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Abstract:
Software architecture is a topic of importance for any project

which comprises more than two code files. However, formal
documentation is often forgotten or deliberately neglected by
developers, even though they might have discussed the design
elsewhere, such as in an issue tracking system. Afterwards, this
informal representation of the design knowledge may be difficult
to rediscover.

This thesis investigated potential links between Jira issue
characteristics and the issue’s design decision content. First, a
web GUI for a machine learning (ML) tool (12) was functionally
extended to better facilitate manually labeling issues, in order to
increase the training dataset for the ML models more easily. Next,
using labels predicted by this machine learning tool, statistics
were calculated on the patterns between software domains, issue
labels, and issue characteristics. Finally, these statistical results
were analysed and used to develop heuristics to find issues of
certain decision types with higher frequency.
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1 Introduction

Software architecture is a term used to describe
various processes and concepts which occur during
software development. Concretely, it refers to a
high-level structure or model of a system and the
components within it. In practice, architecturally
relevant elements are often recognised by being
the hardest to change once implemented (6). By
2006 (11; 8; 15), researchers were aware that
keeping track of the architectural model alone
is not sufficient: the reasoning behind certain
structures vaporises, and without knowing these
intents, new engineers may unknowingly violate
undocumented constraints and muddy the design,
or worse, create problems or tech-debt down the
road. In literature, when this concept of design is
separated from the previously mentioned concept
of architecture, this collective intent behind a sys-
tem’s architecture is referred to as the rationale
of the system (1; 6), and the disappearance of
rationale knowledge behind decisions is known as
knowledge vaporisation(11).

Software architecture as a research field has
been evolving rapidly over the past few decades.
Once initial definitions and concepts were created
and accepted (11; 8), we began developing tools
to aid us in documentation (4; 7). Now, we have
discovered that practitioners do not use these
tools sufficiently, so we have turned our focus back
towards refining definitions and concepts (6) and
finding (better) ways to automate architecture
documentation efforts (3; 10).

Design and architecture can be documented in
various ways. The most preferred way is to have it
formally expressed and collected in one location,
however, this is rarely what happens in reality.
Nonaka and Takeuchi (14) specified two manners
of documentation in addition to this explicit
level: tacit, which is entirely undocumented, and
informally documented, which is the level this
research will focus on. Specifically, to discover
this informal knowledge from platforms where
developer discussion naturally occurs, such as issue
trackers.

As will be detailed in following sections, many
efforts have already been made towards facilitating
architecture and design documentation, though
it is proving to be a difficult problem to solve in
its entirety. There can be many aspects behind
a developer not adequately documenting their
decisions or code, and many different solutions are
required to fit all the possible cases. Researchers
in this field recognise that, without sufficiently
complete documentation, a (large) software system

will over time become very costly to maintain
or evolve. If one works in practical software
development for a long time, one develops an
instinct for architecture: which decisions to make
to ensure success, and which ones would eventually
lead to chaos. Software architecture as a research
field aims to formalise this knowledge, generating
potential for applications of this information in
education and practice.

Since efforts to create tools for developers to use
while designing a system seem to not be sufficient,
we must find other ways to solve this knowledge
gap. As will be detailed in the background section,
automatic extraction of knowledge from informal
information repositories is still in development, but
seems promising. One of the methods used is to ap-
ply machine learning tools to the sources of poten-
tial informal knowledge, though the main problem
here is the lack of sufficiently large datasets. There-
fore, this thesis asks the following question: What
are the connections between issue character-
istics, architectural knowledge content and
software domain of issues in issue tracking
systems?
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2 Background

Software is created by making a series of decisions
which build upon each other, in order to reach
certain stated goals. These design decisions can
belong to zero or more categories: Existence,
concerning the presence or absence of (components
of) a system, Property, stating quality goals such
as performance or availability, and Executive,
documenting dependencies on external code or
circumstances (11).

Issue tracking systems, such as Jira, are
useful to large teams developing software together.
They allow the users to submit issues that
describe a certain problem or task to be done
on the software system. As these issues are in
essence a forum for developers to discuss the
details of the system and how it should be, it
may hold large quantities of design knowledge
about the system. The difficulty lies in that
this knowledge is informal, and as a result, it
is not easy to find, either manually or by using
automated methods. Additionally, issues are more
than just this forum, being a container for various
characteristics assigned to them by the developers.
These characteristics can either be inferred directly
from the issue, such as the type assigned to
the issue, or require preprocessing, such as the
length of the description in words or the amount
of days between creation and resolution of the issue.

2.1 State of the Art

Alexeeva et al. (1) reviewed the literature on
design decision documentation in 2016, stating
that the adoption of well-researched methods in
practice is not as common as could be hoped. They
have provided a list of working points to ameliorate
this problem, including more cooperation with
the software engineering industry and focusing
more on pre-existing systems which may not
already have good documentation, as opposed
to developing good methods to document design
when starting a new project. In the years following,
many researchers have taken these points to heart.

That et al. (19) created an approach in 2014
to model architectural decisions in order to let a
system automatically check code for violations
of these decisions. This may help developers
conform to these decisions more, resulting in
a more cohesive codebase. Four years later,
Schneider et al. (16) created a framework to
incorporate informal knowledge into a similar
structure referred to as “automated design decision
support processes”(16). These methods may
help to design good architecture and allow the

user to formalise or record informal knowledge,
though they are not automated, and may even
overly constrain the user, such as in the case of
ill-formulated constraints. In the end, methods
like this can do nothing for knowledge that has
already vaporised out of the consciousness of devel-
opers but that may still exist in informal discussion.

In 2018, Buchgeher et al. (3) developed a tool
which analyses a project’s codebase and generates
an architectural model. It is very useful for keeping
architectural documentation of a large system with
many developers working on it up to date, but
it does not take into account the design intents
behind the architecture, which the authors specify
as future work in their conclusion. Shahbazian et
al. (17) created a technique named “RecovAr” in
the same year, which connects commits in a repos-
itory to issues in an issue tracker in order to find
architecturally relevant decisions. The rationale
behind this approach is that issues connected to
commits which have significantly impacted the
architecture will contain the reasoning behind this
change. Soliman et al. (18) followed a similar
approach, also adding ranking of issues to increase
accuracy and analysing the contents of these issues
afterwards to create a deeper understanding of
architecture in issue tracking systems. These
projects analyse the whole codebase and issue
tracker of a project, catching many past design
decisions. However, some architectural issues
may still slip through the net, for example when
an issue cannot be linked to an architecturally
significant commit, because it did not significantly
change the code structure, even though it might
contain design knowledge.

Bharadwaj and Kadam (2) used Bidirectional
Encoder Representations from Transformers
(BERT) natural language processing (NLP) models
in order to automatically label GitHub repository
issues, for the purpose of facilitating discussion on
large projects. In this case, the word label refers
to one of Question, Bug or Enhancement. The
model has a high accuracy of 0.8653, and though
this application was not looking for architecturally
relevant issues, this ability to deduce intent from
an issue seems promising. Josephs et al. (9)
used BERT to create a Slack bot, which records
decisions from developer conversations on the
messaging platform. One limitation they (and
others, such as Keim et al. (10)) encountered was
lack of appropriately labeled training data. This
approach is promising, though it again lacks the
ability to look into the past to find decisions, and
as stated, runs into the problem of insufficiently
large training set size.
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In 2022, Dekker and Maarleveld developed a ML
tool to predict the label of an issue based on its
characteristics (5), and in 2023, they have refined,
expanded and analysed the performance of this
tool further (12), including a significant expansion
of their training dataset. The expansion of the
dataset in this work was partially made possible by
the first half of this thesis. For more information
on that work, please see the study design section.
One problem that still exists with ML tools such
as this is that they, by design, function like a black
box. More structured and targeted research and
results are possible if we are able to find the exact
links between issue characteristics and issue labels,
which is not something that ML tools of this type
can provide. Now, with the results of this work
by Dekker and Maarleveld, this type of research is
possible.

In conclusion, several methods exist and have
been documented in order to aid with design
decision documentation. Some of them are
proactive, in that they aid the developers while
they are creating design decisions, though there
is only so much work that can be done in that
aspect to mitigate the human error rate of not
adequately using provided tools. Therefore,
there should be more focus on tools to recover
this knowledge from informal sources. One
approach to solve this problem is to use ML tools,
though there, the problem is the limited size of
training datasets. However, now that Dekker
and Maarleveld (5; 12) have drastically expanded
their training dataset and as a result achieved
higher generalisability and precision of their ML
models, they were able to generate predictions
for a large dataset. Now, it is possible to analyse
this generated data and search for connections
between issue characteristics and issue labels, that
would shed a light onthe actual links being uncon-
sciously used by the black box of ML techniques,
allowing research to be more thorough in this topic.

In order to find relevant literature for this
section, the following search terms were used on
the Springer Link and IEEE Explore databases,
in various combinations: architecture, decision,
design, knowledge, detection, repository, machine
learning, classification and issue tracking system.
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3 Study Design

The Background section has outlined the current
state of the field of software architecture knowledge
(re)discovery and the gaps within it. In order to
(re)discover knowledge in a more efficient way, we
need more efficient methods. In order to develop
these methods, we need more information and data.
Therefore, this paper’s main research question is:
What are the connections between issue char-
acteristics, architectural knowledge content
and software domain of issues in issue track-
ing systems? This question can be divided into
three subquestions:

• RQ1: What types of design decisions are dis-
cussed in architectural issues within projects
of different domains?

• RQ2: How different are the characteristics of
architectural issues within projects of different
domains?

• RQ3: What issue characteristics significantly
co-occur with the types of design decisions?

In order to answer these questions, sufficient de-
sign decision data about issues is needed. However,
manually analysing issues can take a very long
time, so instead, this thesis uses the predictions
made by machine learning models trained on
the existing manually labeled issue dataset. For
concerns about the confidence and accuracy of
such models, please see the section on threats to
validity. There, an analysis of differences between
the full dataset and the high-confidence-only set
will be presented.

This section will outline the process of facili-
tating this machine learning model, followed by
gathering the results from it and how these are
used to then answer this thesis’ research questions.

3.1 Project Background

Dekker and Maarleveld (12) have created a
commandline tool for machine learning models
which is capable of delivering this data. However,
the commandline is not the most accessible way
of using a tool, and to finetune their models
better, a larger dataset was needed. Therefore,
part of this thesis project was dedicated to
extending ArchUI, a web application interface
for their tool which was originally created by
the author during a previous project (available
with documentation at https://github.com/

mining-design-decisions/maestro-ArchUI).

Bundled with the CLI, which evolved into
an API, this project was named Maestro, and
was presented at ECSA 2023 (13). Due to the
published version of the tool paper not being
available yet at the time of writing, please see
Appendix A for the paper itself.

The second half of the thesis project started
once the best performing machine learning model
had been identified and been used to predict labels
for every issue in the database. This data was
stored in the database and accessible through the
database API provided by Dekker and Maarleveld.
For the statistical analysis, it was extracted and
processed into a format that was locally stored, to
then run all the required tests on.

3.1.1 ArchUI

ArchUI has two types of functionality. The first
is to enable the user to use this commandline
machine learning tool better by providing graphical
web interfaces to create, manage and run machine
learning models. Secondly, it allows the user to
manually label issues immediately into the model
training dataset, and with the potential to add
the predictions of the models into the view, so
that users can filter and label issues in a more
targeted, deliberate way. These two functionalities
combine into a snowball effect of labeling issues
faster with the help of ML models, and mak-
ing the models more accurate with a larger dataset.

The ArchUI web application is built in Python,
running on Flask for the web server functionality,
and uses Bootstrap CSS in Jinja templates to
provide a functional user interface. The main page
provides information to the user, while the func-
tionalities are grouped into tabs at the top of the
page, into the navigation bar. The tool has a login
page that connects to the various APIs required
for complete function, though some modules can
be used without filling in everything. For exam-
ple, the user can manually label issues without
being connected to an active machine learning API.

