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Abstract

This integration project explores the viability of outsourcing model predictive con-
trol (MPC) to cloud-based services, focusing on privacy risks and mitigation strategies.
The study specifically examines a quadruple-tank system (QTS), a complex, multivari-
able physical process that poses significant challenges for real-time control systems. By
shifting the computational demands of MPC to the cloud, the research aims to harness
the extensive computational power available, while addressing the pivotal concern of data
confidentiality. The QTS and the MPC are simulated in a MATLAB environment. This
study places significant emphasis on the inference of key matrices which are pivotal to
the MPC framework applied to the quadruple-tank system. The conclusion indicates that
by outsourcing the computations of the MPC to the cloud, it is possible to derive certain
critical matrices from the data known by the cloud, which represent the physical system
and user preferences. Thereafter, two main cryptographic solutions, namely differential
privacy and homomorphic encryption, are investigated for their efficacy in ensuring data
privacy during cloud computation. Differential privacy is added to the system to prevent
this matrix inference. The report outlines the conceptual design and problem statement,
conducts a stakeholder analysis, and presents a comprehensive research framework lead-
ing to a detailed discussion of potential risks, encryption methodologies, and their practical
implementation.

Key words: Model predictive control, Cloud-based control, Quadruple-tank system, Pri-
vacy, Security, Encryption.
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1 Introduction
In recent times, a surge in connected devices getting smaller and more efficient can be seen.
This has led to a greater demand for cloud services. In these services, a powerful central
server stores and processes data for users. Cloud computing infrastructure investment accounts
for more than 60% of all IT infrastructure spending worldwide in 2023. This surge in cloud
investment is attributed to the flexibility and efficiency provided by cloud resources, which are
essential for technology decision-makers [1].

Model predictive controllers (MPCs) have a very demanding characteristic and would form
a perfect candidate to be outsourced. MPC stands as an effective strategy applied in practi-
cal settings across systems of diverse dimensions and configurations, even extending to cloud
platforms [2]. Whether it involves competitive contexts like power grid energy generation,
everyday domestic applications such as smart home heating control, or time-critical scenarios
like traffic management, the computations done by this controller can be very demanding for
computers.

When outsourcing the computations done by the MPC, information has to be sent to the
cloud and back. This process forms a privacy risk which needs to be overcome. The control
system must be accompanied by robust privacy assurances. It is crucial to have these protec-
tions to keep user information safe from unwanted access or possible leaks. In light of the
privacy risks associated with cloud-based computation, particularly in the context of MPC, this
research investigates two prominent encryption methodologies: differential privacy (DP) and
homomorphic encryption (HE) [3].

Differential privacy is a technique that allows researchers to publish statistical information
about a dataset without revealing any specific data about individuals. It works by adding a small
amount of random noise to the results of queries on the dataset. This ensures that removing
data from a single individual from the dataset does not significantly change the output of any
analysis, thus preserving the privacy of individuals within the dataset. The concept is especially
useful when dealing with large-scale data in MPC, where it is crucial to prevent any potential
for deducing individual data from a collection of statistics [4].

Homomorphic encryption is an encryption technique that permits computation on encrypted
data without decrypting it first. The result of such computation, when decrypted, is the same as
if it were carried out on the original data. This allows cloud-based MPC systems to process data
while maintaining its confidentiality, as the data remains encrypted throughout the computation
process [5].

The quadruple-tank system (QTS) is a classic example for evaluating non-linear dynamics
within multivariable processes [6]. Composed of interconnected tanks, the QTS is a labora-
tory setup that provides a flexible platform for examining multivariable interactions, non-linear
responses, saturation effects, and operational constraints [7]. The inherent complexity and ver-
satility of the QTS make it an ideal candidate for the application of model predictive control.
MPC’s ability to anticipate future events and take control actions aligns well with the sys-
tem’s characteristics, allowing for sophisticated management of the interdependent variables
and non-linear behaviours in this process.

