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Abstract

Mandelstam polynomials in scattering amplitudes correspond to contact contribu-
tions, and emerge from taking derivative terms in the Lagrangian. Equivalence
relations between polynomials can be observed by employing the equations of mo-
tion, momentum conservation, and Gram constraints, which is powerful since they
can serve as substitutes to finding corresponding redundancies in the Lagrangian,
which are instead found with integration by parts and field redefinitions. The ob-
jective of this work is to study the use of polynomial rings to generate possible
n-point contact terms in d-dimensions up to these equivalences, along with the rep-
resentations in which Mandelstam invariants live. Contact contributions live in a
polynomial ring, modded out by an ideal generated by momentum conservation and
Gram conditions. Without Gram conditions, this becomes a study of the represen-
tations of the symmetric group acting on a set of unordered pairs, which describes
the behaviour of Mandelstam invariants. In 4-point amplitudes in particular, ele-
mentary symmetric polynomials can be used as generators instead, such that there
are a different number of independent polynomials at each order in the Mandelstam
variables.
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Chapter 1 Introduction

The standard model of particle physics, or simply the standard model, is a combina-
tion of quantum field theories which has been successful in describing interactions
between elementary particles [3, 10]. It does so with cross-sections, experimentally
measurable quantities which in quantummechanics are related to particle scattering
probabilities such that the convey interaction strength [24]. They are proportional to
the scattering amplitude squared, computed with the scattering matrix 〈f |S |i〉 [10,
24]. Therefore, scattering amplitudes and the S-matrix have been major objects of
study in the landscape of quantum field theory.

Traditionally, scattering amplitudes are computed perturbatively with propaga-
tors and Feynman rules derived from the Lagrangian, summing the iconic so-called
Feynman diagrams [10, 24]. This process can become computationally rather te-
dious with increasing number of particles for instance [11]. While the Feynman
approach had provided initial insight, the more modern approach is to build S-
matrix elements from physical criteria instead [5]. Then the Lagrangian could be
inferred back from (parts of) the amplitudes [15].

Such methods include for instance bootstrapping amplitudes, and the double-
copy framework [10]. Elvang [10], Cheung [5], Carrasco [4], and Elvang and
Huang [11] provide useful review on the topic for further reading, with Li, Roest,
and Veldhuis [20] as an example of recent advancements in the double-copy land-
scape.

This thesis outlines one particular approach of generating parts of scattering
amplitudes, specifically for real massless scalar fields based on constraints of mo-
menta. By considering proper physical constraints, polynomial rings can be used
to generate possible contact contributions in scattering amplitudes, which is power-
ful partially because it more easily reveals redundancies in both the amplitude and
derivative terms in the Lagrangian [15]. (Other) examples of their use can be seen
in Henning et al. [14] and Beisert et al. [2]. This is closely related to the study of
operator counting with the Hilbert series [9, 14, 15].

The contents of this thesis are closely based and inspired on the works by Hen-
ning et al. [15], Top [27], Serre [25], and Diaconis [7]. The main goal of this thesis
is to provide a more nuanced introduction for both generating contact terms through
polynomial rings, and representation theory of the symmetric group. The latter is
explored first, such that the behaviour of Mandelstam invariants is contextualised
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Chapter 1. Introduction

within the framework of symmetric group representations. Studying the generators
of contact term polynomials is namely a study of the [n]⊕ [n−1, 1]⊕ [n−2, 2] rep-
resentations [15, 20]. Then, an introduction to rings is presented to lay the ground-
work of modding out ideals from polynomial rings, which highlights equivalences
between polynomials through momentum constraints. First the 4-point contribu-
tions in 4 dimensions are considered as an introductory problem, after which a
more general approach to n-point contributions in d-dimensions is presented. In
this work, Natural units are assumed.

1.1 I Motivations and Research Questions

To clarify the paragraph above, the motivations for this work will be illustrated in
more context and detail below, formulating two research questions related to contact
contributions and one to representations of the symmetric group.

1.1.1 I Physical Criteria of Scattering Amplitudes

The following physical criteria have to be taken into account to build tree-level
(leading order) scattering amplitudes for spin-0 systems:

• Lorentz invariance: Amplitudes should be Lorentz invariant (covariant un-
der little group action for particles with spin) [5, 10, 11]. Therefore it must
be built from quantities which are Lorentz invariant.

• Locality: Since the Lagrangian is local, interaction vertices don’t give any
pole terms; only the on-shell (�φ) propagators do such that the poles are of
the form 1/(

∑k
i pi)

2 [11].

• Dimensional Analysis: The mass dimension of amplitudes must be the same
as the mass dimensions of the coupling constants generating the amplitude
from the Lagrangian [5, 11]

In having the constraints for the amplitudes defined, it is useful to see in action
what possible terms could make up a valid amplitude. Interesting behaviour can al-
ready be observed in 4-point amplitudes for massless on-shell real indistinguishable
scalar fields as an introductory problem to the topic.

1.1.2 I Mandelstam Polynomials in 4-point Amplitudes

This section outlines the example of a 4-point scattering amplitude to clarify ob-
servations of polynomial equivalence and the number of invariant monomials in
contact contributions. What possible Lorentz invariant terms could it be made of?
In 4-point this results in the amplitude beings a function of Mandelstam variables,
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1.1. Motivations and Research Questions
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(a) s-channel.

p1 p3

p1 − p3

p2 p4
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(c) u-channel.

Figure 1.1: Feynman 4-pt interaction diagrams for massless on-shell scalar fields,
with pi 4-momenta from a φ3 interaction term [24].

s := (p1 + p2)
2 = (p3 + p4)

2 ,

t := (p1 − p3)
2 = (p2 − p4)

2 ,

u := (p1 − p4)
2 = (p2 − p3)

2 ,

(1.1)

often quickly introduced in field theory textbooks [5, 24]. These correspond to the
different propagation channels in 4-point amplitudes as well as seen in figure 1.1
for a φ3 interaction term [24]. Cheung [5] describes how only simple poles and
polynomial terms in Mandelstams are permitted due to locality in 4-point. Possible
4-point terms from different Lagrangian origins are listed in Cheung [5] up to and
including degree-3 in Mandelstams. Henriette Elvang [16] expands on this list in
her TASI lecture, and writes the possible scattering amplitude terms as

A4 = Pole & constant term
+ c2(s

2 + t2 + u2) : φ2(∂∂φ)2, (∂φ)2(∂φ)2, . . .

+ c3(s
3 + t3 + u3) : φ2(∂∂∂φ)2, (∂φ)2(∂∂φ)2, . . .

+ c4(s
4 + t4 + u4) : φ2(∂∂∂∂φ)2, (∂∂φ)2(∂∂φ)2, . . .

+ c5(s
5 + t5 + u5) : φ2(∂∂∂∂∂φ)2, (∂∂φ)2(∂∂∂φ)2, . . .

+ c6(s
6 + t6 + u6) : φ2(∂∂∂∂∂∂φ)2, (∂∂∂φ)2(∂∂∂φ)2, . . .

+ c′6(stu)
2 : (∂∂∂∂∂∂φ)2(∂∂φ)(∂∂φ)(∂∂φ)

+ . . . .
(1.2)

The operator counterparts from the Lagrangian for the remaining terms were either
inferred from the observations in Cheung [5] and Henning et al. [15], or explained
in Henriette Elvang [16], which will be elaborated on in in sections 4.1 and 5.1.4.

Of interest here are the polynomial terms corresponding to contact contribu-
tions [15]. The possible constant term comes from familiar (λ/4!)φ4 theory [23].
The polynomials inMandelstams then appearwhen derivatives are distributed among
the fields in φ4, since derivatives translate to momentum contributions through the
Fourier transform [5, 15, 22, 24]. Thus, the degree of Mandelstam monomials
is dictated by the amount of derivatives acting on the scalar fields as seen on the
right [5, 11, 15].
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Chapter 1. Introduction

The polynomials above are symmetric in s, t, and u, which is a requirement
for indistinguishable fields¹ [14, 15]. However, other polynomials such as stu and
st + su + tu are symmetric as well. A good question to ask (which the audience
in Elvang her lecture asked as well) would be why those possibilities aren’t listed
above. They are in fact valid terms. However, they can be rewritten into the terms
above through momentum conservation s+ t+u =

∑
m2

j = 0 [5, 11, 15, 16, 24].
For instance,

s3 + t3 + u3 = s3 + t3 + (−s− t)3 : (∂φ)2(∂∂φ)2

= −3(s2t+ st2)

= 3st(−s− t)

= 3stu, : (∂∂∂φ)(∂φ)(∂φ)(∂φ)

(1.3)

as discussed in the lecture by Henriette Elvang [16]. Any combination of s, t, and
u giving rise to a symmetric degree-3 term can be rewritten into another such that
it is sufficient to write a single term at this degree, provided the coefficients are
accounted for [5, 16].

A similar process can be applied to other symmetric polynomials. This is par-
ticularly powerful since it directly shows that different derivative configurations in
operator terms in the Lagrangian produce equivalent polynomial terms, and there-
fore equivalent scattering amplitudes [11, 15, 24]. Finding these equivalences on a
Lagrangian level with operators is usually much more cumbersome since it involves
integration by parts, or field re-definitions (leaving the amplitude invariant), while
the derivative configurations can be inferred back from the polynomials present in
the amplitude [11, 15].

In her lecture, Elvang explains a peculiarity for polynomials of degree 6, where
now two independent polynomial terms emerge [16]. In the above example, these
are the s6 + t6 + u6 and (stu)2 terms. They can not be rewritten into each other
with u = −s− t:

s6 + t6 + u6 = 2(s6 + t6) + 6(s5t+ st5) + 15(s4t2 + s2t4) + 20s3t3,

(stu)2 = s4t2 + s2t4 + 2s3t3.
(1.4)

Other possible combinations of s, t and u can be rewritten as a linear combination of
these two, for instance, s3t3+s3u3+ t3u3 = −1

2(s
6+ t6+u6)+ 9

2(stu)
2. Accord-

ing to Henriette Elvang [16], there will be 3 independent terms at degree 12, and 4
independent ones at degree 18 for this 4-point amplitude. On a Lagrangian level,
this means that particular derivative configurations, with the amount of derivatives
corresponding to these degrees in Mandelstam invariants, produce distinct polyno-
mials.

¹If the fields were distinguishable, the symmetry requirement drops [15]
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1.1. Motivations and Research Questions

1.1.3 I In Summary

The previous section illustrated equivalences in contact contributions due to mo-
mentum constraints in the example of a 4-point scattering amplitude. During her
treatment of this example, Henriette Elvang [16] made a remark which was the in-
spiration for this thesis;

”... one way you can think of this construction is as a polynomial ring ... in the
Mandelstam variables. And then you basically mod out an ideal that is generated
by the constraints of momentum conservation.” Henriette Elvang [16].

In principle this remark seems general enough such that the machinery of poly-
nomial rings would be applicable to n-point amplitudes in d-dimensions. One of
the goals of this thesis is to essentially unpack this remark, and to present a foun-
dation with the machinery of polynomial rings for n-point contact contributions in
d-dimensions, closely following Henning et al. [15] yet presenting it in a more di-
gestible manner. The first research question reads as follows:

1. How can factor rings be constructed such that they generate valid Mandelstam
polynomial terms in tree-level amplitudes for real on-shell massless scalar fields,
and which rings would they be?

Another peculiarity which was outlined in the 4-point example is the amount of
invariants at each degree in Mandelstams, which seems to differ. As such, specifi-
cally for 4-point, the following was asked as a second research question:

2. Why are there different amounts of independent terms at different orders in Man-
delstams for the 4-point contact contributions?

1.1.4 I Mandelstam Invariants and Sn Representations

Typically, (parts of) amplitudes need to be symmetric under permutations of quan-
tities such as momenta, and therefore Mandelstam invariants [15, 20]. This can
be described as the symmetric group Sn acting on the indices of the Mandelstam
invariants sij for instance, with the indices understood to correspond to the mo-
menta [7, 15, 26]. Another example would be the construction of BCJ factors as
described in Li, Roest, and Veldhuis [20].

Here, focus is put more on the former. Mandelstam invariants are said to live in
the [n− 2, 2] (Mandelstam) representation, which finds itself in the composite sum
of the permutation representation [n]⊕ [n−1, 1]⊕ [n−2, 2] ↔ sij = sji, i 6= j [7,
15, 20, 25]. The following research question is asked to clarify why this is the case:
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Chapter 1. Introduction

3. How does the ”Mandelstam representation” manifest from the properties of
Mandelstam variables?

In the structure of this work, this question will be answered first to provide
a foundation for Mandelstam invariants before answering the other two research
questions. The outline of this work is described in the section below.