The tool was built by gathering requirements
from the project supervisor and Dekker and
Maarleveld, who would be intensely using the tool
to help with their own project. The requirements
for the application were prioritised in conversation
with these stakeholders and consequently, as
many of them as were possible were implemented,
keeping time constraints in mind.
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3.2 Software Domains

The total amount of projects in the database
is 1352. The projects with issue counts below
1000 were discarded, because they were less likely
to be significant. 238 projects remained, for a
total issue count of 1322351. Then, the domain
of each project was determined through manual
analysis by the author and primary supervisor
of this project. Six general software domains
emerged from this manual analysis, and each
project was assigned one domain. These domains
are abbreviated throughout the paper as follows:

• Data Storage & Processing (DSP): Database
management, data processing tools.

• Content Management (CM): Storage and pro-
cessing of higher-level data, documents.

• DevOps And Cloud (DC): Software designed
to facilitate DevOps and Cloud efforts.

• SOA And Middlewares (SOAM): Service-
Oriented Architecture and software that sits
between two other layers, such as database
and presentation.

• Software Development Tools (SDT): Such as
code editors, debugging tools.

• Web Development (WD): Software focused on
web applications, such as server software.

Please find appendix B for a complete list of
which project was sorted into which software
domain.

It is worth noting that, even though the original
dataset contained data from all available open Jira
instances, Jira projects that were solely used as
bug reporting tools were able to be filtered out
through this process.

3.3 High-level Study Design

Figure 3.1: The study design process, broken
down to high-level steps.

In figure 3.1, the steps undertaken during this
project are outlined.

1. Step 1: The beginning of the project was to
further develop the ArchUI application and
assist in the development and testing of the
database and ML APIs, as well as to prepare
everything needed to generate these statistics,
such as assign all relevant Jira projects a gen-
eral software domain. As stated above, this
UI development was done with an active user
feedback cycle.

2. Step 2: Once all data was ready, it could be
statistically tested. Scripts were written to
automate this step using Python, matplotlib,
and all of this statistical code, along with
helper scripts for functionality such as gener-
ating the LaTeX tables used in this thesis, can
be found at https://github.com/Shadania/
design-decisions-stats.

3. Step 3 and 4: The resulting graphics and
tables were great in number, so they had to
be evaluated against the research questions:
does what we found answer the questions? Are
there more things to investigate? With the
answers to these questions, a fourth step was
added in the process, creating a cycle that was
iterated through several times.

4. Step 5: Once the results were collected and
approved, they could be analysed in detail
to answer the posed research questions. In
order to get all these results into the thesis
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while minimizing human error during repeti-
tive tasks, several scripts have been written to
automate certain subtasks, such as converting
part of a .csv into LaTeX table code. These
scripts can be found in the repository linked
above, under the folder “helper scripts”.

3.4 Detailed Study Design

To answer the first research subquestion, the total
amount of issues per design decision were counted
up per domain, and a Chi-Squared test was run
on the resulting counts. In total, the participating
projects cumulatively counted 1345784 issues.

For the second and third research subquestions,
the data needed to be preprocessed in more de-
tail. This was done using matplotlib in Python,
after filtering out non-architectural issues. For this,
many characteristics were able to be used from the
database API response directly, and for the char-
acteristics where this was not possible or desirable,
the calculation methods are below:

• Description size: The amount of words that
were not stopwords (from the Python package
nltk stopwords).

• Comment count: The amount of comments
(≥ 0).

• Comment average size: None if there are
no comments, else the average of the non-
stopword word count of all comments.

• Hierarchy: Child if the issue is at all a child
somewhere, Parent if it is a parent and not a
child, and Independent if it is not part of any
hierarchy.

• Duration: None if the issue is not yet resolved,
else the amount of days between the creation
date and the resolution date.

• Resolution: None if the issue is not yet resolved
(the status is not either closed, resolved or
done), else the value of the field directly from
the database issue.

The other characteristics, which were able to be
taken over as-is, are:

• Issue Type

• Status

• Amount of Votes

• Amount of Watches

These characteristics are of two types. Hierarchy,
issue type, resolution, and status are categorical
variables, while the others are continuous variables.

For this distinction in type, two different statis-
tical tests were used with the same end goal of
answering the research question.

There are two characteristics, the number of
attachments and whether or not an issue has a pdf
attachment, that were unable to be used, because
of difficulties involved in getting an accurate
representation of all issue attachments into the
source database, with as a consequence that
attachment data is not consistent enough to be
used for statistical purposes.

3.5 Decision Types

For decision type definitions, this thesis follows the
precedent set by the string of previous projects
that its author and supervisors were part of. These
three categories have already been mentioned in
the background section, and are repeated here in
order to explain in more detail.

• Existence: Issues that describe the (non-
)existence of a (component of the) system.
For example, to decide that there exists a cer-
tain class, and it will have a certain set of
functionality.

• Executive: Issues describing a change in the
external environment of the software system
being developed. This can be, for example,
a tool change or an external library update.
As a rule, decisions that change something
about the system’s environment but that did
not originate from within the system’s own
requirements, are executive decisions.

• Property: Issues that decide something
about a quality of the system, such as avail-
ability, performance, or security.

3.6 Statistical Analysis: Tests

3.6.1 Chi-Squared Test

For the categorical variables, the chi-squared test
was chosen. This test is used to determine if a
given set of values for combinations of two variables
indicate that the variables are independent or not.
The results for chi-squared tests in this thesis are
presented in a table of ratios around 1, calculated
by dividing the actual counts of issues in this
combination by the count expected by the test in
the case of variable independence. This means that
a value of 1 means that it is as expected (going by
the hypothesis of independent variables), a value
lower than 1 means it is lower than expected, and
a value above 1 means it is higher than expected.
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Cells that were left empty did contain inde-
pendent variables, according to the chi-squared
test (p-values of above 0.05). Due to large
amounts of small p-values, heavily favoring
the alternate hypothesis of these variables not
being independent of one another, cells that are
significant have been colour-coded: red for ratios
of actual/expected that were below 0.8, yellow
for between 0.8 and 1.2, and green for above 1.2.
This is because the most extreme cases will be
the most interesting to examine, and the most
actionable to develop, for example, heuristics
to focus on finding a certain type of design decision.

Please note that these ratio values, while being
the only numerical results of this test presented in
this thesis, are not the only results of this test: in
the repository mentioned in step 2 of the high-level
study design, the full files can be found.

This test is used to answer RQ1 (to measure
the independence of the variables domain and
decision type), RQ2 and RQ3 (to measure, for
every categorical characteristic, the independence
of the variables domain and decision type).

3.6.2 Mann-Whitney Test

For the continuous-variable tests, the Mann-
Whitney test was chosen. The null hypothesis of
this test is that the two given samples were drawn
from the same distribution. In this paper, the
results of this test have been displayed as arrows
drawn on a grouped box plot. An arrow from box
plot A to box plot B shows that the distribution
indicated by plot A is significantly different from
and larger than the one indicated by plot B. This
arrow functionality was not available in Python
libraries out of the box, so it was coded for this
project.

Due to the overabundance of arrows in these
results, outliers have been left out of the graphs.
Additionally, instead of the usual boundary of
significance of 0.05 for p-values, for these tests,
a boundary of 0.001 was chosen. Combinations
that were below this rate were heavily significant
and, as a result, only those are shown. These
results have also been displayed in two ways: the
primary grouping of the box plot can be either the
domain or the decision type, to allow for detailed
comparisons between both and yet condense the
amount of individual graphs.

As with the chi-squared test, there are more
versions of these Mann-Whitney significance
graphs in the same linked repository.

This test is used to answer RQ2 and RQ3
(to measure, for every characteristic, which
combination of decision type and domain has the
highest/lowest significantly different mean from
the other combinations).

3.7 Expected Difficulties

3.7.1 Results Size

There will be many results: the final data has
several dimensions, with each dimension having
several possible values: decision type, issue char-
acteristics, possible values for each characteristic.
To display these results in a digestible manner
and still show it in a detailed enough way to
draw useful conclusions from will be a challenge,
which is mitigated by relegating overly crowded
plots to the appendix and favouring the simple
decision model in the text of the paper itself, and
where applicable, the full-domain model instead of
showing all domain-specific results. The results
for the simple results model are calculated as
follows: an issue that has two or more decision
type labels counts once for all of its labels. For
example, an issue that is both existence and
property will count for both existence and property.

3.7.2 Status, Resolution, Issue Type

Additionally, the status, resolution and issue type
characteristics brought another difficulty with them
in the form of an incredibly large amount of po-
tential values. The values of these characteristics
are user-defined, and thus dependent on the Jira
instance and project. It is also possible for two
projects to use different values for the same purpose,
or the same value for different purposes. This made
it difficult to narrow down the values to analyse,
and to interpret the results keeping these factors
in mind. The values for these characteristics that
are shown in this thesis were chosen after several
iterations, by the following criteria:

1. The value has to be present in three or more
domains.

2. The value has a sufficiently high rate of occur-
rence within each domain, so we can reason-
ably assume that every domain had the same
level of access to it, and was not prevented
from using it because it wasn’t available in the
Jira instance or there was an overly popular al-
ternative value for the same/similar purposes.

Other approaches that were considered and re-
jected include:

9



1. Picking the issues with the highest counts
across all domains. This was not ideal because
some domains have so many issues that have
one value while other domains do not have a
single one, and this method does not respect
that, so it cannot generate usable results for
these values.

2. Picking only the Jira defaults with the highest
counts. This method also did not take into
account that some domains do simply not use
certain default values, or not as much as they
maybe should, because they have replaced the
function of these values with custom values.
On the other hand, some custom values are so
prevalent across domains that they might as
well be default, and this method cannot take
that into account.

10



4 Results

In this section, the results gathered through the
process described in the study design section will
be shown, as well as interpreted. Each research
question is answered in its own subsection.

4.1 RQ1: Design Decisions per Do-
main

RQ1: What types of design decisions are
discussed in architectural issues within
projects of different domains?

Figure 4.1: A Venn diagram of the amount of
issues divided over the design decision types,
across all domains.

To answer the first research question, we must
count how many issues per decision type there
are per domain, and use the chi-squared test to
determine if there are significant differences. A
total count of issues across all domains, grouped
by decision type and visualised as a Venn diagram,
can be found in figure 4.1. This same information
but separated per domain can be found back in
figure 4.2.

A chi-squared test was run on the amounts of
issues per decision type, per domain, to examine
if there were (in)dependent variables. Table
4.1 shows the results of this test for intersected
decision types, and table 4.2 for simplified types.
As stated in the study design section, the numbers
in these tables signify the rate of issues of this
type found divided by issues of this type expected
if the variables examined are truly independent.

We can conclude from these results that Content
Management, Software Development Tools and
Web Development seem overall less rich in design
decision content than the average across domains.
As the only exception for these three domains,

Web Development has a slightly higher-than-
average rate for pure executive decisions (1.05
in the simplified view, 1.09 in the intersected view).

Data Storage and Processing seems richer
than average in existence, but especially in
property (1.44 in the simplified view, whereas in
the intersected view 1.44 for the single label, 1.65
combined with existence, and 1.13 in all), while
being poorer than average in executive (0.74 in
the simplified view, while in the intersected view
0.72 for the single label and 0.78 combined with
existence).

DevOps and Cloud is richer than average in
most decision types, especially executive (2.04
in the simple view, while in the intersected, the
single label gives 2.04, combined with existence
2.81, combined with property 1.31, and all types
combined 1.97), but not property (0.91 in the
simple view, while in the intersected view 0.73 for
the single label, and 0.83 combined with existence.
Values for when executive is combined seem to
skew higher because executive counts are more
significantly different and higher than property
counts are significantly different and lower than
average).

SOA and Middlewares seems to be around
average, with a slight preference for executive
decisions (1.10 in the simplified view, 1.12 for
the single label in the intersected view, no other
significant values) and slightly fewer property
decisions than average (0.93 in the simplified view,
0.91 for the single label and 0.92 for combined
with existence in the intersected view).

Key Takeaways for RQ1:
The most prevalent decision type is executive,
and property the least. Combinations of all
decision types appear across all domains.

The domain DevOps and Cloud seems the most
productive to find decisions of type executive
and existence. Data Storage and Processing
is a good complement, supplying the property
decisions.

4.2 RQ2: Issue Characteristics per
Domain

RQ2: How different are the characteristics
of architectural issues within projects of
different domains?