The remainder of this integration project is structured to provide a comprehensive explo-
ration of cloud-based MPC systems and the encryption techniques employed to preserve data
privacy. Chapter 2 delves into the simulation of MPC on the QTS, providing system parameters,
control challenges, and the optimization problem. In Chapter 3, the results of the MATLAB file



Chapter 1 INTRODUCTION 3

running the MPC-controlled QTS are presented. Besides this, the matrices that can be inferred
are estimated. Finally, the encryption methods are briefly compared in this Chapter. In Chapter
4 the conclusions are drawn for the whole report and in Chapter 5 the discussion is presented
where a critical analysis is provided.

1.1 Conceptual Design
This research addresses the data security of a cloud-based MPC for a QTS. The research con-
sists of two phases. First, the MPC is implemented on the QTS, this process has been done
before in papers as [8] and [9]. After this, the privacy of the system including the MPC can be
analysed. These steps are necessary to make sure that the privacy risks regarding the inputs,
calculations in the cloud and outputs can be overcome, which can be assured by providing a
potential solution making use of differential privacy and homomorphic encryption as in [3].

1.1.1 System Description & Scope

This study examines the application of model predictive control for a quadruple-tank system
within a cloud computing framework. The QTS is a multivariable process with nonlinear dy-
namics, representing a considerable challenge for real-time control systems. MPC is particu-
larly suited to address these challenges, given its ability to forecast future system behaviours
and adjust control inputs for optimal performance. The conventional approach to MPC relies
on localized computational resources, which can be restrictive due to their inherent limitations
in processing power and scalability. By outsourcing the computational load to a cloud-based
infrastructure, the aim is to make use of the virtually unlimited computational resources that
the cloud can provide. Such an approach allows for a more robust and efficient processing of
the complex algorithms inherent in MPC, facilitating improved performance and scalability of
the control system.

The main focus of this research is on maintaining the confidentiality of the data during its
transit to and within the cloud environment. To this end, we explore two encryption method-
ologies that allow computational tasks to be performed on encrypted data. This ensures that
sensitive information with regards to the QTS remains secure, without revealing the details of
the operations being performed or the data itself to the cloud service provider. Within the scope
of this research, we will critically analyze and propose encryption techniques suitable for MPC
computations in the cloud. These techniques must secure data effectively without degrading the
accuracy of the control system. After the analysis, one of the techniques will be implemented
to secure privacy. The cost-effectiveness of the imposed solutions is left out of the scope as
well as other methodologies than DP and HE.

1.1.2 Problem Statement

The implementation of Model Predictive Control for systems such as the quadruple-tank system
traditionally relies on local computational resources. This approach necessitates the handling of
sensitive operational data, which poses a risk to the privacy and confidentiality of the data when
making use of cloud computing solutions. The exposure of such data during the computation
process is a significant privacy concern for entities that require confidentiality, particularly
when data is transmitted to external cloud servers where it could potentially be accessed or
compromised. This challenge is relevant and of high interest to the process control domain
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within industrial applications, where the need for computational power, but more importantly,
data privacy is of greatest importance.

1.1.3 Stakeholder Analysis

In the stakeholder analysis, the varying interests and degrees of influence among the parties
involved in the implementation of the cloud-based MPC system are precisely evaluated. Their
placement within figure 1 reflects the extent of their influence on the project and the corre-
sponding impact upon them.

Figure 1: Stakeholder Analysis

• Cloud Computing Operator: This stakeholder is in the leading position of the cloud-
based MPC system’s operation. As the owner of the computational environment, the
cloud computing operator’s role is integral and multifaceted. Their responsibilities ex-
tend beyond the provisioning of services, they are the guardians of data privacy, tasked
with implementing robust security measures to protect sensitive client information. Their
influential position in the network’s hierarchy stems from a deep-seated commitment to
privacy and security, aligning their interests closely with the success and integrity of the
system. As such, their influence is significant, and their impact is substantial, making
them a cornerstone of the research effort.

• Client: The client, as the end-user of the MPC system, has a great interest in the system’s
performance and security. The efficiency of the system and the protection of their data
directly influence their operational success. While their influence on the system’s overall
design and implementation may be moderate, their input is crucial for evaluating the
system’s success and ensuring that it meets user requirements and expectations. This
means that they are a critical voice in the stakeholder landscape, and their feedback is
instrumental in shaping the system’s evolution.

