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Summary
Performing predictions of elements as promoters, silencers, and enhancers in DNA- or RNA
sequences within Biological- and Medical research is challenging due to their differences in
functionality in different contexts. Although many current predictive models can predict with
high accuracy, they cannot consider context. DNABERT addresses this limitation using a
linguistic-based model in which DNA/RNA sequences are treated as a language.

This literature thesis discusses this new DNABERT model and addresses to what extent it
has an impact on Biology and Health. Here, it was first identified whether DNABERT is
revolutionary compared to current existing models. By comparing the obtained accuracy of
the predictive models in previous studies with that of DNABERT, I concluded that DNABERT
can obtain outstanding performance on splicing site prediction, and the highest accuracy but
not outstanding can be obtained for promoter prediction. Consequently, I aimed to identify
how DNABERT works, so that an understanding can be obtained that perhaps can be used
for further optimization and customization. Therefore, the k-mer tokenization methods of
DNABERT and the Byte-pair encoding were analysed. This was performed by adopting the
described method for DNABERT from Ji et al. (2021) and DNABERT-2 from Zhou et al.
(2023). From this analysis, it can be concluded that both methods are better than the
existing methods for DNA/RNA predictions, but that BPE is the most promising. After that,
there was a focus on promoter prediction using DNABERT (DNABERT-Prom) to obtain a
clear insight into their process and how it was pre-trained. To obtain this information, the
description of the DNABERT-Prom method from Ji et al. (2021) was adapted. Here, it could
be identified that DNABERT-Prom was trained for predictions in homo sapiens using distal
promoters that have a TATA-box present or absent. In addition, the EPDnew database was
used to obtain the data for the promoters. After analysing DNABERT-Prom, I concluded that
it is a highly efficient model to predict promoters within homo sapiens. Finally, I opted to
provide a broader perspective of DNABERT to investigate how it can be applied within the
field of Biology and Health. To analyse this, the described properties of DNABERT by Ji et al.
(2021) were adapted and compared to the current constraints within Biology and Health.
Here, I conclude that DNABERT is the most promising model for transcription regulation
prediction in Biology and Health since it can address the required information of context,
Furthermore. I conclude that DNABERT should also be the “first-choice” method to perform
other types of DNA/RNA predictions, although their usage should never be a replacement for
performing decisions within research and diagnostics. Although DNABERT is already a very
sufficient model for prediction, further optimization and customization are still required to
enlarge their contribution to sequential predictions within Biology and Health.
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1. Introduction

1.1 Justification
A genome contributes to a tremendous amount of processes, ranging from transcribing
essential proteins to keeping a household to an organism. The origin of these processes
derives from sequences within the genome and are well organised in the form of promoters,
enhancers, genes, and many more. At the same time, the genome is also very vulnerable to
mutations, in which just a small error could already lead to disease. Interestingly, these
organisational elements within sequences are highly similar between species, but the same
element could function differently depending on the organism and the type of cell [44].
This demonstrates the essence of not only appreciating the order of nucleotides within a
sequence itself, but it also has to be considered in their context [2]. This makes the
performance of predictions of these elements a difficult task and many current predictive
models (appendix, Table I) are imperfect due to their inability to analyse a sequence while
taking context into account. DNABERT aims to overcome this limitation by using a
linguistic-based approach as it treats these sequences as a language [2].

A predictive model that considers context is crucial for the optimal performance of
predictions [2], [41], [32]. When successful, it can lead to major advancements in the
understanding of many crucial biological processes, such as the transcription of genes [41].
In addition, it will also be crucial for Health since a better understanding of these biological
processes can lead to better treatments. Because of this importance, this literature search
aimed to unravel this new DNABERT in which an analysis was performed on whether this
new model can be revolutionary for predictive tasks within Biology and Health. With this
information, conclusions can be made on whether this new model should be further explored
or another approach should be considered. Furthermore, it is also important to understand
how context is extracted from a DNA/RNA sequence by DNABERT because this insight will
provide opportunities for customization and further improvement of this model. Therefore, it
was investigated how the k-mer tokenization method of DNABERT [2] and byte-pair
encoding from DNABERT-2 [1] works. Finally, it is crucial to appreciate to what extent this
new model can be useful for applications within Biology and Health because an impractical
model would not be worth investigating. Hence, this study addressed this by investigating
the current potentials of DNABERT and comparing these to the current limitations within
Biology and Health [41], [42].