The categorical issue characteristics have been
analysed per domain by running a chi-squared
test. The results of this are available in tables 4.3
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(a) Content Management (b) Data Storage & Processing

(c) DevOps and Cloud (d) SOA and Middlewares

(e) Software Development Tools (f) Web Development

Figure 4.2: Venn diagrams of the amount of issues divided over the design decision types, per
domain.
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Domain Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch
CM 0.96 0.49 0.54 0.75 0.65 1.07
DSP 1.12 0.72 0.78 1.44 1.65 1.13 1.02
DC 1.11 2.04 2.81 0.73 0.83 1.31 1.97 0.86

SOAM 1.04 1.12 0.91 0.92 0.99
SDT 0.73 0.92 0.45 0.65 0.41 0.83 0.40 1.04
WD 0.85 1.09 0.49 0.70 0.62 0.73 0.61 1.01

Table 4.1: Chi-squared test results on decision types per domain, with intersected decision types.
(CM = Content Management, DSP = Data Storage and Processing, DC = DevOps and Cloud,
SOAM = SOA and Middlewares, SDT = Software Development Tools, WD = Web Development)

Domain Exis Exec Prop Non-Arch
CM 0.88 0.51 0.87 1.07
DSP 1.15 0.74 1.44 1.01
DC 1.25 2.04 0.91 0.85

SOAM 1.10 0.93 0.99
SDT 0.66 0.90 0.56 1.05
WD 0.78 1.05 0.67 1.02

Table 4.2: Chi-squared test results on decision
types per domain, with simplified decision types.
(CM = Content Management, DSP = Data
Storage and Processing, DC = DevOps and
Cloud, SOAM = SOA and Middlewares, SDT
= Software Development Tools, WD = Web
Development)

Domains Independent Child Parent
CM 1.07 0.37 0.44
DSP 0.88 2.04 1.87
DC 1.07 0.33 0.49

SOAM 1.02 0.81
SDT 1.01 0.82
WD 1.02 0.88 0.76

Table 4.3: Chi-squared test results on the hierar-
chy characteristic’s values, per domain. (CM =
Content Management, DSP = Data Storage and
Processing, DC = DevOps and Cloud, SOAM
= SOA and Middlewares, SDT = Software De-
velopment Tools, WD = Web Development)

(hierarchy), 4.4 (issue type), 4.5 (resolution) and
4.6 (status).

Mann-Whitney tests were run for the continuous
issue characteristics, the results of which are
available in figure 4.3.

Categorical Variables

From table 4.3 we can infer that domain Data
Storage and Processing uses hierarchical issues
a lot more than the other domains, especially
overshadowing Content Management and DevOps
and Cloud.

In table 4.4, the domain with the relatively

greatest amount of sub-tasks is data storage and
processing. DevOps and Cloud and Software
Development Tools have counts of this value for
issue type that are not significantly different from
the average. All other domains (Content Manage-
ment, SOA and Middlewares, Web Development)
have significantly less than average amounts of
this value for issue type. Next, domains with
greater than average amounts of bugs are Content
Management and Software Development Tools,
followed a little less closely by DevOps and Cloud.
The column for improvements is an interesting
gradient, with Software Development Tools having
relatively few and Data Storage and Processing
having relatively many. Interestingly, Software
Development Tools also has relatively few new
features, but relatively the most tasks. Software
Development Tools also has relatively many tasks,
while Content Management and Data Storage and
Processing have relatively few. Wishes are the
most relatively prevalent in Content Management
and the least in DevOps and Cloud.

For resolution, from table 4.5, we see that Con-
tent Management, Data Storage and Processing
and DevOps and Cloud have relatively (very) few
Done issues, while SOA and Middlewares, Software
Development Tools and Web Development have
relatively (very) many. For bug-related values
won’t fix and not-a-bug, Software Development
Tools and Content Management have relatively
many, while Data Storage and Processing and Web
Development have relatively few.

Table 4.6 shows the status characteristic’s
chosen values across domains. Immediately, we
can see that no domain has as relatively many
open, reopened and in-progress issues as Data
Storage and Processing. Additionally, this domain
also has the highest relative amount of resolved
issues amongst domains, followed very closely very
SOA and Middlewares. This domain seems to
heavily favour that value, having less-than-average
relative rates for all the other values. DevOps and
Cloud largely has smaller-than-average relative
rates for open, resolved and reopened, instead
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Domains Sub-Task Bug Improvement New Feature Wish Task
CM 0.37 1.50 1.10 0.95 1.61 0.71
DSP 1.38 0.84 1.17 0.93 0.70
DC 1.12 0.78 1.06 0.46 1.14

SOAM 0.58 0.83 0.83 1.14 1.18 1.57
SDT 1.30 0.63 0.72 1.36
WD 0.73 0.77 1.14

Table 4.4: Chi-squared test results on the issue type characteristic’s values, per domain. (CM =
Content Management, DSP = Data Storage and Processing, DC = DevOps and Cloud, SOAM =
SOA and Middlewares, SDT = Software Development Tools, WD = Web Development)

Domains Won’T Fix Duplicate Fixed Obsolete Not A Bug Done
CM 3.05 1.55 2.65 2.56 0.07
DSP 0.96 1.06 1.15 0.07 0.46 0.57
DC 0.37 1.30 1.19 1.13 0.52

SOAM 0.71 0.39 0.95 0.53 1.45
SDT 1.39 0.56 2.49 1.55 2.16
WD 0.91 0.32 0.59 0.61 0.42 2.49

Table 4.5: Chi-squared test results on the resolution characteristic’s values, per domain. (CM =
Content Management, DSP = Data Storage and Processing, DC = DevOps and Cloud, SOAM =
SOA and Middlewares, SDT = Software Development Tools, WD = Web Development)

Domains Closed Open Resolved In Progress Reopened
CM 1.19 0.86 0.54 0.68
DSP 0.59 1.92 1.71 1.42 1.81
DC 1.34 0.34 0.34 1.30 0.20

SOAM 0.78 0.79 1.70 0.59 0.55
SDT 1.28 0.71 0.36 0.58
WD 1.07 0.76 0.93 0.35

Table 4.6: Chi-squared test results on the status characteristic’s values, per domain. (CM =
Content Management, DSP = Data Storage and Processing, DC = DevOps and Cloud, SOAM =
SOA and Middlewares, SDT = Software Development Tools, WD = Web Development)
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having relatively many issues that are closed and
in progress.

Continuous Variables
Figure 4.3 shows the results of the Mann-

Whitney test on the remaining issue characteristics.
Domain Data Storage and Processing has the
clear advantage in comment count over the
other domains, while competing with Content
Management and DevOps and Cloud for the
average comment size. Content Management also
sticks out above the others in description size,
duration and votes. Notably, for votes, the other
domains do not seem to use this feature nearly as
much. For watches, Data Storage and Processing
narrowly has the lead, over Content Management.

Key Takeaways for RQ2:
The domain of Data Storage and Processing
again seems to make heavy use of the examined
Jira issue features compared to other domains,
for example, the issue hierarchy system. The do-
main Content Management also uses votes and
comments, but not hierarchy, implying higher
participation from its users but lower cohesion
across issues. Additionally, its issues seem to
have a significantly longer duration than any
other domains. Also, Content Management
seems to treat relatively many bugs compared to
other domains, reflected in issue type and resolu-
tion. Data Storage and Processing seems more
relatively active, from status, and architecturally-
concerned, from issue type.

4.3 RQ3: Issue Characteristics per
Design Decision Type

RQ3: What issue characteristics signifi-
cantly co-occur with the types of design
decisions?

The categorical issue characteristics have been
analysed per domain by running a chi-squared
test. The results of this are available in tables 4.7
(hierarchy), 4.8 (issue type), 4.9 (resolution) and
4.10 (status).

It is worth noting that due to the size of the
data, the intersected decision type tables, as
well as the complete simple decision type tables,
have been relegated to appendix C of this report.
In this section, only the simplified full-domain
decision type model results will be shown.

For the continuous issue characteristics, Mann-
Whitney tests were run, the results of which are
available in figures 4.6 (average comment size),
4.5 (comment count), 4.4 (description size), 4.7

(duration), 4.8 (votes), and 4.9 (watches).

For the continuous variables as well, only the
simplified decision type model is shown within the
thesis. The intersected decision type model can be
found in appendix C.

Categorical Variables

All Domains Exis Exec Prop Non-Arch

Independent 0.93 0.99 0.96 1.01

Child 1.60 1.05 0.96

Parent 3.21 1.89 3.98 0.67

Table 4.7: Chi-squared test results for the rela-
tion between the hierarchy characteristic’s val-
ues and simple decision type contained in the
issue, across all domains. (CM = Content Man-
agement, DSP = Data Storage and Processing,
DC = DevOps and Cloud, SOAM = SOA and
Middlewares, SDT = Software Development
Tools, WD = Web Development)

With the hierarchy characteristic (table 4.7),
across all domains we see marked increase in
parent issues being architectural. The numbers
for independent issues are not very far away
from average, but still show that they tend
towards non-architectural, except for executive-
property type issues. Child issues have a more
complicated story: they favour existence and
existence-property types, and are less likely to
contain any multi-label decisions with executive.
Notably, there are no significant differences from
expected in executive and property prevalence
for child issues. Noteworthy is that in Content
Management, the domain which used relatively
few hierarchical issues, both child and parent
issues have higher rates to contain any kind of
architectural decision than the domain average,
except child issues are extremely unlikely to
contain executive-property type decisions.
DevOps and Cloud, the other domain which rarely
used hierarchical issues, seems to have used them
in the opposite manner: its rates for parent and
child issues are all lower than the domain average,
except for existence issues.
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(a) Color legend for this figure.

(b) Comment average size. (c) Comment count.

(d) Description size. (e) Duration.

(f) Votes. (g) Watches.

Figure 4.3: Box plots of the continuous data issue characteristics, per domain. Arrows indicate
significantly larger means according to the Mann-Whitney test.
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All Domains Exis Exec Prop Non-Arch

Sub-Task 1.93 1.33 1.11 0.92

Bug 0.30 0.41 0.37 1.10

Improvement 1.87 1.35 2.42 0.89

New Feature 4.40 2.08 3.32 0.67

Wish 1.90 2.55 2.06 0.79

Task 1.11 3.12 0.88 0.81

Table 4.8: Chi-squared test results for the re-
lation between the issue type characteristic’s
values and simple decision type contained in
the issue, across all domains. (CM = Content
Management, DSP = Data Storage and Pro-
cessing, DC = DevOps and Cloud, SOAM =
SOA and Middlewares, SDT = Software Devel-
opment Tools, WD = Web Development)

In table 4.8, we notice that bugs are significantly
different from expected and unlikely to contain
any kind of architectural knowledge. On the other
hand, improvements, new features and wishes are
more likely than average to contain all types of
architectural decision. Sub-tasks are also slightly
more likely than average to contain all types of
architectural decision, with the most extreme being
a value of 1.93 for existence. Perhaps surprisingly,
tasks are slightly more likely than average to
contain existence, over three times as likely as
average to contain executive, and slightly less
likely than average to contain property. This last
detail is the one exception to the statement that
other than bugs, all issue types seem to contain
architectural knowledge more often than average.

All Domains Exis Exec Prop Non-Arch

Won’T Fix 1.33 0.58 1.27 1.03

Duplicate 1.09 0.81 1.21 1.02

Fixed 0.97 1.04 1.02 1.00

Obsolete 0.69 0.51 0.46 1.10

Not A Bug 0.31 0.36 0.44 1.15

Done 0.98 1.18 0.81 0.98

Table 4.9: Chi-squared test results for the re-
lation between the resolution characteristic’s
values and simple decision type contained in
the issue, across all domains. (CM = Content
Management, DSP = Data Storage and Pro-
cessing, DC = DevOps and Cloud, SOAM =
SOA and Middlewares, SDT = Software Devel-
opment Tools, WD = Web Development)

From table 4.9, we first notice that not-a-bug
and obsolete seem to have the same pattern as
issue type bug: significantly not architectural. We
also notice the pattern in the executive column:
fewer than average get assigned as duplicate
or won’t fix, but more than average get done.
Existence and property show an opposite
pattern: significantly many of them get assigned
duplicate and won’t fix, while fewer get assigned

done.

