival time of the new packet is independent of the previous arrival time.
This introduces an independency between the renewal processes and the former processes. Thus, fail-
ing to obtain the traffic burstiness (a sudden increase in the traffic flow) that closely characterizes data
traffic [39], and it is inadequate for accurately predicting traffic flow under self-similar features [40].

While the Poisson process has its strengths in modeling various network traffic scenarios, Leland et
al. [41] suggest that processes exhibiting statistical self-similarity offer a more precise representation
for LAN traffic patterns than traditional Poisson process models. In addition, other recent studies
over the past two decades have shown that network traffic exhibits self-similar and fractal character-
istics [42, 43]. The distinction between the Poisson models and the self-similar models lies in their
statistical characteristics. Furthermore, in various real-world network traffic scenarios, heavy tails
have been observed, including situations like file transfer lengths, cellular call durations, and packet
inter-arrivals in LANs [36]. The self-similarity here refers to the similarity in traffic patterns when
viewed at different time scales. The heavy tail features here refer to the higher probability of getting
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Figure 2: Pareto Distributions with Different Parameters.

extremely large traffic burst, or long periods of idle traffic. There are various approaches to gener-
ating self-similar traffic [20, 40, 41], one way to produce self-similar traffic involves multiplexing
ON/OFF sources. These sources maintain a constant data transmission rate during ON periods, while
the lengths of ON/OFF periods exhibit heavy-tailed characteristics [41].

Yet, the Poisson process is still frequently employed in network traffic engineering due to its ease of
analysis using mathematical or statistical methods [36]. Additionally, Poisson arrivals offer a reason-
ably precise statistical representation for scenarios with multiplexing [36], e.g., when there are many
sources sending data, but each source’s contribution on its own is very small.

3.2 Pareto Distribution
The Pareto distribution is a probability distribution that exhibits self-similarity properties and a heavy-
tailed probability distribution. The study have demonstrated the self-similarity of the Pareto arrival
process and its long-range dependent correlation [42]. The Pareto distribution is described by the
formula [44, 45]:

f (t;k;α) =

{
αkα

tα+1 t ≥ k > 0,
0 t < k

(16)

As shown in Fig 2, α represents the shape parameter, and k is the scale parameter, with both α > 0 and
k > 0. The shape parameter decides the shape of the tail behavior of the distribution. As α increases,
the distribution tail becomes lighter, and the probability of getting extremely large values decrease.
Conversely, as α decreases, the distribution tail becomes heavier, and the probability of getting ex-
tremely large values increases. The scale parameter sets the minimual value of the random variable
t below which the distribution does not appy, the distribtion is only defined for values greater than
or equal to k. In network traffic modeling, this refers to the lower bound for the interarrival times
between network packets or events.

Pareto distribution is effective in modeling a high degree of varying network behavior, and large-
scale traffic. The model can be easily managed by a small number of parameters. Experiments
utilizing the Pareto distribution for network modeling have also been conducted in many previous
studies [46, 47, 48, 49].
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Figure 3: Weibull Distributions with Different Parameters.

3.3 Weibull Distribution
Another model popularly used in network traffic analysis is the Weibull distribution process. It is a
heavy-tailed distribution. Described by the PDF [49, 50, 51, 52]:

f (t;b;c) =

{
c
b(

t
b)

c−1e−( t
b )

c
, t ≥ 0

0, t < 0
(17)

As shown in Fig. 3. The c represents the shape parameter, and b is the scale parameter, with both
c > 0 and b > 0. For shape c < 1, the Weibull distribution has a heavy tail, and the distribution
exhibits an increasing failure as time passes. The failure refers to the problems that may arise and
potentially degrade the network performance, like packet drop or packet loss. For shape c > 1, the
failure decreases with time. When shape c = 1, the failure remains constant, and the distribution of
lifetime is exponential. The scale parameter b decides how thick or thin the distribution along the
x-axis would be. Increasing b spreads out the distribution.

The Weibull distribution, like the Pareto distribution, proves to be highly proficient in capturing large-
scale and extensively fluctuating network traffic patterns. Prior studies have showcased the use of the
Weibull distribution for network modeling [49, 50, 52].

3.4 Constant Bit Rate and Variable Bit Rate
Additionally, we have studied CBR and VBR traffic models [53, 54]. In a CBR model, the data is
sent with a consistent bitrate. Whereas in the VBR model, the data is sent with a varying bitrate. The
usage of CBR is widely in video streaming applications; VBR is more used in multimedia traffic and
other types.

3.5 Section Conclusion
The distribution models mentioned above are commonly used in network traffic analysis. Each model
may be better suited for certain types of network simulations. However, they also have limitations,
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especially in terms of parameter fitting and underlying modeling assumptions.
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4 Proposed Technique
In our research, we propose a method to study the network traffic behavior specific to our chosen net-
work type, LAN, across various network flow types. This method incorporates a mix of probabilistic
and stochastic distribution models in conjunction with congestion control techniques.

Moreover, the primary focus of the study is on the proposed adaptive queue management algorithm.
dAQM, with high programmability, configurability and using 8 statistical advanced features in esti-
mating the congestion, as a solution improve the performance of AQM techniques.

We would also testify the performance of various congestion control techniques with different traf-
fic models at the intermediary switch for various metrics, as a crucial step to ensure high QoS. Our
methodology is done through the simulations on ns-3 [55], where diverse traffic distribution models,
AQM methods, and network flow types were tested using either TCP or UDP transport protocols.
Details on our simulations setup can be found in the subsequent sections, specifically in Section 5.

The dAQM algorithm utilizes eight statistical features: the instantaneous sojourn time and buffer size,
the first, second, and third derivatives of the sojourn time, and the first, second, and third derivatives
of the buffer size. In this section, we aim to find a solution for the research question: How can we
design a novel AQM mechanism (dAQM) based on the higher-order derivatives traffic features?
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4.1 Higher-order derivatives Calculation
In this section, we introduce the steps of the higher-order derivatives calculation of the dAQM algo-
rithm.

4.1.1 Higher-order derivatives of Sojourn Time

The dAQM algorithm was designed with a particular workflow. For example, consider the compu-
tation of the first derivative of sojourn time. Where, sojourn time refers to the time a packet spends
waiting in the queue, from the moment it enters til the moment it leaves. This required at least two
packets in the queue, extracting the wait time of the first and second packets (st1 and st2), and then
computing the average rate of change (first derivative) between these two points as st1 − st2 divided
by the packet inter-arrival time (tinter−arrival),

rs j1 =
st1 − st2

△tinter−arrival
(18)

If this ratio exceeded the drop threshold, packets would be dropped.

The dAQM algorithm subsequently also includes the second and third derivatives forms of the sojourn
time, which incorporate four and five packets into their derivative ratio calculations, respectively.

Design and Implementation Decision

Calculating the desired derivative ratios required accessing the enqueue time of packets while they re-
mained in the queue, pending a possible drop signal. However, the ns-3 Queue class does not provide
a direct method to access the nth item in the queue. Instead, it offers the DoPeek() method, which
retrieves only the first item without dequeuing it.

There are several potential solutions:

Using an Buffer: One idea was to use an extra buffer to keep track of the timestamps. However,
this method would necessitate storing vast amounts of packet data, proving inefficient. Moreover, this
approach did not yield the expected results.

Modifying the ns-3 Source: Another consideration was to modify the ns-3 source Queue-Disc class.
This, however, would demand an in-depth understanding of the source code’s core structure. While
attempts were made, they led to several unsolvable bugs.

Temporary Dequeuing: A different approach was to temporarily dequeue the item to obtain the
enqueue timestamp and then re-queue it. This method had the potential downside of disrupting the
original order of packets in the queue, which could significantly impact computation results and ex-
acerbate fairness issues.

Consequently, we suggest the following method: for retrieving the enqueue times and perform
dAQM algorithm, dequeue the necessary number of packets, retrieve their enqueue times, and de-
queue times to calculate their waiting time (sojourn time) in the queue. Then, perform calculation on
the derivative ratios, and drop the next packet based on the dropping conditions.
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The method begins with the detection of a necessary number of packets required by the calculation
in the queue. Given our consideration for the calculation of higher-order derivatives of the sojourn
time will take five values to obtain an accurate estimation. We check if there are at least five packets
in the queue. For the first derivative of sojourn time, the algorithm dequeues the first two packets,
calculates their wait times in the queue, and then computes the derivative ratio using the same equa-
tion as mentioned above, Eq.(18). The packet inter-arrival time between two consecutive packets is
held constant within the algorithm. All packet inter-arrival times during the simulation are recorded
without implementing AQM techniques, thereby using a FIFO model. The mode (most frequently
appeared value in the data set) of these recorded inter-arrival times (rounded to integer milliseconds)
is then utilized to set the inter-arrival time parameter for the dAQM algorithm. If the computed ratio
surpasses the threshold, a packet-drop duration with a pre-defined value (e.g., 100ms) is initiated.
During this duration, packets are discarded at a pre-defined probability (e.g., 40%).

The computation of the second and third derivatives follows a similar process but incorporates more
packets into their calculations and has a more complex set of equations. For the second derivative,
the equations involve the calculation of two values ‘a’ and ‘b’, where ‘a’ is the first derivative of the
1st (oldest) and 3rd (oldest) packets, and ‘b’ is the first derivative of the 2nd (oldest) and 4th (oldest)
packets.

a =
st3 − st1

2△tinter−arrival
(19)

b =
st4 − st2

2△tinter−arrival
(20)

Followed by the computation of the second derivative ratio given by:

rs j2 =
b−a

△tinter−arrival
(21)

Similarly, for the third derivative, the equations are extended further to include the calculation of an
additional value ‘c’, where ‘c’ is the first derivative of the 3rd (oldest) and 5th (oldest) queue size, and
two second-order derivative equations ‘d’ and ‘e’:

c =
st5 − st3

2△tinter−arrival
(22)

Eq. (22) calculates the difference in sojourn time between the fifth and third data points, then divides
this by twice the packet inter-arrival time. This is the average rate of change (first derivative) of
sojourn time between these two points.

d =
b−a

△tinter−arrival
(23)

e =
c−b

△tinter−arrival
(24)

Eq. (23) and Eq. (24) are calculations of the second derivatives.

rs j3 =
e−d

△tinter−arrival
(25)

Finally, Eq. (25) calculates the third derivative, by finding the difference between the two second
derivative values (d and e), and then dividing by the packet inter-arrival time.
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4.1.2 Higher-order derivatives of Buffer Size

The computation of the first, second, and third derivatives of the queue size, are although calculated
from different attributes, the concept is similar. Queue Size refers to the size of the buffer, in terms of
the number of packets waiting in the queue (not bytes). Instead of using the sojourn time of packets,
we have implemented a circular buffer to store 5 queue sizes retrieved at constant time difference (by
default 15ms, this can be configured to different values to adjust the frequency of update). As the
current queue size is retrieved, it gets stored in this buffer. Once there are 5 values, the first, second,
and third derivatives of the queue size will be calculated. Then, the iteration can start again, the sixth
value will replace the first value in the circular buffer, ensuring a constant buffer size.

