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A B S T R A C T

Visual texture of surfaces plays an important role in human visual per-
ception, particularly in how we discern and interpret material prop-
erties and spatial relationships in our environment. Texture synthesis
is the process of algorithmically constructing a novel image texture
from a sample, maintaining the visual appearance and essential char-
acteristics of the sample. Gatys et al. (2015) developed a technique
to synthesise textures using a model based on correlations in the
feature space of a pre-trained convolutional neural network, namely
VGG-19. Our research expands upon this foundation by exploring the
method’s adaptability to a different CNN architecture, demonstrating
its efficacy with ResNet34. We also introduce a gradient threshold as
a stopping criterion for the synthesis process, significantly enhanc-
ing computational efficiency without compromising texture quality.
Further, we investigate various seed image types, especially in terms
of their frequency domain content, to determine their impact on the
synthesis outcome. Additionally, our study examines the relationship
between scale invariance in textures and synthesis quality, utilising
wavelet transform for a multi-scale analysis.
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1
I N T R O D U C T I O N

1.1 definition

It is imperative for the advancement of our discussion to first and
foremost define what exactly a texture is. When we think of textures,
we will typically say that they are the "look" and "feel" of an object.
Texture can thus refer to the visual appearance of the surface of an ob-
ject or to the way in which its surface relief results in different touch
sensations. This thesis will only be concerned with the visual aspect
of texture, i.e. image textures. Furthermore, usually object surfaces
are three dimensional, however, we will only be working with two
dimensional representations. This boils down to visual two dimen-
sional textures represented as RGB images. So from here on out, this
is what we will refer to when we use the word "texture".

Figure 1: Examples of natural textures

Figure 2: Examples of artificial textures

Textures can come in many different varieties. We observe textures
on natural objects such as those displayed in Figure 1 as well as on ar-
tificial objects in Figure 2. Furthermore, textures can be ordered along
a spectrum going from regular to stochastic. On one end, there exist
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1.1 definition 2

regular textures, which follow well defined repetitive spatial patterns.
On the other end, there are stochastic textures, which lack a repetitive
pattern and are best described by a probabilistic model. There seems
to be no structure or pattern to these textures. Also, even within
these categories textures can differ greatly due to variations in the
colour, shape, rotation, arrangement or density of their elementary
parts. Due to this property of texture, it is difficult to give a concise
definition that captures all dimensions of the concept of texture.

Figure 3: Decreasing texture regularity from left to right

Several researchers have attempted to formulate precise definitions
of texture. Haralick [15] defines texture as an organised area phe-
nomenon. This definition encapsulates the idea that textures consist
of structural elements displaying a certain pattern across a surface.
’Primitives,’ as he calls them, have specific spatial distributions, indi-
cating that the arrangement and spacing of these elements are key
characteristics in defining the texture. Cross and Jain [7] describe tex-
ture as a stochastic and occasionally periodic two-dimensional image
field. This definition highlights the balance between randomness and
periodicity in textures. The stochastic nature suggests variability in
texture elements, while the periodic aspect acknowledges the pres-
ence of repeating patterns in many textures.

Portilla and Simoncelli, whose work will be further discussed in
subsequent sections, have also contributed their definition of texture.
They characterise textures as spatially homogeneous regions, marked
by repetition with an element of randomisation. This definition ac-
knowledges the uniformity in textures, while also recognising the
inherent variability in elements such as location, size, colour, and ori-
entation. This perspective emphasises the coexistence of order and
randomness within textural patterns.

We can detect an apparent agreement regarding the significance of
spatial homogeneity as a fundamental characteristic of textures. From
a statistical perspective, homogeneity refers to the concept of statis-
tical stationarity, implying that specific signal statistics within each
texture region maintain consistent values. This particular attribute
directly correlates with self-similarity, whereby patterns observed at
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various scales, while not completely identical, exhibit similar signal
statistics [36].

1.2 texture perception

Our capacity to perceive texture plays a crucial role in our ability
to understand scenes. Textures give important visual cues regarding
depth, orientation, etc. The entire visual system is a complex process
and it has been shown that texture perception is one of its founda-
tional features [3, 24].

1.3 julesz’ conjecture

Julesz was one of the first to systematically study human texture per-
ception [24, 25]. Central to his research was establishing a statistical
basis for human texture discrimination. He created images wherein
he combined certain textures (see Figure 4). These textures were gen-
erated using stochastic processes, which are specified by their Nth
order joint probability distribution. His reasoning behind these stim-
uli was that because they are devoid of any familiar cues, they de-
prive subjects of habitual recognition and force them to rely on more
primitive mechanisms.

Julesz showed these images to participants for very short time pe-
riods and had them try to pre-attentively discriminate between tex-
tures. He found that certain lower-order statistics of textures could de-
fine our inability to discriminate between them. In specific, he demon-
strated that many textures sharing the same second-order statistics
could not easily be discriminated pre-attentively. This statistical ap-
proach to analysing texture served as the basis for many subsequent
texture models.

Figure 4: Images used for research by Julesz
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1.4 statistical analysis of textures

Julesz’s research regarding the statistical classification of textures based
on human perception prompted many others to build statistical mod-
els of textures. His first conjecture regarding second-order statistics
of textures inspired a class of algorithms called the random phase meth-
ods [38], which utilise the square Fourier modulus equalling spatial
auto-correlation, a second-order statistic.

Later is was found that textures could share second- and even third-
order statistics while being perceptually distinct [5]. This finally led
to Julesz proposing the concept of textons [26], which are discernible
features like lines and corners. He conjectured that the first-order
statistics of these textons are relevant for texture perception. Texton
theory proposes the main axiom that texture perception is invariant
to random shifts of the textons [23]. This axiom is used, for example,
in the stochastic dead leaves model [4].

Largely inspired by the work of Julesz, statistical texture models try
to capture the perceptual qualities of a texture in a summary statistic:
a mathematical representation of what perceptually defines a texture.