All Domains Exis Exec Prop Non-Arch

Closed 0.89 1.07 0.80 1.00

Open 1.52 0.75 1.92 0.98

Resolved 1.05 0.91 1.12 1.01

In Progress 2.68 1.11 2.56 0.84

Reopened 1.28 0.66 1.32 1.02

Table 4.10: Chi-squared test results for the re-
lation between the status characteristic’s values
and simple decision type contained in the issue,
across all domains. (CM = Content Manage-
ment, DSP = Data Storage and Processing, DC
= DevOps and Cloud, SOAM = SOA and Mid-
dlewares, SDT = Software Development Tools,
WD = Web Development)

For the last categorical variable, status, we
examine table 4.10. We see a similar pattern of
existence and property agreeing on all values,
while executive goes its own way. Existence and
property are less likely to be closed, instead being
more likely to, in ascending order, be resolved,
reopened, open or in progress. Executive is
significantly less likely to be open or reopened,
and slightly more likely to be in progress and closed.

Continuous Variables
For description size, what immediately jumps

out from figure 4.4 is that executive decisions
have decidedly the smallest descriptions. Next,
Content Management has many arrows pointing at
other domains, reconfirming what we saw in RQ2,
which is that it usually has the largest descriptions.
From the two most prevalent arrow colors in the
second graph, we can further infer that the triple
label issues and existence-property issues have
similar advantages over other decisions across all
domains, in that order.

Data Storage and processing clearly stands out
over the other domains in comment count (table
4.5) for all types, except for executive decisions.
There, DevOps and cloud has the highest mean.
On the flip side, property decision containing
issues seem to have more comments on average, at
least when taken across all domains, and especially
in content management and data storage and
processing.

An interesting observation for average comment
size (table 4.6) is that for every decision type, a
different domain sticks out to have the largest
comments. If we look at the decision-type-first
graph, the full-domain collection of box plots
indicates that property has the longest comments,
followed by existence, and perhaps surprisingly,
executive has the shortest comments. It is only
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(a) Grouped by decision type first and subgrouped by domain.

(b) Grouped by domain first and subgrouped by decision type. (CM = Content Management, DSP = Data
Storage and Processing, DC = DevOps and Cloud, SOAM = SOA and Middlewares, SDT = Software
Development Tools, WD = Web Development)

Figure 4.4: Mann-Whitney test on the relations between description size, domain, and simple
decision type contained in the issue.
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(a) Grouped by decision type first and subgrouped by domain.

(b) Grouped by domain first and subgrouped by decision type. (CM = Content Management, DSP = Data
Storage and Processing, DC = DevOps and Cloud, SOAM = SOA and Middlewares, SDT = Software
Development Tools, WD = Web Development)

Figure 4.5: Mann-Whitney test on the relations between comment count, domain, and simple
decision type contained in the issue.
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(a) Grouped by decision type first and subgrouped by domain.

(b) Grouped by domain first and subgrouped by decision type. (CM = Content Management, DSP = Data
Storage and Processing, DC = DevOps and Cloud, SOAM = SOA and Middlewares, SDT = Software
Development Tools, WD = Web Development)

Figure 4.6: Mann-Whitney test on the relations between average comment size, domain, and simple
decision type contained in the issue.
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in DevOps and Cloud that this latter fact is not
true. Also, in Content Management, existence’s
comment size just barely manages to overtake
property’s.

For the duration characteristic, in table
4.7, there is once again Content Management
rising above the others, and this time with
an interesting difference between it and the
domain averages. Within Content Management,
existence-executive issues take the longest,
while in the domain average, they are near the
lower end of all decision type combinations.
Another interesting difference is that within
Content Management, non-architectural issues
are in the top half of issues that take the longest
to resolve, while in the domain average, this is
not the case. Both Content Management and the
domain average seem to agree that any issue with
existence in it takes longer than issues that do not.

Within the votes characteristic (figure 4.8, we
will again use the Content Management domain
data to draw conclusions, as other domains
do not seem to use this feature as much as
Content Management does. Again, issues that
contain existence seem to get favoured for higher
amounts of votes. Notably, non-architectural
issues still get more votes than executive and
executive-property issues do.

More domains seem to have participated in
watches than just Content Management. A notable
result here is that one again existence seems
to get the most attention. Here again, though,
the triple label issues are the highest in watches.
Executive issues seem to get the least amount of
watches, followed by non-architectural.

Key Takeaways for RQ3:
A pattern with the issues of type bugs emerges,
along with the resolution values one might
assume are associated with them. More interest-
ingly, we have clear patterns of certain values
for certain characteristics having implications
for the architectural knowledge content of an
issue. Such details that amplify an issue’s
chance to contain architectural knowledge are:
being a parent issue (all); not being of type bug
(all); being marked as won’t fix or duplicate
(existence, property, but not executive)
or being marked done (executive); being
marked as in-progress (all), open or reopened
(only existence and property); having a
great amount of comments (property); having
large comments (property and existence);
having a small description (executive); taking
a very short amount of time (executive) or the
opposite (executive, property).

Another interesting note to draw from these de-
tails is that existence and property seem to
have more in common with each other than with
executive, because they both pertain to the
internal workings of the software being devel-
oped, while executive concerns itself with the
external environment of the project.
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(a) Grouped by decision type first and subgrouped by domain.

(b) Grouped by domain first and subgrouped by decision type. (CM = Content Management, DSP = Data
Storage and Processing, DC = DevOps and Cloud, SOAM = SOA and Middlewares, SDT = Software
Development Tools, WD = Web Development)

Figure 4.7: Mann-Whitney test on the relations between duration, domain, and simple decision
type contained in the issue.
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(a) Grouped by decision type first and subgrouped by domain.

(b) Grouped by domain first and subgrouped by decision type. (CM = Content Management, DSP = Data
Storage and Processing, DC = DevOps and Cloud, SOAM = SOA and Middlewares, SDT = Software
Development Tools, WD = Web Development)

Figure 4.8: Mann-Whitney test on the relations between votes, domain, and simple decision type
contained in the issue.
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(a) Grouped by decision type first and subgrouped by domain.

(b) Grouped by domain first and subgrouped by decision type. (CM = Content Management, DSP = Data
Storage and Processing, DC = DevOps and Cloud, SOAM = SOA and Middlewares, SDT = Software
Development Tools, WD = Web Development)

Figure 4.9: Mann-Whitney test on the relations between watches, domain, and simple decision
type contained in the issue.
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5 Discussion

In the results section, many initial connections
were made between prevalence of certain issue
labels under certain issue characteristic values.
In this section, these connections will be further
refined to conclusions, and from them, heuristics
will be developed that can then be used by re-
searchers and practitioners of software architecture.

It would seem that the software domain that
an issue belongs to does have some influence over
what decision types it is likely to contain. The
resulting heuristic that we can formulate from this
is was already written in the takeaways for RQ1:
in order to find both executive and existence
decisions, one should investigate DevOps and
Cloud projects. To supplement this with property
decisions, investigate Data Storage and Processing.

Next, issue characteristics within different
domains do exhibit significant differences. Some of
these differences likely relate to dominant project
ecosystems within domains using certain Jira
features more or less than others, or using different
features (most notably: votes seemingly only being
used by one domain and not the others). Other
patterns can be combined with the results from
RQ3 into more interesting conclusions.

In the key takeaways for RQ3, the heuristics for
individual issue types have already been laid out.
We can now connect them with the answers to the
other research questions to formulate more detailed
heuristics for each decision type, adding additional
heuristic details from the domain-specific Mann-
Whitney tests in RQ3 since we can narrow down
each decision type to one domain:

• For all types: Examine parent issues that
are not marked as bugs, within the domains
DevOps and Cloud and Data Storage and Pro-
cessing. Examine issues that are marked as
still in progress. The more comments the issue
has, the more likely it is architectural.

• For Existence: The all-types heuristic, with
the change that the issue may also be a child
issue instead of a parent but not an indepen-
dent issue, with the additional filters that the
issue’s resolution is marked as won’t fix or du-
plicate and the status is opened or reopened.
The greater the description size, the smaller
the comment count, the longer the duration,
and the higher the watches, the more likely
that it is existence. Search only within the
domain DevOps and Cloud.

• For Executive: The all-types heuristic, with
the additional filters that the issue is marked

as done. The smaller the description, the
greater the comment count and average size,
the shorter the duration, the more likely the
issue is executive. Search only within the
domain DevOps and Cloud.

• For Property: The all-types heuristic, with
the additional filters that the issue’s resolu-
tion is won’t fix or duplicate and the status is
open or reopened. The greater the description
size, comment count, comment average size
and watches, the longer the duration, the more
likely the issue is to be property. Search only
within the domain Data Storage and Process-
ing.

Other than these heuristics, there are several
connections that jump out of the data. Existence
receiving a lot of attention in the form of high
watch counts seems to make sense, because
existence decisions will be easy to grasp for more
people than just the developers who know the
system inside and out, in addition to being the
decision type that will contain new features
that people might be interested in. Additionally,
looking at the intersected data in appendix C, it
is not very surprising that the labels that contain
more than one decision type get the most extreme
values in many cases.

5.1 Implications for Researchers

5.1.1 Statistical Analysis of Related
Projects

The statistical scripts that were written for this
thesis can be found in the linked repository, and
may be reused for other projects. Researchers can
use this code, or use it as a base, to analyse both
more issues and certain issues in more detail.

5.1.2 Expansion of the Dataset

Researchers can use the provided heuristics and
tools to keep expanding the machine learning
model training dataset, contributing to a richer
potential for machine learning in this field of
software architectural decisions in issue tracking
systems.

5.1.3 More Detailed Statistical Analysis

As will be reiterated in the section on future work,
the statistical code produced a lot of results, and
much more detail can still be added, and more
results can still be analysed in more detail, or in
combination with other results. Researchers can
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use this thesis as a base from which to start their
own research into this field, and make use of the
scripts, data and heuristics to advance knowledge
in this field further.

5.2 Implications for Practitioners

5.2.1 Find Solutions for Problems

Using the UI tool, it is made easier to find
solutions for problems a practitioner of software
architecture may be facing. Using a combination of
keywords and architectural types, the practitioner
can search for relevant issues within the UI. The
heuristics developed can also be used as a guideline
to search for relevant issues outside of the UI
tool, for example, within Jira itself, which has an
advanced issue search filtering system, which even
supports several issue characteristics as evaluated
in this thesis, such as resolution, votes and watches.

5.2.2 Use Issue Tracker with More Preci-
sion

As professional software developers, it is highly
likely that practitioners interested in this topic also
use issue trackers such as Jira. Therefore, with the
discoveries made in this thesis in mind, they might
be able to better describe their issue if they are
aware that it contains a certain decision type, for
example in the following ways:

• If it is an executive decision, they know that
the description does not need to be very long,
and that the issue will likely not take much
time.

• If it is a property decision, they know to
invite and expect a larger-than-average discus-
sion in the comments.

• If it is an architecturally relevant decision of
any type, they will know to spend extra time
considering if it can belong in any existing
issue hierarchies, or requires a new one be
made.

The heuristics, when kept in the back of the
mind, can also be used to detect if an issue that
a practitioner previously might not have thought
was architectural, might turn out to contain design
knowledge after all. For example, if there is more
discussion than the original reporter expected,
it might be a property decision, or if the issue
racks up a substantial amount of votes, it might
be an existence decision that many people are
invested in. This will allow the practitioner to
treat the issue with more appropriate diligence.
This diligence may manifest as reclassifying the

issue as a different type, or may be the motivation
to formalise the knowledge in actual design
documents.
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6 Threats to Validity

6.1 External Validity

6.1.1 Status, Issue Type and Resolution

Notes about these three characteristics have been
made earlier in the project, and as such, they de-
serve their own subsection in this list of threats to
validity. It was unfeasible to analyse their full set
of values for every domain, as there were multiple
dozens for each characteristic. The strategy that
was eventually used to select up to six values for
each characteristic has been documented in the
study design section, however, it is not infallible.
Ideally, tests including these characteristics should
be run on a level below that of the entire dataset:
one single Jira instance, domain or even project,
as it becomes less and less feasible to guarantee
the consistency of the semantics behind each
value, the bigger your analysed dataset is. The
results of these characteristics are likely overly
general: once you go down one or more levels and
analyse these characteristics on a smaller scale,
you may get different results, that will also be
more applicable to your case. However, if the
simplicity of the heuristic is also of import, the
heuristics presented in this thesis are your best bet.