1.2 I Outline

Chapter 2: Representations of the symmetric Group

The symmetric group specifically is the group of all bijections of a set onto itself [8,
28]. Often the set of integers is chosen, writing Sn, since SΣ

∼= Sn=|Σ| [8, 28].
Representations, which are homomorphisms ρ : G → GL(V ), contain information
on how a group acts on a set through basis vectors of a vector space [25].

Since sij = sji, and sii = 0, studying the permutation representation of Sn act-
ing on Mandelstam variables boils down to understanding how it acts on unordered
pairs of cardinality

(
n
2

)
[7]. Defining ρ as ρ(σ)e{i,j} := e{σ(i),σ(j)}, e{i,j} ∈ V ,

this permutation representation becomes a composition [n]⊕ [n−1, 1]⊕ [n−2, 2],
which are 1, n−1, and n(n−3)/2 dimensional irreps (irreducible representations)
respectively [7, 15, 25, 26]. [n]⊕ [n− 1, 1] is the natural permutation representa-
tion, resulting from Sn acting on a single index of basis vectors [15, 25, 26]. This
means that Xi =

∑
j e{i,j} forms a basis of this sub representation [15, 26].

Momentum conservation forces Xi =
∑

j sij = 0, killing off the natural rep,
from which [n−2, 2] remains [7, 15]. Therefore, this ”Mandelstam representation”
encodes the behaviour of Mandelstam invariants with momentum conservation, an-
swering the third research question.

Chapter 3: Polynomial Rings

This chapter presents relevant definitions, theorems and lemmas closely follow-
ing the relevant ones in Top [27]. Rings are an algebraic structure over a set R:
(R,+, ·, 0, 1), often just written as R, with addition +, multiplication ·, and 0 & 1
the neutral and unit elements respectively [27]. Addition is the composition follow-
ingAbelian group axioms, whilemultiplication satisfies associativity, distributivity,
and the existence of the unit element [27].

A polynomial ring R[X] is one which contains polynomials in variable X (not
Xi from above) with coefficients in the ring R [27]. Polynomial rings can be mod-
ded out by an ideal I ⊂ R, forming factor rings of residue classes similarly to
factor groups [18, 27]. A ring of representants of each equivalence class can then
describe this construction [27]. In essence, these factor rings and representants al-
low for constraints to be modded out, leaving only independent polynomials. In
case polynomials are required to be symmetric, the fundamental theorem of sym-

6



1.2. Outline

metric polynomials can be used to express them in terms of elementary symmetric
polynomials, which can be done uniquely [6].

Chapter 4: Generating the 4-Point Contact Terms

This section builds further on the contents of section 1.1.2, following examples
from Henning et al. [15]: The machinery of polynomial quotient rings is first ap-
plied to the generation of contact contributions in terms of Mandelstam invariants
in the 4-point amplitude. Relevant constraints are on-shell conditions leading to
p2 = 0 (already taken into account by only considering [s, t, u]), and momentum
conservation leading to s+ t+ u = 0 [11, 15, 24].

Momentum conservation is used to generate the ideal 〈s+ t+ u〉 used to mod
out C[s, t, u]. Contact terms in Mandelstam invariants then live in the polynomial
ring of representants C[s, t] → C[s, t, u]/ 〈s+ t+ u〉. This need not necessarily
be symmetric such that it generally describes terms from distinguishable fields [15].

Polynomials are required to be symmetric when the fields are indistinguishable,
which through the fundamental theorem of symmetric polynomials leads to contact
polynomials living in C[st+ su+ tu, stu] [6, 15]. This answers the first research
question only for the 4-point case.

The second one is answered by observing that the generators are of degree 2 and
3 respectively, such that the number of independent polynomial terms is dictated by
the amount of possible combinations of generators at each order in Mandelstams.

Chapter 5: Generalisations to n-Point Amplitudes

This chapter mostly follows Henning et al. [15] closely while providing more con-
text to their work. Derivative terms in operators on Lagrangian level translate to
momentum contributions in amplitudes through the Fourier transform [11, 24]. In
particular, Equation of Motion (EoM) and Integration by Parts (IBP) contributions
translate to p2 = 0 and momentum conservation conditions in momentum space
respectively such that they form equivalence relations between momentum polyno-
mials [14, 15].

For n momenta and d dimensions, only at most d momenta can be linearly
independent, which result in Gram constraints through which equivalence classes
are further formed [15, 17]. These conditions are only relevant when n > d + 1,
and are obtained through vanishing (d+ 1)× (d+ 1) minors [15, 17].

As a result, with {sij} living in the [n] ⊕ [n − 1, 1] ⊕ [n − 2, 2] representa-
tion, C[{sij}]/ 〈{Xi}, {∆}〉, with Xi =

∑
j sij = 0 and {∆} the set of vanishing

minors, generates possible n-point contact contributions in d dimensions for distin-
guishable massless on-shell real scalar fields [15]. For indistinguishable fields, each
possible polynomial is required to be symmetric, such that they can be generated
by (C[{sij}]/ 〈{Xi}, {∆}〉)Sn [15].

7



Chapter 2 Representations of the sym-
metric Group

The aim of this chapter is to gain a better understanding of some of the representa-
tions of the symmetric group, and how they can be used to describe the properties
of Mandelstam invariants. This provides a framework with which to understand
Mandelstam invariants before using them as variables for polynomial rings.

2.1 I Recap

2.1.1 I Symmetric Group

The symmetric group is defined as the set of all bijections¹ from a non-empty set
onto itself, under the composition of maps [28]:

Definition 2.1.1 (Dixon and Mortimer [8] and Top [28]). For Σ a non-empty set,
The set SΣ of all bijections σ : Σ → Σ under the composition of maps ◦ forms a
group called the symmetric group (SΣ, ◦, idΣ), with idΣ : Σ → Σ, a 7→ a ∀ a ∈ Σ
the identity map. A bijection σ is called a permutation. This group is often referred
to simply by its set of bijections SΣ.

This indeed satisfies all group axioms [28]. For the discussions in this thesis
it suffices to work with the symmetric group on n integers S{1,2,...,n} = Sn, since
SΣ ∼= Sn=|Σ| [8, 28]. Sn has n! elements, and is a permutation group: a group of
permutations (note the difference between a group of permutations and a group of
all permutations: a permutation group is a subgroup of the symmetric group) [8].

Recall that each permutation of Sn can explicitly be written in the matrix-like
notation,

τ :

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
,

τ ′τ :

(
1 2 . . . n

σ′(σ(1)) σ′(σ(2)) . . . σ′(σ(n))

)
,

(2.1)

¹A bijection is a map which is injective (one-to-one), and surjective (onto) [8].
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2.1. Recap

or as products of disjoint k-cycles, (a1a2 . . . ak) with distinct ai ∈ {1, . . . , n},
σ(al mod k) = al+1 mod k for σ ∈ Sn [8, 28]. For instance,(

1 2 3 4
2 4 3 1

)
∈ S4, (2.2)

can be expressed as disjoint cycles (124)(3) = (124).
The symmetric group also finds an interesting role with group actions.

Definition 2.1.2 (Dixon and Mortimer [8], Serre [25], and Top [28]). Let X be a
non-empty set, and G a group with neutral element e. A group action is defined as
a map of G ×X → X , written as (g, x) 7→ gx, which satisfies the following two
conditions for all x ∈ X:

A1 (e, x) = x, also written as ex = x,

A2 ∀ g, h ∈ G: (gh, x) = (g, (h, x)), also written as (gh)x = g(hx).

Since a group action is a mapping of G×X into X , g ∈ G can be understood
to be a map which maps X onto itself with x 7→ gx [8]. This is a bijection since
it is invertible, with the inverse corresponding to the map associated with g−1 [8,
28]. Let m be a map such that m(g)x = gx.

m(g−1g)x = (g−1g)x = g−1(gx) = g−1(m(g)x) = m(g−1)(m(g)x)

= m(e)x = ex = x,
(2.3)

and similarly for m(gg−1) [28]. The map m is a bijection of X into itself. Now
recall that elements of the symmetric group are bijections of a non-empty set onto
itself, as per definition 2.1.1. Therefore it might not be surprising that one finds
that m : G → SX , with m(g)x = gx, which is in fact a homomorphism (see Top
[28] for the proof and a more rigorous description of this homomorphism). This
homomorphism can then serve as another way of describing group actions [8, 28].

For further review on the symmetric group, refer to Dixon and Mortimer [8]
and Top [28].

2.1.2 I Representations

Representations are rather useful in revealing properties of (sub)spaces of some
vector space which may be invariant under group action. They find use in quantum
mechanics for instance with addition of angular momentum [12]. Here they will
be used to identify basis vectors of subspaces invariant under group action, and in
the end reveal how properties of Mandelstam invariants manifest themselves. The
definition of a representation is as follows.

9



Chapter 2. Representations of the symmetric Group

Definition 2.1.3 (Serre [25]). Let G = (G, ◦, e) be a finite group², V a vector
space over a field, and GL(V ) the group of isomorphisms³ V → V . The group
homomorphism⁴ ρ : G → GL(V ) is called a linear representation. Then V is
called a representation space of G.

By the above definition, ρ is the linear representation, yet often V is referred
to as the representation by abuse of language [25]. As such, if a vector space V
is referred to as a representation here, what is meant is the homomorphism of G
to GL(V ). Furthermore, a linear representation will simply be referred to as a
representation unless otherwise specified. Moreover, if V is of dimension n, it is
said that the representation is of dimension n as well⁵ [7], Furthermore, Recall that
matrices can be used to express linear maps [19].

Definition 2.1.4 (Serre [25]). For a vector space V with subspace W , a represen-
tation ρW : G → GL(W ) is a sub-representation of ρ : G → GL(V ) if W is
invariant under the action of G [25],

w ∈ W : ρ(g)w ∈ W ∀ g ∈ G. (2.4)

As such, a representation restricted to a subspace can be defined if this subspace
is invariant under the action of a group. Trivial invariant subspaces would be 0 and
V itself.

Definition 2.1.5 (Serre [25]). Let V 6= 0. A representation ρ : G → GL(V ) is
irreducible (irrep) if it has no invariant subspaces other than 0 and V itself. It can
not be written as a direct sum⁶ of other representations except 0 and V .

Irreducible representation can serve as building blocks for other representations.
Serre [25] will be quoted for the following theorem:

Theorem 2.1.6 ([25]). Every representation is a direct sum of irreducible repre-
sentations.

The proof will not be discussed here, but is indeed explained in Serre [25]. The
beauty in this theorem is that it reduces the study of any representation to studying
its individual parts, which proves to be crucial in understanding the behaviour of
Mandelstam invariants.

²finite dimensional representations with lie groups can be defined as well. See Hall [13] for further
details

³Recall that an isomorphism between vector spaces over the same field is by definition linear [19,
25]. Consider vector spaces V and W over the same field F, and the invertible map m : V → W . If
m(αa+ βb) = αm(a) + βm(b) ∀ a, b ∈ V & ∀ α, β ∈ F, it is a linear map [19]. Moreover, if m
is bijective, it is an isomorphism [17, 19].

⁴Recall that for given groups (G, ◦, eG) & (H, ·, eH), a map ρ : G → H for which ∀ a, b ∈ G :
ρ(a ◦ b) = ρ(a) · ρ(b) is a group homomorphism [28]

⁵Some texts might refer to it as degree like Serre [25]. To avoid confusion with polynomial de-
grees, dimension will be used in the remainder of this work.

⁶Recall that a direct sum means V = W ⊕ W ′ if W ∩ W ′ = 0 and dim(V ) = dim(W ) +
dim(W ′) [25]
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2.2. Examples of Representations

2.2 I Examples of Representations

Let ρ : G → GL(V )withG a finite group andV an undetermined finite-dimensional
vector space. In the subsections below a few basic representations will be given.

2.2.1 I Trivial Rep

The trivial representation is one for which ρ(g) = 1 for g ∈ G [25]. Each element
g is assigned to the identity map [7]. The representation is of dimension 1 [7, 25].
Thus V = Span(e) has a single basis vector. This is often useful for quantities
which are invariant under the actions of a group.

2.2.2 I Permutation Representation

Consider a set X , which G acts on: x 7→ gx for x ∈ X , g ∈ G. Let the representa-
tion ρ : G → GL(V ) be defined such that,

ρ(g)ex = egx, (2.5)

for permutations x 7→ gx, where (ex)x∈X is the basis of V . This is a permutation
representation, which is |X|-dimensional [25].