1.5 texture models

Analysis of texture can also be reversed by means of synthesis. Exemplar-
based synthesis employs the statistical analysis of texture to steer syn-
thesis of novel texture images. It functions by first obtaining a set of
statistics that can capture perceptual qualities of the example texture.
Synthesis is then performed by enforcing these statistics onto some
random seed image using an iterative optimisation scheme. In match-
ing up the defined statistics, the perceptual qualities of the images
should also align. Such texture synthesis can function as a measure
for how well the defined texture model has captured features of tex-
tures. If the synthesised textures are perceptually similar to the ex-
emplar texture, we may conclude that the statistics that were derived,
capture the perceptual features well.

1.6 neural synthesis

Central to this thesis is the work by Gatys and colleagues [12]. They
showed that an effective texture model can be constructed based on
correlations between features from the feature space of a convolu-
tional neural network that has been pre-trained for image classifica-
tion in the ImageNet challenge. Synthesis based on their model is
able to synthesise a wide variety of textures, without the need for
hand-crafting image statistics.



2
S TAT E O F T H E A RT

In the last few decades, many different approaches to synthesising
textures have been developed. Ranging from non-parametric patch
rearrangement techniques to parametric statistical approaches. Re-
searchers have tried to formulate models and techniques for specific
classes of textures as well as for broader ranges of textures. In this
chapter, we will first focus on the classical way of generating a tex-
ture model as developed by Heeger and Bergen [18] and by Portilla
and Simoncelli [32]. After which we will look at the extension to this
technique by Gatys et al. [12] which makes use of a set of image fea-
tures learned by a convolutional neural network (CNN).

2.1 non-parametric approaches

Exemplar-based texture synthesis is carried out by algorithmically
creating a new digital image based on the perceptual nature of some
example image. Exemplar-based synthesis can either be parametric
or non-parametric. Some non-parametric methods that make use of,
for example, tiling, patch re-arrangement, or Markov-fields have been
developed [9, 14, 28]. These methods build up new textures by sam-
pling or shuffling local areas of the original texture. While some of
these methods can achieve successful synthesis results, they do not
contain any theory of the statistical nature or the perceptual features
of textures.

2.2 parametric approaches

A class of synthesis algorithms that does incorporate a statistical as-
pect are the parametric methods. These methods start by defining a
texture model that tries to capture the characteristics of the texture
in some sort of summary statistic that can be used to steer synthesis.
Essentially, if we are able to extract the meaningful statistical informa-
tion that defines human perception of texture from an image, we are
then able to find other images with matching statistics that are thus
perceptually equivalent to the original image [24, 25, 32].

2.2.1 Gabor Filters

Human perception is what determines the realised similarity of a syn-
thesised image to its exemplar, so researchers have looked at trying
to imitate the mechanism by which the visual cortex analyses visual
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texture. Gabor filters have been found to be a good model for two-
dimensional receptive fields of simple cells in the striate cortex [21,
22]. A two-dimensional Gabor filter can be realised as a sinusoidal
plane wave of some frequency and orientation within a two dimen-
sional Gaussian envelope. When a set of Gabor filters are applied to
a variety of textures found to be pre-attentively discriminable, they
produce first-order differences for differently textured regions. This
ability suggests that certain texton types — local features described
by Julesz [24] — can be detected by application of Gabor filters [37].

Gabor filters that mimic the neurons of the visual cortex can be
applied on images to produce meaningful statistics for parametri-
cally modelling texture perception. Based on this notion, various tech-
niques of modelling early visual processing in mammals by imple-
menting multi-scale analysis using Gabor filters have been developed
[2, 30, 37].

2.2.2 Multi-Scale Analysis

Heeger and Bergen [18] extended the approach to multi-scale analysis.
Their work was also motivated by a model of human texture percep-
tion. They noted that textures are not easily discriminated when they
produce a similar distribution of responses in a bank of (orientation
and spatial-frequency selective) linear filters. Their method synthe-
sises textures by matching the outputs of these filters. This model
thus depends on the characterising information of a texture being
captured in the first-order statistics of an appropriately chosen set
of linear filters. However, they acknowledged limitations in their ap-
proach. The model captures some, but not all, perceptually relevant
structures of natural textures. It is particularly reliant on the input
image being a homogeneous texture. Inhomogeneous inputs, such as
those with intensity gradients or perspective distortions, result in syn-
thetic textures with a blotchy appearance. The approach also strug-
gles with quasi-periodic textures and random mosaic textures, where
the results, although interesting, do not closely resemble the inputs.
These limitations are attributed to the model’s inability to capture
long-range statistical correlations, particularly in textures with vary-
ing orientations or extended fine structures.

2.2.3 Portilla and Simoncelli

The texture model developed by Portilla and Simoncelli [32] can be
viewed as an extension to the work of Heeger and Bergen [18]. Their
model also decomposes an image into oriented sub-bands of spatial
frequencies using a linear filter bank. What sets this model apart from
previous work, are the carefully selected joint statistical constraints.
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These constraint statistics were selected by hand, based on manual
visual evaluation.

They commence by selecting a set of basic parameters for a texture
model and synthesised a large set of textures. After initial synthesis
they identify a class of textures containing features that produced the
poorest results and chose a new constraint that would capture the
missing features in the model. After extending the constraint func-
tions they re-synthesise the failed class of textures to verify the new
constraint worked as intended. Furthermore, they verify if the origi-
nal constraints were still necessary.

Finally, they arrive at a set of 710 statistical constraints to parame-
terise their texture model. The set is divided into four classes, each
of which contributes to certain perceptual features. First, there are a
handful of marginal statistics, followed by raw coefficient statistics
that contribute to the regularity and the salient spatial frequencies, a
set of coefficient magnitude statistics that represent structures such as
edges and corners, and finally cross-scale phase statistics that distin-
guish edges from lines and can represent gradients due to shading.

It is the resourceful and specific application of auto- and cross-
correlation on the filter responses that generated the rich descrip-
tive set of constraint statistics that fully describes their texture model.
The synthesis results are generally not easily discriminated in pre-
attentive examination and for more than a decade represented the
state of the art in texture synthesis [33].