6.1.2 Heuristics as Deliverables

The status of the heuristics as solution to this
difficulty to find architectural issues should not
be taken as absolute. As is visible in the Mann-
Whitney graphs and the wide variety of numbers
in the chi-squared tables, there are broad ranges
for almost every combination, and ultimately,
logically, the architectural content of an issue
does not depend directly on its characteristics.
However, based on the comparative values of
characteristics, using these heuristics should yield
a greater amount of architectural issues compared
to a random approach.

6.1.3 The Snowball Effect

A concern for using these heuristics to grow the
machine learning model training dataset is that,
if the statistics upon which these heuristics are
based are themselves the result of a bias in the
existing training set or the machine learning
models themselves, then using these heuristics will
likely only be exacerbated by this. Researchers
who want to use these heuristics for this purpose
should be aware of this and measure the benefits
against the risks.

6.2 Construction Validity

6.2.1 Confidence Levels

Since the method of acquiring enough statistical
data to perform analysis on was machine learning
models, and access to the confidence levels of
the model when it predicted labels for each issue
is available, it was worth looking into potential
differences between the regular dataset and a
high-confidence dataset.

For this, a minimum confidence requirement
was used for each decision type. These confidence
values from the model come in the range of 0 to 1,
so the minimum requirement as determined by the
project’s primary supervisor was 0.9 for property
and executive, and 0.95 for existence. The
results of this study are available in the same repos-
itory as linked above, namely https://github.

com/Shadania/design-decisions-stats, with
all related files having ‘ high conf’ in the filename.
Most interesting to the reader is likely the pdf
with all the same graphics as present in this paper,
located at https://github.com/Shadania/

design-decisions-stats/blob/main/helper_

scripts/highconf_tex/highconfonly.pdf.

The result of this investigation was that there
are no significant differences between the two
versions that would have an impact on the results
found in this paper. The amount of architectural
issues discovered did go down significantly, but
even there, the ratio of least common to most
common decision type was preserved. In many
chi-squared tables and Mann-Whitney box plots,
small differences may be observed, but again,
nothing so severe that it is likely to disturb the
conclusions drawn in this thesis. However, any
future research in this field using ML predictions
of issue labels should likely go forward with only
the high-confidence dataset.

6.2.2 Training Dataset

Dekker and Maarleveld (12) have already laid out
threats to validity originating in the construction
of the training dataset used for the original models:
the disadvantage of letting a snowball effect speed
up architectural issue discovery, that feeds directly
back into the training dataset, is that one might
be unknowingly reinforcing a bias of the model.
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7 Conclusion and Future
Work

In this thesis, first, a user interface to a complicated
tool was improved, to help with creating a dataset
to train machine learning models, so that statistical
data could be generated. Next, a pipeline of statis-
tical analysis scripts was set up so that this data
could be processed in an orderly manner. Finally,
these results were analysed in order to formulate
heuristics to find patterns between architectural
knowledge content and characteristics of issues in
issue tracking systems. Several such heuristics were
formulated, to be used in future research or devel-
opment, to allow interested parties to find issues
with a higher chance to be architectural.

7.1 Future Work

This thesis has laid a solid foundation for continued
research into this topic, and provides researchers
and practitioners with the tools to do so. However,
improvements in several directions are possible,
and in this section, they are laid out. The three
identified categories are improvements to the web
interface developed during the start of this the-
sis project, improvements to the statistical scripts
themselves, and new routes to look for interesting
statistics and patterns in.

7.1.1 ArchUI Improvements

• ArchUI has some basic statistical generation
functionality. It could be improved in two
ways:

1. It could implement the statistics script
that have been written and iteratively
refined for this thesis, to offer more func-
tionality.

2. These scripts have been written in a
largely modular way, so that the same
function could be used with several dif-
ferent options. The UI could implement
these options to give to the user to allow
them to tailor their statistical research
into their own database.

3. The UI could improve on the user expe-
rience for this functionality, for example,
through offering a progress bar, and dis-
play the reports in a more sleek, user-
friendly way.

• The code of the UI has grown semi-organically
as requirements were added and revised, and
what it currently is was not particularly what
was envisioned at the start of the several
projects it has been a subject of. There have

been attempts at refactoring, but the code still
shows these organic origins.

• Now that heuristics with a statistical basis
have been formulated, ArchUI should imple-
ment them. One of its strengths is already the
snowball effect facilitation that its two areas
of functionality create, and this would amplify
that potential.

7.1.2 Statistical Improvements

The statistics code has been written in such a way
that it should be easy to extend for new character-
istics and modes, and should be able to accept new
database with the same format without change.
Though, here also, there is room for improvements.

• Not all potential issue characteristics were ex-
plored. Jira issues have many characteristics,
direct or indirect, and more can always be in-
vestigated. It was difficult to generalise these
characteristics for the complete dataset, so per-
haps research in this direction could look into
focusing on a specific domain, Jira instance or
project, to identify characteristics relevant for
the chosen area and focus thereon.

• There are currently many scripts, none of
which require commandline arguments, but
many of which require an in-text configura-
tion to be modified to give different results. It
may be difficult for an unfamiliar user to find
the script they’re looking for, despite the doc-
umentation available. Giving these scripts a
graphical user interface through ArchUI would
be one way to increase user-friendliness. An-
other, potentially quicker way would be to
create a commandline interface.

7.1.3 New Statistical Avenues

This research has opened the doors to discovering
and investigating more patterns within the data
and draw more connections between issue charac-
teristics and decision types. It has shown what
might be traces of patterns that could be exploited
to develop better heuristics. Below, some examples
of this potential that should be looked into:

• There is a similar pattern in the result data for
bugs and architectural content, and some bug-
related resolutions and architectural content.
Per issue type, the interaction of the resolu-
tion characteristic and decision type should be
explored.

• Many parent issues are architectural, and
slightly more children than average are ar-
chitectural also. A new avenue to explore is
to discover if there is a link between a parent
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issue of a certain decision type and its children:
for example, does a property-related parent
issue imply property-related children?

• Jira allows issues to be linked together in more
ways than a parent issue to a child. These
relationships should also be investigated, for
similar patterns as described in the item above.

• Due to the high-level nature of this project,
mostly only high-level results were evaluated.
There is potential in doing a similar study but
on the level of a single Jira instance, or even
project. This would solve issues such as the
one encountered with the status, resolution
and issue type characteristics, where values
might have been used in different ways across
different projects. An interesting first step in
this direction would be to evaluate whether
there are any significant differences between
projects within one domain, and to analyse
the outliers closer.

• Not all the results generated by the scripts
were able to be analysed and used due to time
constraints. Please see the repository for an
overview of all generated results. Potentially
useful data may be hiding in there.

7.1.4 Evaluations

This thesis has brought results and innovations, but
due to time constraints, not many results have been
thoroughly tested. Therefore, the author would like
to propose the following ways to validate the results
further:

• The ArchUI interface should be evaluated for
its ease of use amongst practitioners and re-
searchers not within the stakeholder group
evaluated for requirements and feature re-
quests. From this extended group, more re-
quirements can be gathered, so that ArchUI
may become a more generally available tool
for greater groups.

• The developed heuristics should be tested,
both statistically and practically. This would
benefit from them having been implemented
within the UI first.
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Abstract. Software engineers commonly re-use architectural design de-
cisions (ADDs) from their previous experience. However, in practice, soft-
ware engineers still depend on adhoc mechanisms to re-use ADDs. Recent
studies show that software engineers discuss ADDs in issue tracking sys-
tem, which could be useful for software engineers to make new ADDs.
Nevertheless, it is rather challenging to find ADDs among the big amount
of issues in issue trackers. Therefore, we introduce Maestro, an open
source tool for finding, annotating, and exploring ADDs in issue track-
ing systems. The tool allows researchers and practitioners to find and
analyze issues containing ADDs in issue trackers. Maestro provides an-
notation mechanisms, deep learning components, keywords-based search
engine and a user-interface that can be easily used by researchers and
practitioners to find and analyze ADDs in issue trackers.

Keywords: Architectural design decisions · issue tracking system.

1 Introduction

Software engineers tend to reuse the knowledge from previously made Architec-
tural Design Decisions (ADDs) [14], such as ADDs on components design (e.g.
through patterns ([5])), technology ADDs [20], and ADDs on tactics to address
quality requirements (e.g. authentication mechanisms as security tactics) [2].
For instance, software engineers can learn from the drawbacks (e.g. performance
issues) of solutions decided in previous ADDs. The re-use of knowledge from
previous ADDs could help software engineers to effectively design new systems
and mitigate risks.

While re-using ADDs could be useful in practice, empirical studies show
that software engineers do not commonly document ADDs [14]. For instance,
researchers proposed a wide variety of tools to manage and document ADDs
[6, 23, 24]. However, software engineers still tend to maintain their knowledge
on ADDs in their head (i.e. tacit) without explicit documentation [6]. On the
other hand, software engineers communicate and discuss ADDs informally to
resolve issues (e.g. new features1 or improvements2) in issue tracking systems

1 https://issues.apache.org/jira/browse/HADOOP-13944
2 https://issues.apache.org/jira/browse/CASSANDRA-12245
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(e.g. Jira) [19, 3]. We call issues containing such discussions architectural issues.
The discussions on ADDs in architectural issues contain useful knowledge, which
software engineers could potentially re-use to make new ADDs.

While architectural issues could potentially be useful for software engineers,
they are not tagged by software engineers [19], which make them hard to find
and explore in between the vast majority of issues on programming and bugs.
Therefore, researchers utilised different approaches (e.g. machine learning [3],
source code analysis [19], and qualitative analysis [19]) to find and explore ar-
chitectural issues, each with different pros and cons. However, the diversity of
the different approaches require researchers and practitioners to execute each
approach separately, and possibly manually combine their results to effectively
find and explore architectural issues. To execute each approach separately is a
complex, error prone and time-consuming process, which require expertise in
different fields like machine learning and qualitative analysis.

In this paper, we propose Maestro: An open source tool3 to find and explore
ADDs in issue tracking systems. Maestro combines four different approaches to
find and explore ADDs in a single process: keyword-based searches, deep learn-
ing, qualitative analysis, and statistical analysis. In addition, Maestro allows
importing results from other approaches such as source code analysis. In Mae-
stro, we distinguish between different types of ADDs according to Kruchten et al.
[13]: existence (component related), executive (process and technology related),
and property (quality related). Maestro is designed to be extensible and easy
to use for both researchers and practitioners. For instance, software engineering
researchers can train and run deep learning models without expertise on pro-
gramming deep learning models. Maestro can be deployed remotely or locally,
which provides flexibility for researchers and practitioners to run the tool.

The rest of the paper is organised as follows: In Section 2, we discuss the
use cases of Maestro. In Section 3, we discuss the architecture of Maestro. We
explain our experiences and evaluation of Maestro in Section 4, and compare it
with related work in Section 5. Finally, we conclude the paper in Section 6.

2 Use Cases

Maestro serves both researchers and practitioners to find and explore ADDs
in issue tracking systems. Researchers can use Maestro for empirical analysis;
practitioners can use Maestro to re-discover and re-use architecetural knowl-
edge. Fig 1 shows an overview of the use cases supported by Maestro and their
relationships. We explain each use-case below:

UC1 Select candidate issues for qualitative analysis: Researchers can select
certain issues to be manually analysed (in UC2). The nomination of the
selected issues can come from different sources: 1) predictions made by deep
learning classifiers (in UC4). 2) issues resulting from keywords-searching (in

3 Available from: https://github.com/mining-design-decisions/Maestro
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Fig. 1. Use cases supported by Maestro, annotated with relevant actors per use case.
Arrows show how results from one use case (or activity) are used by other use cases.

UC5). 3) issues identified from other tools (e.g. source code analysis [19, 18]),
and 4) issues selected randomly similar to Bhat et al. [3].

UC2 Annotate issues with types of ADDs: Researchers can analyse selected
issues (from UC1) using qualitative methods (e.g. grounded theory [21]),
and annotate them based on the types of ADDs within issues. Using the
tool, multiple remotely located researchers can discuss types of ADDs using
an online conversation associated with each issue. The UI provides the re-
searchers with the summaries and descriptions of issues, the assigned types
of ADDs, and a discussion thread per issue. The conversations between re-
searchers can be used incrementally to create a coding book for annotating
architectural issues. Furthermore, the tool supports researchers to calculate
agreement measures such as Kappa [9] to ensure high quality of the qualita-
tive analysis. The annotated issues can be directly used to develop new deep
learning models (in UC3).