For instance, considerX = {1, 2, . . . , n}. Then, the representation is n dimen-
sional, and ρ(g)ei = egi: the index of a basis vector is permuted (indeed a permu-
tation since maps associated with group actions are bijective, see section 2.1) [7].
It then suffices to come up with matrices for the representation for which the ele-
ments are either 1 or 0 which transforms a basis vector into another. For example,
if g1 = 2 & g2 = 1

ρ(1 ↔ 2)(ae1 + be2 + . . . ) =

0 1 0
1 0 0
0 0 I


a
b
...

 =

b
a
...

 = ae2 + be1 + . . . ,

(2.6)
with I an n−2×n−2 identity matrix. Because of the nature of the definition of this
representation, it is also sometimes referred to as the natural representation of Sn
with the set {1, . . . , n} in the context of some other representation where it appears
within the composite sum (see section 2.3.2) [15, 26]. In a more abstract sense,
the homomorphism associated with group action m : G → SX is a permutation
representation, though this wouldn’t be classified as a linear representation by Serre
[25] [8].

There is a subspace of V which is invariant under the action of G, namely
Span(

∑n
i ei). In other words, ∀ g ∈ G, ρ(g)w = w for w ∈ Span(

∑n
i ei):

ρ(g)


a
a
...
a

 =


a
a
...
a

 (2.7)

11



Chapter 2. Representations of the symmetric Group

The sub-representation associated with this invariant subspace is the trivial repre-
sentation ρ1 : G → GL(Span(

∑n
i ei)). It is said that

∑n
i ei transforms according

to the trivial representation.
Therefore, ρ is not an irrep, but consists of sub representations, one of which

being the trivial representation ρ1 : G → GL(Span(
∑n

i ei)), and the other being
the complement [7, 25]. The representation can then be written as a block diagonal
matrix acting on a vector of which one of the new basis vectors e′1 =

∑n
i ei.(

1 . . .
... O

)
(2.8)

2.2.3 I The (n− 1)-Dimensional Representation of the Symmetric Group

The (n − 1)-dimensional sub-representation of the permutation representation for
Sn on a set {1, . . . , n} which is complement to the trivial sub-representation is the
standard representation, which is defined as [7],

ρn−1 : Sn → GL

(
W =

{
x ∈ V :

n∑
i

xi = 0

})
. (2.9)

In other words; the subspace for which all vectors in it have their components sum-
ming to 0 is an invariant subspace under group action [7]. Indeed; the indices of
the base vectors get permuted ρ(g)ei = egi, which doesn’t change the sum of com-
ponents

∑n
i xi = 0. For example, for S3,

ρ(1 ↔ 3)(e1 + e2 − 2e3) = (e3 + e2 − 2e1), (2.10)

where the sum of components didn’t change, and equates to 0.
This is a n − 1-dimensional irrep [7]. Suppose w ∈ W with components wi

such that
∑n

i=1wi = 0. Then choose to writewn = −
∑n−1

i−1 wi (taking inspiration
from the 3-dimensional example in Diaconis [7]),

w = w1e1 + w2e2 + · · ·+ wn−1en−1 + wnen

= w1e1 + w2e2 + · · ·+ wn−1en−1 −

(
n−1∑
i=1

wi

)
en

= w1(e1 − en) + w2(e2 − en) + · · ·+ wn−1(en−1 − en)

= w1f1 + w2f2 + · · ·+ wn−1fn−1.

(2.11)

It is easy to verify that cycles of (ij) for which i, j 6= n acting on this vector indeed
keeps the sum of components in the (fi) basis,

wifi+wjfj = wi(ei−en)+wj(ej−en) 7→ wi(ej−en)+wj(ei−en) = wifj+wjf1,
(2.12)
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2.3. Describing Mandelstam Properties with Representations

leaving the sum of components in the (ei) basis unaltered. What about an (in)
cycle? Then,

wifi = wi(ei − en) 7→ wi(en − ei) = −wifi,

wjfj = wj(ej − en) 7→ wj(ej − ei + (en − en)) = wj(fj − fi),

n−1∑
j=1

wjfj 7→ −

n−1∑
j−1

wj

 fi +
∑
j 6=i

wjfj

= −

n−1∑
j−1

wj

 (ei − en) +
∑
j 6=i

wj(ej − en)

=
∑
j 6=i

wjej −

n−1∑
j−1

wj

 ei +

n−1∑
j−1

wj −
∑
j 6=i

wj

 en

=
∑
j 6=i

wjej − wnei + wien,

(2.13)
which is a vector of components wi, summing to 0, since

∑n
i=1wi = 0. As such,

this sub-representation is (n − 1)-dimensional, with (fi)i∈{1,...,n−1} a basis. Dia-
conis [7] discusses an example of S3, where they show a table of transformations
and matrices for the basis f1 = e1 − e2, f2 = e2 − e3, and show that this sub-
representation is an irreducible one (will not be shown here) [7, 25]. As such, the
permutation representation for Sn acting on the set {1, . . . , n} can be decomposed
into,

ρ = ρ1 ⊕ ρn−1, (2.14)

with ρ1 the 1-dimensional trivial representation and ρn−1 the complementary (n− 1)-
dimensional representation [25].

2.3 I Describing Mandelstam Properties with Representations

2.3.1 I Mandelstam Invariants

Recall that scattering amplitudes are required to be Lorentz invariant as discussed
in section 1.1.1, and as such will be composed of Lorentz invariant quantities such
as the inner products of momenta piµpµj [5, 10, 15, 24]. These inner products are
described by Mandelstam variables, or invariants, which are defined as,

sij... := −(pi + pj + . . . )2, (2.15)

with d-vectors pi such that it is symmetric in indices [11]. For the discussion in this
chapter, and thesis for that matter, the scalar fields associated with these momenta
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Chapter 2. Representations of the symmetric Group

are massless, which means that p2i = 0, such that (pi+pj+. . . )2 = 2(piµp
µ
j +. . . ).

It therefore suffices to use

sij = piµp
µ
j , (2.16)

as a definition of Mandelstam invariants in two indices like in Henning et al. [15],
omitting the factors of−2. Then sijk... would be proportional to sij+sik+sjk+. . . .
Mandelstams in more indices than two can be generated by sij in the massless case,
and therefore it suffices to only consider sij here.

With this definition of the Mandelstam invariants, the following properties are
evident and relevant for the purposes of this chapter:

C1 sij = sji which comes from index symmetry in equation 2.16 [11].

C2 i 6= j which comes from piµp
µ
i = 0 if a particle is massless [11].

For n momenta these conditions lead to n(n − 1)/2 independent Mandelstam in-
variants. One way to find this is in observing that for each index i, there are n − i
available indices j to find elements with due to C1 and C2. Summing this for each
i gives,

(n− 1) + (n− 2) + ...+ 1 =

n−1∑
m=1

m

= −n+
n∑

m=1

m

= −n+ n+ (n− 1) + · · ·+ (n− (n− 1))

= −n+ nn−
n−1∑
m=1

m,

⇒
n−1∑
m=1

m = 1
2n(n− 1).

(2.17)

Another way of understanding it is through combinatorial theory. Recall that out of
n objects, k amount can be picked in

(
n
k

)
different ways, where [1],(

n

k

)
=

n!

k!(n− k)!
, (2.18)

Such that for k = 2,
(
n
k

)
= 1

2n(n− 1).
Another way of describing the construction of criteria C1 and C2 is through a

set of unordered pairs {i, j} of cardinality
(
n
2

)
(which is n(n−1)/2) with i 6= j [7].

This framework is rather useful when describing representations of Sn, since a basis
e{i,j} can be formed to span an

(
n
2

)
-dimensional vector space; a pair of indices for

each basis vector [7].
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2.3. Describing Mandelstam Properties with Representations

2.3.2 I Acting on Unordered Pairs

Let the symmetric group Sn act on the set of unordered pairs of cardinalityn(n− 1)/2
as,

σ{i, j} := {σ(i), σ(j)}, (2.19)

for σ ∈ Sn. Then, consider the representation ρ : Sn → GL(V ) with vector space
V = Span(e{i,j}), such that,

ρ(σ)e{i,j} := eσ{i,j} = e{σ(i),σ(j)}. (2.20)

This representation is n(n − 1)/2 dimensional, and is a permutation representa-
tion [7, 25].

It was already understood before that the permutation representation is not an
irreducible one. In this case there are three subspaces of V stable under group
action, such that ρ is decomposed into three irreducible representations,

ρ = ρ1 ⊕ ρ(n−1) ⊕ ρn(n−3)/2, (2.21)

where the subscript denotes the dimension of the sub-representation [7, 15, 26].
This decomposition is often written in terms of partitions, such that one writes
[n]⊕ [n−1, 1]⊕ [n−2, 2], referring to the size of each row of a Young tableaux [7,
15, 26]:

n−3... ⊕
n−4...

⊕
n−5...

(2.22)

The 1-dimensional invariant subspace is spanned by [7],

S0 =
∑
{i,j}

e{i,j} = e{1,2} + e{1,3} + . . . , (2.23)

said to transform according to the trivial representation. The (n− 1)-dimensional
invariant subspace is spanned by [7],

Si =
∑
j 6=i

e{i,j} − c
∑
{i,j}

e{i,j} =
∑
j 6=i

e{i,j} − cS0, (2.24)

with c such that each Si is orthogonal to S0 [7]. One might notice that this is in fact
n-dimensional, but also observe that only one index survives the sum; the basis has
a single index. This suggests that ρ(n−1)(σ)Si = Sσ(i).

Take for instance n = 4. Then (eij is shorthand for e{i,j}),

S0 = e12 + e13 + e14 + e23 + e24 + e34, (2.25)

is invariant under group action. Now, take S2:
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Chapter 2. Representations of the symmetric Group

S2 = e12 + e23 + e24 − c(e12 + e13 + e14 + e23 + e24 + e34) (2.26)

A permutation like (kl)where k 6= 2& l 6= 2 indeed leaves S2 invariant, while (2k)
maps S2 7→ Sk. Then c can be chosen such that Si · S0 = 0 with both subspaces
orthogonal [7].

The sub-representations ρ1 ⊕ ρn−1 = ρn together form the natural representa-
tion, which is n dimensional [15, 26]. The subspace associated with this represen-
tation has a (much more useful) basis,

Xi =
∑
j 6=i

e{i,j}, (2.27)

which acts in a way such that simply the indices are permuted; ρn(σ)Xi = Xσ(i)

(left as an exercise to verify) [15, 26]. As such, this sub-representation ρn can be
treated similarly to an n-dimensional permutation representation as discussed in
the previous section, constructing bases for the invariant subspaces ρ1 & ρn−1 out
of Xi. The addition of the ρn(n−3)/2 sub-representation in the composite sum of
equation 2.21 is a consequence of Sn acting on a set of unordered pairs of cardinality(
n
2

)
instead of acting on a single integer-numbered index.

2.3.3 I The Mandelstam Representation

Previously only the conditions C1 and C2 (See description 2.3.1) were considered,
which meant there were n(n− 1)/2 independent Mandelstam variables for n mo-
menta. The aim of previous observations on unordered pairs is to apply it to Man-
delstam variables, which for external on-shell fields also abide by momentum con-
servation, and therefore integration by parts (IBP) relations [15]. Momentum con-
servation is stated as,

n∑
j=1

pµj = 0, (2.28)

taking all momenta as incoming (or phrased another way with the help of Yang Li
from Li, Roest, and Veldhuis [20]; outgoing momenta are redefined by absorbing
the negative sign into the vector itself, such that there is no sign distinction between
incoming and outgoing momenta) [11]. Multiplying this by piµ yields (here using
Mandelstam invariants as a basis),

piµ

n∑
j=1

pµj =
∑
i 6=j

sij = 0, (2.29)

on the assumption that the momenta correspond to massless on-shell scalar fields
(piµpµi = 0) [15]. This reduces the amount of independentMandelstam variables by
n, since eachXi allows for an sij to be expressed in terms of others (n ≤ n(n−1)/2
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2.3. Describing Mandelstam Properties with Representations

for n ≥ 3). Left are 1
2n(n − 1) − n = 1

2n(n − 3) independent Mandelstam vari-
ables [15]. This number corresponds to the dimension of the ρn(n−3)/2 representa-
tion.