1.2 Problem statement
To what extent does DNABERT have an impact on Biology and Health; how does it work and
how can it be used in research?
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2. Research findings

2.1 DNABERT uses a linguistic approach to consider context
while performing predictions
Predicting cis-regulatory elements within a genome is a great challenge in Biology.
For example, predicting promoters, enhancers, and silencers for splicing is currently
performed by various deep-learning approaches. However, a deep learning method called
Bidirectional Encoder Representations from Transformers or BERT is the most reliable for
finding cis-regulatory elements. This BERT is a deep learning program that focuses on
language learning [2], [3]. A well-known example of a program that uses BERT is OpenAI
GPT [3]. This language approach can also be used to read out DNA and this is exactly what
DNABERT does. Hereby, it treats DNA/RNA sequences as a language. This approach can
help to deal with the problem of polysemy. In human languages, this means that one word
can have different meanings, for instance, the word “fly” can be labelled as a noun in one
context (insect), but also as a verb in another (I fly by plane). This phenomenon can also be
observed within DNA sequences [2], [4]. For example, the function of TATAAT is dependent
on their location. For instance, it can be labelled as a starting point if it is located in a
regulatory area, but it can also serve as a codon if it is present within genes for structure [4].
This shows the importance of including context to DNA/RNA sequences, and BERT is
known to also bear this in mind while learning [2].

2.2 DNABERT is outstanding in splice site prediction and
sufficient in promoter prediction compared to other models
The new DNABERT model has gained great attention recently since it indicates better
performance compared to already existing models [2]. This raises the question of whether
this new model is just one of many, or if it can obtain outstanding performance.

For many sequence predictions, there are a tremendous amount of models already
available. For instance, the prediction of promoters can be performed by DeePromoter [5],
CNNProm [6] and 70ProPred [7], [8], and the identification of transcription factor binding
sites can be done using Deepsite [9], DESSO [10], or DanQ [2], [11]. To identify splice sites,
various models are also available such as SPIDEX [12], [13], SpliceAI [12], [14], and
SpliceFinder [15]. However, all models differ in their accuracy. To illustrate, CNNProm can
obtain an F1-score of 0.948, while 70PromPred only achieved an F1-score of 0.897.
This means that CNNProm can correctly identify 948 out of 1000 promoters, while for
70PromMed, this is only 897 (Appendix, Table I). The same variances in accuracy also apply
to all described models for the detection of transcription factors and splicing sites.
These differences in accuracy can originate from various factors. This means that the
accuracy of a program is dependent on the year of development, method, and species.
To indicate these differences, an overview of various programs is provided in Table I in the
appendix.
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DNABERT from 2021 and especially DNABERT-2 (2023) clearly shows to obtain one of the
highest accuracy for most prediction tasks within sequences [1], [2]. This new model uses a
different approach compared to the previous models in which it uses language modelling as
the main focus. So can DNABERT achieve an F1-score above 0.900 for predictions of
promoters, transcription factors, and splicing sites [2]. Still, the question remains whether
DNABERT is revolutionary as a prediction model within Bioinformatics. To address this, the
improvement of these prediction models across the years was analysed. Various previous
studies (Appendix, table I) identified the extent of prediction accuracy across various
programs. Since these models were released in different years, the progress of these
models can be analysed and compared to those with DNABERT. As depicted in Figure 1,
DNABERT indicates to follow the trend of improvement for promoter prediction, but is it
outstanding for tasks such as splice site prediction. This concludes that DNABERT is
revolutionising for some predictions, but not for others.