UC3 Develop deep learning models to identify types of ADDs in issues:
First, researchers can design classifiers by choosing from different types of
feature generation (e.g. Word embedding [15] and Word Frequency), deep
learning architectures (e.g. RNN [12, 8, 7], CNN [17], and BERT [11]), which
can be automatically tuned using the flexible user interface of the tool. Sec-
ond, researchers can train designed classifiers using the annotated issues
(from UC2), and compute their accuracy (e.g. in terms of F1 score) to au-
tomatically identify types of ADDs in issues.

UC4 Predict types of ADDs in issues: Both practitioners or researchers can
use the trained classifiers (from UC3) to predict types of ADDs in new, pre-
viously un-annotated, issues. Specifically, practitioners can find past ADDs
in issues of existing projects, understand their rationale, and re-use their
knowledge to make new ADDs. Researchers could further analyse these is-
sues using qualitative analysis (in UC2) or statistical analysis (in UC6).

UC5 Search for ADDs using keywords: Both practitioners or researchers can
search for architectural issues using classical keywords-based search (i.e. in-
formation retrieval). Moreover, the tool facilitates filtering search results
based on the predictions of classifiers (from UC4). In this way, practitioners
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could effectively find issues that discuss certain types of ADDs. At the same
time, researchers can focus their qualitative and statistical analysis (in UC2
and UC6) on issues that discuss certain types of ADDs.

UC6 Perform statistical analysis on ADDs: Researchers and practitioners
could perform statistical analysis on architectural issues. For example, prac-
titioners could determine the duration of issues that involve certain types of
ADDs. This can help practitioners to estimate the duration of future ADDs
based on their type. As another example, researchers might be interested
to determine the amount of knowledge on certain types of ADDs in the
descriptions and comments of architectural issues.

3 Architecture of Maestro

Maestro consists of four layers, each contains multiple components. The logical
architecture is depicted in Figure 2, and the physical architecture in Figure 3.
We explain below each layer in more details:

– ThePersistence Layer contains four different databases: 1) a database that
contains data on issues (e.g. summary and description), which we based on
the dataset from Montgomery et al. [16]. 2) a database that contains data
related to the manual annotation of issues (e.g. manual labels and discussions
between researchers), and all deep learning related data (e.g. trained models,
their configurations, performance scores), 3) a database that contains cached
statistics data, and 4) a database for usernames and passwords.

– The Data Access Layer provides secure access to the databases using au-
thentication tactics. Furthermore, it contains components that can update
the issues database with new issues from issue trackers (current only Jira is
supported) to support the extensibility of the system. We re-used the com-
ponent created by Montgomery et al. [16], and enhanced it to be extensible.

– The Processing Layer contains two major components: 1) The Keywords
Search Engine provides a centralised API for performing keyword searches
(UC5) using Apache Lucene, which allows re-use of pre-computed indices. 2)
The Deep Learning Manager acts as the backend for all deep learning related
functionality outlined in UC2 and UC3. The deep learning was designed to be
extensible. In Fig 2, every pipeline makes use of one or more entities. New
entities, such as new feature generators or neural networks, can be easily
added by adding new entity classes which are instantiated through factories.

– TheUser Interface provides an interface for the user to fulfil all use-cases in
Section 2. For instance, to achieve UC3, the UI presents different options for
each deep learning model and provides a user-friendly interface to provide
parameter values. Through the UI, researchers could initiate the training
of machine learning models, and view accuracy scores in a concise overview.
Moreover, researchers could manually view and classify issues (UC2). Further
details on the UI can be viewed in our video4. The UI is designed according to

4 https://www.youtube.com/watch?v=sztY5it5Lb4
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the Model-View-Controller (MVC) pattern, and depends on the processing
layer and the data access layer (see Figure 2).

Components can be deployed locally or remotely (Fig 3), allowing data cen-
tralisation and offloading of computationally intensive tasks to other devices.
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Fig. 2. The logical architecture of Maestro. The “high level components” are larger
components with smaller sub-components.

4 Research Process to Develop Maestro

Maestro is a result of a research project spanning more than 2 years of efforts
[10] that aims to explore ADDs in issue tracking systems. The four authors of
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Fig. 3. The physical architecture of Maestro.

this paper, as well as two other independent researchers, participated in this
project. Our research follows an action research method [1], where researchers
investigated the problem of finding and exploring architectural issues in issue
trackers, and simultaneously developed approaches to find and analyse architec-
tural issues. In detail, we followed four phases, each consists of an action and
an evaluation steps. We explain below each phase and step, and associate them
to the use-cases (UC) in Section 2. We explain how these phases lead to the
development of Maestro, and illustrate how it can be used in research.

– Phase 1 - Random sampling to find architectural issues:
Action: We selected a random sample of 400 issues from six different open-
source projects, and analysed them using qualitative analysis [21].
Evaluation: The percentage of architectural issues range between 10-15% of
the random sample, which shows that random sampling is not an effective
approach to find ADDs in issue trackers.

– Phase 2 - Keywords-search and source code analysis:
Action: Because random sampling was ineffective to find architectural issues,
we experimented with two further approaches: searching using keywords from
literature (UC5), and source code analysis [19]. Using both approaches, we
selected 2179 candidate issues (UC1) from six open source projects from
the Big Data domain (e.g. Apache Hadoop) to be manually analysed using
qualitative analysis. For each issue, we downloaded its title and description
in an excel sheet, and annotated the types of ADDs in their descriptions
according to Kruchten et al. [13]: Existence, property and executive. Dis-
agreements between researchers were discussed in separate meetings.
Evaluation: Keywords searching and source code analysis were effective to
find existence ADDs (precision > 50%), but suffered from low precision to
find property and executive ADDs. Moreover, during the qualitative analy-
sis, we realised that it is challenging to annotate large number of issues using
Excel sheets, because some issues are long and contain formatting symbols,
which cannot be correctly visualised. It was also challenging to track our
discussions on issues during our meetings. These discussions were important
to write and improve our coding book to annotate ADDs in issue trackers.

– Phase 3 - Machine learning to find architectural issues:
Action: Because keywords-search and source code analysis were not effec-
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tive to find property and executive architectural issues, we trained different
deep learning models to automatically classify architectural issues (UC3).
We then used the model with the best accuracy (i.e. “BERT” model) to
predict the types of issues (UC4), which have not been previously manually
analysed. Accordingly, We sorted the issues identified from “BERT” model
depending on the confidences obtained from the model to analyse manually
(UC1). We developed the user interface of the tool to display and sort list
of issues based on the confidences generated by deep learning models. Fur-
thermore, we developed a dedicated user interface to annotate and tag issues
based on the types of ADDs in their description (UC2).
Evaluation: The tool showed significant usefulness to annotate issues, be-
cause researchers (allocated remotely) could directly view, discuss and clas-
sify issues in one process. According to our experience, using the tool was
better than relying on excel sheets, especially in visualising long and com-
plex issues. Moreover, the tool allows to discuss issues, and instantly add
issues to the training set without any need to run other scripts or upload
data, which prevent faults such as forgetting to include issues or inserting
duplicate issues (i.e. the tool provides a consistent overview of all labelled
issues for all users). Additionally, during annotations, the tool allows adding
tags to issues, which helped us to mark issues that require a second opinion
on their classification, and enabled us to track information about who an-
notated which issues, and how these issues were found (e.g. using keywords
searching – UC5). This tagging functionality helped us to more easily iden-
tify groups of potentially miss-annotated issues. Furthermore, the UI brings
notable enhancements to train deep learning models. Previously, we had to
manually create configurations for each model, which was error-prone and
tedious. However, the UI now clearly presents all available options for each
model to facilitate creation, training and evaluation. Using this new func-
tionality of the tool, we performed UC2-UC4 in 3 iterations to expand our
dataset to reach 2210 architectural issues and 2903 non-architectural issues.

– Phase 4 - Find architectural issues from different domains:
Action: In the previous phases, we explored ADDs in six open-source projects
from the Big Data domain. In this phase, we explore ADDs in projects from
different domains other than Big Data. Thus, we re-used a recent dataset
from Montgomery et al. [16], which contains more than 2.7 million Jira issues
from 1352 projects that belong to six different domains including Big Data,
Cloud Computing, SOA, and DevOps. We trained and executed the best
performing model (i.e. “BERT”) to identify architectural issues and predict
the types of ADDs in all issues in the dataset (UC4). We also developed a
statistical analysis functionality in the tool (UC6) to visualise the types of
ADDs in the different domains, as well as the characteristics of architectural
issues such as time to resolve and the amount of discussion in comments.
Evaluation: Using the tool, we identified 250,708 architectural issues from
the six domains. Moreover, we determined the most common types of ADDs
per domain, and compared characteristics of architectural issues per domain.
For example, issues that discuss property ADDs were most involved and took
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longer time to resolve. The statistical functionality in the tool (UC6) shows
its usefulness to explore ADDs in a massive number of architectural issues.

5 Related Work

Several traditional architectural knowledge management tools have been pre-
viously proposed [22]. These tools store and document ADDs in repositories
and templates, which need to be manually populated. On the other hand, our
proposed tool Maestro focus on ADDs discussed in issue tracking systems.

The closest tool to Maestro is ADeX [4], which can classify architectural issues
using machine learning. Moreover, ADeX can recommend developers for making
certain ADDs based on personal expertise. While both tools ADeX and Maestro
aim to find and explore ADDs in issue trackers, our proposed tool Maestro is
different than ADeX in the following points:

– Maestro allows researchers to apply qualitative analysis (in UC2), and add
manually classified issues to the training dataset. Moreover, Maestro sup-
ports keywords-based searches (in UC5), which allows researchers to easily
expand their dataset of architectural issues through a snowballing process.
This process is not supported by ADeX.

– Maestro provides a user-friendly UI to train and evaluate new deep learning
models (in UC3 and UC4), which can help researchers to evolve models for
classifying architectural issues. This flexibility is not provided by ADeX,
which provides pre-trained machine learning models for classification. The
accuracy of the pre-trained model is fixed based on Bhat et al. [3].

– Maestro has been evaluated on a large dataset of issues with 2.7 million
issues from different domains, which show its scalability and usefulness to
run on projects from different domains. In contrast, ADeX has been applied
on two open source projects.

– Maestro is open source5 and is designed to be extended by other researchers
or practitioners. In contrast, the source code of ADeX is not referenced by
the authors of ADeX.

6 Conclusion

We developed Maestro, an open source tool for finding, and exploring architec-
tural issues that discuss design decisions. Our experience with Maestro showed
its usefulness to find and annotate 5113 issues, and develop deep learning models
that automatically classified 250,708 architectural issues. Contrary to existing
tools, Maestro supports researchers to find and annotate architectural issues
through keywords searching, deep learning models and snowballing. Our future
work focuses on evaluating Maestro with practitioners to evaluate its usefulness
to re-use ADDs from issue trackers. Furthermore, we aim to use Maestro to fur-
ther expand our dataset with new issues from different projects, and different
issue trackers. This can improve the accuracy and generalizability of Maestro.
5 https://github.com/mining-design-decisions/Maestro



Maestro: A Tool for Working with ADDs in Issue Trackers 9

References

1. Baskerville, R.L., Wood-Harper, A.T.: A Critical Perspective on Action Research
as a Method for Information Systems Research. In: Willcocks, L.P., Sauer, C., Lac-
ity, M.C. (eds.) Enacting Research Methods in Information Systems: Volume 2, pp.
169–190. Springer International Publishing, Cham (2016). https://doi.org/10.
1007/978-3-319-29269-4_7, https://doi.org/10.1007/978-3-319-29269-4_7

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Professional (2003), google-Books-ID: mdiIu8Kk1WMC

3. Bhat, M., Shumaiev, K., Biesdorf, A., Hohenstein, U., Matthes, F.: Automatic ex-
traction of design decisions from issue management systems: A machine learning
based approach. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10475 LNCS,
138–154 (2017). https://doi.org/10.1007/978-3-319-65831-5_10, publisher:
Springer Verlag ISBN: 9783319658308

4. Bhat, M., Tinnes, C., Shumaiev, K., Biesdorf, A., Hohenstein, U., Matthes,
F.: ADeX: A Tool for Automatic Curation of Design Decision Knowledge for
Architectural Decision Recommendations. In: 2019 IEEE International Confer-
ence on Software Architecture Companion (ICSA-C). pp. 158–161 (Mar 2019).
https://doi.org/10.1109/ICSA-C.2019.00035

5. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. Wiley, Chich-
ester, UK (1996)

6. Capilla, R., Jansen, A., Tang, A., Avgeriou, P., Babar, M.A.: 10 years of software
architecture knowledge management: Practice and future. Journal of Systems and
Software 116, 191–205 (Sep 2015). https://doi.org/10.1016/j.jss.2015.08.