2.3 gatys’ method

In 2015, Gatys et al. [12] proposed a novel texture model based on the
feature maps of VGG-19 [35], a pre-trained convolutional neural net-
work that is optimised for object recognition. Synthesis results of the
model exhibit remarkable perceptual quality, showcasing the impres-
sive generative capabilities of neural networks trained on classifica-
tion tasks. Additionally, these results may provide valuable insights
into the learned representations within a neural network. Before we
get into the actual synthesis method, we will first cover some deep
learning concepts that are crucial to its functioning.

2.3.1 Deep Learning

Deep learning is a subclass of machine learning algorithms that em-
ploys a network containing multiple layers to progressively extract
higher-level features from some input; each layer learns to transform
its input into a slightly more abstract representation. The layers are
made up of nodes/neurons, each of which has a weight and a bias
that determine how it passes through information. An important fea-
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ture of deep learning is that these weights and biases are learned
autonomously.

2.3.1.1 Fundamentals

Neural networks consist of layers, each represented by a matrix of
weights. The transformation of information within the network is
achieved by matrix multiplication of these weights with the layer’s
input. Mathematically, if we denote a layer as L with weights W and
input x, the output y can be represented as

y = Wx+ b , (1)

where b is the bias vector. The output of one layer becomes the in-
put to the next, making the network a high-dimensional differentiable
function mapping input to output.

During the "learning" stage, the network’s weights are optimised.
This is done by defining a loss function L which quantifies the net-
work’s performance based on its current weights. To optimise these
weights, backpropagation is employed. It involves the recursive appli-
cation of the chain rule to compute the gradient of the loss function
with respect to each weight. This can be represented as

∂L

∂W
=

∂L

∂y
· ∂y

∂W
. (2)

By adjusting the weights in the direction opposite to the gradient,
the network iteratively improves its performance.

2.3.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are designed with the as-
sumption that the input is an image. They contain convolutional lay-
ers acting as linear filters, with the features they detect being deter-
mined during the learning process. The non-linearity of the network
is introduced through activation functions. Mathematically, a convo-
lution operation in a CNN can be represented as

y = f(W ∗ x+ b) , (3)

where ∗ denotes the convolution operation, W is the weight matrix
(filter), x is the input, b is the bias, and f is the non-linear activation
function.

For instance, in image recognition, the initial input could be a pixel
matrix. Subsequent layers progressively encode higher-level features,
starting from edges in the first layer to complex features like facial at-
tributes in deeper layers. This encoding process, while often concep-
tually simplified, is in reality optimised through training to minimise
the loss function, without explicit design of the feature space.
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ilsvrc The ImageNet Large Scale Visual Recognition Challenge is
a yearly competition where research teams compete to achieve the
highest accuracy on several visual recognition tasks using the Ima-
geNet dataset. Around 2011 a good classification top-5 error rate was
25%. In 2012, a deep CNN called AlexNet [27] achieved 16% and
marked the start of an industry-wide artificial intelligence upsurge.
In the years following this breakthrough, error rates fell to only a few
percent.

2.3.1.3 Motivation behind CNN

In an experiment where they studied the activation of neurons in the
brain of a cat, Hubel & Wiesel [19] discovered that certain neurons
in the cats brain would activate based on very specific stimuli. They
found that straight lines would active specific neurons based on their
rotation. This implies that there are basic structures in the visual cor-
tex that respond to certain elementary shapes.

Later research has shown that the mammalian visual system con-
tains many different parts that feed into each other in a hierarchical
manner [11, 34]. In doing so, many complex features can be built
up from lower elements. In this model “simple” neurons would feed
into higher-level neurons, allowing the simple shapes to combine into
more complex structures. This idea gave rise to the hierarchical view
of the ventral stream. Simple features are combined at higher levels
to eventually create the rich visual perception we experience.

The convolutional layers in deep CNNs are set up as to be able to
mimic the striate cortex. Specifically, akin to how Gabor filters were
applied in earlier models, convolutional layers are able to act like
receptive filters analogous to the neurons in the visual system. The
power of CNNs comes from the fact that the features in convolutional
layers are learned from large amounts of real-world data. Hence it
can be assumed that the feature space takes on some optimal form
for extracting features from the input image [39].

2.3.2 Synthesis

The texture synthesis method developed by Gatys et al. [12] can be
seen as a modified version of the work by Portilla and Simoncelli [32].
Where Portilla and Simoncelli used a steerable pyramid to decompose
the input image into sub-bands, effectively filtering using a linear
filter bank, Gatys et al. use the activations of the intermediate feature
maps of a pre-trained convolutional neural network, and instead of
the 710 hand-chosen statistics of Portilla and Simoncelli they opted
for the correlations across all activations within the feature maps.

To analyse texture, an exemplar is forwarded through the pre-trained
network, but instead of looking at the classification score, the inter-
mediate activations within the layers are collected. The correlations
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Figure 5: Illustration from the paper by Gatys et al. Texture analysis on the
left. Texture synthesis on the right.

across the activations within a set of chosen feature maps are com-
puted as a set of Gram matrices Gl (see left of Figure 5).

The same operation is performed for a seed image, for which Gatys
et al. used Gaussian white noise. A loss function is defined based on
the distance between the Gram matrices of the exemplar and the seed.
The seed image is then adjusted using gradient descent on the total
loss, as to force the feature correlations to line up with those of the
exemplar (see right of 5). This process is applied until the seed image
converges to a texture that is perceptually similar to the exemplar.