The first derivative of buffer size calculates the difference in queue size between the number of packets
obtained at constant time difference (by default 15ms). It is the rate of change of the buffer occupancy.
Therefore, the first derivative of buffer size is simply the difference between the 1st (oldest) retrieve
queue size, and the 2nd (oldest) retrieve queue size divided by 1 unit (each unit represents a constant
time difference, e.g., 15ms).

rq j1 =
ql1 −ql2

1
(26)

Then, the second derivative of buffer size involves the calculation of two values ‘aq’ and ‘bq’, where
‘aq’ is the first derivative of the 1st (oldest) and 3rd (oldest) queue size, and ‘b’ is the first derivative
of the 2nd (oldest) and 4th (oldest) queue size.

aq =
ql3 −ql1

2
(27)

bq =
ql4 −ql2

2
(28)

Followed by the computation of the second derivative ratio given by:

rq j2 =
bq −aq

1
(29)

Similar to the calculation of sojourn time derivatives, the third derivative of buffer size includes the
calculation of an additional value ‘cq’, where ‘cq’ is the first derivative of the 3rd (oldest) and 5th
(oldest) packets, and two second-order derivative equations ‘d’ and ‘e’

cq =
ql5 −ql3

2
(30)

dq =
bq −aq

1
(31)

eq =
cq −bq

1
(32)

Eq. (31) and Eq. (32) are calculations of the second derivatives.

rq j3 =
eq −dq

1
(33)

Eq. (33) calculates the third derivative, by finding the difference between the two second derivative
values, and then dividing by 1 unit.



Chapter 4 PROPOSED TECHNIQUE 23

The reason for using five data points for the third derivative calculation falls into a few aspects. Firstly,
we want to ensure the accuracy of the result, using five data points can smooth out the noise while
still being responsive to the accurate changes in the data, and provide estimation of the congestion in
a timely manner. If we use fewer points, the derivative estimation might be too sensitive to transient
changes, and using too many points can overly smooth out the data. We want to maintain a balance
between them. Additionally, the computation consumption rises with the number of points involved,
more points involved in the calculation, would slow down the speed of reacting to congestion.
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4.2 Working Principle and Flowchart
The fundamental working of the dAQM is outlined as follows:

• The current time now, is compared to a pre-defined target. This target establishes the time
threshold (in milliseconds) beyond which the drop conditions can be activated.

• Subsequently, the algorithm checks for a sufficient number of packets in the queue to facili-
tate the higher-order derivative calculations of the sojourn time and buffer size. In this imple-
mentation, a count of five packets was deemed optimal for the calculation, ensuring accurate
derivative ratio results that effectively estimate the current congestion level within the queue.
Furthermore, it must also be satisfied that it is in the non-dropping phase, and no drop condi-
tions in this iteration have been met yet.

• The algorithm then invokes functions to compute the first, second, and third derivatives of so-
journ time and buffer size. The specifics of these calculations were detailed in Section 4.1.
Additionally, the current sojourn time and buffer size are retrieved for comparison against con-
stant thresholds.

• During the comparison of advanced derivative features with their corresponding pre-defined
thresholds, the process begins by comparing the absolute value of the third derivative of the
sojourn time against its designated threshold (or alternatively, comparing the derivative ratio
with both the positive and negative threshold to achieve the same effect).

– The derivatives derived from the baseline statistics can be in either positive or negative
directions, indicating an increase or a decrease in the metric over time.

– Since we are measuring the rate of change and both rapid increases and rapid decreases
are problematic, then considering both positive and negative thresholds makes sense.

– We want to ensure that if the derivative ratio remains within the range of negative threshold
and positive threshold, no action is taken. Otherwise, packets should be dropped.

• If the drop condition of the third derivative of sojourn time is not met, the third derivative of
the queue size is considered. If still unmet, the algorithm proceeds to the second derivative of
the sojourn time, and so forth, until a condition is satisfied, or no conditions are met. Once a
condition is met, the subsequent conditions are not evaluated. Instead, it will signal to drop the
packet while dequeuing, and set up a scheduler to start the dropping phase (where the dropping
phase is to estimate the PDP ) for a pre-defined duration, to drop packets with a pre-defined
probability at enqueue stage. Each of the eight features offers configurability for drop duration,
drop probability, and threshold values.

The following flowchart in Fig. 4 (made with PlantUML [56]) provides a visual representation of
the dAQM algorithm’s working process. Where, derivatives of S js refer to the 1st, 2nd, and 3rd
(S j1,S j2,S j3) derivatives of sojourn time; derivatives of Q js refers to the 1st, 2nd, 3rd (Q j1,Q j2,Q j3)
derivatives of buffer size; S j refers to the current sojourn time of the oldest packet in the queue; and
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Figure 4: Flowchart: The decision-making process of the dAQM Packet Drop Mechanism based on sojourn time
and buffer size derivatives.

Q j is the current number of packets waiting in the queue. Their absolute values indicate the mag-
nitude of the increase/decrease in the rate of change and are compared to their specific thresholds,
T hs j3,T hq j3,T hs j2, ...T hq j4 corresponds to the threshold of each feature.
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4.3 Operational Design and Pseudocode
Hereafter, we delve deeper into the details of the dAQM queue discipline by outlining its core oper-
ations: enqueue, dequeue, and the dAQM drop mechanism. Presented in pseudocode format, these
algorithms offer a clear and structured insight into the sequential steps and logic behind each function.

4.3.1 Stage 1: Enqueue

In the enqueue stage, it ensures that the queue does not exceed its maximum size and the system han-
dles packet dropping (for the incoming new packets) through a controlled method (dropping phase)
based on certain conditions.

dAQM works on a drop-before enqueue approach. Similar to RED, but not entirely the same. RED
also decides whether an incoming packet should be dropped at its enqueue stage, with a certain proba-
bility before the queue becomes full, based on the average queue size calculated. While CoDel, makes
the drop decisions during the dequeue process, not before enqueuing. It can be either in a dropping
phase or non non-dropping phase. It checks if the sojourn time of packets exceeds a target for a pre-
defined interval, and then enters a dropping phase to decide whether the packet should be dropped or
not. It leaves the dropping phase when the sojourn time is below the target. Similar to CoDel, dAQM
also has a dropping and non-dropping phase. The mechanism for controlling the dropping phase is
set up in the dequeue stage, and packet dropping is in the enqueue stage based on the dropping phase.

Algorithm 1 Enqueue
1: function ENQUEUE

2: if current queue size + incoming packet size > max queue size then
3: drop the packet
4: end if
5: if in the dropping phase (droppackets == true) then
6: Drop the packet based on a pre-defined probability
7: Reset drop flags
8: end if
9: Enqueue packet to queue

10: Record the enqueue time
11: end function

The above algorithm shows the pseudocode of the enqueue stage.

• Check Queue Size (L: 2-4): It checks if the current queue size plus the size of the new packet
will exceed the maximum queue size. If yes, it drops the packet.

• Check Dropping Phase (L: 5-8): If the system is in a dropping phase, it drops the packet based
on a predefined probability and resets any flags related to dropping. The flags tell information
about which of the eight features has triggered the drop, because it is programmable to set
different thresholds, drop rates, and drop durations for each of the features, thus, drop triggered
by different conditions can have different drop probability.
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• Enqueue Packet and Timestamp Enqueue Time (L: 9-10): If the packet hasn’t been dropped
due to the above conditions, it proceeds to add the packet to the queue.

• After enqueuing the packet, it timestamps the time at which the packet was added to the queue.

4.3.2 Stage 2: Dequeue

In the dequeue stage, it decides whether the packet will be dropped or dequeued based on certain
conditions. The dropping phase is set up in the dequeue stage. If any of the drop conditions of the
eight features have been met. It will signal the system to drop the packet and start up a dropping phase
so that new incoming packets can be dropped with a certain probability at the enqueue stage. It will
exit the dropping phase after a pre-defined period.

Algorithm 2 Dequeue
1: function DEQUEUE

2: Get the packet aiming to be dequeued
3: if queue is empty then
4: Return 0
5: end if
6: if one of the dAQM drop condition has been met then
7: Drop the packet
8: Start a dropping phase (set droppackets == true)
9: Schedule to exit dropping phase (set a call to a scheduler which sets droppackets == f alse)

after a pre-defined duration
10: Get the next packet from queue
11: end if
12: return dequeued packet
13: end function

The above algorithm shows the pseudocode of the dequeue stage.

• Get the Packet from Queue (L: 2): Get the packet from the queue aiming to be dequeued.

• Check Empty Queue (L: 3-5): If the queue is empty, the packet cannot be dequeued.

• Check dAQM Drop Conditions status (L: 6-11): if one of the dAQM drop conditions has
been met, it drops the current packet. Then, it starts a dropping phase by setting the vari-
able droppackets == true, for a pre-defined duration, by calling a ns-3 scheduler that sets
droppackets == f alse after the pre-defined duration ends. Then, it attempts to get the next
packet from the queue.

• Dequeue Packet (L: 12): Return the packet aiming to dequeue.

4.3.3 Stage 3: Packet Drop Mechanism

In the packet drop mechanism stage, it checks for several conditions before calculating the higher-
order derivatives and comparing them for each drop condition. It follows a hierarchical order while
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checking for each drop condition. Because the third derivatives can indicate more severe fluctuations
in the network traffic and congestion, the system checks firstly the third derivatives, then the second
derivatives, then the first derivatives, and lastly, their constant values. When a particular condition
has been met, it will set its flag to true, thus, in the enqueue stage, the system will know which drop
condition it should follow.

Algorithm 3 dAQM Packet Drop Mechanism
1: function DROPPACKET

2: if Now > target then
3: if Npackets > 5 and droppackets == f alse and f lagcondition == f alse then
4: Calculate the 1st, 2nd, and 3rd (S j1, S j2, S j3) derivatives of

Sojourn time
5: Calculate the 1st, 2nd, and 3rd (Q j1, Q j2, Q j3) derivatives of

buffer size
6: Retrieve the current sojourn time S j of the oldest packet and the current queue size Q j
7: if drop condition |S j3|> T hs j3 is met then
8: Set drop flags
9: else if drop condition |Q j3|> T hb j3 is met then

10: Set drop flags
11: else if drop condition |S j2|> T hs j2 is met then
12: Set drop flags
13: else if drop condition |Q j2|> T hb j2 is met then
14: Set drop flags
15: else if drop condition |S j1|> T hs j1 is met then
16: Set drop flags
17: else if drop condition |Q j1|> T hb j1 is met then
18: Set drop flags
19: else if drop condition |S j|> T hs j4 is met then
20: Set drop flags
21: else if drop condition |Q j|> T hb j4 is met then
22: Set drop flags
23: end if
24: end if
25: end if
26: end function

The above algorithm shows the pseudocode of the packet drop mechanism stage.