054
7. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the Properties of

Neural Machine Translation: Encoder-Decoder Approaches (Oct 2014). https://
doi.org/10.48550/arXiv.1409.1259, arXiv:1409.1259 [cs, stat]

8. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical Evaluation of Gated Re-
current Neural Networks on Sequence Modeling (Dec 2014). https://doi.org/10.
48550/arXiv.1412.3555, arXiv:1412.3555 [cs]

9. Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psy-
chological Measurement 20(1), 37–46 (Apr 1960). https://doi.org/10.1177/

001316446002000104, publisher: SAGE Publications Inc
10. Dekker, A., Maarleveld, J.: Mining for Architectural Design Decisions in Issue

Tracking Systems using Deep Learning Approaches. MSc Internship Report, Uni-
versity of Groningen, Groningen (2022), https://fse.studenttheses.ub.rug.nl/
28689/

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding (May
2019). https://doi.org/10.48550/arXiv.1810.04805, http://arxiv.org/abs/

1810.04805, arXiv:1810.04805 [cs]
12. Hochreiter, S., Schmidhuber, J.: Long Short-term Memory. Neural computation 9,

1735–80 (Dec 1997). https://doi.org/10.1162/neco.1997.9.8.1735
13. Kruchten, P.: An ontology of architectural design decisions in software intensive

systems. 2nd Groningen workshop on software variability (2004)
14. Manteuffel, C., Avgeriou, P., Hamberg, R.: An exploratory case study on reusing

architecture decisions in software-intensive system projects. Journal of Systems and
Software 144, 60–83 (Oct 2018). https://doi.org/10.1016/j.jss.2018.05.064



10 J. Maarleveld et al.

15. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Repre-
sentations in Vector Space (Sep 2013). https://doi.org/10.48550/arXiv.1301.
3781, http://arxiv.org/abs/1301.3781, arXiv:1301.3781 [cs]
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C RQ3: Additional Results

In the report, only the simplified view of results in RQ3 was displayed, because the multiple dimensions of
the data make for an enormous amount of results. Therefore, in this appendix, the full, domain-specific,
intersected views can be found.

C.1 Chi-Squared Tables

42



All Domains Exis Exec Prop Non-Arch

Independent 0.93 0.99 0.96 1.01

Child 1.60 1.05 0.96

Parent 3.21 1.89 3.98 0.67

CM Exis Exec Prop Non-Arch

Independent 0.97 0.98 0.98 1.00

Child 1.93 1.66 1.38 0.90

Parent 4.09 3.01 4.94 0.63

DSP Exis Exec Prop Non-Arch

Independent 0.85 0.96 0.93 1.02

Child 1.69 1.05 0.94

Parent 3.23 2.47 4.03 0.60

DC Exis Exec Prop Non-Arch

Independent 0.98 1.03 1.01 0.99

Parent 2.77 2.33 0.79

Child 0.37 0.48 1.20

SOAM Exis Exec Prop Non-Arch

Independent 0.97 0.97 1.02 1.01

Child 1.15 1.22 0.54 0.97

Parent 2.36 1.94 1.67 0.76

SDT Exis Exec Prop Non-Arch

Parent 3.32 1.95 2.90 0.77

Independent 0.97 0.95 1.01

Child 1.16 1.83 0.51 0.91

WD Exis Exec Prop Non-Arch

Independent 0.97 0.96 0.98 1.01

Child 1.15 1.62 0.91

Parent 2.76 1.92 3.80 0.75

Table C.5: Chi-squared test results for the rela-
tion between the hierarchy issue characteristic
and simple decision type contained in the issue,
separated by domain. (CM = Content Manage-
ment, DSP = Data Storage and Processing, DC
= DevOps and Cloud, SOAM = SOA and Mid-
dlewares, SDT = Software Development Tools,
WD = Web Development)

All Domains Exis Exec Prop Non-Arch

Sub-Task 1.93 1.33 1.11 0.92

Bug 0.30 0.41 0.37 1.10

Improvement 1.87 1.35 2.42 0.89

New Feature 4.40 2.08 3.32 0.67

Wish 1.90 2.55 2.06 0.79

Task 1.11 3.12 0.88 0.81

CM Exis Exec Prop Non-Arch

Sub-Task 3.28 1.53 1.73 0.87

Bug 0.41 0.44 0.41 1.06

Improvement 2.60 1.94 3.35 0.85

New Feature 6.57 3.20 3.98 0.62

Wish 2.16 3.62 1.80 0.80

Task 6.33 1.24 0.70

DSP Exis Exec Prop Non-Arch

Bug 0.28 0.44 0.32 1.12

Task 1.10 2.66 0.78 0.85

Improvement 1.50 1.33 2.03 0.90

Sub-Task 1.75 1.09 0.93

New Feature 3.54 2.03 3.03 0.66

Wish 1.61 2.69 1.83 0.78

DC Exis Exec Prop Non-Arch

Task 1.31 2.36 0.86

Bug 0.32 0.49 0.48 1.10

Sub-Task 1.65 1.09 0.54 0.96

Improvement 1.96 1.42 2.48 0.88

New Feature 4.13 2.05 3.54 0.68

Wish 3.13 3.67 0.74

SOAM Exis Exec Prop Non-Arch

Improvement 1.89 1.15 2.18 0.91

New Feature 4.51 1.91 3.12 0.63

Bug 0.33 0.33 0.48 1.14

Task 0.87 2.56 0.81 0.81

Sub-Task 1.26 1.34 0.55 0.95

Wish 2.06 1.94 2.66 0.79

SDT Exis Exec Prop Non-Arch

Task 1.92 3.70 1.28 0.73

Bug 0.31 0.44 0.57 1.07

Sub-Task 1.79 2.11 0.88

New Feature 5.98 1.64 3.58 0.79

Wish 3.29 2.36 2.76 0.80

Improvement 2.50 1.52 2.83 0.90

WD Exis Exec Prop Non-Arch

Improvement 2.10 1.23 2.24 0.92

New Feature 5.09 1.91 3.29 0.71

Bug 0.29 0.41 0.39 1.09

Sub-Task 1.39 2.00 0.89

Task 3.12 1.17 0.81

Wish 2.23 2.18 2.06 0.83

Table C.6: Chi-squared test results for the rela-
tion between the issue type issue characteristic
and simple decision type contained in the issue,
separated by domain. (CM = Content Manage-
ment, DSP = Data Storage and Processing, DC
= DevOps and Cloud, SOAM = SOA and Mid-
dlewares, SDT = Software Development Tools,
WD = Web Development)
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All Domains Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Independent 0.92 0.99 0.98 0.97 0.92 1.03 0.95 1.01

Child 1.78 0.70 1.37 0.39 0.72 0.96

Parent 2.91 1.82 4.19 3.33 5.33 2.45 6.74 0.71

CM Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Independent 0.98 0.98 0.96 0.98 0.97 1.01 0.91 1.00

Child 1.94 1.74 1.91 1.86 0.09 3.35 0.91

Parent 3.62 2.74 9.64 5.52 5.87 16.22 0.68

DSP Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Independent 0.84 0.96 0.89 0.97 0.89 0.88 1.02

Child 1.91 1.08 0.91 1.19 0.51 0.94

Parent 2.80 2.34 6.31 3.25 5.03 3.81 8.90 0.65

DC Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Independent 0.96 1.03 1.04 1.04 1.03 0.99

Parent 3.17 1.68 3.87 0.81

Child 1.44 0.38 0.15 0.58 0.58 0.22 0.25 1.17

SOAM Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Independent 0.97 0.97 0.95 1.04 1.01

Child 1.25 1.26 0.55 0.64 0.23 0.96

Parent 2.26 1.89 4.26 1.64 1.89 3.18 0.78

SDT Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Parent 3.38 1.99 2.76 3.83 3.65 0.78

Independent 0.96 0.94 1.05 1.01

Child 1.23 1.91 0.44 0.16 0.90

WD Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Independent 0.98 0.96 0.97 0.96 1.01

Child 1.22 1.67 0.40 0.91

Parent 2.32 1.88 5.34 2.70 5.41 2.89 5.27 0.78

Table C.1: Chi-squared test results for the relation between the hierarchy issue characteristic and
intersected decision type contained in the issue, separated by domain. (CM = Content Management,
DSP = Data Storage and Processing, DC = DevOps and Cloud, SOAM = SOA and Middlewares,
SDT = Software Development Tools, WD = Web Development)
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All Domains Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Sub-Task 2.11 1.37 1.20 1.46 0.41 0.92

Bug 0.34 0.42 0.09 0.43 0.19 0.78 0.08 1.09

Improvement 1.80 1.35 1.56 2.78 2.54 1.60 1.99 0.91

New Feature 4.10 1.79 9.75 1.80 5.08 2.08 9.37 0.72

Wish 1.54 2.45 5.54 1.51 1.99 2.76 7.45 0.82

Task 1.18 3.32 0.82 0.81 1.21 0.64 0.81

CM Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Sub-Task 3.45 1.55 2.88 1.63 2.78 0.10 3.88 0.89

Bug 0.49 0.44 0.05 0.42 0.15 0.84 0.02 1.05

Improvement 2.43 1.97 2.42 3.94 3.98 1.60 3.18 0.87

New Feature 5.99 2.81 15.98 1.74 8.21 1.84 14.10 0.68

Wish 1.88 3.75 5.01 7.07 0.81

Task 0.78 6.94 2.02 1.96 0.70

DSP Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Bug 0.32 0.45 0.12 0.42 0.21 0.57 0.08 1.11

Task 1.22 2.85 0.77 0.71 0.55 0.85

Improvement 1.41 1.33 1.34 2.26 2.01 1.79 1.55 0.92

Sub-Task 1.98 1.12 1.22 0.52 0.93

New Feature 3.26 1.73 7.91 1.61 4.27 2.51 8.73 0.71

Wish 2.56 5.81 1.88 2.99 5.81 0.82

DC Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Task 1.30 2.46 1.99 1.34 0.86

Bug 0.36 0.48 0.09 0.46 0.14 0.04 1.09

Sub-Task 1.84 1.15 0.59 0.73 0.20 0.96

Improvement 1.89 1.46 2.99 3.17 0.89

New Feature 3.75 1.84 8.94 2.75 5.97 1.58 9.41 0.72

Wish 3.14 5.74 6.52 0.75

SOAM Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Improvement 1.94 1.15 1.26 2.65 2.21 1.43 1.74 0.91

New Feature 4.12 1.59 10.49 1.74 4.97 1.96 8.18 0.68

Bug 0.37 0.32 0.04 0.54 0.30 0.83 0.19 1.12

Task 0.92 2.71 0.54 0.74 0.79 0.39 0.81

Sub-Task 1.35 1.38 0.55 0.69 0.20 0.94

Wish 1.66 1.85 4.33 3.12 7.27 0.82

SDT Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Task 1.96 3.83 1.70 1.78 0.73

Bug 0.33 0.43 0.14 0.50 0.21 0.12 1.07

Sub-Task 1.89 2.18 0.20 0.88

New Feature 5.70 1.48 10.22 2.84 6.99 9.37 0.81

Wish 2.77 2.19 10.12 3.85 0.82

Improvement 2.45 1.52 2.53 3.76 3.25 3.41 0.90

WD Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Improvement 2.13 1.21 1.65 2.56 2.29 1.49 2.13 0.93