Figure 1. DNABERT has outstanding performance in splice site prediction and high performance in
predicting promoters
Using the values for F1- and MCC accuracy, adapted from various studies (Appendix, table I), the trend of
accuracy progression can be identified for promoter- and splice site prediction. In A, DNABERT
(DNABERT-Prom, indicated as the largest blue dot) achieves an F1-score of 0.940, which is the highest among
all other analysed promoter prediction programs. However, it follows the trend line (blue line) and falls within the
confidence interval (light blue field), indicating that it is not outstanding. In B, DNABERT (DNABERT-Splice,
largest red dot) also obtained the highest MCC-value of 0.871 [2], and it falls above and outside the confidence
interval. This suggests that the predictiveness of DNABERT-Splice is revolutionary. Notice that the used values
for these graphs are derived from different resources, meaning that it is uncertain whether these values were
comparable in the first place. In addition, some programs lacked the required scoring values for this comparison
and therefore, these were excluded from these graphs. Furthermore, different scoring methods were applied for
splice site- and promoter prediction since only one kind of scoring method is provided for some programs.
Finally, IBPP has a negative value of -0.03 [8], but this might be displayed as 0.03 due to inconveniences in
processing negative values.

3

https://www.zotero.org/google-docs/?4nvKmG
https://www.zotero.org/google-docs/?hnr6a8
https://www.zotero.org/google-docs/?hi51oK


2.3 K-mer tokenization and especially BPE are very promising
methods to obtain context from sequences
Previously, I discussed that DNABERT is a linguistic-based learning model. This means that
DNA/RNA sequences will be treated as a language during the pre-training of this model. An
important step in this pre-training is tokenization, which involves the segmentation of a piece
of text. There are various methods present to do this but the main methods for BERT are
Byte Pair Encoding (BPE) [33], and WordPiece [32], [34] which are both large language
models [1]. However, the initial DNABERT uses k-mer tokenization to learn context from
sequences [2].

In k-mer tokenization, a sequence is divided into a set of smaller fragments, also known as
tokens. The size of these fragments depends on the size of the k-mer that is used. Hereby,
the “K” indicates the number of nucleotides for each token. To illustrate this, consider the
following sequence (CGGCTATAATCAG), which includes the previously described TATAAT.
Using a k-mer size of 3 (3-mer), the sequence tokens will provide the following result:
(CGG, GGC, GCT, CTA, TAT, ATA, TAA, AAT, ATC, TCA, CAG) [2]. To further encourage the
k-mer tokenization for training based on the context of the entire sequence, one or a few of
the tokens at random can be hidden, which is also known as masking. To demonstrate,
“TAA” can be masked within our sequence by replacing it with “XXX” to get (CGG, GGC,
GCT, CTA, TAT, ATA, XXX, AAT, ATC, TCA, CAG). However, it is important to understand
that the way that tokens are identified is also problematic when it comes to truly hiding a
sequence token. This is because the surrounding tokens (“ATA” and “AAT”) already reveal
information about the hidden token, where the first two nucleotides for one token always
match with the last two from the previous one. Since in our case, the XXX is surrounded by
“ATA” and “AAT”, it already leaks that the hidden token must be “TAA”. This problem is
referred to as the “leakage problem”. To combat this issue, non-overlapping tokenization can
also be applied. In this case, the tokens will not contain overlapping (aligning) nucleotides
[1]. Considering our example, the tokens in a 3-mer will now be identified as (CGG, CTA,
TAA, TCA, G). Despite avoiding the issue of information leakage by the surrounding tokens,
this approach is very sensitive for frameshifting when just one nucleotide is induced or
removed. For instance, If a nucleotide “G” is induced in the beginning, it will result in
completely different tokens (GCG, GCT, ATA, ATC, AG) [1], [35]. An overview of the two
described methods of k-mer tokenization is depicted in Figure 2.
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Figure 2. K-mer tokenization by DNABERT can be applied in an overlapping and non-overlapping setting
A sequence can be divided into smaller fragments of size k. In the overlapping k-mer tokenization, it can be
divided so that every next token has shifted one nucleotide in the downstream direction. In the example of 3-mer
tokenization, every token consists of three nucleotides in which the first two overlap with the last two from the
previous one. Consequently, one or few tokens can be hidden (masking) as depicted as “XXX”, which replaces
the “TAA” token. Notice that this masked token is leaked because the nucleotides from the surrounding tokens
(“ATA” and “AAT”, leaking nucleotides masked as dark blue) already indicate that the masked token must be
“TAA”. Another method is the usage of a non-overlapping setting where the nucleotides are divided into
segments of size k (size 3 or 3-mer in this example) with no overlapping between the tokens. Notice that this
time, the masked token is not leaked because the surrounding tokens do not contain any overlapping. However,
this method is more vulnerable to frameshift since the insertion or deletion of just one nucleotide already results
in a different set [1].