Indeed: With momentum conservation introducing Xi = 0, The representa-
tions ρ1 and ρn−1 in ρ = ρ1⊕ρn−1⊕ρn(n−3)/2 from the previous section are killed
off [15]. What is left is the subspace complement to the subspace corresponding
to ρ1 ⊕ ρn−1, which is the one corresponding to ρn(n−3)/2 [7, 15]. Therefore, it
might be said thatMandelstam invariants transform according to the ρn(n−3)/2 rep-
resentation [20]. In speaking, this representation has sometimes been referred to
as the Mandelstam representation, since it encodes the behaviour of Mandelstam
invariants for massless on-shell scalar fields.

An example of n = 4 is first treated to get a grasp of determining a basis for
this representation.

Example 2.3.1.
X1 = s12 + s13 + s14 = 0, X2 = s12 + s23 + s24 = 0,

X3 = s13 + s23 + s34 = 0, X4 = s14 + s24 + s34 = 0.
(2.30)

This for instance leads to;

s12 = −s13 − s14 = s23 + s34 + s24 + s34 = −s12 + 2s34. (2.31)

Similarly for s13 and s14, this leads to,

s12 = s34,

s13 = s24,

s14 = s23,

s14 = −s12 − s13.

(2.32)

Left are the two invariants s12 and s13 (others could have been chosen), which
corresponds to the amount of invariants of n(n− 3)/2 = 2.

Let s12 and s13 form a basis of the invariant subspace. To understand its be-
haviour, consider a simple permutation (12) (this is an example discussed with Ton-
nis ter Veldhuis). Then s12 is left untouched, but s13 7→ s23 = s14 = −s12 − s13.
The matrix corresponding to ρ2((12)) is then found to be,(

1 −1
0 −1

)
, (2.33)

such that for the basis vectors s12 := (1, 0)ᵀ, s13 := (0, 1)ᵀ;(
1 −1
0 −1

)(
1
0

)
=

(
1
0

)
,

(
1 −1
0 −1

)(
0
1

)
=

(
−1
−1

)
. (2.34)

The resulting vector is still within the space spanned by (s12, s13) indeed.

For a slightly more general approach, the reader will be referred to Cheung [5]
for determining a basis for Mandelstam invariants.
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Chapter 3 Polynomial Rings

This chapter is mostly a recap of some of the essential definitions and features of
(polynomial) Rings as required for the topic of this paper. It mostly follows defi-
nitions and corollaries from Top [27]. This with the aim to build the groundwork
for generating polynomials in Mandelstam invariants, which in the previous chapter
have been described with representations of unordered pairs.

3.1 I Ring Algebraic Structure

3.1.1 I Definitions

Groups in particular are algebraic structureswhich find lots of applications in physics.
Anything related to symmetry is often tackled with the wisdom from group and/or
representation theory. For some examples, see Jones [18]. On the contrary, rings
don’t find as many applications in physics. However, polynomial rings in particu-
lar provide for a useful framework for generating polynomials under various con-
straints, which is exactly what is explored in this thesis, and other works such as
Henning et al. [14, 15]. Even though Groups are very likely treated in most physics
programmes, rings likely are not.

With this in mind, this section lists a few relevant fundamental definitions taken
from Top [27] , starting with the most fundamental one:

Definition 3.1.1 (Top [27]). A unitary ring is a 5-tuple (R,+, ·, 0, 1), withR a set,
maps + & · (addition and multiplication) defined as (· is often not written)

+ : R×R → R, (a, b) 7→ a+ b ∀ a, b ∈ R, (3.1)
· : R×R → R, (a, b) 7→ ab ∀ a, b ∈ R, (3.2)

and 0, 1 ∈ R (zero and unit element), such that the following properties hold:

R1 (R,+, 0) is an abelian group over R, with composition + and neutral element
0. As such it follows group axioms [18, 28]:

G0 a+ b ∈ R, (closure)
G1 a+ (b+ c) = (a+ b) + c ∀ a, b, c ∈ R, (associativity)
G2 0 + a = a+ 0 = a ∀ a ∈ R, (zero / neutral element)
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3.1. Ring Algebraic Structure

G3 ∀ a ∈ R, ∃ (−a) ∈ R s.t. a+ (−a) = (−a) + a = 0, (inverse)

Since it’s abelian:

A a+ b = b+ a ∀ a, b ∈ R, (abelian / commutative)

R2 a(bc) = (ab)c ∀ a, b, c ∈ R, (associativity)

R3 a(b+ c) = (ab) + (bc) ∀ a, b, c ∈ R, (distributivity)

R4 1a = a1 = a ∀ a ∈ R. (unit element)

A ring (R,+, ·, 0, 1) is often referred to in notation by its set R. For instance;
”Let R be a ring...”. Similarly, the abelian group (R,+, 0) embedded within the
ring could be referred to with R as well, for instance; ”...subgroup of R...”. Re-
lations with inverse elements of the subgroup of a ring R are often written as for
instance a − a instead of a + (−a) for a ∈ R. A ring is non-unitary if (R4) from
definition 3.1.1 is not satisfied; the ring does not have 1 [27].

For certain theorems or lemmas, it may be necessary that a ring is a field. This
is not to be confused with the fields (scalar or vector fields for instance) in physics.
A ring is a field if it is both commutative (if ∀ a, b ∈ R : ab = ba), and is a division
ring (if ∀ a ∈ R\{0}, ∃ a−1 ∈ R : aa−1 = a−1a = 1) [27]. Examples of fields
are real R and complex C numbers [27].

Another fairly fundamental object is the ideal, which will be important when
considering factor rings in section 3.1.2. The definition of an ideal is as follows:

Definition 3.1.2 (Top [27]). An ideal (also said to be a two sided ideal) I ⊂ R of
a ring R is a subset which satisfies:

I1 I is a subgroup of R (not a subring):

H0 0 ∈ I ,
H1 a− b ∈ I ∀ a, b ∈ I ,

I2 ∀ r ∈ R & a ∈ I; ra, ar ∈ I .

Condition I2 in definition 3.1.2 could be replaced by a weaker one, namely
either [27];

• ∀ r ∈ R & a ∈ I; ra ∈ I , (left ideal)

or;

• ∀ r ∈ R & a ∈ I; ar ∈ I . (right ideal)

An example of an ideal would be 3Z for the ring Z, since 0 ∈ 3Z, and multi-
plying an integer multiple of 3 with any integer is another multiple of 3: a ∈ Z :
a3Z ∈ 3Z. In fact, nZ is an ideal of Z for any n ∈ Z [27]. Moreover, this is an
example of a generated ideal, which is defined as follows:
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Chapter 3. Polynomial Rings

Definition 3.1.3 (Top [27]). Consider R a unitary ring. a1, . . . , an ∈ R generate a
left ideal as follows:

Ra1 + · · ·+Ran =

{
r1, . . . , rn ∈ R :

n∑
i>o

riai

}
, (3.3)

with
∑

denoting a sequence of + additions. A right ideal is generated in a similar
way. With R commutative, one speaks of just an ideal being generated, and the
notation 〈a1, . . . , an〉 := Ra1 + · · ·+Ran is often used. An ideal is principal if it
is generated by a single a : 〈a〉 ⊂ R.

In this chapter, the 〈 〉 brackets will exclusively be reserved as notation for gen-
erating ideals unless otherwise specified.

Even though ideals are not subrings, they are subgroups. In fact, they are nor-
mal:

Corollary 3.1.4 (Top [28]). For R a ring and I ⊂ R an ideal, I is a normal
subgroup, that is:

a+ I − a = I ∀ a ∈ R. (3.4)

Proof (Top [27]). This follows from R, therefore I , being abelian;

a+ b− a = a− a+ b = 0 + b = b ∀ a ∈ R & ∀ b ∈ I.

�

3.1.2 I Factor Rings

From group theory it is well known that a factor group G/H can be defined for H
a normal subgroup of G [28]. By defining multiplication well on R/I for R a ring
and I an ideal, R/I (R modulo I) is a ring called the factor ring [27].

Definition 3.1.5 (Top [27]). LetR be a ring and I ⊂ R an ideal. The set of residue
classes;

R/I = {a ∈ R : a := a+ I ⊂ R} , (3.5)

forms a ring, called the factor ring with addition;

(a+ I) + (b+ I) = (a+ b) + I, a+ b = a+ b, (3.6)

and multiplication;

(a+ I) · (b+ I) := ab+ I, a · b := ab, (3.7)

with notation a := a+ I .
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See Top [27] on the validity of multiplication as defined in definition 3.1.5.
It could be said that the factor ring is a ring of residue classes modulo the ideal.
The elements of R/I are simply the unique residue classes a = a + I . This is
indeed a ring: the axioms can be verified to hold with multiplication as defined in
definition 3.1.5 [27]. This will not be done here. To be able to determine whether
two elements in a ring belong to the same residue class, the following corollary is
a rather powerful tool:

Corollary 3.1.6 (Top [28]). For R a ring and I ⊂ R an ideal, the elements a, b ∈
R/I are equal if and only if a − b ∈ I , or in other words, when a and b are
’separated’ by a ’multiple’ of an element in the ideal.

Proof (Top [27]).

• ⇒: a = b ⇒ a+ I = b+ I ⇒ a = b+ i, ∀ i ∈ I,⇒ a− b = i ∈ I.

• ⇐: a − b ∈ I ⇒ i = a − b ∈ I ⇒ a + I = (b + i) + I = b + I since
i ∈ I (subgroup closure).

�

continuing with the example of 3Z being an ideal of Z, what would the factor
ring Z/3Z look like? This is illustrated in the example below.

Example 3.1.7. Consider the ringZ (integers), and the ideal 3Z = {3 · a : a ∈ Z} ⊂
Z (integer multiples of 3). Then a = a+ 3Z = {. . . , a− 3, 0, a+ 3, . . . } denotes
a residue class for a ∈ Z. According to definition 3.1.5, Z/3Z is a ring of residue
classes. As such, by corollary 3.1.6;

Z/3Z =
{
0, 1, 2

}
, (3.8)

with
0 = {. . . ,−6,−3, 0, 3, 6, . . . } ,
1 = {. . . ,−5,−2, 1, 4, 7, . . . } ,
2 = {. . . ,−4,−1, 2, 5, 8, . . . } .

(3.9)

Some a ∈ Z then lives in a partition corresponding to one of the three residue
classes of Z/3Z. To illustrate multiplication:

2 · 5 = 2 · 5 = 1.

This example illustrates how the notion of factor rings for integers is related
to modular arithmetic, and can also be thought of as such in more abstract cases.
Because factor rings are a set of residue classes, they are rather useful for classi-
fying polynomials based on equivalence constraints when the ring in question is a
polynomial ring, which will be described in the section below.
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Chapter 3. Polynomial Rings

3.2 I Polynomial Rings

3.2.1 I Single & Multivariable Polynomials

Definition 3.2.1. LetR be a ring. A polynomial ringR[X] is a ring of polynomials
in a single variable X with coefficient ai in R [27]:

R[X] :=

{
ai ∈ R :

<∞∑
i=0

aiX
i

}
. (3.10)

This is indeed a ring as it can be shown that the axioms of definition 3.1.1
hold (See Top [27]). Moreover, R[X] will be commutative if R is as well [27].
A polynomial can be evaluated through the evaluation homomorphism, which will
not be of relevance here [27]. The degree of a polynomial, written as deg f for f
a polynomial in R[X], is the largest i for which the coefficient ai 6= 0 [27]. Then,
the leading coefficient is adeg f [27].

This is a nice starting point to generate polynomials. However, aiming to de-
scribe scattering amplitudes at a later stage, it will be necessary to be able to define
what a polynomial ring in multiple variables looks like. In the 4-point case from
section 1.1.2 there are already 3 variables (s, t, u). Fear not! There is a rather el-
egant way of defining a polynomial ring in multiple variables. Key insight is that
polynomial rings are rings themselves:

Definition 3.2.2. Similarly to a polynomial ring in a single variable, since R[X] is
a ring, a polynomial ring in multiple variables is inductively defined as [27]:

R[X1, . . . , Xn] := (R[X1, . . . , Xn−1]) [Xn]. (3.11)

Therefore [27];

R[X1, . . . , Xn] :=

ai1,...,in ∈ R :
<∞∑

i1,...,in=0

ai1,...,inX
i1
1 · · ·Xin

n

 . (3.12)

3.2.2 I Division With Remainder

As alluded to at the end of section 3.1.2, factor rings will be composed of poly-
nomial rings as well with ideals generated by polynomials. In this section, the
equivalence classes will first be classified before constructing the factor ring with
polynomials. The following theorem provides a method to dissect polynomials as
a first step, and find the remainder with which to define equivalence classes.