• Check The time of Now (L: 2, 25): Check if the current time now is greater than the target. The
algorithm should not start the calculation of the higher-order derivatives at the early stage when
there is less likely to be congestion.

• Check Queue Size, Dropping Phase Status, Dropping flag status (L: 3, 24): It checks if there
are enough packets for the calculations. There is no need to do new rounds of calculation if
the system is currently in an active dropping phase. It must also satisfy that no drop conditions
flags have been set to true, meaning no drop conditions have been met in this iteration so far.
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• Calculate higher-order derivatives of Sojourn Time (L: 4): Call to functions that perform the
calculations of higher-order derivatives of sojourn time.

• Calculate higher-order derivatives of Buffer Size (L: 5): Call to functions that perform the
calculations of higher-order derivatives of buffer size.

• Check the Constant Values of Sojourn Time and Buffer Size (L: 6): Retrieve the current sojourn
time of the oldest packet and the current number of packets in the queue.

• Check Drop Conditions (L: 7-23): Following the hierarchical order, each derivative ratio is
compared to its threshold, once any condition is satisfied, it changes the specific drop flag
related to that feature, and also sets the f lagcondition == true indicating that a condition has
already been met in this iteration, and it is ready to signal the deuque stage for setting up a new
dropping phase.
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4.3.4 Dropping Phase and Non-dropping Phase

The terms dropping phase and non-dropping phase of the dAQM have been occurring multiple times.
To make it clear, in this subsection, we explain their usage in the system.

The dropping phase is set up in the dequeue stage. It allows the system to drop packets in the enqueue
stage based upon certain probability, it lasts for a pre-defined period.

The non-dropping phase is the state when the system is not within a dropping phase. During this
phase, the packets are enqueued normally, only checking if the new incoming packet would overflow
the buffer, and it doesn’t drop packets with a probability.

4.3.5 Choices of Uniform Dropping Conditions

While deploying and testing the dAQM algorithm, it was discovered that the performance of the
dAQM algorithm demonstrated noticeable improvement when a uniform drop condition was applied
across all eight traffic features. This finding was consistent irrespective of the specific drop rate, such
as 40%, applied uniformly across the algorithms. This approach proved superior compared to sce-
narios where unique drop rates were designated to each derivative, such as assigning drop rates of
20%, 30%, 40%, and 50% to the constant, first, second, and third derivatives, respectively. Assigning
different drop rates leads to performance loss due to extra computational steps. Furthermore, desig-
nating an equal 40% drop rate individually to each feature did not yield similar performance gains
as applying the same rate collectively, has supported our statement. This discrepancy arises from the
additional computational overheads to evaluate separate conditions, which subsequently impaired the
performance of the dAQM algorithm. This deviation in performance became increasingly pronounced
as the number of clients involved in the simulations increases. Therefore, although it is programmable
to assign different drop rate and drop duration conditions to each of the eight traffic features, we keep
the design of using a uniform drop rate and drop duration across all features to enhance and optimize
dAQM’s performance.
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5 Simulations Setup
In this section, we introduce all the specifics of setting up the simulations, including the tools and tech-
nologies; network topology, configurations and parameterizations of the traffic models, flow types,
and AQM techniques; and the performance metrics used by our analysis.

5.1 Tools and Technologies
• Operating System: Ubuntu-20.04.

• Software: open-source network simulator 3 (ns-3) [55] of version ns-3.35 under the terms of the
GNU General Public License version 2; gnu-plot [57] and Matlab [58] for data analysis and visuali-
sation; source code editor gedit [59].

• Libraries: ns-3 has a modular architecture, the modules (ns-3 libraries) we have used include: Core
Module, Network Module, Internet Module, Traffic Control Module, CSMA Module, Applications
Module, Flow Monitor Module, Random Variable Stream Module, Queue Disc Module, Object Fac-
tory Module, Drop Tail Queue Module, Simulator Module and Log Module.

• Languages: C++, Python, gnu-plot script, MATLAB

• GitHub Repository: for archiving the complete database, available at GitHub Repository [60].

https://github.com/rug-ds-lab/bsc-2023-adaptive-queue-management
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5.2 Configurations and Parameterization
This section introduces the setup related to network topology, configurations of the traffic distribution
models, AQM techniques, and the various traffic flow categories.

5.2.1 Topology

The simulations were conducted using ns-3 to emulate a Local Area Network (LAN). Within this
emulation, we interconnected 100 clients and 5 servers through a single switch employing a Carrier
Sense Multiple Access (CSMA) channel. A visual representation of this configuration can be found
in our network topology, in Fig. 5.

.....

100
Clients

Apply queue discipline

5
Servers

Switch

LAN cable LAN cable

Client

Server

Switch

LAN
cable

Figure 5: Network Topology.
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5.2.2 Traffic Models

Our study employed various traffic distribution models, namely the Poisson distribution process,
Pareto distribution, Weibull distribution, Constant Bit Rate (CBR), and Variable Bit Rate (VBR),
with their specific parameter settings detailed in Table 1.

Table 1: Traffic Models Configuration Setup.

Traffic Models Formula Eq. Parameter Value
Poisson f (t;λ) = λe−λt , t ≥ 0 (3) λ 892/446/133/50 (packets/s)

Pareto f (t;k;α) =

{
αkα

tα+1 t ≥ k > 0
0 t < k

(5) k,α k = 1.5,α = 2.5

Weibull f (t;b;c) =

{
c
b(

t
b)

c−1e−( t
b )

c
, t ≥ 0

0, t < 0
(6) b,c b = 1,c = 1.5

CBR - - ON/OFF ON=1s, OFF=0s

VBR - - ON/OFF ON=1s, OFF=1.5s

In the simulations, each single client will follow a distribution model, not to be confused with, multi-
ple clients setting up using one distribution model. Moreover, multiple clients would be set up simul-
taneously for the stochastic models (one client undergoes one distribution model): Poisson, Pareto,
and Weibull distribution. They will be set up at the same time, but, their actual start time depends on
the result of the random variables involved. Nevertheless, they should still start at similar times, as
the (distribution model) parameters used for each client would be the same. Conversely, the clients in
the VBR and CBR traffic will not be set up simultaneously, instead, the start time of each client will
have some time differences. For example, a CBR client would start at time = 0s, the next CBR client
would start at time = 1s, the third CBR client would start at time = 2s, etc.
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5.2.3 AQM Models

Our analysis aimed to compare the effectiveness and performance of various state-of-the-art AQM
techniques, along with eight programmable features (dAQM f 1 - dAQM f 8) used individually, and
three configurations (dAQMc1 - dAQMc3) with all features used simultaneously. The configurations
and their specific details are provided in Table 2.

Table 2: Active Queue Management Techniques Configuration Setup.

AQM Parameters Details
RED Min.Th=500 Max.Th=1000 QW=0.002 Target=5 ms α=0.01 β=0.9
PIE Deq.Th=20 Tupdate=15 α=0.125 β=1.25

CoDel Int.=100 ms Target=5 ms
FQ-CoDel Int.=100 ms Target=5 ms Flows=1024
COBALT Pdrop=0 Incr.=0.08 Decr.=0.04 Blue.Th=400

const. S j 1st S j1 2nd S j2 3rd S j3 const.Q j 1st Q j1 2nd Q j2 3rd Q j3
dAQM f 1 t=200 ms - - - - - - -

dr=0.9 - - - - - - -
du=200 ms - - - - - - -

dAQM f 2 - t= 0.01 - - - - - -
- dr=0.9 - - - - - -
- du=200 ms - - - - - -

dAQM f 3 - - t= 0.01 - - - - -
- - dr=0.9 - - - - -
- - du=200 ms - - - - -

dAQM f 4 - - - t= 0.01 - - - -
- - - dr=0.9 - - - -
- - - du=200 ms - - - -

dAQM f 5 - - - - t=20 p - - -
- - - - dr=0.9 - - -
- - - - du=200 ms - - -

dAQM f 6 - - - - - t= 0.01 - -
- - - - - dr=0.9 - -
- - - - - du=200 ms - -

dAQM f 7 - - - - - - t= 0.01 -
- - - - - - dr=0.9 -
- - - - - - du=200 ms -

dAQM f 8 - - - - - - - t= 0.01
- - - - - - - dr=0.9
- - - - - - - du=200 ms

dAQMc1 t= 1000 ms t= 10 t= 10 t= 10 t= 120 p t= 1 t= 10 t= 10
dr= 0.05 dr= 0.05 dr= 0.05 dr= 0.05 dr= 0.05 dr= 0.05 dr= 0.05 dr= 0.05

du= 400 ms du= 400 ms du= 400 ms du= 400 ms du= 400 ms du= 400 ms du= 400 ms du= 400 ms
dAQMc2 t= 600 ms t= 0.1 t= 0.1 t= 0.1 t= 80 p t= 0.1 t=0.1 t=0.1

dr= 0.5 dr= 0.5 dr= 0.5 dr= 0.5 dr= 0.5 dr= 0.5 dr= 0.5 dr= 0.5
du= 400 ms du= 400 ms du= 400 ms du= 400 ms du= 400 ms du= 400 ms du= 400 ms du= 400 ms

dAQMc3 t=100 ms t=0.01 t= 0.01 t= 0.01 t= 20 p t= 0.01 t= 0.01 t= 0.01
dr= 0.98 dr= 0.98 dr= 0.98 dr= 0.98 dr= 0.98 dr= 0.98 dr= 0.98 dr= 0.98

du= 400 ms du= 400 ms du= 400 ms du= 400 ms du= 400 ms du= 400 ms du= 400 ms du= 400 ms

In this table, the dAQM parameter settings are as follows: ‘t’ stands for the feature threshold, ‘dr’
denotes the drop rate, and ‘du’ indicates the drop duration. These parameters are essential for an
accurate estimation of the PDP. Additionally, dAQM f 1, corresponds to the constant value of sojourn
time; dAQM f 2, is the first derivative of sojourn time; dAQM f 3, is the second derivative of sojourn
time; dAQM f 4, is the third derivative of sojourn time; dAQM f 5, is the constant value of buffer size;
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dAQM f 6, is the first derivative of buffer size; dAQM f 7, is the second derivative of buffer size, and
dAQM f 8, is the third derivative of buffer size. Then, the dAQMc1, dAQMc2, dAQMc3 are three con-
figurations set up with different feature parameters settings.
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5.2.4 Traffic Flows

We simulated various types of network flows to ensure a comprehensive study. These included FTP,
Streaming, HTTP, VoIP, and Gaming, with their specific configurations detailed in Table 9. Where
these parameter configurations align with those established in prior studies [61, 62, 63, 64]. In our
simulations, FTP, Streaming, and HTTP flows operate using the TCP protocol. In contrast, flows
like VoIP and Gaming are based on the UDP protocol. One important aspect worth highlighting is
the parameter λ of the Poisson process model. Contrary to other models whose parameters remain
consistent across all flow types, the value of λ is specific to each type. It is derived from the client
data rate. For instance, with an FTP client data rate at 10 Mbps, we would divide 10 Mbps by the
product of 8 bits per byte and 1400 bytes per packet to get the appropriate λ value.