2.3.2.1 VGG

Gatys et al. selected the VGG-19 network for their application. VGG
models are a type of CNN architecture proposed by Simonyan and
Zisserman of the Visual Geometry Group at Oxford university [35].
They experimented with networks of different depths, of which VGG-
19 is the deepest at 19 layers. Their architecture follows a basic and
linear structure of convolutional layers with receptive windows of 3x3

each followed by a ReLU non-linearity [10]. They choose 3x3 filters
as these are the smallest possible filter size that can still capture no-
tions of left/right and up/down. Some convolutional layers are also
followed by a max-pooling layer with 2x2 window and stride of 2.
At the end of their network are three fully connected layers and a
softmax layer for the classification. These last four layers are not of
interest for the texture synthesis task, as only the feature maps are
used. VGG achieved second place in the 2014 ILSVRC with a top-5
error of 7.3%.
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Figure 6: Example of the straightforward VGG architecture. Shown here is
the VGG-16 variant.

2.3.2.2 Gram Matrices

When an image is forwarded through a convolutional neural network,
the activations for each layer in that network can be understood as
a set of filtered images, which are called feature maps. These maps
contain the intensity of certain learned features across the image.

Central to the texture model by Gatys et al. is the use of Gram ma-
trices. Since textures are per definition stationary, the model needs
to be agnostic to the spatial information in the feature maps. A spa-
tially invariant summary statistic is given by a Gram matrix, where
the elements are the feature correlations within a layer.

Figure 7: Computing a Gram matrix based on the feature maps of a convo-
lutional layer.

Gram matrices are computed per layer of the network. The process
start with forwarding some vectorised image x⃗ through the network
and obtaining all feature maps of a layer l (see step 1 in Figure 7).
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The number of feature maps Nl within a layer l is determined by the
depth of that layer.

All feature maps within layer l are of equal size Ml when vec-
torised and can thus be stored in a matrix F ∈ RNl×Ml (see step 2 in
Figure 7).

Finally, a Gram matrix Gl ∈ RNl×Nl can be computed (see step 3

in Figure 7), where Gl
ij is the dot product between feature map i and

j in layer l is

Gl
ij =

∑
k

FlikF
l
jk . (4)

2.3.2.3 Loss and Optimisation

To synthesise a texture using the method as defined in [12], a white
noise image is updated to make its Gram matrix representation match
that of an exemplar. This process is achieved using gradient descent.
The loss function is defined as the mean-squared distance between
the Gram matrices obtained from the exemplar and the Gram matri-
ces obtained from the image that is synthesised.

Let x⃗ and ˆ⃗x be the original image and the image that is generated,
and Gl and Ĝl their respective Gram matrix representations in layer
l. The contribution of layer l to the total loss is then

El =
1

4N2
lM

2
l

∑
i,j

(Gl
ij − Ĝl

ij)
2 , (5)

and the total loss is

L(⃗x, ˆ⃗x) =
L∑

l=0

wlEl , (6)

where wl are the weighting factors of the contribution of each layer
to the total loss.

2.3.2.4 Synthesis

The following results were obtained from a custom Python imple-
mentation of the method by Gatys et al. To facilitate ease of imple-
mentation, the PyTorch deep learning library [31] was used. All im-
ages were synthesised with a GTX 4090, which allowed for faster
running times using GPU acceleration. Feature maps from all convo-
lutional and all pooling layers in VGG-19 were used to parameterise
the model. For implementation details see the GitHub repo.

We made use of the Describable Texture Dataset (DTD) [6]. This al-
lowed for the method to be tested on a large array of varying textures.
The dataset consists of 47 categories, each of which contains 120 dif-
ferent images. We choose 10 images at random from every category
to create a subset of the original DTD. This was necessary due to the

https://github.com/Roemerdt/thesis
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slow nature of the synthesis method. Unfortunately some images in
DTD contain only small areas of their texture category and are more
like regular structured images, which were not well synthesised.

(a) Best performing categories according to DISTS scores (see 3.1.2)
(categories left to right: flecked, knitted, polka-dotted, lacelike,
marbled)

(b) Visually pleasing results (categories left to right: braided, bumpy,
fibrous, fibrous, bubbly)

(c) Synthesis often fails for structures and straight lines (categories
left to right: spiralled, grooved, freckled, zigzagged, banded)

Figure 8: Synthesis results. Exemplar on top, synthesised texture on bottom.

Figure 8 shows some examples of texture categories from DTD
that are generally synthesised well, while figure 8 shows examples of
categories that present the model with problems. Among the worse
performing textures are those containing straight lines and structure,
which are not preserved well by the model. The ’freckled’ category is
an example of a set of images in DTD that are difficult to synthesise
as only images of faces with small freckled areas are included.

Images that produce satisfying results are generally entirely com-
posed of small-scale discernible elements repeated across the image
in stochastic fashion.



3
R E S E A R C H

The work of Gatys et al. [12] on texture synthesis using deep convolu-
tional neural networks has marked a significant milestone. Building
upon their findings, this research explores the further potential and
applications of neural synthesis in the realm of texture upscaling and
enhancement.

3.1 methodology

Our research consists of four separate objectives, each of which will
be investigated independently. Nonetheless, throughout our research
we use the same image quality metric as introduced in 3.1.2.

3.1.1 Research Objectives

This research is driven by a series of objectives and questions de-
signed to probe deeper into the capabilities and limitations of neural
synthesis in texture upscaling. The key objectives are:

1. To develop and propose a stopping criterion for the synthesis
process based on loss plots.

2. To experiment with different seed images and assess their im-
pact on the synthesis process.

3. To explore the role of self-similarity at different scales in texture
upscaling.

4. To evaluate the performance of a different pre-trained network,
such as ResNet [17], in texture synthesis quality.

3.1.2 Image Quality Assessment

In order to establish uniform quality judgements for a large set of syn-
thesised textures, our research employs a full-reference Image Quality
Assessment (IQA) method. IQA is essential for quantifying human
perception of image quality, which is a critical aspect of our study on
texture synthesis. For this purpose, we have selected the Deep Image
Structure and Texture Similarity (DISTS) metric [8].

The DISTS method has been found to more closely match human
perception of similarity than other IQA methods, such as the Struc-
tural Similarity Index Measure (SSIM) [8]. This alignment with hu-
man visual perception makes DISTS particularly suitable for our study,

14
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where the quality of texture synthesis is a subjective measure. By em-
ploying DISTS, we can make faster and more accurate inferences re-
garding the average quality of synthesised textures, enabling us to
feasibly compare different synthesis techniques.