Theorem 3.2.3 (Top [27]). Consider R a unitary ring. Let f, g ∈ R with g 6= 0
and adeg g is invertible (if ∃b ∈ R : ab = ba = 1). Then;

f = qg + r, (3.13)

where q, r ∈ R[X], the quotient and remainder respectively upon division by g, are
unique with deg r < deg g.
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3.2. Polynomial Rings

The proof for this can be found in Top [27], and is not of importance for under-
standing the train of thought of this section. The idea now is to perform division
with remainder on polynomials and construct the equivalence classes, similarly to
how this was achieved with integers modulo an integer. To help illustrate division
by g, the long division procedure with polynomials can be used to perform division
with remainder [27].

Example 3.2.4 (Long Division). Let f = X3+6X−4 ∈ R[X]. Consider division
by g = X2 + X − 1 ∈ R[X] (notice unit leading coefficient) such that f =
qg + r, q, r ∈ R[X]. The procedure of long division can be used to find q and
r. Repeatedly subtract a multiple hi of g from f until the degree of the remaining
polynomial is less than deg g. This becomes the remainder r while summing the
multiples hi becomes q.

q = X − 1

X2 +X − 1
)
X3 + 6X − 4
X3 +X2 − X −

−X2 + 7X − 4
−X2 − X + 1 −
r = 8X − 5

(3.14)

In the above example, h1g = X3 +X2 −X is first subtracted from f , after which
h2g = −X2−X+1 is subtracted. Therefore q = h1+h2 = X−1 and r = 8X−5.
Then f can be reconstructed:

f = qg + r = (X − 1)(X2 +X − 1) + (8X − 5) = X3 + 6X − 4. (3.15)

Multiple different polynomials f ∈ R[X] can have the same remainder r ∈
R[X] upon division by g ∈ R[X] up to a quotient q ∈ R[X]. These can be classified
into residue classes modulo the principal ideal 〈g〉 ⊂ R[X] [27]. This is a similar
idea to the example of factor rings with integers. Observe that qg ∈ 〈g〉 when
looking at f = qg + r: f + 〈g〉 = r + 〈g〉 [27]:

r = f mod g. (3.16)

As such;

f = f + 〈g〉, (3.17)

form residue classes. Two polynomials f1, f2 ∈ R[X] belong to the same residue
class (have the same remainder) if f1−f2 ∈ 〈g〉: f2 = f1+qg for q, g ∈ R[X] and
qg ∈ 〈g〉 (see corollary 3.1.6). Notice that elements of the principal ideal g have
remainder r = 0.

In order to quantify the different equivalence classes, a polynomial ring of rep-
resentants can be constructed. These representants are ones for each residue class.

23



Chapter 3. Polynomial Rings

Theorem 3.2.5 (Top [27]). ConsiderR a unitary ring and g ∈ R[X]with deg g > 0
& adeg g invertible. Then

{h ∈ R[X] : degh < deg g} → R[X]/〈g〉,
h 7→ h+ 〈g〉.

(3.18)

is a bijection.

The proof will once again not be given but can be found in Top [27], but intu-
itively it makes sense since polynomials of lower degree than g can not be divided
out by g, but adding multiples of g now allows for division while the remainders of
both instances were the same.

The essence of this theorem is indeed that unique representants of the elements
of R[X]/〈g〉 can be found for each residue class modulo the principal ideal [27].
These representants should not be thought of as the elements of the factor ring, since
the factor ring is a set equivalence classes, not polynomials themselves. They are a
way to quantify the different equivalence classes in a digestible manner. As such,
when it is mentioned that a factor ring generates polynomials in this thesis, what is
meant is that a ring of representants can be made which generates the polynomials.
To be clear, this does not mean that scattering amplitudes can not include a polyno-
mial which is not an element of this ring of representants. In the end it is a result
of the field theory. Rather, representants are a useful way of taking into account the
residue classes when constructing amplitudes from physical criteria.

The procedure to find representants is to find polynomials h ∈ R[X] for which
degh < deg g. This is illustrated in the two examples below.

Example 3.2.6. consider again f = X3 + 6X − 4 ∈ R[X] and g = X2 +
X − 1 ∈ R[X] from the previous example. Then, using theorem 3.2.5, the repre-
sentants are:

{a, b ∈ R : aX + b} → R[X]/〈X2 +X − 1〉. (3.19)

As such:

R[X]/〈X2 +X − 1〉 =
{
a, b ∈ R : aX + b

}
. (3.20)

Example 3.2.7 (A funky example).
The inspiration to look into this case was from a brief discussion with Jimin Park.
Consider R[X]/(X2 + 1). Using theorem 3.2.5:

R[X]/〈X2 + 1〉 =
{
a, b ∈ R : aX + (b)

}
, (3.21)

(Note that it is not the same as the above example since X is different). This ring
exhibits interesting yet familiar behaviour. With g = X2 + 1:

X
2
= X2 + 〈g〉 = X2 + (−X2 − 1) + 〈g〉 = −1 + 〈g〉
= −1,

(3.22)
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3.2. Polynomial Rings

where multiplication as defined in definition 3.1.5 was used for the first equality
and subgroup closure for the second. The same result could have been obtained by
corollary 3.1.6:

X2 + 1 ∈ 〈X2 + 1〉 ⇒ XX = X
2
= −1. (3.23)

It can also be seen through long division, dividing X2 by X2 + 1. Then, upon
multiplication of two elements f = aX + b, f ′ = a′X + b′ ∈ R[X]/(X2 + 1):

f1f2 = (aX + b)(a′X + b′)

= aa′XX + bb′ + ab′X + a′bX

= (aa′ −1 + bb′) + (ab′ + a′b)X.

(3.24)

As one might suspect, it turns out that R[X]/〈X2 + 1〉 ∼= C as mentioned in Top
[27], the proof of which is given there.

In the case of multiple variables, definition 3.2.2 is exploited to understand what
polynomial factor rings for multiple variables look like:

R[X1, . . . , Xn]/〈g〉 = R[X1, . . . , Xn−1][X]/〈g〉, g ∈ R[X1, . . . , Xn], (3.25)

sinceR[X1, . . . , Xn−1] is a ring itself. Theorem 3.2.5 holds withR[X1, . . . , Xn−1]
as ring and the variable being Xn, provided of course that the ring is unitary and
that the leading coefficient adeg g is invertible inR[X1, . . . , Xn−1]. Specifically the
case of multiple variables is of importance since the n-point amplitudes depend on
Mandelstam variables. As such it is useful to treat an example with two variables.

Example 3.2.8. The following example is inspired by an example in Top [27]. Con-
sider R[X,Y ]. Let g = X2 + Y 2 − 1 generate a principal ideal:

〈g〉 = R[X][Y ]g =
{
q ∈ R[X][X] : q(X2 + Y 2 + 1)

}
. (3.26)

By theorem 3.2.3:

f = q(X2 + Y 2 + 1) + r, q, r ∈ R[X][Y ], degY r < degY g. (3.27)

One way this can be understood is by observing that X2 + 1 ∈ R[X], such that g
in f = qg+ r is a polynomial in the variable Y and coefficients in R[X]. With this
observation, using theorem 3.2.5 [27]:

R[X,Y ]/〈X2 + Y 2 + 1〉 =
{
a, b ∈ R[X] : aY + b

}
. (3.28)

Here;

Y
2
= Y 2 + (−X2 − Y 2 − 1) + 〈g〉 = −X2 − 1 + 〈g〉 = −X

2 − 1. (3.29)

Or simply Y
2
= (Y

2
+X

2
+ 1)−X

2 − 1 = −X
2 − 1.

The reader is invited to use long division for the above examples to see the
polynomial division in action for these cases.

25



Chapter 3. Polynomial Rings

3.2.3 I Symmetric Polynomials

In some cases it may be necessary that each polynomial from a polynomial ring is
symmetric under permutations of its variables. An example is when scalar fields
are indistinguishable such that the scattering amplitude is symmetric [14, 15].

Definition 3.2.9. Consider the polynomial ring R[X1, . . . , Xn] with {Xi} inde-
pendent variables and R a field. let f ∈ R[X1, . . . , Xn]. For all permutations the
Symmetric group σ ∈ Sn [6]:

f(Xσ(1), . . . , Xσ(n)) = f(X1, . . . , Xn) ⇒ f is symmetric. (3.30)

Symmetric polynomials in R[X1, . . . , Xn] form a subring [21]

R[X1, . . . , Xn]
Sn ⊂ R[X1, . . . , Xn]. (3.31)

There is a rather particular set of symmetric polynomials which fill a specific
role in generating symmetric polynomials with the fundamental theorem of sym-
metric polynomials. Before showing this theorem, the definition of elementary
symmetric polynomials is presented below.

Definition 3.2.10 (Cox [6] and Macdonald [21]). Consider n amount of distinct
variables Xi. Elementary Symmetric Polynomials are defined as:

e0 = 1,

er =
∑

1≤i1<···<ir≤n

Xi1 · · ·Xir ,
(3.32)

To graspwhat thismeans, consider for instance 3 distinct variables (X1, X2, X3).
Then,

e1 =
∑

1≤i1≤3

Xi = X1 +X2 +X3,

e2 =
∑

1≤i1<i2≤3

Xi1Xi2 = X1X2 +X1X3 +X2X3,

e3 =
∑

1≤i1<i2<i3≤3

Xi1Xi2Xi3 = X1X2X3,

(3.33)

are the 3 elementary symmetric polynomials. These are then used in the fun-
damental theorem of symmetric polynomials.

Theorem 3.2.11 (Fundamental Theorem of Symmetric Polynomials [6]). Let R
be a field. Any symmetric polynomial in R[X1, . . . , Xn] can be expressed as a
polynomial in the elementary symmetric polynomials ei with the coefficients in R.

Theorem 3.2.12 ([6]). LetR be a field. A symmetric polynomial inR[X1, . . . , Xn]
can uniquely be expressed as a polynomial in elementary symmetric polynomials
ei.
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3.2. Polynomial Rings

The proofs for both of these theorems will not be elaborated on here and can be
found in Cox [6], though importantly the proof of the latter theorem discovers the
following ring isomorphism,

ϕ : R[U1, . . . , Un] → R[e1, . . . , en], Ui 7→ ei, (3.34)

showing uniqueness [6]. This becomes relevant when treating contact terms in scat-
tering amplitudes for indistinguishable fields, since they can be generated using el-
ementary symmetric polynomials instead, which will be applied in the latter half of
the next chapter [15].
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Chapter 4 Generating the 4-Point Con-
tact Terms

The material from the previous chapter will be applied to the example of 4-point
amplitudes in 4 dimensions for massless scalar theories. The aim here is to gener-
ate contact terms from the 4-point amplitude for massless on-shell real scalar fields.
Generating them forn-point amplitudes in d-dimensions is further explored in chap-
ter 5.

4.1 I Invariants of 4-Point Interactions

When treating the 4-pt amplitude, any quantum field theory text book likely quickly
introduces the Mandelstam variables as s, t, and u, seen before in section 1.1.2,
equation 1.1 [20, 24]. They appear either through propagators or as a result of two
derivatives in the corresponding operator [24].

Recall that Mandelstam invariants were defined in equation 2.16 as sij = piµp
µ
j

for massless scalar fields, from which the properties sij = sji and sii = 0 ⇒ i 6= j
emerge from C1 & C2 in description 2.3.1 [11]. Then momentum conservation is
taken into account as

∑
i p

j
i = 0 with all momenta treated as incoming as seen in

equation 2.28, due to which it suffices to consider,

p1

p2
p1 + p2

p3

p4

(a) s-channel.

p1 p3

p1 − p3

p2 p4

(b) t-channel.

p1

p3

p1 − p4

p2

p4

(c) u-channel.