Table 3: Traffic Flows Configuration Setup.

Flow Types
Parameters FTP Streaming HTTP VoIP Gaming

Data Rate per client 10 Mbps 5 Mbps 1. 5 Mbps 128 kbps 80 kbps
Poisson λ per client 892 (p/s) 446 (p/s) 133 (p/s) 50 (p/s) 50 (p/s)

Packet Size 1400 B 1400 B 1400 B 300 B 200 B
Transport layer protocols TCP UDP

Flows type Long Flow Short Flow
Simulation Duration 60 s 10 s

Clients/Servers 100/5
Link Bandwidth 2 Gbps

CSMA Delay 1 ms
Buffer Size 2000 p

Finally, in the networking domain, flows are often categorized based on their duration and data vol-
ume: long flows and short flows. In our study, FTP serves as an example of a long flow, typically
characterized by significant data transfer and numerous packets. On the other hand, HTTP represents
short flows, which typically involve fewer packets.

HTTP simulations are designed to emulate short flows, typically characterized by their transient na-
ture. Consider scenarios where a user fetches a webpage along with its associated elements. Con-
sequently, we’ve setup a short simulation duration of 10s to accurately represent such short flows,
mirroring real-world HTTP interactions. Conversely, FTP is used for file transfers, which often in-
volve longer durations and sizeable files. To provide a realistic representation of FTP transfers, we
have set up a simulation duration of 60s. While longer simulations may provide a more accurate
reflection, they come with computational challenges. Extended simulations inherently demand more
computational resources and time. Consequently, a 60s duration was chosen for its balance of realism
and feasibility.

To delve deeper into the behavior of these flows, we conducted a series of simulations with each flow
type, varying specific parameters to observe their impact on the performance [65]. For instance, for



Chapter 5 SIMULATIONS SETUP 37

the long flows (FTP), we varied the packet size and observed its impact on the flow’s performance.
Following this, similar examinations were conducted, but for altering the offered load (client data
rate), and then the dAQM drop rate. This systematic approach allowed us to identify the sensitivity
and responsiveness of the various AQMs to long flows, in response to changes in different network
parameters.

Similar sets of simulations were conducted for the short flows (HTTP). By adjusting the same net-
work parameters packet size, offered load, and dAQM drop rate, we could draw comparisons. This
comparative analysis between the reactions of long flows (like FTP) and short flows (like HTTP) to
varying conditions provided us with insights into the dynamics and intricacies of network traffic and
adaptiveness of the dAQM technique.



38 Chapter 5 SIMULATIONS SETUP

5.3 Performance Metrics
In our study, we specifically focused on evaluating the performance of various AQM techniques in re-
sponse to different traffic models and flow types. Through these evaluations, we sought to understand
how each AQM technique reacts and adapts to diverse traffic conditions. Our primary goal was to
maximize throughput while achieving minimal latency, in order to provide high QoS to the end-users.
Each performance metric, thus, offers a unique perspective on the buffer optimization, network traffic
adaptiveness, and robustness of the AQM techniques.

1. End to End Delay: The time taken for a packet to travel from the source to the destination, includ-
ing all forms of delay like transmission, propagation, queuing, and processing delays.

2. PLR: The ratio (in the form of percentage) of the number of packets that were lost to the total
number of packets sent during transmission.

3. Queue Length: The number of packets waiting in a queue to be processed or transmitted (we
measured at the switch).

4. Sojourn Time: The total time a packet spends in a queue from the moment it enters until the
moment it is transmitted or processed.

5. Throughput: The rate at which data is successfully delivered over a communication link. It ac-
counts for successfully delivered packets and excludes dropped or re-transmitted packets.

6. Flow Completion Time (FCT): The time taken from when the first packet of a flow is sent to
when the last acknowledgment or relevant signal indicating completion is received.
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6 Performance Analysis
In this section, we will explore the analytical outcomes derived from the simulations by conducting
a systematic evaluation of the AQM algorithms against various performance metrics. By interpreting
the simulations results, we discuss how they may answer our research questions.

6.1 HTTP CBR Traffic

We begin by evaluating the performance of the five state-of-the-art AQMs (RED, PIE, CoDel, FQ-
CoDel, COBALT), the eight standalone dAQM features used individually, and three configurations
of the dAQM using all the eight features simultaneously. All AQMs parameters configurations used
are described in Table 2. The HTTP flow CBR traffic is described in Table 1 and Table 9. The data
has been normalized, with the columns representing the average values of each component in its nor-
malized form relative to the highest value of its kind. These visual results can be seen in Fig. 6a and
Fig. 6b. As indicated in the caption, column numbers ranging from 1 to 16 correspond to: RED,
PIE, CoDel, FQ-CoDel, COBALT, dAQM f 1, dAQM f 2, dAQM f 3, dAQM f 4, dAQM f 5, dAQM f 6,
dAQM f 7, dAQM f 8, dAQMc1, dAQMc3, and dAQMc1. Fig. 6a displays the performance of all 16
configurations, whereas Fig. 6b focuses on the 11 configurations related to dAQM only, highlighting
the influence of each feature within the dAQM system.

Evaluating Fig. 6a, it is clear that, with the specified parameter settings for the AQM techniques in the
HTTP network under CBR conditions: all 11 dAQMs outperformed the other state-of-the-art AQM
approaches: RED, PIE, CoDel, FQ-CoDel, and COBALT, in terms of achieving the minimal sojourn
time and queue length. Specifically, dAQMc2 achieved the lowest delay, on par with COBALT. while
dAQMc1 attained the lowest PLR, comparable to RED. All AQMs managed to maximize throughput.

6.1.1 Tailoring Guidance for dAQM Configuration

Evaluating Fig. 6b, we can see, dAQMc3 obtained the lowest sojourn time and queue length among
all configurations, and dAQMc1 has obtained the lowest PLR and highest queue length among all,
and dAQMc2 has obtained the lowest delay, while all 11 configurations managed to maximize their
throughput.

Depending on the specific requirements of the QoS for a flow type, users might prioritize certain per-
formance metrics. For instance, for HTTP requests, achieving low delay and high throughput means
that web pages can load quickly, enhancing user experience. Furthermore, a low PLR can reduce
re-transmissions, which in turn contributes to decreased delay and increased throughput.

As previously mentioned, the metrics prioritized depend on the user’s focus. These 8 features can
serve as guidance. For instance, when examining the sojourn time sub-figure in Fig. 6b, it is observ-
able that features 5, 6, and 8 (columns 5, 6, and 8 in the histogram) delivered the lowest sojourn time.
Where feature 5 refers to the constant queue size, feature 6 refers to the first derivative of buffer size,
and feature 8 refers to the third derivative of buffer size. Therefore, if the objective is to further reduce
the sojourn time for dAQMc3, one could adjust features 5, 6, and 8 by either lowering the threshold
‘t’, increasing the drop rate ‘dr’, or augmenting the drop duration ‘du’. Similarly, now if we are exam-
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(a) 16 AQMs configurations.
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(b) 11 dAQM configurations.

Figure 6: CBR HTTP traffic. (a) Normalised Performance for: 1. RED; 2. PIE; 3. CoDel; 4. FQ-CoDel; 5.
COBALT; 6. dAQM f 1; 7. dAQM f 2; 8. dAQM f 3; 9. dAQM f 4; 10. dAQM f 5; 11. dAQM f 6; 12. dAQM f 7; 13.
dAQM f 8; 14. dAQMc1; 15. dAQMc2; 16. dAQMc3; (b) Viewing results only for the 3 dAQM configurations and
the eight features. Normalised Performance for: 1. dAQM f 1; 2. dAQM f 2; 3. dAQM f 3; 4. dAQM f 4; 5. dAQM f 5;
6. dAQM f 6; 7. dAQM f 7; 8. dAQM f 8; 9. dAQMc1; 10. dAQMc2; 11. dAQMc3;

ining the PLR sub-figure in Fig. 6b. If the aim is to reduce the PLR for dAQMc1 (excluding packets
dropped due to a full queue and only considering reducing those dropped via the dAQM mechanism),
it is clear that feature 1 (column 1 in the histogram) has the lowest PLR. Thus, one might modify the
parameters of feature 1 for dAQMc1 by either raising the threshold ‘t’, decreasing the drop rate ‘dr’,
or reducing the drop duration ‘du’. These findings provide proof regarding the high programmability
and configurability of the dAQM system. The analysis answers the following research question: What
measurable impact do the enhanced programming ability and configurability of the proposed AQM
algorithm have on network performance (e.g., maximized throughput, optimized buffer size, minimal
delay)?

Furthermore, Fig. 7a and Fig. 7b illustrates the performance of the AQM techniques from a different
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(a) Average Sojourn Time over Time. (b) Average Queue Length over Time. (c) Legend.

Figure 7: CBR Streaming traffic viewed over time with its Performance Normalised.

perspective. This figure displays the average sojourn time and queue length plotted against the sim-
ulation time for Streaming CBR traffic. Although it doesn’t provide detailed analytical feedback, it
allows us to observe how each feature contributes to network changes, aiding our understanding of
dAQM. The five state-of-the-art AQMs are greyed out because we want to focus on seeing the changes
done by the dAQMs. The worst performance (highest sojourn time and queue length) in both graphs
is given by RED. This is because RED does not drop packets until its average queue length calculated
is larger than the threshold. This is observable in Fig. 7a and Fig. 7b (0 s to 28 s), packet sojourn time
and queue length are only increasing until the RED drop mechanism kicks in. Therefore unlike other
AQM algorithms, RED is not actively controlling packet drop at the early stage of congestion.
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6.2 Flows under various Traffic Distributions

In this subsection, we will analyse the performance metrics of various Poisson-distributed traffic
flows, and the performance of various traffic distribution models for HTTP and Streaming.

6.2.1 Poisson Distributed Traffic

Here, we are evaluating the performance of the AQMs for various traffic flows under the Poisson
process distribution model.

Fig. 8a - Fig. 8f present the performance of various Poisson-distributed flows: FTP (F), Streaming
(S), HTTP (H), VoIP (V), and Gaming (G). The data have been normalized to the highest value within
each flow type. For visualization, the data sets are plotted in 3D (derived from the five traffic flow
types tested across 8 AQMs), allowing for easier comparison.

Analysis:

dAQMc1: has the lowest PLR, comparable to both RED and FQ-CoDel. It offers a relatively low FCT,
slightly higher than that of RED, but outperformed PIE, CoDel, FQ-CoDel, and COBALT. However,
it presents a high queue length and sojourn time, and it has a relatively high delay, outperformed by
CoDel, FQ-CoDel, and COBALT, but lower than RED and PIE.

dAQMc2: does not stand out in any metric compared to configuration 1 (dAQMc1) or configuration 3
(dAQMc3). It has a relatively low PLR, better than PIE, CoDel, and COBALT, and it has a relatively
low FCT, better than PIE, CoDel, FQ-CoDel, and COBALT. However, its delay, queue length, and
sojourn time, are relatively high.

dAQMc3: presents the lowest queue length comparable to PIE, CoDel, and COBALT. It has a very

(a) Delay. (b) PLR. (c) Queue length.