To effectively interpret DISTS scores in the context of our research,
we conducted a preliminary bench-marking exercise. This involved
comparing all images in the Describable Textures Dataset (DTD) with
Gaussian noise. Given that our synthesis process begins with Gaus-
sian noise, using it as a benchmark provides a relevant and meaning-
ful assessment for the DISTS metric. Through this comparison across
the entire DTD, we obtained a mean DISTS score of 0.338 with a
standard deviation of 0.043. This benchmark will serve as a reference
point in our subsequent analysis, allowing us to gauge the effective-
ness of our texture synthesis approach in comparison to a known
baseline.

3.2 defining a stopping criterion

Establishing a precise stopping criterion is crucial within any context
which involves the optimisation of some loss function, as it directly
influences the computational efficiency and the final quality of the
output. A basic approach might rely on a predetermined iteration
count. However, the optimisation process might reach some desired
state well before this iteration limit. To overcome this limitation, we
propose a stopping criterion based on loss quantity. Our approach
hinges on the utilisation of loss plots generated during the synthesis
process, as proposed by Gatys et al. [12] By analysing these plots,
we aim to identify a stopping point that balances the fidelity of the
synthesised texture against the computational expenditure.

3.2.1 Methodology

The methodology revolves around analysis of the loss plots, which
are graphical representations of the loss function values over the
course of the synthesis iterations. These plots provide insights into
the convergence behaviour of the synthesis process. We will examine
the characteristics of these plots, such as the rate of change in loss, the
presence of plateaus, and any patterns that emerge over iterations.

For each texture synthesis process, we will record the loss at every
optimisation step. This data will be used to construct loss plots that
capture the progression of the synthesis over time.

Our analytical approach involves identifying key features in the
loss plots that signal the nearing of an optimal stopping point. This
could include identifying points of diminishing returns, where fur-
ther iterations result in negligible improvements in loss, or detecting
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points of stability, where the loss value remains consistent over a sig-
nificant number of iterations.

Based on the insights gained from the loss plot analysis, we will
propose a single stopping criterion in the form of a loss function mea-
sure. A longer synthesis process will in general lead to better quality
textures, and a stopping criterion will by it’s nature eliminate some of
that potential. However, by choosing the criterion so synthesised tex-
tures are still able to achieve perceptual similarity to their exemplar
(verified by visual inspection), we ensure a balance between synthesis
quality and computational cost.

To validate the effectiveness of the proposed stopping criterion, it
will be applied to a subset of the Describable Textures Dataset. The
synthesis results at these algorithmically determined stopping points
will be compared against results obtained using a maximum iteration
count to assess improvements in efficiency and quality.

3.2.2 Analysis of Loss Plots

In searching for a stopping criterion for texture synthesis, an analy-
sis of loss plots from various texture categories was undertaken. This
analysis was instrumental in identifying a common pattern across
different textures: the gradient of the loss plot, representing the rate
of change of the synthesis loss, tends to flatten as the synthesis pro-
gresses. This flattening of the gradient is indicative of diminishing
returns, where subsequent iterations contribute less significantly to
the improvement of the synthesised texture.

One critical observation from our analysis was the variability in the
point at which the loss gradient begins to flatten. The top-left loss-
plot in Figure 9 stabilises just above 1, while the top-right lossplot
stabilises at a far lower value. This variance indicates that the synthe-
sis process behaves differently across various textures, possibly due
to the inherent complexities and characteristics unique to each tex-
ture. Furthermore, for lossplots like the bottom examples in Figure 9,
earlier termination would have been beneficial, as the loss function
shoots up near the end.

Initially, the idea of implementing a fixed threshold for the loss
value as a stopping criterion was considered. However, the observed
variability in the loss plot behaviours suggested that a fixed threshold
would lack the necessary flexibility to be universally applicable across
different types of textures. A predetermined loss value might be too
high for some textures, leading to premature termination, or too low
for others, resulting in unnecessary computational expenditure.
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Figure 9: Comparative analysis of lossplots

3.2.3 Proposed Gradient Threshold

In light of these observations, we pivot towards a more dynamic ap-
proach: setting a gradient threshold as the stopping criterion. This
method focuses on the rate at which the loss decreases, rather than
the absolute loss value. The gradient threshold is defined as the point
at which the slope of the loss plot reaches a level of flatness, suggest-
ing that further iterations are unlikely to yield significant improve-
ments in the quality of the synthesised texture.

We define the gradient of the loss function, G, as the average rate
of change of the loss over a specified window of iterations. This is
calculated as

G =
Lt−w+1 − Lt

w
, (7)

where:

• Lt is the loss at the current iteration t,

• w is the window size, and

• Lt−w+1 is the loss at the iteration t−w+ 1.

The stopping criterion for the synthesis process is then determined
by the magnitude of the gradient G. The process is terminated when
the absolute value of G falls below a predefined threshold, θ, indicat-
ing that the rate of improvement in the loss has decreased to a point
of diminishing returns. This is expressed as
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|G| < θ , (8)

where θ is the stopping threshold. By employing this criterion, the
synthesis process is dynamically adjusted to each texture, terminat-
ing when further iterations are unlikely to yield significant improve-
ments. This approach ensures both computational efficiency and the
maintenance of synthesis quality.

3.2.4 Threshold Analysis

To determine an appropriate gradient threshold, we experimented
with thresholds in different orders of magnitude and manually in-
spected the visual quality versus computational cost. By examining
the results in Figure 10 we can determine that a gradient threshold
greatly reduces the computational cost while maintaining quality. An
interesting observation is that by implementing a threshold of 0.1 we
obtained a higher DISTS score with fewer steps needed than with-
out a threshold. Upon closer inspection of results generated without
a threshold, we noticed that a reasonable amount of these lossplots
exhibited patterns like those in the bottom row of Figure 9. In such
cases it seems like the optimiser is able to find a local minimum, but
at some points drastically overshoots and terminates in a worse state.
By applying a gradient threshold to the loss function, we are able to
terminate whenever the loss value stabilises and prevent such over-
shoots, resulting in an on average higher DISTS score.