• Data Privacy & Compliance Officers: Entrusted with the oversight of data manage-
ment, these officers are the architects of privacy and guardians of regulatory compliance.
Their role is pivotal in steering the cloud-based environment towards adherence to data
protection laws and best practices. They command a substantial degree of influence by
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setting the standards and protocols for data handling, thereby ensuring that sensitive con-
trol data is managed with the utmost confidentiality. Their impact is both direct and
profound, as they play a key role in protecting the system against privacy breaches and
maintaining trust in the cloud-based MPC solution.

1.1.4 Research Objective

The overarching objective of this study is to investigate the privacy risks for the QTS, making
use of MPC within a cloud computing environment and provide a solution for any privacy risks.
This objective is specific since it focuses solely on the cloud-integrated MPC of a QTS and fo-
cuses specifically on two types of cryptographic solutions. It also certainly is measurable since
the leakage of information will be analysed. Based on earlier research, the objective of both
implementing MPC into the system and achieving the potential privacy risks can certainly be
achieved. As explained in the introduction the topic of the security of computational processes
is very relevant in today’s day and age. Finally, the research has a deadline on the 19th of
January 2024 so is time-bound.

1.1.5 Research Framework

The research framework is systematically organized into a coherent flow of stages, each build-
ing upon the knowledge and findings of the previous one. Initially, the study will focus on the
underlying theory necessary for understanding the complexities of the quadruple-tank system.
This will involve a detailed review of MATLAB as the chosen computational platform due to
its widespread use in the modelling and simulation of control systems. Thereafter, a compre-
hensive examination of the existing theories on model predictive control will be undertaken,
focusing on its application in control systems similar to the QTS.

Upon establishing the theoretical foundation, the research will progress to the practical
implementation of MPC on the QTS within a MATLAB environment. This will include the
development and refinement of MPC algorithms tailored to the QTS’s specifications. The per-
formance of these algorithms will then be rigorously tested and analyzed to ensure they meet
the control objectives effectively.

Subsequently, the research will identify cloud privacy risks relevant to the execution of
MPC in a cloud environment and based on the theory of matrix inference. This involves map-
ping the risks to the specific contexts of cloud-based operations and analysing how they may
impact the privacy and security of the control system’s data.

In the following stage, the research will tackle the core challenge of running cloud-based
MPC for the QTS while maintaining data privacy. This phase will explore the encryption
techniques that can be utilized to secure data as it is processed in the cloud, ensuring that the
control operations are private and the sensitive data remains confidential.

The last phase of the project will bring together the knowledge from both the study and the
hands-on work to thoroughly examine the results. This review will closely look at how well
the data protection methods worked, considering their ability to secure information while still
ensuring the cloud-based MPC system runs smoothly and accurately. The aim is to draw useful
conclusions and give practical advice for applying cloud-based MPC systems in the industrial
sector in the future.
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Figure 2: Research Framework

1.1.6 Research Questions

The research questions consist of one main question with multiple sub-questions to in the end
answer the main question.

Main question:
What are the privacy risks of outsourcing MPC to a cloud-based environment?

Sub-questions:

• What are the key control challenges and performance objectives in implementing MPC
for the quadruple-tank system in a cloud environment?

• What are the potential risks and vulnerabilities associated with cloud-based MPC in terms
of data privacy and security?

• What measures and protocols can be implemented to mitigate data privacy and security
risks in cloud-based MPC systems?