Since k-mer tokenization has been indicated to be suboptimal, a BPE approach for
DNABERT tokenization was developed by Zhou et al. (2021) and it is named DNABERT-2
[1]. To understand the method of BPE, consider the previous sequence
“CGGCTATAATCAG”. This sequence can be used for BPE, and the entire pipeline is
represented in Figure 3. The first step is to separate each nucleotide to get (“C”, “G,” “G”,
“C”, “T”, “A”, “T”, “A”, “A”, “T”, “C”, “A”, “G”). This sequence of tokens will now be the starting
vocabulary (initial corpus). After that, the algorithm will identify the occurrences of
nucleotides that are paired together in the initial corpus. This can be done by observing the
first token (“C”) and then, combining it with the second one (“G”) so that a token pair of “CG”
can be made. This same principle can then be performed for the second token (“G”) to the
third (“C”) to get a token pair of “GC”. After performing this pairing to the entire sequence of
tokens, the following can be obtained: (“CG”, “GG”, “GC”, “CT”, “TA”, “AT”, “TA”, “AA”, “AT”,
“TC”, “CA”, “AG”). Notice that some tokens now appear more than once in the sequence.
After this, the number of appearances of each token pair in the sequence can now be listed
(“CG”:1, “GG”:1, “GC”:1, “CT”1, “TA”:2, “AT”: 2, “AA”:1, “TC”:1, “CA”:1, “AG”:1). From this list,
the token pair with the highest number of appearances will now be added as a new token in
the initial corpus. Now, the new corpus will be (“C”, “G”, “G”, “C”, “TA”, “TA”, “AT,” “C”, “A”,
“G”). Notice that “T” next to “A”, and “A” next to “T” is now treated as a single token.
This process can then be replicated a few times until many tokens are identified within the
corpus. For example, repeating this process with our new corpus library, the tokens (“CG”,
“GG”, “GC”, “CTA”, “TATA”, “TAAT”, “ATC”, “CA”, “AG”) can now be obtained. When listing
the number of appearances again, it can be observed that each token has now only one
appearance in the entire corpus. This means that our corpus cannot be tokenized further.
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However, it is important to appreciate that only a small initial corpus was used in our
example (CGGCTATAATCAG). In real applications of DNABERT-2, an initial corpus for
pre-training can be used that contains over 100 million nucleotides [1], meaning that BPE
tokenization can be performed many times. Considering our example, the current corpus
(“CG”, “GG”, “GC”, “CTA”, “TATA”, “TAAT”, “ATC”, “CA”, “AG”) can now be used as a library
to tokenize new sequences. For example, when the sequence “CGTATACACG” is tokenized
again, the tokens (“CG”, “TATA”, ”CA, ”CG”) can now be obtained. This is also referred to as
tokenizing a word [32], [33], [36].