New Feature 4.97 1.71 9.44 1.50 5.37 2.11 7.82 0.75

Bug 0.32 0.41 0.11 0.46 0.21 0.77 0.08 1.08

Sub-Task 1.46 2.07 0.89

Task 3.25 1.30 0.81

Wish 1.94 2.01 6.01 19.93 0.86

Table C.2: Chi-squared test results for the relation between the issue type issue characteristic and
intersected decision type contained in the issue, separated by domain. (CM = Content Management,
DSP = Data Storage and Processing, DC = DevOps and Cloud, SOAM = SOA and Middlewares,
SDT = Software Development Tools, WD = Web Development)
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All Domains Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Won’T Fix 1.38 0.55 0.87 1.21 1.48 0.82 1.46 1.04

Duplicate 1.07 0.79 1.16 1.31 1.02

Fixed 0.94 1.03 1.16 1.03 0.98 1.06 1.07 1.00

Obsolete 0.77 0.51 0.44 0.52 0.39 0.49 1.09

Not A Bug 0.35 0.35 0.14 0.55 0.20 1.13

Done 1.06 1.22 0.58 0.78 0.82 0.87 0.62 0.97

CM Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Won’T Fix 1.49 0.58 1.23 0.78 1.25 0.59 1.01

Duplicate 1.12 0.57 0.51 0.67 1.03

Fixed 0.84 1.27 1.17 1.28 0.99

Obsolete 0.39 0.65 0.38 0.36 0.16 0.17 1.06

Not A Bug 0.52 0.34 0.15 1.07

Done 1.39 2.84 2.75 0.86

DSP Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Fixed 0.94 0.96 0.92 0.95 0.89 0.94 0.82 1.01

Won’T Fix 1.52 1.13 2.27 1.65 2.22 1.45 3.01 0.93

Duplicate 0.91 1.29 1.40 1.73

Done 1.27 1.35 0.96

Not A Bug 0.16 0.52 0.24 0.09 1.11

Obsolete

DC Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Done 1.54 0.51 0.35 1.52 1.38 1.35 0.55 1.14

Duplicate 1.18 0.93

Not A Bug 0.22 0.22 0.13 1.34

Obsolete 1.69 0.29 0.28 1.72 1.21

Fixed 0.83 1.19 1.22 0.78 0.85 1.19 0.94

Won’T Fix 1.25 0.48 0.37 2.22 1.52 0.39 1.17

SOAM Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Won’T Fix 1.42 0.79 2.42 1.54 1.73 2.79

Fixed 1.03 1.02 1.13 0.87 0.99

Duplicate 1.27 2.79 0.97

Done 0.88 0.58 1.01

Obsolete 1.39

Not A Bug 0.42 1.10

SDT Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Done 1.25 1.50 1.29 0.56 0.77 0.36 0.94

Obsolete 0.52 1.05

Fixed 0.68 0.81 0.78 1.64 1.03

Won’T Fix 1.38 0.72 1.88 1.73 0.58 3.21 1.01

Duplicate 1.27 0.56 1.69 1.91 1.04

Not A Bug 0.45 0.54 1.08

WD Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Won’T Fix 1.64 0.53 1.72 1.81 1.03

Fixed 1.06 0.70 1.04

Duplicate 0.80 0.59 1.06

Done 0.84 1.44 0.76 0.78 0.49 0.95

Obsolete 1.94 0.89

Not A Bug 0.50 12.30 1.08

Table C.3: Chi-squared test results for the relation between the resolution issue characteristic and
intersected decision type contained in the issue, separated by domain. (CM = Content Management,
DSP = Data Storage and Processing, DC = DevOps and Cloud, SOAM = SOA and Middlewares,
SDT = Software Development Tools, WD = Web Development)
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All Domains Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Closed 0.89 1.08 1.05 0.83 0.74 0.88 0.90

Open 1.45 0.70 1.32 1.82 2.21 1.46 2.03 0.99

Resolved 1.08 0.92 0.70 1.11 1.18 1.10 0.80 1.01

In Progress 2.59 3.46 2.21 3.17 2.07 3.26 0.88

Reopened 1.31 0.61 1.02

CM Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Closed 0.97 0.91 0.79 0.85 0.82 0.85 0.75 1.01

Open 1.60 1.29 2.41 2.23 2.82 1.64 2.49 0.94

Resolved 0.92 1.69 1.87 1.61 1.55 2.01 2.41 0.95

In Progress 1.76 1.72 12.74 0.88

Reopened 0.95

DSP Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Resolved 0.97 0.83 0.89 0.86 0.72 1.01

Open 1.26 0.96 1.71 1.45 1.67 1.42 1.94 0.97

In Progress 1.61 1.25 3.78 1.55 2.20 1.96 2.73 0.90

Closed 0.88 1.05 0.84 0.92 0.85 0.75 1.01

Reopened 1.27

DC Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Closed 0.94 1.08 1.13 0.86 0.81 0.96 1.09 0.98

In Progress 4.68 0.38 1.54 4.35 5.58 0.91

Resolved 0.84 0.25 1.33 0.40 1.07

Open 1.45 0.31 0.38 2.55 2.60 1.44 1.18

Reopened 0.34 1.18

SOAM Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Closed 0.97 0.84 0.80 0.93 0.88 0.81 1.03

Resolved 1.32 0.96

Open 1.36 0.78 2.30 1.65 1.90 1.59 3.72 0.98

Reopened 0.45 1.07

In Progress 2.62 1.91 3.92 0.75

SDT Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Closed 0.93 1.02 0.86 0.94 0.73 1.00

Reopened 1.69

Open 1.45 0.78 1.99 1.35 1.43 3.04

Resolved 1.28 1.52 0.99

In Progress 1.83 5.04 0.94

WD Exis Exec Exis-Exec Prop Exis-Prop Exec-Prop All Non-Arch

Resolved 0.91 0.90 1.02

Closed 0.95 1.07 0.89 0.94 0.82 1.00

Open 1.80 0.69 2.42 1.59 1.93 1.96 3.11 0.99

In Progress 2.41 1.62 6.48 0.82

Reopened 0.48 1.05

Table C.4: Chi-squared test results for the relation between the status issue characteristic and
intersected decision type contained in the issue, separated by domain. (CM = Content Management,
DSP = Data Storage and Processing, DC = DevOps and Cloud, SOAM = SOA and Middlewares,
SDT = Software Development Tools, WD = Web Development)
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All Domains Exis Exec Prop Non-Arch

Won’T Fix 1.33 0.58 1.27 1.03

Duplicate 1.09 0.81 1.21 1.02

Fixed 0.97 1.04 1.02 1.00

Obsolete 0.69 0.51 0.46 1.10

Not A Bug 0.31 0.36 0.44 1.15

Done 0.98 1.18 0.81 0.98

CM Exis Exec Prop Non-Arch

Won’T Fix 1.44 0.61 0.92 1.01

Duplicate 1.09 0.57 1.03

Fixed 0.87 1.26 1.11 0.99

Obsolete 0.36 0.61 0.24 1.07

Not A Bug 0.44 0.34 0.46 1.08

Done 1.43 2.76 0.85

DSP Exis Exec Prop Non-Arch

Fixed 0.93 0.96 0.91 1.01

Won’T Fix 1.67 1.19 1.91 0.91

Duplicate 1.09 0.93 1.39 0.99

Done 1.23 1.32 0.95

Not A Bug 0.14 0.50 0.22 1.13

Obsolete

DC Exis Exec Prop Non-Arch

Done 1.15 0.52 1.31 1.16

Duplicate 1.14 0.94

Not A Bug 0.19 0.22 0.34 1.37

Obsolete 1.23 0.30 1.23

Fixed 0.96 1.18 0.91 0.94

Won’T Fix 0.48 1.30 1.19

SOAM Exis Exec Prop Non-Arch

Won’T Fix 1.52 0.88 1.40 0.98

Fixed 1.03 1.03 0.99

Duplicate 1.25 1.53 0.96

Done 0.86 0.97 0.92 1.02

Obsolete 1.36

Not A Bug 0.44 1.10

SDT Exis Exec Prop Non-Arch

Done 1.21 1.47 0.58 0.94

Obsolete 0.54 1.05

Fixed 0.70 0.83 1.14 1.03

Won’T Fix 1.40 0.73 1.50 1.01

Duplicate 1.27 0.56 1.51 1.04

Not A Bug 0.45 0.54 1.08

WD Exis Exec Prop Non-Arch

Won’T Fix 1.65 0.57 1.37 1.02

Fixed 1.06 0.72 1.04

Duplicate 0.61 1.06

Done 0.83 1.41 0.87 0.95

Obsolete 1.90 0.90

Not A Bug 0.31 3.08

Table C.7: Chi-squared test results for the rela-
tion between the resolution issue characteristic
and simple decision type contained in the issue,
separated by domain. (CM = Content Manage-
ment, DSP = Data Storage and Processing, DC
= DevOps and Cloud, SOAM = SOA and Mid-
dlewares, SDT = Software Development Tools,
WD = Web Development)

All Domains Exis Exec Prop Non-Arch

Closed 0.89 1.07 0.80 1.00

Open 1.52 0.75 1.92 0.98

Resolved 1.05 0.91 1.12 1.01

In Progress 2.68 1.11 2.56 0.84

Reopened 1.28 0.66 1.32 1.02

CM Exis Exec Prop Non-Arch

Closed 0.94 0.90 0.84 1.01

Open 1.78 1.35 2.30 0.92

Resolved 1.07 1.71 1.68 0.94

In Progress 2.37 2.25 0.85

Reopened 2.28 0.94

DSP Exis Exec Prop Non-Arch

Resolved 0.96 0.96 0.89 1.01

Open 1.36 1.55 0.95

In Progress 1.83 1.40 1.90 0.87

Closed 0.88 1.03 0.87 1.01

Reopened 1.28 0.97

DC Exis Exec Prop Non-Arch

Closed 0.98 1.08 0.89 0.98

In Progress 3.68 0.48 3.76 0.87

Resolved 0.81 0.81 1.08

Open 1.22 0.33 2.07 1.18

Reopened 0.46 1.16

SOAM Exis Exec Prop Non-Arch

Closed 0.94 0.84 0.90 1.03

Resolved 1.30 0.96

Open 1.52 0.88 1.81 0.96

Reopened 0.45 1.08

In Progress 2.63 1.94 0.73

SDT Exis Exec Prop Non-Arch

Closed 0.92 1.02 0.97 1.00

Reopened 1.67

Open 1.49 0.82 1.31

Resolved 1.29 0.99

In Progress 1.98 2.52 0.93

WD Exis Exec Prop Non-Arch

Resolved 0.90 0.91 1.02

Closed 0.94 1.06 0.93 1.00

Open 1.85 0.77 1.83 0.97

In Progress 2.59 1.76 3.28 0.78

Reopened 0.54 1.05

Table C.8: Chi-squared test results for the re-
lation between the status issue characteristic
and simple decision type contained in the issue,
separated by domain. (CM = Content Manage-
ment, DSP = Data Storage and Processing, DC
= DevOps and Cloud, SOAM = SOA and Mid-
dlewares, SDT = Software Development Tools,
WD = Web Development)
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C.2 Mann-Whitney Plots
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(a) Grouped by decision type first and subgrouped by domain.

(b) Grouped by domain first and subgrouped by decision type.

Figure C.1: Mann-Whitney test on the relations between description size, domain and intersected
decision type contained in the issue.

(a) Grouped by decision type first and subgrouped by domain.

(b) Grouped by domain first and subgrouped by decision type.

Figure C.2: Mann-Whitney test on the relations between comment count, domain and intersected
decision type contained in the issue.
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(a) Grouped by decision type first and subgrouped by domain.

(b) Grouped by domain first and subgrouped by decision type.

Figure C.3: Mann-Whitney test on the relations between comment average size, domain and
intersected decision type contained in the issue.

(a) Grouped by decision type first and subgrouped by domain.

(b) Grouped by domain first and subgrouped by decision type.

Figure C.4: Mann-Whitney test on the relations between duration, domain and intersected decision
type contained in the issue.
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(a) Grouped by decision type first and subgrouped by domain.

(b) Grouped by domain first and subgrouped by decision type.

Figure C.5: Mann-Whitney test on the relations between votes, domain and intersected decision
type contained in the issue.
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(a) Grouped by decision type first and subgrouped by domain.

(b) Grouped by domain first and subgrouped by decision type.

Figure C.6: Mann-Whitney test on the relations between watches, domain and intersected decision
type contained in the issue.
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