Figure 4.1: Feynman 4-pt interaction diagrams for massless on-shell scalar fields,
with pi 4-momenta [24].
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4.1. Invariants of 4-Point Interactions

s := s12 = s34,

t := s13 = s24,

u := s14 = s23,

(4.1)

where the second equality in each line follows from momentum conservation as
seen in section 2.3.3 [11]. Each invariant finds correspondence in the s-, t-, and
u-channels as seen in section 1.1.2, diagrams of which are illustrated in figure 4.1.
Momentum conservation then manifests itself as [15, 24],

p1µ
∑
j 6=1

pµj = s+ t+ u = 0. (4.2)

This result is crucial for the discussion, since it is the source of equivalence relations
for polynomials in Mandelstam Variables. For instance,

s2 + t2 + u2 = s2 + t2 + (−t− s)2

= 2(s2 + t2 + st)

= 2(−s(−s− t)− t(−s− t)− st)

= −2(st+ su+ tu),

⇒ s2 + t2 + u2 ∼ −2(st+ su+ tu),

(4.3)

is one such equivalence.
With themachinery of polynomial rings, let s+t+u generate an ideal 〈s+ t+ u〉

of the polynomial ring C[s, t, u], using complex numbers as a field without loss of
generality [15]. Modding out the ideal from C[s, t, u] gives,

C[s, t] → C[s, t, u]/〈s+ t+ u〉, (4.4)

with C[s, t] understood as the representants as per theorem3.2.5 [15, 27]. Indeed,
left are n(n− 3)/2 = 2 Mandelstam invariants of the ρn(n−3)/2 representation, as
seen in section 2.3.3, to generate the contact term contributions in the 4-pt amplitude
for distinguishable on-shell massless scalar fields withC[s, t] (with the polynomials
not necessarily being symmetric) [15].

Each term of a polynomial in C[s, t, u]/〈s + t + u〉 can be traced back to op-
erators in the Lagrangian. Using the representants C[s, t] avoids finding equivalent
operator terms in the Lagrangian. For instance, the term sn12s

m
13 = sntm ∈ C[s, t]

is associated with a term

(∂µ1 · · · ∂µn∂ν1 · · · ∂νnφ1) (∂
µ1 · · · ∂µnφ2) (∂

ν1 · · · ∂νnφ3)φ4, (4.5)

on Lagrangian level, observing that each derivative acting on field φi produces mo-
mentum pµi [15].
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Chapter 4. Generating the 4-Point Contact Terms

4.2 I Indistinguishable Fields

The polynomial ring from equation 4.4 holds for distinguishable fields φi, assigning
a flavor index to each field to distinguish one field from another [15]. In this case the
operator term with flavor indices can be traced back from the momentum indices.
In case the fields are in fact indistinguishable, the fields are not labeled, such that
the contact term contributions should be symmetric under permutations [14, 15].
Each term needs to be complemented by others such that the resulting combination
is symmetric under interchangingmomenta, effectively resulting in the contact term
polynomials needing to be symmetric under S4 for the 4-pt contact contributions,

Ã4

(
pµσ(1), p

µ
2σ(2), p

µ
σ(3), p

µ
σ(4)

)
= Ã4 (p

µ
1 , p

µ
2 , p

µ
3 , p

µ
4 ) , (4.6)

as per definition 3.2.9 [6, 15].
For polynomials in Mandelstam variables (s, t, u), symmetry under S3 is im-

posed instead [15]. an example of how this relates to permutation of momenta is
given below.1 2 3 4

↓ ↓ ↓ ↓
2 3 4 1

 ⇒

s12 s13 s14
↓ ↓ ↓
s23 s24 s21

 =

s t u
↓ ↓ ↓
u t s

 . (4.7)

This is by no means a formal proof. However, the polynomials will be treated as if
they exhibit S3 symmetry in Mandelstams [15].

Key insight in integrating S3 symmetry into contact term polynomials is that
the variables of the ring don’t necessarily have to be the Mandelstams themselves,
but could be elementary symmetric polynomials instead if every polynomial in that
ring is symmetric. Recall that any symmetric polynomial in a polynomial ring
over a field can be written in terms of elementary symmetric polynomials by the
fundamental theorem of polynomials (theorem 3.2.11) [6]. Considering the vari-
ables (s, t, u), the 4 elementary symmetric polynomials are given by (see defini-
tion 3.2.10),

e0 = 1,

e1 = s+ t+ u,

e2 = st+ su+ tu,

e3 = stu.

(4.8)

With these elementary symmetric polynomials, Henning et al. [15] makes the fol-
lowing proposition,

[C[s, t, u]/ 〈s+ t+ u〉]S3 = C[e1, e2, e3]/ 〈e1〉 , (4.9)

Such that instead the elementary symmetric polynomials are used as variables, and
the ideal is generated by e1 instead, since e1 = s + t + u = 0. Therefore, by
theorem 3.2.5 [15],

30



4.2. Indistinguishable Fields

O(sij) O(pµi ) m Monomials

1 2 1 e1 = 0

2 4 1 e2
3 6 1 e3
4 8 1 e2e2
5 10 1 e2e3

6 12 2 e2e2e2
e3e3

7 14 1 e2e2e3

8 16 2 e2e2e2 e2
e3e3 e2

9 18 2 e2e2e2 e3
e3e3 e3

10 20 2 e2e2e2 e2e2
e3e3 e2e2

11 22 2 e2e2e2 e2e3
e3e3 e2e3

12 24 3
e2e2e2 e2e2e2
e2e2e2 e3e3
e3e3 e3e3

13 26 2 e2e2e2 e2e2e3
e3e3 e2e2e3

...
...

... ...

Table 4.1: This table shows the possible independent monomial terms ofC[e2, e3].
m denotes the amount of independent monomials at each order in Mandelstams.

C[e2, e3] → C[e1, e2, e3]/ 〈e1〉 , (4.10)

with C[e2, e3] the representants of the residue classes of C[e1, e2, e3]/ 〈e1〉. There-
fore, contact term polynomials for indistinguishable massless on-shell real scalar
fields live in C[e2, e3] [15].

Monomial terms as shown in table 4.1 can appear in the 4-pt amplitude de-
pending on the presence of certain operators. It can be seen that 2 independent
combinations of e2 and e3 pop up at Mandelstam degree 6, 3 at 12, and so on. It
can also be seen that at orders 7 and 13 the amount of independent monomials is
reduced by one momentarily. The hypothesis is that this behaviour continues up to
higher order, however this was not explicitly computed. This coincides with results
of Dujava [9], where operators were counted with the Hilbert series.

Generating symmetric polynomials for contact terms like this is powerful since
it is rather simple to relate back to operator terms in the Lagrangian as seen in equa-
tion 4.5. Particularly, performing integration by parts or redefining fields to find
equivalent Lagrangians can be much more cumbersome than finding polynomials
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Chapter 4. Generating the 4-Point Contact Terms

for contact terms which satisfy the necessary physical criteria [11, 15]. Incorpo-
rating momentum symmetry can be achieved through the use of the fundamental
theorem of symmetric polynomials, which allows for immediate generation of sym-
metric contact terms without having to refer back to the Lagrangian.

Limitations of polynomial ring generators are that they don’t contain informa-
tion on howmany invariant terms there are at each degree directly. Instead, a differ-
ent object, the Hilbert series (or Molien series), provides this information through
its Taylor coefficients. This is not explored here, but finds use in Henning et al. [14]
and Li, Roest, and Veldhuis [20].
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Chapter 5 Generalisations to n-Point
Amplitudes

This chapter mostly follows some of chapter 5 of Henning et al. [15]. However,
the goal is to treat the story in a more nuanced way such that certain concepts and
statements are elaborated on in more detail, in the hopes of making the subject
easier to grasp. Having found generators for contact terms in 4-point amplitudes,
the procedure is approached in a more general way here for n-point amplitudes
in d-dimensions. Here, spacetime is assumed to be Euclidean, with complex mo-
menta [15].

5.1 I Constraints of Momenta

5.1.1 I Polynomials in Momentum Space

Momentum polynomials in momentum space show up due to derivatives in oper-
ators on a Lagrangian level due to the Fourier transform [10, 15, 24]. Write the
Fourier transform of real scalar fields as,

F [φ(x)] = φ̂(p) =
1

(2π)d/2

∫ ∞

−∞
φ(x)e−ip·xddx,

F−1[φ̂(p)] = φ(x) =
1

(2π)d/2

∫ ∞

−∞
φ̂(p)eip·xddp.

(5.1)

with φ(x) = F−1
d [Fd[φ(x)]], provided that φ(x) goes to 0 as |x| → ∞ [22]. In-

deed, recall that taking the derivative of a function is equivalent to multiplying its
Fourier transform by momentum in momentum space [22]. For instance, for two
derivatives:

∂µ∂νφ(x) = ∂µ

(
F−1[ipν φ̂(p)]

)
= F−1

[
−pµpν φ̂(p)

]
, (5.2)

for which µ and ν can be contracted by other terms in the same operator, such as
(∂µ∂νφ1)(∂

µφ2)(∂
νφ3)φ4, leading to amonomial p1µpµ2p1νpν3 = (p1·p2)(p1· p3) [15].

Therefore, for a given operator On,k consisting of n fields and k derivatives,
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Chapter 5. Generalisations to n-Point Amplitudes

On,k ∝
∫  n∏

j=1

ddpjφ̂j(pj)

Fn,k({pi})ei
∑n

l=1 plx, (5.3)

where Fn,k({pi}) is a polynomial in n different momenta corresponding to the
n different fields, of degree k, which depends on the configuration of the derivatives
distributed among the different fields [15]. This polynomial is the study of this
chapter, and of chapter 5 in Henning et al. [15].

5.1.2 I Translating Operator Conditions to Momentum Space

OnLagrangian level withmassless real scalar fields, operators are considered equiv-
alent if they are related by either the equation of motion�φ(x) (EoM), or by a total
derivative term ∂µOµ. Operators could be rewritten into each other through either
field redefinitions or integration by parts (IBP) leaving the scattering amplitude in-
variant [11, 15]. Henning et al. [15] refers to this as EoM and IBP redundancies.

First the EoM condition: Two operators are considered equivalent if they are
related by the EoM (�φ in this case) [14, 15].

�φ(x) = �
(
F−1

[
φ̂(p)

])
= F−1

[
−p2φ̂(p)

]
= F−1 [F [�φ(x)]] . (5.4)

For a massless on-shell scalar field, p2 = −m2 = 0 [11]. As such, the EoM
equivalence relation translates to an equivalence relation in p2 = 0 for momentum
polynomials, as stated in Henning et al. [15].

Second is the IBP condition; equivalence up to total derivative terms for which
∂µOµ = 0, which could occur from integration by parts, translates to equivalence
up tomomentum conservation

∑
i p

µ
i = 0, where the sign of themomenta is defined

such that this sum indeed equals 0 [11, 14]. On the operator level, if two operators
are related by a total derivative term, they are considered equivalent since the inte-
gral of the total derivative term is assumed to vanish [14]. Oµ can be rewritten as
a product Oµ = Oµ

0

∏
iOi where Oj is a local operator associated with a single

field, taking into account Oµ
0 can be separated by product rule in case it involves a

∂µ · · · term. Then (omitting the factors of 1/(2π)d/2);

∂µOµ = ∂µ

Oµ
0

∏
j

Oj


= ∂µF−1 [Oµ

0 ]
∏
j

F−1 [Oj ]

= ∂µ

∫ ∞

−∞
Ôµ

0 e
ip0xddp0

∏
j

∫ ∞

−∞
Ôje

ipjxddpj


(5.5)
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=

∫ ∞

−∞

Ôµ
0

∏
j

Ôj

 ∂µe
i
∑

k pkxddp0
∏
l

ddpl

=

∫ ∞

−∞

Ôµ
0

∏
j

Ôj

(∑
m

pmµ

)
ei

∑
k pkxddp0

∏
l

ddpl,

where the conservation of momentum
∑

i piµ = 0 is found, as stated in Henning et
al. [14] and Henning et al. [15]. As such the statement of operators being equivalent
up to total derivative terms translates to polynomials in momenta being equivalent
if they are related by momentum conservation.

Total derivative terms (IBP), and terms proportional to �φ (EoM) vanish [15].
As such operators up to these terms are equivalent. In momentum space this trans-
lates to equivalences up to momentum conservation and p2 = 0. As such, equiva-
lence relations can be proposed between operators O, and polynomials in momen-
tum space F ({pi}) [15]:

O1 ∼ O2 +�φO3 ⇒ F1({pi}) ∼ F2({pi}) + p2iF3({pi}),

O1 ∼ O2 + ∂µOµ
3 ⇒ F1({pi}) ∼ F2({pi}) +

(∑
i

pi

)
F3({pi}).

(5.6)

For further discussion the equivalence relations in momentum space are of in-
terest. Let C[pµ1 , . . . , p

µ
n] be a polynomial ring in momenta pi. Invoking EoM and

IBP conditions result in the polynomials being equivalent up to the generated ideal〈
p21, . . . , p

2
n,
∑n

i pi
〉
[15]. Therefore;

C [p1, . . . , pn] /

〈
p21, . . . , p

2
n,

n∑
i

pi

〉
, (5.7)

generates the polynomials in momentum space for massless scalar fields with the
equivalence relations as stated in equation 5.6.