(d) Sojourn time. (e) Throughput. (f) FCT.

Figure 8: Various Poisson distributed traffic flows. Performance for: 1. RED; 2. PIE; 3. CoDel; 4. FQ-CoDel; 5.
COBALT; 6. dAQMc1; 7. dAQMc2; 8. dAQMc3
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low sojourn time comparable to PIE and CoDel, but not as low as COBALT, yet, it outperforms RED
and FQ-CoDel. In terms of lower FCT, it surpasses CoDel, FQ-CoDel, and COBALT. Its PLR is
more favorable than that of PIE, CoDel, and COBALT. However, it has a relatively high delay, out-
performed by CoDel, FQ-CoDel, and COBALT, but lower than RED and PIE.

Across all dAQM configurations, there is a noticeable reduction in throughput for heavy traffic and
long flows traffic (FTP, Streaming). It is not ideal, because we aim to maximize the throughput and
obtain a minimal delay. Under short flows traffic like HTTP, VoIP, and Gaming, the throughput is
more consistent across all AQM techniques.

RED: has the lowest FCT, lowest PLR together with FQ-CoDel and dAQMc3, but very high delay,
highest queue length and sojourn time, and also reduced throughput for heavy load traffic.

PIE: has the lowest queue length together with CoDel, COBALT, dAQMc3, low sojourn time, and
relatively low FCT, however, the highest delay, highest PLR together with CoDel and COBALT, and
reduced throughput for heavy traffic.

CoDel: has the lowest queue length together with PIE, COBALT, dAQMc3, low sojourn time, highest
throughput, relatively low delay, however very high FCT.

FQ-CoDel: has the lowest PLR together with dAQMc1 and RED, relatively low delay, relatively high
throughput, very high queue length, and a little high sojourn time, and the highest FCT.

COBALT: has the lowest delay, lowest queue length with serval others, lowest sojourn time, and high
throughput, but highest PLR, and very high FCT.

Discussion:

The analysis shows dAQMs have a reduced throughput for long-flow traffic and a more consistent
throughput for short-flow traffic. However, dAQMc3 performed very well in obtaining a small queue
length and sojourn time. A small queue length can be very beneficial, it means that less buffer space
is needed to hold the packets. Small buffers use less physical memory, thus saving resources. It can
also decrease buffer bloat issues because smaller buffer space will be used. A smaller sojourn time
means the packet does not spend much time waiting in the queue, indicating the network is less likely
to experience congestion.

Effectiveness of dAQM in TCP and UDP Protocols
The analysis shows that the dAQM is more effective in varying the PDP of the TCP-connected traffic.
The observations indicate that the dAQM algorithm is more efficient when employed with the TCP as
opposed to the UDP. The primary reason for this performance disparity lies in the dAQM’s reliance
on sojourn time and queue length variations. Higher variability in sojourn time, or queue length,
results in larger derivative ratios, which in turn enhances the performance of the dAQM algorithm.
TCP, with its inherent re-transmission and drop mechanisms, tends to exhibit greater sojourn time
variability, making it an ideal fit for dAQM. Conversely, UDP, being connection-less and lacking na-
tive re-transmission or drop mechanisms, tends to maintain a more consistent sojourn time and queue
lengths. This consistency results in lower derivative ratios, thereby reducing the chances of triggering
the dAQM’s drop conditions. Partially answering the third research question: How would the dAQM
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perform under different transportation layer protocols (TCP & UDP)?

The impact of the use of TCP or UDP on the performance of dAQM is mainly expressed in terms
of PLR, sojourn time, and queue length. The impact on the throughput, delay, or FCT, are more
related to the traffic patterns. Whether it is short flow or long flow, whether it is light or burstiness
and heavily loaded. Long flows traffic, which often is also heavily loaded and expresses burstiness,
does not have outstanding performance with dAQM for throughput, delay, or FCT; whereas, for short
flows traffic, which often are light and short-lived, has better performance for throughput, delay, or
FCT with dAQM.
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6.2.2 Various Distribution Models

In this subsection, we assess the performance of the AQMs tested against various traffic distribution
models, including CBR (C), VBR (V), Poisson (Po), Pareto (Pa), and Weibull (W). Specifically, our
evaluation focuses on the performance difference between short flows traffic (HTTP) and long flows
traffic (Streaming).

Fig. 9a - Fig. 9f present the performance of various traffic distribution models for HTTP, Fig. 10a -
Fig. 10f present the results for Streaming. The data have been normalized to the highest value within
each model. For visualization, the data sets are plotted in 3D, derived from the five traffic models
tested across 8 AQMs. This format allows for easier comparison.

Various Distribution Models for HTTP Traffic
Analysis of Fig. 9a - Fig. 9f :

Since HTTP is using TCP and it is short flow, the delay, throughput, and FCT performance align
among all AQMs. Therefore, we would only discuss the performance difference of PLR, queue
length, and sojourn time.

dAQMc1: has the lowest PLR, comparable to RED. It has a relatively low sojourn time, on par with
CoDel, slightly higher than COBALT, but outperforms RED, PIE, and FQ-CoDel. It has a queue
length lower than RED, but higher than PIE and COBALT, roughly equivalent to the queue lengths
of CoDel and FQ-CoDel.

dAQMc2: has a relatively low queue length, comparable to CoDel and FQ-CoDel, outperformed RED,
but slightly worse than PIE and COBALT. It has a relatively high sojourn time, comparable to FQ-
CoDel, lower than RED and PIE, but higher than CoDel and COBALT. It has a relatively average
PLR, lower than PIE, CoDel, and COBALT, but higher than RED and FQ-CODel.

(a) Delay. (b) PLR. (c) Queue length.

(d) Sojourn time. (e) Throughput. (f) FCT.

Figure 9: Various traffic distribution models for HTTP. Performance for: 1. RED; 2. PIE; 3. CoDel; 4. FQ-CoDel;
5. COBALT; 6. dAQMc1; 7. dAQMc2; 8. dAQMc3
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dAQMc3: has the lowest queue length. It has a relatively low sojourn time, on par with CoDel, higher
than COBALT, but surpassing RED, PIE, and FQ-CoDel. It has a relatively high PLR, comparable to
CoDel, and slightly below COBALT.

RED: has the lowest PLR, dAQMc1 is comparable to RED in obtaining the lowest PLR. However,
RED has the highest queue length, especially in Poisson-distributed flow, about 80% higher than
dAQMc3, and it has the highest sojourn time under CBR traffic and Pareto-distributed traffic.

PIE: has a relatively high PLR, on par with dAQMc3, but its queue length is higher than dAQMc3, es-
pecially in Weibull-distributed traffic, and the sojourn time is the highest in Poisson-distributed traffic.

CoDel: has a relatively high PLR, higher than dAQMc1 and dAQMc2 but lower than dAQMc3. The
sojourn time is comparable to dAQMc3, however, its queue length is a lot higher than dAQMc3 across
various distribution models.

FQ-CoDel: has a relatively low PLR, although not as low as RED and dAQMc1. It has a relatively
high queue length and sojourn time among all traffic distribution models.

COBALT: although, has the lowest sojourn time, and a relatively low queue length. dAQMc3 provides
lower queue length under Weibull, Poisson, and CBR traffic. COBALT also has the worst PLR among
all distributions, about 60% higher than dAQMc1.

The analysis shows the configurability of dAQM to provide low PLR, or low queue length and sojourn
time, under various traffic distribution models for short flow.

Various Distribution Models for Streaming Traffic
Analysis of Fig. 10a - Fig. 10f :

(a) Delay. (b) PLR. (c) Queue length.

(d) Sojourn time. (e) Throughput. (f) FCT.

Figure 10: Various traffic distribution models for Streaming. Performance for: 1. RED; 2. PIE; 3. CoDel; 4.
FQ-CoDel; 5. COBALT; 6. dAQMc1; 7. dAQMc2; 8. dAQMc3



Chapter 6 PERFORMANCE ANALYSIS 47

dAQMc1: has the lowest PLR and outperforms all other state-of-the-art AQMs among all distributions.
It has a relatively low FCT, which is higher than RED, on par with PIE, but outperforms CoDel, FQ-
CoDel, and COBALT. Its throughput is comparable to other state-of-the-art AQMs, except COBALT.
It has a relatively high queue length, it matches FQ-CoDel in Weibull, Pareto, and Poisson traffic
but shows better performance under CBR and VBR traffic, and it fully outperforms RED. It has a
relatively high sojourn time, although lower than RED. It has a higher delay than CoDel, FQ-CoDel,
and COBALT, comparable delay to RED and PIE.

dAQMc2: does not stand out in any metric compared to dAQMc1 or dAQMc3. However, compared
to the state-of-the-art AQMs, it has a relatively low PLR, comparable to RED in Weibull, Prato,
and Poisson distributed traffics, and outperforms PIE, CoDel, FQ-CoDel and COBALT (COBALT is
only slightly worse than dAQMc2) among all distributions. It has a relatively low queue length and
outperforms RED and FQ-CoDel, slightly worse than CoDel. It has a relatively high sojourn time,
comparable to FQ-CoDel, but outperforms RED. Its delay is relatively high, comparable to RED,
PIE, and outperformed by CoDel, FQ-CoDel, and COBALT. It has a relatively high FCT lower than
CoDel, FQ-CoDel, and COBALT, but higher than RED and PIE. The throughput aligns with other
AQMs except for COBALT.

dAQMc3: has the smallest queue length under Weibull and Pareto distributions, outperforms all other
AQMs, and, still a very low queue length under Poisson, CBR and VBR traffic, although not as
good as PIE and COBALT. It has a relatively low sojourn time, on par with PIE, CoDel, higher
than COBALT, but surpassing RED, and FQ-CoDel. It has a relatively low PLR, higher than RED
and FQ-CoDel, but outperforms PIE, CoDel, and COBALT. Its throughput is comparable to other
state-of-the-art AQMs except for COBALT. Has FCT, higher than RED and PIE, outperforms CoDel,
FQ-CoDel, and COBALT. Has a higher delay than CoDel, FQ-CoDel, and COBALT.

RED: RED has the highest queue length among all distributions. It is more than 70% worse than
dAQMc3 under the Weibull distribution, about 85% worse under the Pareto distribution and VBR,
and about 80% worst in CBR traffic.

PIE: has a relatively low FCT, comparable to dAQMc1. It has the lowest queue length under Poisson
distributed traffic. It has a very low sojourn time but dAQMc3 has a lower. It has a relatively high
delay, similar to the dAQMs and RED. However, it has the highest PLR together with CoDel and
COBALT, and the throughput is aligned with other AQMs except for COBALT.