The subsequent table elucidates the tools and knowledge domains germane to each sub-
question:

Field Tools and Knowledge Areas
Control challenges Control theory, systems engineering, performance met-

rics, cloud computing architectures
Privacy risks Cybersecurity principles, risk analysis, cloud infrastruc-

ture, data encryption standards
Protecting methods Cryptographic techniques, privacy-preserving algo-

rithms, network security protocols, compliance standards

1.2 Related Research
The landscape of Model Predictive Control is being transformed by the integration of cloud-
based solutions, making rigorous exploration of data privacy methodologies needed. The initial
step of this research involves implementing MPC on the QTS, a process previously explored
in studies [8] and [9]. The next step in this integration project investigates the cryptographic
method of homomorphic encryption as outlined in [5], enabling secure computation on en-
crypted data, alongside the non-cryptographic approach of differential privacy, which ensures
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the confidentiality of individual records even when the overall data is analyzed collectively [10].
Although homomorphic encryption offers robust protection, it brings computational complex-
ity [5]. Differential privacy, conversely, adds noise to the data, trading off some accuracy for
privacy, to the standards of [4]. This research will critically compare these methods, evaluating
their implications on the privacy and performance of cloud-based MPC in the context of the
QTS. The evaluation will consider a range of criteria, such as the system’s ability to scale and
its processing efficiency, to determine how suitable these methods are for modern industrial
settings where maintaining privacy is crucial [3].

1.3 Model Predictive Control for Quadruple-Tank System

1.3.1 Quadruple-Tank System

The quadruple-tank system forms the foundation of this research and is visualised in figure
3. It is a type of apparatus commonly used in the field of control engineering for research
and education. It consists of four tanks, arranged in a certain configuration, with two tanks
placed higher and two tanks placed lower. The system is designed to study and demonstrate
various principles of control systems, such as the dynamics of liquid levels in interconnected
tanks, the behavior of multiple interacting control loops, and the effects of disturbances and
nonlinearities. The process is a physical process but for this research, it is made digital. The
metrics associated with the process are the same as in [11] and are as follows. The inputs for the
process are given by v1 and v2 (voltage fed to the pumps), while the outputs are represented
by y1 and y2 (voltage readings from level measurement devices converted to centimetres).
Through the application of mass balances and Bernoulli’s principle, the following equations
are deduced:

dh1

dt
= − a1

A1

√
2gh1 +

a3
A1

√
2gh3 +

γ1k1
A1

v1

dh2

dt
= − a2

A2

√
2gh2 +

a4
A2

√
2gh4 +

γ2k2
A2

v2

dh3

dt
= − a3

A3

√
2gh3 + (1− γ2)k2

v2
A3

dh4

dt
= − a4

A4

√
2gh4 + (1− γ1)k1

v1
A4

,

(1)

where:

Ai : cross-section of tank I;

ai : cross-section of the outlet hole;
hi : water level.

For pump i, the given voltage is denoted as vi while the associated flow is represented by
kivi. Based on the valve configurations before any experiment, parameters γ1 and γ2, both
within the interval (0, 1), are set. The flow directed to tank 1 is calculated as γ1k1v1 while the
flow leading to tank 4 can be expressed as (1 − γ1)k1v1, with similar expressions for tanks 2
and 3. The gravitational force is represented by the symbol g. The level indicators are defined
by kch1 and kch2. Below is a table detailing the lab process parameters:
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Parameter Measurement
A1, A3 [cm2] 28
A2, A4 [cm2] 32
a1, a3 [cm2] 0.071
a2, a4 [cm2] 0.057
kc [V/cm] 0.50
g [cm/s2] 981.

The process is examined across two specific operational stages, namely P− and P+. For P−,
the system behaves with a consistent phase pattern, while P+ sees the system with a varying
phase pattern. This has to do with the initial position of the valves of the system that distribute
the water supply after the pumps. Here are the corresponding parameter values for these stages:

Parameter Value at P− Value at P+

(h0
1, h

0
2) [cm] (12.4, 12.7) [cm] (12.6, 13.0)

(h0
3, h

0
4) [cm] (1.8, 1.4) [cm] (4.8, 4.9)

(v01, v
0
2) [V ] (3.00, 3.00) [V ] (3.15, 3.15)

(k1, k2) [cm3/V s] (3.33, 3.35) [cm3/V s] (3.14, 3.29)
(γ1, γ2) (0.70, 0.60) (0.43, 0.34)

Figure 3: Schematic Overview of the Quadruple-Tank System [11]