Figure 3. DNABERT-2 uses Byte-pair encoding (BPE) to obtain context from sequences
A sequence is first divided into all its single nucleotides and this will form the starting (initial) corpus.
After that, each nucleotide will then be coupled to the next one and tokens will be created by moving one
nucleotide downstream in the sequence, so that every first nucleotide of a pair will always have an overlap with
the last one from the previous one This is depicted in “token pairing”. Consequently, the most frequent pair within
all tokens will be identified, and these will be added to the initial corpus. Now, a new corpus is set in which the
most common token will be treated as one single token. Finally, the process can then be repeated until many
more tokens are identified [1].
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2.4 DNABERT is the most promising for promoter prediction
within their contexts.
Now that DNABERT is pre-trained to read genomic sequences as a language, it is capable
of resolving many challenges within Biology and life sciences. For instance, it can deal with
the issue of promoter prediction. Currently, there are three main strategies used to predict
this. For instance, it can be identified based on the signal, where it exclusively focuses on
the sequence components that correspond to the binding site of RNA polymerase.
Another approach is to look at CpG-islands because many promoters contain these regions
within the genome. Finally, it can also be identified on a content basis, where k-mers are
used and their frequency within a sequence is used to identify promoters [5]. However, all
these strategies are not optimal for promoter prediction. A better model, namely
DeePromoter [2], [5], was also introduced and has been shown to obtain better performance
compared to the previous strategies. This model uses various deep learning approaches in
their promoter identification, such as deep learning for recognizing patterns within images
(Convolutional Neural Network, CNN) [37] combined with a model (Long short-term memory,
LSTM) that can make predictions in text based on stored information from previous data [5],
[38]. Despite that DeepProm is already very sufficient in predicting promoters, the new
DNABERT is the most promising for promoter identification [2].

The strategy that DNABERT-Prom uses to predict genomes in homo sapiens is accurately
described in Ji et al. (2021) [2]. First, the dataset can be trained on known proximal
promoters in which some contain the TATA-box and some in which this box is absent.
To obtain this data, the EPDnew database [39] can be applied. For each promoter (TATA-box
present or absent), a sequence of 10.000 nucleotides can be obtained in which the 5000
nucleotides will be upstream of the transcription start site and 5000 downstream.
After training, promoters can now be predicted by taking a TATA-box-containing sequence of
300 nucleotides of which 249 are downstream of the transcription start site and 50 upstream.
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2.5 DNABERT can contribute to a better understanding of
transcription regulation and the expression of
oncogenes/tumour suppressor genes
As described previously, DNABERT has been shown to provide a higher accuracy in various
predictions compared to other existing models. This is crucial for the improvement of
research within Health and Biology. However, this is not what makes DNABERT
revolutionary since an increased performance can also be obtained by switching to different
deep learning approaches [40] or, based on own interpretation, by providing more training
data. Although many predictive programs can accurately perform many common predictive
tasks, some issues cannot be resolved by their prediction method. This is because
sequences contain properties that are similar to human languages and therefore, these can
only be addressed by linguistic models such as (DNA)BERT [2]. By all means, DNABERT
contains unique properties to resolve certain predictive issues within Biology and Health that
could not be addressed by other models [2].

A great example of the property of DNABERT to learn context is to better understand the
regulation of transcription. This is because the regulation relies not only on the DNA
sequence itself but also on the binding of transcription factors; histone modifications and the
folding of chromatins. This means that regulation is dependent on their entire context [41].
Since DNABERT can achieve high performance in analysing sequences in their context, this
new model can lead to a significant improvement in understanding how the elements of
transcription collaborate [2].