CoDel: has a low queue length but not as low as dAQMc3. It has a low sojourn time, comparable
to dAQMc3. It has a relatively lower delay. However, it has a relatively high FCT, higher than the
dAQMs. It has the highest PLR together with PIE and COBALT, and its throughput aligns with other
AQMs besides COBALT.

FQ-CoDel: has a relatively low PLR, comparable to dAQMc2, but dAQMc1 has much lower. It has
a very high queue length, more than 50% higher than dAQMc2 and 80% higher than dAQMc3 under
Weibull and Pareto distributions, although it is comparable to dAQMc1 under Weibull, Pareto and
Poisson distributions, dAQMc1 has much lower queue length under CBR and VBR. Its sojourn time
is lower than dAQMc1, comparable to dAQMc2 but much higher than dAQMc3.
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COBALT: has the maximum throughput, especially under CBR traffic. It has a relatively low queue
length, it is the lowest under VBR and CBR traffic, and it has the lowest sojourn time. It also has
a relatively lower delay. However, it has a relatively high FCT, higher than dAQMc1, and it has the
highest PLR together with PIE and CoDel, across various distributions.

Discussion:

In this discussion, we aim to answer the research question: How does the performance of dAQM al-
gorithm compare to traditional AQMs in handling variable network flows?

The analysis of Fig. 9d shows, dAQMc3 outperformed all other state-of-the-art AQMs in achieving the
lowest sojourn time for CBR HTTP traffic. However, it fell behind RED, PIE, CoDel, and COBALT
in managing Weibull-distributed HTTP traffic. Interestingly, dAQMc3 surpassed RED, PIE, CoDel,
and FQ-CoDel in Pareto distributed HTTP traffic, with a sojourn time aligning closely to COBALT’s.
For Poisson-distributed HTTP traffic, as demonstrated in our earlier figures, dAQMc3 surpassed the
performance of RED, PIE, and FQ-CoDel. It was on par with CoDel, but less efficient than COBALT.
With VBR HTTP traffic, where congestion isn’t a significant factor, the performance metrics for all
AQMs were roughly similar. However, in Fig. 10d, dAQMc3 stands out, almost leading the way
across all traffic models for the shortest sojourn time. It is comparable to PIE and CoDel, slightly
inferior to COBALT, but clearly surpasses RED and FQ-CoDel.

The analysis shows that while both HTTP and Streaming were connected via the TCP protocol, the
AQMs give different performances under the same traffic distributions. The performances of AQMs
are also different when applied to different traffic distribution models for the same flow type. Their
behaviors are significantly influenced by traffic patterns. This partially reflects the analysis outcome
we found for Poisson distributed traffic (in subsection 6.2.1). Recall that we found the use of the
transportation layer protocols (TCP & UDP ) on the performance of dAQM mainly affects PLR, so-
journ time, and queue length. While the impact on the throughput, delay, or FCT, are more related
to the traffic patterns (short or long flow, light or heavy load). In this subsection, we found that the
throughput, delay, and FCT, are also highly affected by the flow types or distribution models.

COBALT was the only one whose throughput was affected by flow type, in HTTP (short and light
flow) its performance was comparable to the others, but in streaming (long and heavy flow) it stands
out. The delay of all AQMs was roughly the same in HTTP (short and light flow), but RED gives the
worst performance in Streaming (long and heavy flow), especially under CBR and VBR flow, while
CoDel gives lower delay and better performance, then COBALT gives the best performance. This
difference is due to how each AQM mechanism reacts to congestion. For example, RED focuses on
managing the average queue size, so it will start dropping packets with a probability when the queue
size exceeds some threshold. Since RED’s PLR is low, it means that for most of the time, the queue
size was within its threshold, thus dropping fewer packets leads to less retransmission, allowing it
to obtain the lowest FCT. However, when fewer packets are dropped, they stay longer in the queue,
increasing the sojourn time, and leading to higher end-to-end delay. While CoDel focused on keeping
the minimal sojourn time, it was proactively dropping more packets. Thus, it had higher PLR but
lower delay, and at the same time, more retransmission of dropped packets leads to higher FCT.

Traffic models, in essence, mirror real-world scenarios, revealing the adaptability and resilience of
these AQMs. The ability of an AQM to efficiently manage traffic and deliver optimized sojourn times
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is inherently tied to the type of traffic flow it is subjected to. For instance, in Weibull distributed HTTP
traffic, certain AQMs like RED, PIE, CoDel, and COBALT exhibited better adaptability compared to
dAQM. Conversely, under Pareto distribution, which can be associated with ‘bursty’ traffic patterns,
dAQM3 showcased its superiority, indicating its efficiency in managing occasional high-traffic bursts.
As highlighted from our observations, the dAQM3 demonstrates proficiency with specific traffic dis-
tributions but encounters challenges with the Weibull distribution. Yet, when it comes to the flow type
streaming, the landscape shifts. The consistent performance of dAQM3 across various traffic models
for streaming, particularly in terms of minimal sojourn time, underscores its robustness. However, the
shift in its rank when transitioning from one flow to another, and from one model to another signifies
the need for AQMs to be contextually deployed based on anticipated traffic patterns. Under idle-
like HTTP VBR traffic, the choices of AQMs may not be apparent. Yet, as the traffic flow intensity
increases, it becomes more unpredictable, and the performance gains of the AQMs would be more
apparent. This emphasized the importance of selecting the appropriate AQM for the specific traffic
environment. Implementing dAQM with rich traffic features, high programmability, and configura-
bility would be very beneficial for maintaining network stability and congestion control for variable
network conditions.
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6.3 Short and Long Flows under Varying Network Parameters
When we look at different types of network traffic, like short flows (HTTP) and long flows (FTP), the
AQMs behave differently under various conditions. The differential nature of these flows suggests
that certain network parameters may influence the AQMs differently. This section aims to identify
the optimal parameter configurations of dAQM and understand how variation in the parameters influ-
ences the performance of dAQM.

•Varying dAQM drop rate: varying the drop rates of dAQM from a minimal 1% to a substantial
99%.

•Varying Packet Size: varying the packet size from a small 50 B to a more substantial 1400 B.

•Varying (Offered) Load: varying the transmission rate per client from 5 kbps to 4 Mbps for HTTP;
and from 50 kbps to 10 Mbps for FTP.

All displayed figures are normalized against the highest value within their respective group and are
presented as percentages. For instance, each y value will be divided by its ymax in its kind, and
multiplied by 100 (%). Meaning, that if m’s delay is 40%, and n’s is 100% (the maximum), the delay
of m is 40% of n’s. The figures present results plotted using straight lines connecting the original
data points, and their performance statistics at their maximum values are given in the form of tables
in Appendix A. Furthermore, we aim to answer the other half of the third research question in the
subsection, How would the dAQM perform under different flow types (short flow vs long flow), and
variations in network parameters (dAQM drop rate, load, packet size)?
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6.3.1 Drop Rate Variation

Fig. 11a to Fig. 11f and Fig. 12a to Fig. 12f illustrate the variations in performance resulting
from changes in the dAQM drop rate variable, ‘dr’, while all other settings remain unchanged. Since
the drop rate variable is specific to the dAQM algorithm, only the dAQM will undergo changes.
Consequently, the state-of-the-art AQMs will appear as constant lines in the figures. Specifically, Fig.
11a to Fig. 11f represent HTTP CBR traffic (for short flows), while Fig. 12a to Fig. 12f represent
FTP CBR traffic (for long flows).
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Figure 11: Performance of dAQM by increasing the drop rate for HTTP.
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Figure 12: Performance of dAQM by increasing the drop rate for FTP.
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Analysis and Discussion:

• PLR, Queue Length, Sojourn Time: As the drop rate variable ‘dr’ increases, the PDP corre-
spondingly rises, leading to an increase in the PLR. Concurrently, both queue length and sojourn time
decrease.

In terms of PLR, dAQMc1 is the lowest in both scenarios, over 60% better than the worst perfor-
mance given by PIE in the short flows; and more than 45% better than the worst performance given
by COBALT in the long flow. The performance of dAQMc2, and dAQMc3 are better than PIE and
COBALT, while worse than RED, CoDel, and FQ-CoDel; however, dAQMc2, and dAQMc3 are still
over the average in the long flows, outperforming COBALT, FQ-CoDel, CoDel and PIE. RED is an
exception in the short flows because RED only starts dropping packets when the average queue length
exceeds its threshold. The PLR of RED is zero in the short flows scenario indicating that no packets
are dropped, its average queue length did not exceed the threshold.

The queue length of dAQMc1, dAQMc2, and dAQMc3 are the lowest in short flows, over 90% bet-
ter than the worst performance given by RED. However, in the long flows, although their queue
length trend decreases with increasing dAQM drop rate, dAQMs were still slightly outperformed by
COBALT, PIE, and CoDel. A similar outcome was found early in CBR streaming (long flow) traffic,
the queue length of dAQMs is higher than PIE, CoDel, and COBALT. This finding might be specific
to the traffic type applied, since for Streaming traffic under the Pareto distribution, dAQMc3 obtained
the minimal queue length.

The sojourn time of dAQMc1, dAQMc2, and dAQMc3 are the lowest in short flows as well as in the
long flows. They are about 95% and 90% to 97% better than the worst performance given by RED
for the short and long flows, accordingly.

• Throughput: The throughput of dAQMs is maximized in the short flows, all AQMs have obtained
the same level of throughput. However, in the long flows, dAQMs had a reduced throughput in its
trend with increasing dAQM’s drop rate. At its maximum drop rate, dAQMs have outperformed RED,
PIE, CoDel, and FQ-CoDel, with dAQMc1 and dAQMc3 being over 40% better than the worst perfor-
mance given by FQ-CoDel, however, slightly outperformed COBALT. A similar outcome was found
early with streaming CBR traffic (in Section 6.2.2). COBALT is the only technique whose throughput
performance is affected by the traffic patterns, it has an increased throughput with long flow traffics
compared to other AQMs.

• FCT: In short flows, the FCTs for all AQMs are roughly equivalent. This finding corresponds
to the outcome of the previous analysis on Poisson Distributed Traffic (in Section 6.2.1) and HTTP
CBR traffic (in Section 6.2.2). Where the FCTs are roughly the same in the short flows, for Poisson
distributed Gaming, VoIP, and HTTP traffic, and for HTTP flow under various traffic models (CBR,
VBR, Poisson, Pareto, Weibull).

However, in the long flows, dAQMs obtained the lowest FCT across all AQMs, giving performance
about 50% better than the worst AQM, RED. This discovery adds a new dimension to our previ-
ous findings. Previously, in the analysis for streaming (long flow) under various traffic models. We
found that dAQMc3 gives the highest queue length and sojourn time for Poisson distributed streaming
among the many distribution models while comparing to itself. Therefore, we may assume, dAQM is
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less adaptive to exponentially increasing traffic as to other traffic categories. Thus, it is explainable
that although dAQMc3 wasn’t giving the lowest FCT for Poisson distributed FTP, it is still convincing
that dAQMc3 can provide the best performance in obtaining the lowest FCT under CBR long flow
traffic. Since, in the streaming CBR, it was also having a relatively low FCT. Even though, COBALT
had a lower FCT for streaming CBR, it has a much higher PLR, and FTP is more heavily loaded than
streaming, therefore, we found COBALT had a larger difference in the PLR compared to dAQMc3 for
FTP. Higher PLR leads to more retransmissions and thus higher FCT. The heavier the load in long
flow for CBR, the greater the difference between dAQM obtaining the lowest FCT compared to the
other AQMs.