5.1.3 I Gram Determinants

Before applying momentum conservation and the equation of motion, there is an-
other set of constraints which are put on momenta. Namely that in d-dimensions,
only at most dmomenta are linearly independent, which means that for nmomenta,
there exist scalars ai such that:

n∑
i=1

aip
µ
i = 0, (5.8)

is non trivial (not all ai are 0) [15, 17]. After all, in d-dimensions, there are at
most only so many momenta which can be independently expressed in terms of
each other. Once there is an additional momentum d+ 1, it is guaranteed that this
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momenta (or any of the momenta) has to be expressed in terms of the other ones
(another way of seeing it is by understanding there are at most d basis vectors). This
imposes additional constraints on momenta, and therefore onMandelstam variables
as well.

The way this manifests itself with Mandelstam variables is through the Gram
matrix [15].

Definition 5.1.1 (Horn and Johnson [17]). Let (V, f) be an inner product space
with 〈·, ·〉 as the inner product. For vectors v1, . . . , vn ∈ (V, f), the Gram matrix
is defined as,

G =


〈v1, v1〉 〈v1, v2〉 . . . 〈v1, vn〉
〈v2, v1〉 〈v2, v2〉 . . . 〈v2, vn〉

...
... . . . ...

〈vn, v1〉 〈vn, v2〉 . . . 〈vn, vn〉

 . (5.9)

With Mandelstam variables sij = piµp
µ
j , it takes the form,

Gs =

p1µp
µ
1 · · · p1µp

µ
n

... . . . ...
pnµp

µ
1 · · · pnµp

µ
n

 =

s11 · · · s1n
... . . . ...

sn1 · · · snn

 (5.10)

The following theorem from Horn and Johnson [17] lists useful properties of this
matrix:

Theorem 5.1.2 (Horn and Johnson [17]). Consider the gram matrix G for vectors
v1, . . . , vn ∈ (V, f) with inner product 〈·, ·〉. Then,

H1 G is Hermitian and positive semidefinite (x∗Gx ≥ 0 for x ∈ Cn),

H2 G is positive definite (x∗Gx > 0 for x ∈ Cn) ⇔ v1, . . . , vn are linearly inde-
pendent,

H3 rankG = dim(Span(v1, . . . , vn)).

The proof can be found in Horn and Johnson [17]. Since Gs is Hermitian, it is
rank principal, which means that it has a nonsingular (nonvanishing determinant)
r × r principal submatrix for rankG = r (a submatrix is principal if it is made
from a row index set and a column index set which are the same: G[α, α]) [17].
Since rankGs = dim(Span(pµ1 , . . . , p

µ
n)) by theorem 5.1.2, the rank of Gs is at

most d (recall there are only at most d linearly independent momenta), and any
d× d principal submatrix has a nonzero determinant [15, 17].

Theorem 5.1.3 (Horn and Johnson [17]). A positive semidefinite matrix A is posi-
tive definite ⇔ A is nonsingular (det(A) 6= 0).

36



5.1. Constraints of Momenta

As such, H2 in theorem 5.1.3 can be described as det(G) = 0 ⇔ v1, . . . , vn
are linearly independent. Therefore, for the Gram matrix of Mandelstam variables,
if n ≤ d, Gs is positive definite by theorem 5.1.2 if the momenta are all linearly
independent. When n > d, Gs is positive semidefinite by theorem 5.1.2, and by
theorem 5.1.3, it is also singular.

Observe that submatrices of Gs are also Gram matrices. This means that any
(d + 1)-square submatrix of Gs has vanishing determinant for n > d, since those
momenta are already linearly dependent [15]. Therefore, when n > d, extra con-
ditions on Mandelstam variables are imposed, and can be found by computing the
determinants of (d+1)× (d+1) submatrices ofGs, and equating them to 0 [15].
These conditions will be referred to with {∆} the set of these vanishing determi-
nants [15]. Then;

C[{pµi }]
O(d) ∼= C[{sij}]/〈{∆}〉, (5.11)

is an isomorphism by the fundamental theorems of invariant theory, which will not
be explored in this thesis [15]. Here the spacetime is assumed to be Euclidean such
that O(d) invariance (parity) invariance is imposed [15].

Note however, that the Gram determinant does not impose any new conditions
when n = d + 1. Recall that momentum conservation implies Xi =

∑
j sij = 0.

It is known that the Gram determinant is 0 due to the momenta being linearly de-
pendent. However, the conditions obtained are equivalent to momentum conserva-
tion [15]. This can be seen through operations which leave the determinant invari-
ant. The determinant of a matrix doesn’t change when a multiple of a row is added
to another [19]. Because of this,

det(Gs) =

∣∣∣∣∣∣∣∣∣
0 s12 . . . s1n
s12 0 . . . s2n
...

... . . . ...
s1n s2n . . . 0

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
X1 X2 . . . Xn

s12 0 . . . s2n
...

... . . . ...
s1n s2n . . . 0

∣∣∣∣∣∣∣∣∣
= X1M11 +X2M12 + · · ·+XnM1n

= 0,

(5.12)

where M1n are the minors of the elements g1n of Gs [19]. Momentum conserva-
tion already ensures that each Xi = 0, and therefore each minor M1k in principle
does not have to be 0, not imposing any additional conditions on Mandelstams in
general. As such, only when n > d + 1 will there be extra conditions put on the
Mandelstam variables due to the Gram determinant if momentum conservation is
considered [15].
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5.1.4 I Relating to Amplitudes & Lagrangians

The study of possibleMandelstam polynomials in momentum space is applicable to
building amplitudes. It won’t be explained rigorously here howmomentum pops up
in the amplitude from derivatives but a hand-wavy argument is presented instead. In
deriving the propagator between a scalar field and the derivative of the scalar field,
the momentum term which is a result of the Fourier transform is kept in the nu-
merator (follow the derivation of the Feynman propagator in Schwartz [24]). This
propagator then pops up in Wick contractions involving a derivative term when cal-
culating the LSZ-Reduction formula (resulting in the scattering amplitude). Where
the LSZ-formula forces external particles to be on-shell, propagators for external
particles get cancelled, with the piece of momentum surviving [24]. This results in
a momentum space Feynman rule of derivative coupling (See a follow-up example
in Schwartz [24] on derivative coupling) [15].

For a general operator On,k of n fields as seen in equation 5.3, the degree k
polynomial Fn,k({pi}), the form of which being a result of the derivative config-
uration, becomes the momentum space Feynman rule associated with this config-
uration [15]. This is a contact-term contribution to the tree level n-point ampli-
tude [15]. In general for the amplitude itself it means that for some n-point, the
contact term contributions consist of Fn,k differing in k [15].

Because of the constraints of momenta, some polynomial terms are equivalent
as discussed previously. Using l to denote only independent Feynman rules Fn,k

l ,
the n-point amplitude for real massless scalar fields can in general be made up of,

An({pi}) =
∑
k,l

clF
n,k
l + other non-contact terms, (5.13)

with cl the Wilson coefficients [15]. These are the possible terms an amplitude in
general can consist of. The final form of a particular amplitude depends on the op-
eratorsOn,k in the theory and whether the fields are indistinguishable. This picture
of building contact terms for amplitudes from momentum constraints is particu-
larly powerful since determining equivalence classes for Mandelstam polynomials
is much less cumbersome than for operators, and forcing amplitudes to be symmet-
ric under permutation of momenta is much simpler than taking all possible Wick
contractions when the fields are indistinguishable [15]. A contact contribution in
the amplitude can then be traced back to an operator. For instance an sa12s

b
13 con-

tribution corresponds to an,

(∂µ1 . . . ∂µa∂ν1 . . . ∂νbφ1)(∂
µ1 . . . ∂µaφ2)(∂

ν1 . . . ∂νbφ3)φ4 . . . (5.14)

operator term [15].
The use of Mandelstam invariants ensures Lorentz invariance [11, 15, 24].

However, another way to ensure this is through antisymmetric means with the ε-
tensor: εµ1...µnp

µ1
id

. . . pµd
id

. These terms have been omitted from the discussion by
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5.2. Generating Polynomials in Mandelstam Variables

imposing parity invariance, since the focus was put on polynomial terms in Man-
delstam invariants, but more information on them can be found in Henning et al.
[15].

As such, polynomial rings are useful machinery since they can be used as gen-
erators for polynomials with the desired equivalence classes. With the equivalence
classes determined through the constraints of momenta, the contact term contribu-
tions for the amplitude can be generated by such a polynomial ring.

5.2 I Generating Polynomials in Mandelstam Variables

5.2.1 I Distinguishable Fields

The criteria of Mandelstam invariants with momentum conservation was discussed
in sections 2.3.1 and 2.3.3, and are summarised as,

M1 sij = sji (Symmetric),

M2 sii = 0 (EoM),

M3 Xi =
∑

j sij = 0 (IBP / Momentum Conservation),

M4 {∆} for n > d+ 1 (Vanishing Gram determinants).

M1 and M2 ensure the indices {i, j} are elements of a set of unordered pairs of
cardinality

(
n
2

)
. These are generally seen as more trivial properties of Mandelstam

variables such that C[ρ1 ⊕ ρn−1 ⊕ ρn(n−3)/2] = C[{sij}] are generated by Man-
delstams satisfying M1 and M2 [15]. M3 and M4 are used to define equivalences
between polynomials.

Contact term contributions in Mandelstam invariants then live in a polynomial
ring modded out by the ideal generated by the momentum and Gram constraints
〈{Xk}, {∆}〉. The procedure is similar to the discussion in chapter 3, such that

C[{sij}]/ 〈{Xk}, {∆}〉 , (5.15)

generates polynomials up to equivalence in M3 and M4 with representants as per
theorem 3.2.5, and M1 and M2 embedded in choosing variables {sij} [15]. As
such it is only necessary to find the representants of each equivalence class to build
unique polynomials,

f ∈ C[{sij}] : f̄ = f + 〈{Xk}, {∆}〉 . (5.16)

This polynomial quotient ring holds for distinguishable fields, meaning that these
polynomials need not be symmetric in momentum, and thus under exchange of
indices of Mandelstam variables, for instance sij ↔ sik [14, 15].

Without Gram conditions M4 (n ≤ d+1), the problem translates to finding the
basis of the ρn(n−3)/2 representation such that,

C[ρn(n−3)/2] → C[{sij}]/ 〈{Xk}〉 , (5.17)

generates contact contributions [15].
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5.2.2 I Indistinguishable Fields

If the fields are indistinguishable, the Mandelstam polynomials should be symmet-
ric under index exchange [15]. In effect this means that a polynomial in n-momenta
should be invariant under group action of Sn on the indices ofMandelstam variables
(unordered pairs): σ ∈ Sn : σ{i, j} := {σ(1), σ(2)} [15]. The representants of,

(C[{sij}]/ 〈{Xk}, {∆}〉)Sn , (5.18)

generate the contact term contributions for an n-point amplitude with indistinguish-
able real massless scalar fields [15]. This has the added effect that it eliminates any
first-order terms in Mandelstams, since

∑
iXi =

∑
i

∑
j 6=i sij is invariant un-

der action of Sn yet it vanishes (trivial representation). Without Gram conditions
n ≤ d+ 1, C[ρn(n−3)/2]

Sn → (C[{sij}]/ 〈{Xk}〉)Sn , similarly to above.
These rings, and the ones for the distinguishable case, are Cohen-Macaulay,

for which the result is that any polynomial in this ring can be generated uniquely
by a finite set of generators [15]. This property, and its proof, will not further be
explored in this work but can be studied in Henning et al. [15].

5.2.3 I In Practice with n=4 Once More

The specific example of the 4-point amplitude was already studied in chapter 4 from
an understanding of the Mandelstam variables s, t, & u, without discussing Gram
constraints. Here the aim is to retrieve the same results from the more general con-
text of understanding the momentum constraints and Feynman rule contributions.