Within the regulation of transcription, non-coding RNAs (ncRNA) also play an essential role,
but they are poorly understood. Here, they have been shown to bind to the DNA during the
regulation of transcription [41]. These ncRNAs are also associated with cancer in which
various types of it contribute to the expression of tumour suppressor- and oncogenes [42].
To better understand the mechanism of these ncRNAs, DNABERT can provide a better
understanding of how they work in their context.
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3. Discussion and conclusion

3.1 Discussion
Performing predictions for promoters, transcription factors, and splicing sites within
DNA/RNA sequences is crucial for biological- and medical research, but performing this is
suboptimal because the function of these elements is dependent on their context [2].
Currently, many models from various studies are widely used to address these predictions
(appendix, Table I), but these are unable to provide important information for context.
Therefore, DNABERT is introduced to resolve this contextual issue by performing predictions
based on language modelling [2]. For this reason, I opted to know how DNABERT with this
new modelling approach works and to what extent it has an impact on Biology and Health.
To investigate the potential of this new model, it was first compared to existing models for
prediction with different approaches (appendix, Table I). From the results, it showed that
DNABERT is outstanding in predictions for splicing sites, but not for promoter identification.
This indicates that other bioinformatical predictions with DNABERT (enhancers, transcription
factor-DNA, etc.) might also not obtain outstanding performance compared to the other
models, but further analysis of these predictions is needed to determine this.
However, DNABERT should still be the model of choice since it can provide additional
context which is crucial for predictions [2].

After the identification of the impact of DNABERT, I opted to understand how their model
works to be able to use- and optimise it. Therefore, the mechanism of k-mer tokenization
and BPE in DNABERT [1], [2] was explored and it can be concluded that both methods are
useful for performing DNA/RNA sequential predictions, but that BPE would be the method of
choice. This is because Toraman et al. (2023) [32] discussed that k-mer tokenization faces
issues of vulnerability for SNVs and the leakage of information for hidden sequences.
Having said that, the usage of linguistics as a basis for sequential predictions in general
seems more suited for sequence predictions than a statistical approach due to the linguistic
behaviour of DNA sequences [2]. However, it can be argued that a mathematical approach
would be even better. To illustrate, Athens & José (2005) [43] were able to map coding from
ncDNA by treating the sequence as a mathematical language. Here they considered all
purines as “-1” and pyrimidines as “1” and when reading out the sequence from upstream to
downstream, a sequence as “AAGC'' could be read out as (“-1,-1,-1,1”). When plotting these
values, a graphical image can be obtained that represents the sequence [43]. This suggests
that such an approach could be used as a base for modelling and that perhaps curtain
sequential elements in different contrasts could provide different graphical images on this
method. Another option could be to apply a base-4 numbered system (real numbers of only
0,1,2 and 3) for “ATCG” where (A=0, T=1, C=2, and G=3), and by constructing
corresponding formulas, it might be possible that sequential elements in their context might
be explained mathematically.
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After the exploration of the DNABERT method, I wanted to investigate how it can be applied
to various tasks within Biology and Health. By analysing the properties of DNABERT and
comparing it to common difficulties in research, it could be identified that it can be used to
achieve a better understanding of the mechanism of transcription regulation [1], [41], and
since this also plays a role in the development of tumours [42], DNABERT also contributes
to cancer research. In this literature research, only a few applications of DNABERT were
described, but it will also most likely be an optimal model to describe numerous other
applications.

Finally, I strongly recommend using DNABERT only as an additional predictive program for
research and diagnostics. Performing decisions should always be made based on the
expertise of the researcher and predictive models such as DNABERT should not serve as a
replacement.

3.2 Conclusion
DNABERT is a linguistic-based model and it should be the “first-choice” model for
performing DNA/RNA sequential predictions due to its capability to perform predictions while
considering context. More specifically, DNABERT-2 should be used since it achieves even
better performance than DNABERT. Despite the high accuracy of other programs,
DNABERT's unique property of predicting with context will make the predictions more robust,
and it will provide possibilities for Medical and Biological research in the understanding of
various biological and medical processes, which is currently limited by the absence of
context within DNA/RNA prediction. However, I also conclude that it should never be used as
a replacement to perform decisions within research and diagnostics. Finally, future studies
should investigate the capabilities of DNABERT for more applications, and it should be
further optimised and customised for increased performance.
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6. Supplementary