Figure 10: Analysis of loss gradient thresholds
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3.3 seed image varieties

In addition to using high-frequency Gaussian noise as a seed image
for texture synthesis, we aim to explore the impact of alternative seed
images, particularly focusing on blurred exemplars, low-frequency
noise and distinct geometric patterns such as lines or chequerboards.
This investigation stems from the hypothesis that different initial con-
ditions in the synthesis process can significantly influence the final
texture quality, especially in terms of preserving or enhancing certain
structural elements within the images.

3.3.1 Methodology

To systematically examine the effects of these alternative seed images,
the same DTD subset is used, synthesising textures with each type
of seed image and subsequently recording the DISTS scores. By com-
paring the results obtained with low-frequency noise and geometric
patterns against those achieved with blurred exemplars and white
noise, we aim to draw comprehensive insights into the influence of
seed image characteristics on texture synthesis.

3.3.2 Gaussian Noise

In the work by Gatys et al. [12], Gaussian noise serves as the start-
ing point for the texture synthesis process. Gaussian noise, often re-
ferred to as white noise, is characterised by its probability distribu-
tion, where each pixel in the image is assigned a value according to
the Gaussian, or normal distribution. This distribution is defined by
two key parameters: the mean (usually zero) and the standard devia-
tion (which determines the spread or variance). In our context, Gaus-
sian noise is generated with a mean of zero and a standard deviation
of one, resulting in a normal distribution centred around zero.

An essential aspect of Gaussian noise is its representation in the fre-
quency domain. Gaussian white noise is evenly distributed across all
frequencies. This even distribution implies that no specific frequency
is favoured, ensuring that the synthesis process is not biased towards
any particular pattern or structure at the outset.

3.3.3 Blurred Exemplar

In the frequency domain, Gaussian blur acts as a low-pass filter, atten-
uating high-frequency components more than low-frequency compo-
nents. This ability to retain the macro-structure of the original texture
by preserving low-frequency components provides the rationale for
using blurred exemplars as seed images. This method is hypothe-
sised to assist the synthesis model in capturing the broader patterns
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and general outlines of the texture. Such an approach could be par-
ticularly beneficial for textures where the overall structure is more
significant than fine details.

Figure 11: Different blur intensities as seed images

Our analysis in Figure 11 clearly indicates that the use of blurred ex-
emplars results in better DISTS scores, affirming the expectation that
incorporating low-frequency components at the onset of the synthe-
sis process enhances the overall quality. This is especially pronounced
in textures where synthesis with white noise as a seed image tradi-
tionally struggles, such as "chequered", "banded", "cobwebbed", and
"zigzagged".

We note that for these texture classes, which are predominantly
characterised by their low-frequency patterns, the transition to syn-
thesis from a blurred exemplar exhibits significant improvements.
This observation underscores a key aspect of Gatys et al.’s [12] method
— its proficiency in synthesising high-frequency components. Thus
effectiveness is enhanced when the synthesis process begins with a
seed image that already includes the underlying low-frequency pat-
terns. This synergy between the low-frequency starting point and the
method’s high-frequency synthesis capabilities leads to a more accu-
rate and visually pleasing recreation of the original textures.

3.3.4 Low-Frequency Noise

Inspired by the blurred exemplar seed images, we decide to investi-
gate low-frequency noise as low-frequency patterns could provide a
basic structural framework, potentially aiding the model in capturing
and replicating these broader patterns more effectively. This approach
contrasts with the high-frequency randomness of white noise, which
might overlook or inadequately reproduce such large-scale features.



3.3 seed image varieties 21

We produce low-frequency noise by applying a Gaussian blur over a
white noise image, attenuating the high-frequency components.

Figure 12: Different low-frequency noise intensities as seed images

Our investigation into the use of low-frequency noise as a seed im-
age for texture synthesis, specifically white noise subjected to Gaus-
sian blur, revealed no significant structural improvements over the
use of regular white noise. This outcome (Figure 12) suggests that
the mere presence of low-frequency information in the seed image is
insufficient to enhance the synthesis process. Crucially, it appears that
it is not the low-frequency components per se that are beneficial, but
rather the specific alignment of these components with the structures
inherent in the exemplar. The random nature of the low-frequency
noise, despite its blurred characteristics, did not contribute positively,
proving no more effective than Gaussian white noise as a seed image
for synthesis.

3.3.5 Geometric Patterns

Similarly, geometric patterns like lines or chequerboards are selected
to assess their utility as seed images. The regularity and distinctness
of these patterns present a unique opportunity for the synthesis pro-
cess. For instance, starting with a chequerboard pattern might influ-
ence the model’s ability to maintain or transform regular geometric
structures within the synthesised textures. We expect such seed im-
ages to mainly benefit the very regular texture types.

We select three types of geometric patterns: horizontal lines, verti-
cal lines, and a chequerboard. For each type we generate seed images
using line and square widths of two, four, and eight.

Inspection of the results in Figure 13 reveals that none of the ge-
ometric patterns have any notable advantage, except for the special
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Figure 13: Lines and squares as seed images

cases where the regular high-frequency textures of the "chequered",
"banded", and "cobwebbed" classes happened to align with the geo-
metric seed.

3.4 scale invariance of textures

Scale invariance, or the property by which a texture exhibits similar
patterns at different scales, is a fundamental characteristic in many
natural textures. This aspect of our investigation into texture syn-
thesis revolves around the concept of scale invariance, particularly
its role and potential benefits in the context of texture upscaling at
varying scales. The primary objective of this analysis is to establish a
metric of scale invariance for each image, which will then be used to
investigate the potential correlation between levels of self-similarity
and the quality of texture synthesis.