To use (1) in the MPC the non-linear equations should be linearized. First we introduce the
variables xi := hi − h0

i and ui := vi − v0i . Using the linearization method with the Jacobean
matrix we end up with the following state space equation:

dx

dt
=


− 1

T1
0 A3

A1T3
0

0 − 1
T2

0 A4

A2T4

0 0 − 1
T3

0

0 0 0 − 1
T4

x+


γ1k1
A1

0

0 γ2k2
A2

0 (1−γ2)k2
A3

(1−γ1)k1
A4

0

u, (2)
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y =

[
kc 0 0 0
0 kc 0 0

]
x, (3)

where c1 = T1k1kc/A1 and c2 = T2k2kc/A2, and the time constants are given by

Ti =
Ai

ai

√
2h0

i

g

, i = 1, . . . , 4. (4)

The first matrix in (2) is called matrix A. It represents how the system works over time
without any control inputs and is of size A ∈ Rn×n. The second matrix is matrix B. This
matrix represents the reaction of the system to certain control inputs. It is of size B ∈ Rn×m.
The matrix in (3) is matrix C. It maps the state vector into the output vector. It is of size
C ∈ Rp×n.

1.3.2 Model Predictive Control

Model predictive control has established itself as a robust and versatile control approach, find-
ing application in various systems, ranging from simple setups to intricate configurations. Its
adaptability has also seen its implementation on cloud platforms, highlighting the flexibility
and prowess of MPC in modern control scenarios [2].

The controller makes use of a linear or linearized model that predicts the system’s future
behaviour based on current states, disturbances, and control actions. At each iteration, MPC
works out the best control actions by solving an optimization problem, focusing on reducing a
set cost over a certain time horizon. This is visualized in figure 4.

Figure 4: Schematic Overview of how MPC Works [12]
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The red line represents the reference trajectory, and the orange line before the vertical axis
represents the measured output whereas the brownish line after the vertical axis represents the
predicted output based on the control inputs of the MPC. The blue and green lines represent the
past and predicted control inputs respectively. The MPC does these computations over a time
horizon N . This time horizon is vital for MPC. It sets the span the MPC system considers for
future actions. While a lengthier period might improve results, it can also make calculations
more complex. One of the main strengths of MPC is its capability of handling constraints. It
takes into account the system’s state and control limits when optimizing. This means that the
control actions the MPC recommends will always stay within the system’s set boundaries or
limits. With regards to the Quadruple-Tank System, this means that the MPC can for example
take the volumes of the tanks and the maximum capacity of the pumps into account. Finally,
there is a cost function. At each time step, MPC solves a constrained optimization problem
with a generalized criterion for designing linear multivariable control systems:

min
x,u

J(x, u) = xN
⊤PxN +

N−1∑
k=0

(xk
⊤Qxk + uk

⊤Ruk)

s.t. umin ≤ uk ≤ umax, k = 0, . . . , N − 1

ymin ≤ yk ≤ ymax, k = 1, . . . , N,

(5)

where x ∈ Rn and represents the current states of the system and u ∈ Rm which represents
the optimal control inputs over time generated by the MPC.

The cost function in MPC is structured to optimize system performance over a prediction
horizon N . This function can be broken down as follows:

• Prediction Horizon N : The prediction horizon, denoted by N , refers to the number
of future time steps over which the model predictive control algorithm forecasts the be-
haviour of the system being controlled. It represents the discrete period into the future
that the controller considers when optimizing the control inputs. The prediction horizon
in MPC is the time the controller looks ahead to make decisions. It uses this to predict
what will happen and to adjust the controls early to get the performance it wants. The
length of the prediction horizon is selected based on the dynamics of the system, com-
putational constraints, and the specific objectives of the control application. A longer
prediction horizon provides a more extensive future outlook, potentially leading to more
informed control decisions, but at the cost of increased computational demand.

• Matrix Q (State Weighting Matrix): This matrix assigns weights to the states in the cost
function, emphasizing the importance of accurately tracking the desired state. A higher
weight in Q for a particular state variable signifies a greater emphasis on minimizing the
deviation of that variable from its desired value. This matrix must be strictly positive and
is of size Q ∈ Rn×n.