For n = 2, {sij} = {s12, s13, s14, s23, s24, s34} (the indices form a set of
unordered pairs of cardinality n(n− 1)/2), such that

C[s12, s13, s14, s23, s24, s34]/ 〈X1, X2, X3, X4, {∆}〉 , (5.19)

X1 = s12 + s13 + s14,

X2 = s12 + s23 + s24,

X3 = s13 + s23 + s34,

X4 = s14 + s24 + s34,

(5.20)

generates the contact contributions for distinguishable fields [15]. For indistin-
guishable particles each polynomial has to be symmetric under index exchange,
or equivalently, they should be invariant under Sn acting on the unordered pairs,
which is usually denoted as a superscript. Using the definition of the generated
ideal, definition 3.1.3,

f ∈ C[{sij}] : f̄ = f + (CX1 + CX2 + CX3 + CX4 + C{∆}) . (5.21)

What ends up happening is that the ideal kills 4 Mandelstams from the Xi contri-
butions since they are of degree 1, such that the resulting representants form the
ring;
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5.2. Generating Polynomials in Mandelstam Variables

C[s12, s13]/ 〈{∆}〉 = C[s, t]/ 〈{∆}〉 , (5.22)

where the familiar notation s12 = s & s13 = t is brought back with the choice
to not kill those two Mandelstams. In bringing back familiarity, s14 = u will be
written. In chapter 2 the equivalences of equation 2.32 were established,

s = s12 = s34,

t = s13 = s24,

u = s14 = s23,

u = −s− t,

(5.23)

revealing another reason why only two independent Mandelstams survive for 4-
point. In general, n(n − 3)/2 independent Mandelstams survive the momentum
constraints, living in the ρn(n−3)/2 representation as a result, from which rela-
tion 5.22 could have been constructed.

As for the {∆} contribution, this only becomes relevant at d = 2. At d = 3, the
Gram conditions are equivalent to imposing momentum conservation, and at d ≥ 4
all momenta could in principle be linearly independent, not imposing any general
Gram constraints as understood in section 5.1.3. If d = 2, any minor of the Gram
matrix, 

0 s12 s13 s14
s12 0 s23 s24
s13 s23 0 s34
s14 s24 s24 0

 , (5.24)

has to vanish. This turns out to result in a single condition s2t+ st2 = 0 [15]. As
such, for indistinguishable fields:

(C[s, t])Sn , d ≥ 3,(
C[s, t]/

〈
s2t+ t2s

〉)Sn
, d = 2,

(5.25)

generate possible contact terms in the amplitude. The first case has been studied
in chapter 4, which led to a polynomial ring C[a1, a2] in two symmetric invariants
a1 & a2. These two invariants then generate each element uniquely as per the ring
being Cohen-Macaulay [15]. For distinguishable fields, the symmetry requirement
is dropped.
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6.1 I Discussion

6.1.1 I The n(n− 3)/2 Representation

First the following research question is answered:

How does the ”Mandelstam representation” manifest from the properties of Man-
delstam variables?

In chapter 2 it was discussed how the n(n − 3)/2-dimensional (Mandelstam)
representation emerges in the decomposition of the permutation representation for
the symmetric group Sn acting on the set of unordered pairs [7]. When the symmet-
ric group Sn acts on a set of integers {1, . . . , n}, the permutation representation is
a decomposition into a 1-dimensional and an (n− 1)-dimensional irreducible rep-
resentations [25].

When instead acting on a set of unordered pairs of cardinality n(n−1)/2, those
two together emerge as the natural permutation representation in the decomposition
ρ1 ⊕ ρn−1 ⊕ ρn(n−3)/2 of this particular permutation representation [7, 15]. The
basis of ρ1⊕ρn−1 in this decomposition can be written with a single index such that
Xi =

∑
j 6=i e{i,j}, mimicking the behaviour of Sn acting on a set of n integers [15,

26]. Therefore, the inclusion of the ρn(n−3)/2 representation in the decomposition
is a result of acting on a set of unordered pairs.

The indices of Mandelstam variables can be described as a set of unordered
pairs due to their properties sij = sji and sii = 0, and thus transform accord-
ing to the permutation representation ρ1 ⊕ ρn−1 ⊕ ρn(n−3)/2 [15]. Momentum
conservation forces the basis of the natural permutation representation to vanish,
Xi =

∑
j 6=i sij = 0, such that it is killed off with the ρn(n−3)/2 representation

remaining [15]. This is how the n(n − 3)/2-dimensional representation emerges
from the properties of Mandelstam variables, answering the question.

That being said, it would be more appropriate to instead state that Mandelstam
variables of on-shell external particles, which abide by momentum conservation,
live in the n(n− 3)/2-dimensional representation [20].

This work however, has failed to define a general basis for the n(n − 3)/2-
dimensional representation, as was done for the natural permutation representation.
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Cheung [5] however, presents a basis for n(n − 3)/2 invariants using the general
expression for Mandelstam invariants sij... := −(pi + pj + . . . )2. This could be
investigated in the future to concretely determine a general basis for the n(n−3)/2
representation with unordered pairs.

Another area where this work falls short is in presenting the tensor product
between representations, and using it to find the decomposition of the product be-
tween two n(n− 3)/2-dimensional representations. Therefore, a follow up to this
work could be to describe the decompositions of

⊗p
k ρ

(k)
n(n−3)/2, which would reveal

the amount of invariants at order p in Mandelstams, similar to the classification of
BCJ factors as presented in Li, Roest, and Veldhuis [20]. The tensor product could
also be used to arrive at the ρn(n−3)/2 representation by taking the tensor product
between two ρn−1 representations, which describe conserved momenta [20]. The
reader is invited to consult Serre [25] and Li, Roest, and Veldhuis [20] on the tensor
product between representations.

6.1.2 I Contact Term Generation

Here, the following question will be answered:

How can factor rings be constructed such that they generate validMandelstam poly-
nomial terms in tree-level amplitudes for real on-shell massless scalar fields, and
which rings would they be?

The generation of contact terms in scattering amplitudes for massless on-shell
real scalar fields with polynomial rings was first introduced by treating 4-point in-
teractions in 4-dimensions in chapter 4, and then more generally for n-point inter-
actions in d-dimensions in chapter 5, with the machinery from chapter 3.

When taking the Fourier transform of a Lagrangian operator with n fields and
k derivatives, a polynomial in n momenta of degree k comes out in momentum
space. These polynomial terms form the Feynman rules associated with the deriva-
tive configuration, and become contact contributions in scattering amplitudes [15]
Therefore, redundancies in the Lagrangian in the form of integration by parts and
field redefinitions manifest themselves as equivalence relations in momentum con-
servation and p2 = 0 for contact term contributions [15]. Considered here are
polynomials in Mandelstam invariants [15].

Contact term polynomials then live in a polynomial ring in Mandelstam vari-
ables with coefficients in C modded out by an ideal generated by the constraints
of momenta, as remarked by Henriette Elvang [16]. This construction is a factor
ring which has equivalence classes defined by the momentum constraints as its el-
ements [15, 27]. sij = sji and sii = 0 are assumed in choosing variables such that
C[{sij}] = C[ρ1 ⊕ ρn−1 ⊕ ρn(n−3)/2] [15]. Then momentum conservation con-
ditions {Xk} and Gram conditions {∆} (Gram conditions are only relevant when
n > d+1) generate an ideal 〈{Xi}, {∆}〉 such that contact contributions live in ei-
ther C[{sij}]/ 〈{Xk}, {∆}〉 or (C[{sij}]/ 〈{Xk}, {∆}〉)Sn depending on whether
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the fields are distinguishable [15, 17]. Without Gram conditions, finding the rep-
resentants of these rings becomes a problem of finding the basis for the n(n− 3)-
dimensional representation to generate polynomials C[ρn(n−3)/2] with [15]. This
answers the research question.

In the translation from a ring in momenta to Lorentz invariant quantities, only
Mandelstam invariants were considered. This is a shortcoming since antisymmetric
terms εpi1 ,...,pid := εµi1

,...,µid
pµ1
i1

. . . pµd
id

are Lorentz invariant as well [15]. These
terms show up specifically when the polynomials are not required to be invariant
under parity [15]. It could be studied in future research how the antisymmetric
terms manifest themselves in the generation of contact contributions in scattering
amplitude.

In deriving these conclusions, Euclidean spacetime was considered, taking mo-
menta to be complex as in Henning et al. [15]. This seems to mostly be of relevance
for equation 5.11, a result of invariant theory with O(d) invariance [15]. It was not
studied whether this result holds when considering the Poincaré group, and whether
the story remains coherent [24]. This could be researched in the future to help so-
lidify these methods for other spacetime geometries.

This work comes short on studying the Cohen-Macaulay property of rings.
When a polynomial ring is Cohen-Macaulay, any element of the ring can uniquely
be generated by a finite set of generators, which guarantees that there is not some
other unknown polynomial term at some higher order [15]. Exploring this prop-
erty is particularly important when considering nonzero spin systems, since it is
not guaranteed that rings are Cohen-Macaulay in this case according to Henning
et al. [15]. As such, this work can be expanded upon by studying this property.

Lastly, for future research, the Gröbner basis can be studied, which is a way of
generating the same ideal with a different set of polynomial basis with the premise of
being less computationally intensive [14]. ReducedGröbner basis’ can be generated
using Buchberger’s algorithm, which was applied in the work of Beisert et al. [2]
for instance to compute matrix elements.

6.1.3 I Counting Independent Polynomial Terms

Lastly, the following research question was specifically formulated from the discus-
sion of 4-point scattering amplitudes for indistinguishable fields:

Why are there different amounts of independent terms at different orders in Man-
delstams for the 4-point contact contributions?

In chapter 4, it was found that the fundamental theorem of symmetric polyno-
mials can be used to generate any polynomial symmetric in Mandelstam variables
(s, t, u) from elementary symmetric polynomials e1 = s+t+u, e2 = st+su+tu,
and e3 = stu [6, 15]. Since contact contributions are required to be symmet-
ric for indistinguishable fields, they live in C[e1, e2, e3]/ 〈e1〉, with representants
C[e2, e3] [15]. Monomial terms are then combinations of e2 and e3, which at cer-
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tain orders can be arranged in multiple different ways as outlined in table 4.1. This
answers the research question.

A shortcoming of this work is that no method of calculating the number of inde-
pendent terms at eachMandelstam order was shown. It was mentioned that the Tay-
lor coefficients of the Hilbert and Molien series count independent monomials [14,
20]. Studying the Hilbert series would lift the restriction to 4-point as well, making
for a more general way of computing the number of independent monomials, since
no description of n-point monomial terms generated by symmetric generators was
presented in this thesis. Combining the machinery of polynomial rings with the
Hilbert series would be a more complete description in the study of generating and
counting contact polynomial terms in scattering amplitudes like in Henning et al.
[14, 15]

6.2 I Conclusion

In conclusion, contact polynomial terms in scattering amplitudes for massless on-
shell real scalar fields were studied, along with invariants and properties of the Sn
representations [n]⊕ [n− 1, 1]⊕ [n− 2, 2]. In particular, the research question,

How does the ”Mandelstam representation” manifest from the properties of Man-
delstam variables?

was answered by concluding that the inclusion of [n − 2, 2] in the decomposition
above is a result of the symmetric group acting on unordered pairs, with momen-
tum conservation killing off [n]⊕ [n− 1, 1] such that Mandelstam variables under
momentum conservation inevitably live in the [n− 2, 2] representation.

The question,

How can factor rings be constructed such that they generate validMandelstam poly-
nomial terms in tree-level amplitudes for real on-shell massless scalar fields, and
which rings would they be?

was answered by generating an ideal with momentum conservation and Gram con-
ditions, and having it mod out a polynomial ring generated byMandelstams without
momentum conservation living in [n]⊕ [n− 1, 1]⊕ [n− 2, 2] to describe n-point
interactions in d-dimensions. This would look like C[{sij}]/ 〈{Xk}, {∆}〉 with
{Xk} and {∆} momentum conservation and Gram constraints respectively, with
the added requirement of symmetry if fields are indistinguishable.

Lastly,

Why are there different amounts of independent terms at different orders in Man-
delstams for the 4-point contact contributions?
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was answered by finding different ways to combine elementary symmetric polyno-
mials in Mandelstam variables (s, t, u), which through the fundamental theorem of
symmetric polynomials generate the symmetric polynomials of C[s, t]Sn

The general basis for the [n−2, 2] representationwhen acting on unordered pairs
could be further investigated, and studies on using the tensor product between [n−
2, 2] representations to reveal the symmetric terms in higher order Mandelstams.

Furthermore, themachinery studied in this work should be tested for non-euclidean
spacetime, and antisymmetric terms should also be investigated. Moreover, the
Cohen-Macaulay property of rings would be worth studying to show that any ele-
ment of the ring can be generated by a finite set of generators. The Gröbner basis
would be worth investigating for computational applications.

Lastly, the material presented in this thesis should ideally be studied along-
side the Hilbert series to gain a more complete picture of generating contact term
polynomials and the number of independent monomials at each other for n-point
amplitudes in d-dimensions instead.
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