• Delay: The trend of the delay is decreasing while dAQM’s drop rate is increasing. This is rea-
sonable, given that increasing the PDP leads to lower sojourn time and queue length, hence lowering
the overall delay. This observation can be seen in both short and long flows. In the short flows,
dAQMc2 has obtained the lowest delay together with COBALT, being more than 35% effective than
the worst AQM PIE. In the long flows, the best performance was given by COBALT, though followed
by dAQMc1, being about 55% effective than the worst performance given by RED.
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6.3.2 Offered Load Variation

In this subsection, we focus on comparing the changes in dAQM performance against other state-
of-the-art AQMs when modifying the offered load (client transmission rate), with all other network
conditions remaining unchanged. Specifically, Fig. 13a to Fig. 13f represents HTTP CBR traffic (for
short flows), while Fig. 14a to Fig. 14f represents FTP CBR traffic (for long flows).
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Figure 13: Performance of dAQM by increasing the load for HTTP.
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Figure 14: Performance of dAQM by increasing the load for FTP.
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Analysis and Discussion:

Before delving into a comparison of the results presented in the two sets of figures, it’s essential to
address the observed peaks within the initial 10% range of the FTP load. Several factors can account
for this observation.

There are peaks for all the AQMs in FTP, however, the most obvious peaks are with the dAQM al-
gorithms for dAQMc1 and dAQMc2, especially with queue length (Fig. 14d) and sojourn time (Fig.
14e). This is related to both the TCP protocol used, as well as dAQM’s higher-order derivatives con-
figurations. TCP congestion control mechanism uses a scheme called Congestion Window (CWMD).
It controls how much data can be sent by the sender to avoid overloading the link. The CWMD grows
(exponentially at TCP’s slow start phase, additive at TCP’s congestion avoidance phase) based on the
acknowledgment received, until it finds the equilibrium at which rate the sender should be sending
data and the network can handle it. At a low transmission rate, new packets are coming to the network
at a low rate, it takes a longer time to receive new acknowledgments, and thus, the CWMD would
grow more slowly because TCP is more conservative in increasing its congestion window. At a high
transmission rate, the CWMD would grow more quickly, because the acknowledgments are returned
faster increasing the rate for the window to grow. At lower loads, the network is more slowly utilized,
and thus also spends more time in the slow start phase, allowing windows to grow large enough to fill
up the queues before it enters the congestion avoidance phase. Thus, increasing the queue length and
sojourn time.

Additionally, the clients were not started simultaneously in the CBR traffic, as in the Poisson, Pareto,
or Weibull distributed traffic. Therefore, peaks were not observed for HTTP traffic even at low loads,
because for its 10s simulation, fewer clients were started, as for 60s FTP traffic there are six times
more clients than HTTP traffic by the end of the simulation. The effect of TCP slow start and conges-
tion avoidance therefore brought a more pronounced effect (peak) to the simulation.

We would discuss the specifics of the high peaks provided by dAQMc1 and dAQMc2 while evaluating
their performance.

• Throughput: the throughput of dAQM is roughly the same across all AQMs in both scenarios,
except that COBALT gives a slightly higher throughput.
The plot (Fig. 14f) shows there is a peak at COBALT throughput at 50% load. Then, it slowly
decreases after 50% load. The maximum load applied is 10 Mbps, the half of it is 5 Mbps, which
corresponds to the load parameter we set for the streaming. This finding recalls (Fig. 10e) our previ-
ous finding, that COBALT has increased performance in throughput when transitioning from HTTP
(short flow) to Streaming (long flow). From the analysis (Fig. 14f), our understanding at that time
was not comprehensive. COBALT does increase in performance as traffic intensity gets increases, but
after achieving half the load (5 Mbps), its performance will slowly drop until it ends up almost on par
with other AQM algorithms (10 Mbps). Therefore, we may conclude that COBALT might be more
suitable for network conditions similar to our streaming configuration, however, at heavier load long
flows traffic, dAQM remains to be very competitive.

• FCT: For short flows, the FCTs of all AQMs are approximately the same, with the exception of
COBALT, which demonstrates a performance that is more than 15% better (at 100% load) in achiev-
ing a lower FCT compared to other AQMs. In the long flows, dAQMc3 gives the second-lowest FCT,
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on par with FQ-CoDel. It outperforms RED by approximately 10%, whereas COBALT surpasses
dAQMc3 by more than 10%.

• Queue Length, Sojourn Time: Across both scenarios, dAQMs have effectively achieved the low-
est queue lengths and sojourn times. Specifically, in short flow, dAQMc1 and dAQMc3 perform about
85% better in terms of obtaining the lowest queue length, and about 95% better in obtaining the lowest
sojourn time, compared to the poorest performance given by RED. In long flow, dAQMs and several
other state-of-the-art AQMs produced queue lengths within a similar range, with COBALT obtaining
slightly lower queue length and sojourn time. dAQMc2 and dAQMc3 gives more than 75% smaller
queue length, and dAQMc3 gives more than 95% smaller sojourn time than the worst performance
given by RED.

• PLR: In both scenarios, dAQMc1 gives the lowest PLR. Specifically, in short flows, it outperforms
the least effective AQM, PIE, by about 99%. In long flows, dAQMc1 performs more than 75% better
than the worst performance given by COBALT. In contrast, dAQMc3 had the highest PLR, on par
with PIE in the short flows and comparable to those AQMs outperformed by dAQMc1 in long flows.

• Delay: The delay given by the dAQMs are relatively good, surpassing all other AQMs with the ex-
ception of COBALT. Specifically, in the short flow, COBALT outperforms dAQMc1 by approximately
20%, whereas dAQMc1 exhibits a performance that is around 35% superior to the highest delay given
by RED, and FQ-CoDel. In long flows, COBALT is about 48% more efficient than dAQMc3, while
dAQMc3 is about 50% better than RED.

Based on the analysis, we gain a better understanding of peaked queue length and sojourn time for
dAQMs. Fig. a shows the queue length reaches a peak for dAQMc1, followed by FQ-CoDel, and
then dAQMc2, while AQMs like RED, PIE, CoDel, COBALT, and dAQMc3 do not have such a no-
ticeable peak in the queue length. Therefore, we may assume that peaks in dAQMc1 and dAQMc2 are
caused by the parameter configurations. The three configurations are set up with different focuses to
understand the optimization of dAQM parameters configuration, in queue management and conges-
tion control. For example, dAQMc3 was set up with the aim of minimal queue length and sojourn
time, and dAQMc1 was aiming at minimal PLR. The drop rate of dAQMc3 is set up to 98% upon
detection of congestion, whereas the drop rate for dAQMc2 is 50%, and for dAQMc1 is 5%. The
threshold parameters of dAQMc3 are also set smaller for the eight traffic features, allowing it to trig-
ger the drop mechanism at a much earlier stage. For these reasons, it is much more effective in queue
management. We also suggest that the peaks may have become pronounced by the use of TCP. As
previously, discussed the reasons for peak occurrences are related to TCP’s slow start. The slow start
phase is longer with lower loads, allowing the queue to grow, like in the case for dAQMc1. dAQMc1
has higher thresholds, making it harder to satisfy the drop conditions. Even at its dropping phase, it
has only 5% chance of dropping the packets, making it less efficient in maintaining the queue. How-
ever, dAQMc3 is efficient enough to handle the congestion by itself, while maintaining a high level of
throughput and a relatively low delay, without relying on the drop mechanism from TCP’s algorithms.
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6.3.3 Packet Size Variation

In this subsection, we focus on comparing the changes in dAQM performance against other state-of-
the-art AQMs when varying the packet sizes, the other network conditions are unchanged. Specifi-
cally, Fig. 15a to 15f represent HTTP CBR traffic (for short flows), and Fig. 16a to Fig. 16f represent
FTP CBR traffic (for long flows).
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Figure 15: Performance of dAQM by increasing the packet size for HTTP.

0%
25% 50% 75%

100%
125%

Packet Size (%)

0%

25%

50%

75%

100%

F
C

T
 (

%
)

(a) FCT.

0%
25% 50% 75%

100%
125%

Packet Size (%)

0%

25%

50%

75%

100%

D
el

ay
 (

%
)

(b) Delay.

0%
25% 50% 75%

100%
125%

Packet Size (%)

0%

25%

50%

75%

100%

P
LR

 (
%

)

(c) PLR.

0%
25% 50% 75%

100%
125%

Packet Size (%)

0%

25%

50%

75%

100%

Q
ue

ue
 L

en
gt

h 
(%

)

(d) Queue length.

0%
25% 50% 75%

100%
125%

Packet Size (%)

0%

25%

50%

75%

100%

S
oj

ou
rn

 T
im

e 
(%

)

(e) Sojourn Time.

0%
25% 50% 75%

100%
125%

Packet Size (%)

0%

25%

50%

75%

100%

T
hr

ou
gh

pu
t (

%
)

(f) Throughput.

Figure 16: Performance of dAQM by increasing the packet size for FTP.
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Analysis and Discussion:

Since we are using a fixed queue length of 2000 packets (as opposed to a fixed physical memory
size measured in bytes) for the simulations, scenarios with smaller packet sizes coupled with high
transmission rates can lead to rapid queue saturation. This may lead to congestion. As a result, with
smaller packet sizes, metrics such as queue length, sojourn time, PLR, and delay are notably high due
to this congestion, while throughput is low. As the packet sizes increase, those former metrics would
decrease, while the throughput would increase.

• FCT: In the short flows, the FCT of all AQMs are approximately the same, except that COBALT
was initially performing the best with smaller packet sizes, and its performance slowly align to the
others with increasing packet sizes. In the long flows, COBALT is leading in giving the lowest FCT,
which demonstrates a performance that is approximately 14% better than dAQMc3, where dAQMc3
is the second best option being at least 10% better other AQMs.

• Delay: In the short flow, three dAQMs give the lowest delay at large packet size together with
COBALT, and outperform RED, PIE, CoDel, and FQ-CoDel. However, COBALT was already ob-
taining the lowest delay at a small packet size. Followed by dAQMc3, whose delay is about 50%
lower than FQ-CoDel, PIE, CoDel, and RED at very small packet sizes. In the long flow, dAQMc3
gives the second lowest delay, worse than COBALT, but outperforms RED by about 47%. In the long
flow, dAQMc3 remained the second best option adaptive to both small and large packet sizes.