3.4.1 Methodology

We employ a wavelet transform to perform a multi-scale analysis on
each texture. This approach enables us to quantify the scale-invariance
characteristic of textures, a metric that we hypothesise would corre-
late with the DISTS scores, indicative of perceptual similarity. Wavelet
decomposition allows for the analysis of an image at various scales,
capturing both frequency and location information. The methodology
involved the following steps:

1. Wavelet Decomposition: We use the PyWavelets library to per-
form wavelet decomposition. The decomposition is executed as
follows:
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• Determine the maximum level of decomposition, based on
the minimum dimension of the image and the decomposi-
tion length of the chosen wavelet.

• Apply the wavelet decomposition to obtain a set of coeffi-
cients at various scales. We select the Haar wavelet for its
simplicity and efficiency.

2. Scale-Invariance Metric Calculation: The scale-invariance met-
ric is computed by analysing the wavelet coefficients at different
scales. Specifically, the mean of the absolute values of the coef-
ficients, excluding the approximation coefficients, is calculated.
This mean value serves as an aggregate score representing the
scale-invariance of the texture.

3.4.2 Statistical Analysis

We seek to understand the relationship between perceptual similarity
of the synthesised image, as measured by DISTS scores, and a scale-
invariance metric. To this end, we employed Pearson’s correlation co-
efficient, a statistical measure that quantifies the linear relationship
between two variables. Our analysis yields a Pearson correlation co-
efficient of 0.1855 and a p-value of 8.42× 10−5.

The Pearson coefficient of 0.1855 indicates a slight, yet positive lin-
ear relationship between the DISTS scores and the scale-invariance
metrics. This suggests that as the scale-invariance metric increases,
there is a mild tendency for the DISTS scores to increase as well.
However, the relatively low value of the coefficient implies that this
relationship is weak. It indicates that other factors not accounted for
in this analysis might also play a significant role in determining the
DISTS scores.

Importantly, the p-value associated with this correlation coefficient
is 8.42× 10−5, which is well below the commonly used significance
level of 0.05. This low p-value indicates that the observed correlation
is statistically significant and unlikely to have occurred by random
chance. Thus, while the strength of the relationship is weak, we can be
reasonably confident that the correlation between these two variables
is not coincidental.

In conclusion, our findings suggest a statistically significant, albeit
weak, positive linear relationship between perceptual similarity and
scale-invariance in texture synthesis.

3.5 texture synthesis using resnet features

The work by Gatys et al. [12] utilised the feature space of VGG-19

in their texture synthesis model. In our research, we extend this in-
quiry to explore whether such synthesis capabilities can be gener-
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alised to other network architectures. Specifically, we focus on the
residual network (ResNet), a framework proposed by researchers at
Microsoft [17], designed to train deeper neural networks more effec-
tively. Traditional deeper networks faced challenges in converging
during stochastic gradient descent with backpropagation, often at-
tributed to vanishing gradients [1]. This issue was substantially miti-
gated through strategies such as normalised initialisation [13] and the
integration of intermediate normalisation layers [20]. However, even
with these advancements, deeper networks tended to exhibit satura-
tion and rapid degradation in accuracy as more layers were added,
leading to higher training errors [16, 17].

Figure 14: A residual block

Residual learning, proposed to address the accuracy degradation
in deeper networks, introduces an innovative approach. Rather than
having a few stacked layers learn an underlying mapping directly,
these layers are tasked with learning a residual mapping. The practi-
cal implementation of this concept employs "shortcut connections"
that skip one or more layers, performing identity mapping when
added to the output of stacked layers (as illustrated in Figure 14).
These shortcuts contribute neither additional parameters nor com-
plexity.

3.5.1 Architecture

ResNet architecture comes in various configurations, with different
layer depths. Its baseline network, used for creating a residual net-
work by adding shortcut connections, shares similarities with the
structure of VGG networks, predominantly using 3x3 convolutional
filters. Downsampling within the network is directly achieved by con-
volutional layers with a stride of 2. Pre-trained ResNet models are
available in PyTorch with varying depths, including 18, 34, 50, 101,
and 152 layers. For our texture synthesis evaluation, we selected the
34-layer variant, known as ResNet34. This architecture, while mirror-
ing the VGG architecture in several aspects, distinguishes itself with
the inclusion of skip connections.
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Figure 15: ResNet34

3.5.2 Feature Space

In the context of ResNet, the desired mapping for a part of the net-
work can be denoted as H(x). Hence, the layers within a residual
block are designed to learn a mapping F(x) = H(x)−x. Consequently,
we suggest extracting the feature space from the output immediately
after the identity is added, which equates to the original mapping
H(x) = F(x) + x. Our texture model thus utilises the feature space
derived from every residual block in ResNet34, specifically from the
point after the final non-linearity in each block.

3.5.3 PyTorch Implementation

To access the feature maps from ResNet34, we implement a custom
class in PyTorch that inserts a ’forward hook’ after each residual
block. This forward hook, activated during the network’s forward
pass, captures both the input and output of a given layer, thereby en-
abling the extraction and storage of raw feature maps as an image
progresses through the network. The implementation methodology
aligns closely with the one used for VGG, involving the computa-
tion of Gram matrices from the feature maps. The total loss is calcu-
lated by summing the mean-squared distances between correspond-
ing Gram matrices from matching layers. The optimisation process
involves gradient descent using L-BFGS [29], starting from an image
of white noise. We set an iteration limit of 2000 and implement a
stopping criterion when the total loss falls below 10−3.

3.5.4 Results

To rigorously evaluate the capability of ResNet34’s feature space in
parameterising texture models, our study initiates by synthesising
textures from both the VGG and ResNet34 networks. This process
involves selecting a diverse subset from the DTD dataset, encom-
passing 10 representative images from each category. The primary
focus was to assess the synthesis quality of these textures, quantita-
tively measured using the DISTS scores, and subsequently comparing
them against their original exemplars. With the well-established pro-
ficiency of VGG-19 in texture synthesis serving as our benchmark,
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we sought to comprehensively understand and quantify the relative
performance of ResNet34.