• Matrix R (Control Weighting Matrix): R penalizes excessive control action, promot-
ing smoother and more gradual changes in control inputs. This helps in preventing ag-
gressive control actions that might be harmful to the system’s stability or operation. This
matrix is positive semi-definite.

• Matrix P (Terminal State Weighting Matrix): P is used in the final step of the pre-
diction horizon, providing a weight to the terminal state. It ensures that the end state of
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the prediction horizon aligns well with the long-term goals of the control strategy. This
matrix is positive semi-definite.

1.4 Cloud Inference
For this research, a couple of assumptions when it comes to what the cloud has access to are
made according to [13]. This is necessary to understand in what way the cloud can infer other
matrices of the physical system. Besides this, some other things about the values of certain
matrices and parameters are assumed.

• Matrices known by the Cloud: In this case, the assumption is made that only the ma-
trices H and F are known by the cloud. This situation is obtained by the cloud when the
formula (5) is reorganised to:

min
z

1

2
z⊤Hz + x⊤

0 Fz + x⊤
0 Y x0

s.t. Gz ≤ W +Ox0,
(6)

where

z =


u0

u1
...

uN−1


and

H := 2R̄ + 2S̄⊤Q̄S̄, (7)

F := 2(T̄⊤Q̄S̄)⊤, (8)

Y := 2Q̄+ 2T̄⊤Q̄T̄ . (9)

Matrices F⊤ and H are utilized within the cost function. Matrix F relates the predicted
states and inputs to the initial state, while matrix H , which is symmetric and positive
definite, encapsulates the quadratic nature of the cost function, ensuring the penalization
of deviations from the desired trajectory and excessive control effort. The careful cali-
bration of these matrices within the cost function is essential for the predictive capability
of the MPC, balancing the system’s performance with the economy of control actions
over the prediction horizon. These three matrices are built from the following matrices:

R̄ :=


R 0 · · · 0
0 R · · · 0
...

... . . . ...
0 0 · · · R

 ∈ RNm×Nm,
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S̄ :=


B 0 · · · 0
AB B · · · 0

...
... . . . ...

AN−1B AN−2B · · · B

 ∈ RNn×Nm,

Q̄ :=


Q 0 0 · · · 0
0 Q 0 · · · 0
...

... . . . ...
0 · · · 0 Q 0
0 0 · · · 0 P

 ∈ RNn×Nn

and finally the matrix T̄ described as:

T̄ :=


A
A2

...
AN

 ∈ RNn×n.

The last matrix matrix implemented on the diagonal of Q̄ is P since this matrix repre-
sents the terminal state. For R̄ a similar approach is taken. The matrices S̄ and T̄ are
constructed to predict future states and inputs over the prediction horizon.

• Stability Matrix A: Matrix A is assumed to be Schur stable because this property en-
sures that the system’s response to any initial condition will asymptotically decay to zero
without external input, which means the system is inherently stable. This is critical in
MPC.

• Prediction Horizon N : A large prediction horizon N is favourable because it allows
the control algorithm to consider more future states, leading to more informed decision-
making. Besides this by considering a longer sequence of future events, the controller can
optimize the control actions more effectively. This can lead to smoother control actions,
reduced control effort, and better overall system performance. Because of these reasons,
we assume that

N → ∞

.

With the assumptions in place, the focus is turned to the matrix Y , which is included in the
cost function (6). The matrix Y is constructed as follows:

Y =
N−1∑
i=0

(AT )iQAi + (AT )NPAN , (10)

where Q and P are matrices that weigh the importance of states and controls in the system,
and A represents how the system evolves over time. When looking ahead into the future,
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considering more and more time steps, the value of Y settles into a steady matrix called Ȳ ,
which has real numbers and is of size Ȳ ∈ Rn×n. This is captured by the following equation:

lim
N→∞

Y = Ȳ . (11)

Neither Y nor its steady-state Ȳ are known to the cloud initially. This forms the basis of
the theory of [13]. The theory states that when the assumptions mentioned earlier hold, and
the pair (A,B⊤Ȳ ) is observable the cloud can obtain the matrices A and B from the system
as well as the control weighing matrix R. Besides this, if the following set is a singleton, the
cloud infers the state weighing matrix Q and the terminal state weighing matrix P .