• PLR: dAQMc1 gives the lowest PLR in both scenarios. In the short flows, its performance is more
than 90% better than PIE, tying with RED for the lowest PLR. In the long flows, dAQMc1 leads all the
AQMs, outperforming RED (second lowest) by about 55%. Notably, dAQMc1 consistently delivers
the lowest PLR across all packet sizes, from small to large, even under heavy congestion.

• Queue length: The queue lengths of dAQMs are the lowest for both short and long flows at large
packet sizes. With small packets in the short flow, dAQMc3 is about 95% better than RED (worst)
and 92% better than COBALT (second best) in obtaining the lowest queue length. While it is around
80% better than RED and 65% than PIE (second best) in the long flows. With large packets, the other
algorithms slowly adapt to the network condition, thus decreasing their queue length until it aligns (or
close) with dAQMc3 performance. Notably, dAQMc3 consistently maintains the lowest queue length
starting from small packet sizes to large sizes. Underscoring its high configurability and robustness
for queue management.

• Sojourn Time: For large packet size, the sojourn times for dAQMc1, dAQMc2, and dAQMc3 con-
sistently rank among the lowest in both short and long flows. Although dAQMc3 (best) is about 70%,
and dAQMc2 (second best) is about 65% better than COBALT (third best) in the short flow. COBLAT
became about 70% better than dAQMc3 (second best) in the long flows. It has more than 95% im-
proved performance than given by the worst case RED, in both the short, and long flows. From the
analysis, dAQMc3 is very preferred for its superior performance in both flow categories and a wide
range of packet sizes.

• Throughput: For short flows, all AQMs achieve a similar, maximized throughput level. In the long
flows, while dAQMs perform on par with RED, PIE, CoDel, and FQ-CoDel, they are outperformed
by COBALT by approximately 8% to 23%. Furthermore, analysis shows, that there is an increasing
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throughput in the long flows, for loads up to roughly 65%, then it slowly reduces.

These correspond to our previous findings (Fig. 8e, 9e, 10e). For Poisson-distributed HTTP and VoIP
(slow flows), the throughput across all AQMs was roughly equivalent (except CoDel has a slightly
reduced throughput for HTTP), while Poisson-distributed FTP and Streaming (long flows), had pro-
nounced performance differences (COBALT and CoDel have higher throughput). This is also sup-
ported by the analysis of various traffic distribution models for HTTP. The throughput was roughly
the same among all AQMs and traffic distribution models. Whereas only COBALT had increased
throughput for CBR streaming. Furthermore, we have also gained more analytical feedback on long
flows under CBR traffic with COBALT increased throughput in variation to load (Fig. 16f). The
throughput of COBALT increases up to 50% load, and then slowly decreases to align with the oth-
ers. Increasing load, or increasing packet size, essentially both accumulate the data flowing on the
network link. Thus, the similar discovery of increased throughput is justifiable. Therefore, we could
suggest, that although the simulations were done only up to 125% packet size, if we keep increasing
the packet size, COBALT eventually would also align its throughput with other AQMs at the end.

6.3.4 Section Discussion

Analysis shows the performance of dAQM, across varying network parameters and conditions, ex-
hibits significant success. When considering both short and long flows, dAQM consistently ranks
among the top performers in key metrics such as PLR, queue length, sojourn time, and delay, often
surpassing other state-of-the-art AQMs.

Specifically, in short flows, dAQM effectively manages to achieve the lowest queue lengths, sojourn
times, PLR, and maximize throughput. For long flows, the performance remains impressive. dAQMc3
is frequently being highlighted for obtaining the lowest queue length and sojourn time under vary-
ing packet sizes and heavy load. dAQMc1, on the other hand, frequently stands out in obtaining the
minimal PLR. COBALT, however, emerges as a strong competitor, at times outperforming dAQM,
especially in terms of delay and throughput.

Performance analysis suggests that dAQM adapts well across various scenarios, highlighting its ro-
bustness and potential based on consistently pronounced performance. It showcases how its pro-
grammability and configurability aid its ability to handle varied traffic patterns and network condi-
tions.
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7 Conclusion and Future Work
In the thesis, we proposed a new adaptive network management technique, the dAQM algorithm. It
uses eight advanced traffic features to precisely calculate the PDP, including constant and higher-order
derivatives of sojourn time and buffer size. It allows early detection of congestion, and proactively
controls packet drop with a pre-defined probability and duration.

7.1 Key Research Findings
• TCP vs. UDP Protocols: analysis shows dAQM has proven to be particularly efficient when em-
ployed with the TCP protocol due to its reliance on sojourn time and queue length variations. Greater
variations lead to higher derivative values and better management of the dAQM drop mechanism.

• Traffic Distribution and Flow Type: Analysis showed the behaviors of AQM techniques, are
highly influenced by the underlying traffic characteristics. dAQM has shown superior effectiveness
under Pareto distribution, for both short and long flows, in obtaining the minimal queue length and
sojourn time.

• Network Parameters Variation: Analysis shows dAQM scales well to scenarios with varying
network parameters like offered load, packet size, and dAQM drop rate. Under certain conditions,
the network was very congested (e.g., at long flows with low loads or small packet sizes), however,
dAQMc3 (min. queue length and sojourn time), and dAQMc1 (min. PLR) adapt well without the
need for tuning or reconfiguration of its initial parameters. It gives consistently low queue length and
sojourn time.

The performance analysis of various traffic models (CBR, VBR, Poisson, Pareto and Weibull) and
flow types (short flows: Gaming, VoIP, HTTP, and long flows: FTP, Streaming), demonstrates that
dAQM is compatible with various network traffic scenarios. Different configurations yield substantial
differences in their performance under the same network conditions. The performance of the dAQM
highly depends on the expected traffic patterns. Its high programmability and configurability allow it
to be tuned and tailored according to the expected traffic patterns and performance objectives. Where
minimal queue length allows for less physical memory resources, and small sojourn time provides a
fast and responsive network connection. Alternatively, dAQM can move its focus to obtain the lowest
PLR. Keeping a low PLR, allows for a more stable network, and less disruption or loss of packets
transmitted over the network link.
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7.2 Future Work
At the moment, the dAQM algorithm was designed based on constant packet arrival time. In the
future, we aim to improve the approach by implementing dynamic packet arrival time in the higher-
order derivatives calculation. By this transition, we could enhance the accuracy of the variations in
current network congestion, leading to more efficient and adaptive network management.

Furthermore, we would like to focus on improving queue management techniques using deep learn-
ing technologies [66]. Deep learning, a subset of machine learning, uses artificial neural networks
to understand vast data and make precise predictions. Deep learning models through data analysis,
can understand and predict future traffic patterns in real-time. Therefore, improving the network
performance by adaptively switching between different AQM algorithms or different sets of AQM
configurations.
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A Performance Statistics

Table 4: Performance Statistics for HTTP dAQM drop rate at 99%.

P.M RED PIE CoDel FQ-CoDel COBALT dAQMc1 dAQMc2 dAQMc3

FCT 2.808 2.849 2.805 2.850 2.844 2.833 2.849 2.830

Delay 209.262 239.050 190.774 183.466 165.255 182.211 152.962 176.751

PLR 0.000 0.158 0.085 0.089 0.124 0.058 0.097 0.110

Q.L 112.743 14.430 26.231 26.373 19.154 9.079 10.997 9.733

S.J 1550.973 224.706 360.896 372.424 210.935 36.417 80.768 50.501

Th 437.468 459.562 450.983 461.361 444.482 455.725 454.403 450.602

Table 5: Performance Statistics for FTP dAQM drop rate at 99%.

P.M RED PIE CoDel FQ-CoDel COBALT dAQMc1 dAQMc2 dAQMc3

FCT 30.256 29.221 27.829 25.466 25.797 15.426 15.395 15.838

Delay 2403.579 1908.472 1349.269 1955.000 668.221 1082.524 1138.196 1341.050

PLR 0.453 0.614 0.569 0.636 0.688 0.366 0.536 0.531

Q.L 677.576 94.579 103.856 303.726 67.240 122.907 144.558 124.514

S.J 13166.835 809.967 593.505 2911.114 78.786 394.510 1191.862 443.276

Th 263.616 225.977 221.230 206.776 302.307 292.796 278.252 291.550

Table 6: Performance Statistics for HTTP offered load at 4 Mbps.

P.M RED PIE CoDel FQ-CoDel COBALT dAQMc1 dAQMc2 dAQMc3

FCT 2.807 2.864 2.840 2.832 2.421 2.863 2.844 2.848

Delay 351.325 346.713 326.511 355.850 183.078 234.450 288.611 268.654

PLR 0.000 0.358 0.167 0.172 0.283 0.004 0.212 0.354

Q.L 269.563 58.345 122.756 132.708 59.730 44.384 68.412 36.075

S.J 2096.929 632.055 994.035 983.876 218.218 128.296 707.751 111.155

Th 629.221 641.912 644.890 655.699 745.908 632.401 635.772 638.260
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Table 7: Performance Statistics for FTP offered load at 10 Mbps.

P.M RED PIE CoDel FQ-CoDel COBALT dAQMc1 dAQMc2 dAQMc3

FCT 17.713 17.042 17.603 15.949 13.590 18.255 16.511 15.800

Delay 2378.042 1652.124 1289.483 1472.566 578.888 1402.792 1269.053 1254.581

PLR 0.330 0.553 0.542 0.506 0.651 0.156 0.387 0.521

Q.L 563.92 1 114.905 120.361 225.680 94.184 168.964 132.039 129.377

S.J 11100.006 1013.155 687.210 1844.623 109.143 1782.286 1165.219 382.455

Th 318.734 292.913 284.268 276.652 345.718 295.467 293.194 280.306

Table 8: Performance Statistics for HTTP packet size at 1400 B.

P.M RED PIE CoDel FQ-CoDel COBALT dAQMc1 dAQMc2 dAQMc3

FCT 2.855 2.799 2.828 2.826 2.863 2.843 2.833 2.830

Delay 248.971 206.807 200.930 209.064 173.834 180.562 180.015 191.975

PLR 0.000 0.136 0.081 0.092 0.128 0.011 0.064 0.117

Q.L 102.201 14.728 23.638 25.388 18.906 15.175 10.910 9.712

S.J 1349.799 279.861 323.248 298.203 185.361 191.932 65.623 56.680

Th 457.526 457.877 458.194 468.508 458.311 448.505 457.457 456.076

Table 9: Performance Statistics for FTP packet size at 1400 B.

P.M RED PIE CoDel FQ-CoDel COBALT dAQMc1 dAQMc2 dAQMc3

FCT 17.713 17.042 17.603 15.949 13.590 18.713 16.795 15.800

Delay 2378.042 1652.124 1289.483 1472.566 578.888 1331.749 1287.087 1254.581

PLR 0.330 0.553 0.542 0.506 0.651 0.151 0.380 0.521

Q.L 563.921 114.905 120.361 225.680 94.184 176.157 125.580 129.377

S.J 11100.006 1013.155 687.210 1844.623 109.143 2020.406 1189.185 382.455

Th 318.734 292.913 284.268 276.652 345.718 290.585 296.261 280.306
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