6.1 Datasets Figure 1
Link to datasets package for figure 1 (ModelsComparison)

6.2 Additional information of the analysed prediction
programs

Table I. Overview of the currently used programs for promoter- and splicing site prediction

Program Prediction Description Reference

70ProPred Promoter Predicting sigma 70 promoters in prokaryotes [7], [8]

BPROM Promoter Predict promoters upstream from predicted ORFs in microbes [8], [19]

btSSfinder Promoter
Predicting various sigma factor promoters in cyanobacteria of
Escherichia coli (E.coli) [8], [20]

CNNProm Promoter
Convolutional neural network (CNN) based promoter prediction
for prokaryotes and eukaryotes [6], [8]

DeePromoter Promoter

Promoter prediction for eukaryotes (high accuracy for human and
mouse), based on a combination of CNN and Long-Short Term
Memory (LSTM) [2], [5]

DNABERT
(DNABERT-P
rom) Promoter

Promoter prediction for human sequences, based on the
Bidirectional Encoder Representations from Transformers
(BERT) language modelling [2]

DNABERT-2 Promoter

Improved version of DNABERT-Prom, that not only predicts
promoters in human sequences, but also in various other
prokaryotes and eukaryotes [1]

IBPP Promoter

Predicts promoters based on comparing sequences to an
"image" (a developed sequence of a promoter). Trained on the
sigma 70 promoter of E.coli [8], [21]

iPro70-FMWi
n Promoter Prediction of promoters based on the E.coli sigma 70 promoter [8], [24]

iPromoter-2L Promoter

To predict promoters in E.coli in a system of two layers. The first
layer determines whether a sequence is a promoter and the
second one classifies to what sigma promoter it belongs to. [8], [22]

MultiPly Promoter Predicting promoters of all sigma factors of E.coli [8], [23]

CADD Splice site
Predicting splicing sites using a standard machine learning
method. It was trained on many SNVs. [12], [26]

DNABERT
(DNABERT-S
plice) Splice site

Language modelling based (BERT) prediction of splicing sites in
humans [2]
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DNABERT-2 Splice site
Improved version of DNABERT-Splice that allows for splicing site
prediction in other eukaryotes and prokaryotes [1]

DSSP Splice site
Splicing site prediction based on a combination of CNN and
LSTM [12], [27]

GeneSplicer Splice site

Predicting splicing sites in eukaryotes based on Markov modelling
and a decision tree. Furthermore, it was trained on various genes
within plants and humans [12], [25]

MaxEntScan Splice site
Predicting RNA splicing based on maximum entropy. For the
prediction, splicing sites of humans were compared to decoys [12], [28]

MMSplice Splice site

A neural network-based approach to predict variances in splicing
sites. The training was performed on all the nucleotides that are
present within the structure of exons and introns [12], [29]

NNSPLICE Splice site

Predicting splicing sites using neural networks and a hidden
Markov model. The training was performed on the exons of
humans, which are publicly available on GenBank [12], [30]

SPIDEX Splice site

A classical machine learning method to predict splicing sites.
The method that SPIDEX uses is "Bayesian modelling", which is a
statistical-based model. [12], [13]

SpliceAI Splice site
A deep learning approach for predicting non-coding variants of
pre-mRNA [12], [14]

SpliceFinder Splice site
Predicting splicing sites using CNN, and training was performed
on the human genome [2], [15]

SpliceRover Splice site
Splicing site prediction using CNN, and it was trained on humans
and plants [31]

16

https://www.zotero.org/google-docs/?3HAVlq
https://www.zotero.org/google-docs/?xt6b1I
https://www.zotero.org/google-docs/?fsJa4h
https://www.zotero.org/google-docs/?wX9sLa
https://www.zotero.org/google-docs/?9XRMRz
https://www.zotero.org/google-docs/?BnkFHK
https://www.zotero.org/google-docs/?ALnAZM
https://www.zotero.org/google-docs/?FxL7oU
https://www.zotero.org/google-docs/?IZaWqe
https://www.zotero.org/google-docs/?1VZSMu