Figure 16: Comparative visual analysis of textures synthesised using VGG-
19 and ResNet34 (top: exemplar, middle: VGG-19, bottom:
ResNet34)

In Figure 16, we provide a visual juxtaposition of a select group
of textures synthesised using both networks. This comparison un-
derscores the observable similarities between the results, whilst also
highlighting VGG-19’s superior ability in preserving structural de-
tails and shadow nuances.

A more granular analysis, as shown in Figure 17, offers a category-
wise comparison of the synthesis results. It reveals that, although the
synthesis via VGG-19 generally leads to higher DISTS scores, the
scores attained with ResNet34 notably exceed the baseline average
score of Gaussian noise, recorded at 0.338. This disparity in scores,
while indicative of VGG-19’s potential alignment with the DISTS met-
ric – a byproduct of its basis on VGG-16 – also underscores the profi-
ciency of ResNet34 in generating visually coherent textures. Notably,
the textures synthesised using ResNet34, while slightly inferior in
quality to those from VGG-19, still demonstrate a significant correla-
tion with human visual perception, as postulated in previous stud-
ies on the emergent properties of deep features as perceptual met-
rics [39]. These findings compellingly suggest that the texture syn-
thesis methodology developed by Gatys et al. retains its effectiveness
even when adapted to a different feature space, as exemplified by
ResNet34.
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Figure 17: Category-wise comparison of DISTS scores between VGG-19 and
ResNet34



4
C O N C L U S I O N

4.1 discussion

We started by proposing a gradient threshold as a stopping criterion
for the synthesis process. This approach addressed the challenge of
determining the optimal stopping point, especially given the dimin-
ishing returns observed in loss value decrease. Implementing this gra-
dient threshold significantly improved the computational efficiency
of the synthesis process without compromising the quality of the syn-
thesised textures.

Our investigation extended to evaluating the effectiveness of dif-
ferent seed image types, primarily chosen based on their frequency
domain content. This analysis provided insights into how the choice
of seed image influences the synthesis process and its outcomes. No-
tably, we found that seed images with low-frequency characteristics
aligning closely with those of the target exemplar were more effective
in guiding the synthesis process.

Furthermore, we explored the relationship between scale invari-
ance in textures and their synthesis quality. Using wavelet transform
for multi-scale analysis, we calculated a scale-invariance metric for
each texture and examined its correlation with DISTS scores. This
study revealed a nuanced relationship, suggesting that textures with
higher scale invariance may yield better synthesis outcomes.

Finally, our research aimed to explore several key aspects of the
neural synthesis method by Gatys et al. [12], focusing on its general-
isability to different convolutional neural networks (CNNs). Through
careful extraction of feature maps corresponding to those in VGG-19,
we demonstrated that texture synthesis based on ResNet34’s feature
space is feasible. This was evidenced by the DISTS scores of synthe-
sised textures, which generally fell between 0.6 and 0.7, underscor-
ing the robustness and adaptability of Gatys’ method. In summary,
our research has extended the method by Gatys to the feature space
of ResNet34, demonstrating its adaptability and the effectiveness of
CNN weights in texture synthesis.

4.1.1 Interpretation

Our examination of various seed images, particularly in terms of their
frequency domain content, sheds light on the impact of initial condi-
tions on the synthesis outcome. The efficacy of low-frequency seed
images, especially those mirroring the target exemplar’s structure, un-

28
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derscores the importance of aligning the seed image’s characteristics
with the desired texture.

The exploration of the relationship between scale invariance and
synthesis quality, facilitated by wavelet transform analysis, reveals a
nuanced interplay between texture properties and perceived quality.
The correlation between higher scale invariance and improved syn-
thesis outcomes suggests that textures exhibiting consistent patterns
across scales are more amenable to high-quality synthesis.

Extending the synthesis method by Gatys et al. [12] to the feature
space of ResNet34 provided a robust test of its generalisability. Our
results indicate that the method is not confined to the specific architec-
ture of VGG networks but can be successfully applied to other high-
performing CNNs. This adaptability, coupled with the effectiveness
of ResNet34’s feature space in achieving comparable DISTS scores,
reaffirms the importance of CNN weights in neural texture synthesis.

4.1.2 Limitations

Gatys [12] method, despite its efficacy in handling a wide range of
textures, showed a marked difficulty in synthesising textures with
highly regular and low-frequency components. These textures often
presented a unique challenge, resulting in outcomes that were either
poorly synthesised or, in some instances, a complete failure of the
synthesis process. This limitation was most pronounced in textures
where the defining characteristics were predominantly large, uniform
patterns such as artificial straight lines or zigzag patterns, which the
method struggled to replicate accurately.

4.2 conclusion

Our research confirms the adaptability of Gatys et al.’s method to dif-
ferent CNNs, as evidenced by the successful application to ResNet34,
highlighting the potential of diverse CNN architectures in texture syn-
thesis. The implementation of a gradient threshold as a stopping cri-
terion has demonstrated a significant improvement in computational
efficiency without sacrificing the quality of the synthesised textures.
Furthermore, the exploration of different seed image types, especially
in relation to their frequency domain content, has provided valuable
insights into the synthesis process. Finally, we have shown there is
a possible positive correlation between scale-invariance within a tex-
ture and its neural synthesis quality.

4.3 future work

Our use of a basic measure for scale invariance presents an oppor-
tunity for refinement and expansion. Future studies could focus on
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developing a more sophisticated scale-invariance metric that captures
a wider range of texture properties. A refined metric could provide a
deeper understanding of the relationship between texture character-
istics and perceptual quality, leading to more nuanced analyses and
potentially informing the development of improved synthesis algo-
rithms. Another direction for research is the exploration of Gatys et
al.’s [12] method across a broader spectrum of neural networks. Inves-
tigating the applicability and effectiveness of this synthesis method
with other CNN architectures, or even a combination of multiple
networks, could reveal new dimensions of the method’s capabilities.
Such studies could lead to novel synthesis approaches that leverage
the unique strengths of different networks, potentially resulting in
more versatile and powerful texture synthesis solutions.
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