J =
{
X ∈ Rn×n | Q̂+X − A⊤XA ⪰ 0, P̂ +X ⪰ 0, XB = 0

}
(12)

Here Q̂ and P̂ are defined as

Q̂, P̂ ∈ Rn×n | Q̂ :=


Q̂ 0 · · · 0

0 Q̂ · · · 0
...

... . . . ...
0 0 · · · P̂

 and
[
S̄
T̄

]
Q̂S̄ =

1

2

[
H − 2R̄

F

] , (13)

where S̄, T̄ and R̄ are the estimated matrices.
If the set of all possible solutions for Q̂ and P̂ that satisfy the given conditions is a singleton,

it means that there is only one Q̂ and one P̂ that meet these requirements, and the cloud would
infer Q and P .

1.5 Encryption in Control Systems
In the era of interconnected control systems, the security of communication channels and the
privacy of data have become paramount. Traditional control systems operated in isolated envi-
ronments where security concerns were primarily focused on physical access. The transition to
digital and networked infrastructures has necessitated robust encryption mechanisms to prevent
unauthorized access and ensure the confidentiality and integrity of control signals and parame-
ters. This Chapter explores the role of encryption in control systems, particularly emphasising
differential privacy and homomorphic encryption as methods to enhance data security and pri-
vacy.

1.5.1 Differential Privacy

Differential privacy provides a framework for sharing information about a dataset by describing
the patterns of groups within the dataset while withholding information about individuals in the
dataset. In the context of control systems, differential privacy can be instrumental in protecting
the information of individual components or users within a networked system. The application
of differential privacy in control systems is a balancing act between data utility and privacy.
Techniques to achieve differential privacy, such as adding noise, some small disturbances, to
the aggregate data or using secure multi-party computation, have been widely discussed in the
literature [10], [14], [15]. This method is visualised in figure 5.
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Figure 5: Differential Privacy Mechanism [16]

Differential privacy employs noise addition to mask individual data entries, thus safeguard-
ing privacy while enabling the study of overall patterns. Among the noise types, Laplacian and
Gaussian are most prominent due to their distinct properties and the balance they offer between
privacy and data utility.

Laplacian noise is linked to a strict privacy standard known as ε-differential privacy. It
involves adding noise that diminishes quickly as it moves away from the centre, which means
it is sharply peaked at the mean. The intensity of Laplacian noise depends on a single privacy
parameter, ε, with lower values indicating higher privacy and more noise. In practice, this could
mean that individual data points may vary significantly due to the noise, potentially affecting
the precision of the data [17].

Gaussian noise is used when a slightly relaxed privacy standard, termed as (ε, δ)-differential
privacy, is acceptable. Gaussian noise, which forms a bell curve, gently tapers off and is less
intense at the edges. This results in a smoother noise addition, often causing less drastic changes
to the data. The privacy parameters ε and δ work together: ε dictates the overall strength of the
privacy, while δ allows for a tiny probability of the privacy being compromised [18].

In applying these noises to control systems, the choice between Laplacian and Gaussian
is between the desired privacy level versus the need to maintain the integrity of the system’s
functionality. Laplacian noise is the go-to for tighter privacy, while Gaussian is preferable
when a balance is needed between protecting information and retaining a high degree of data
usability.

1.5.2 Homomorphic Encryption

Homomorphic encryption stands out as a groundbreaking technology that enables computations
to be carried out on encrypted data without needing to decrypt it first. This form of encryption
is particularly beneficial for control systems that leverage cloud computing for data processing
and storage. Homomorphic encryption allows for the offloading of computation tasks to third-
party service providers without revealing the underlying sensitive data. Recent advancements in
lattice-based cryptography have brought practical implementations of homomorphic encryption
closer to reality, opening up new possibilities for secure control systems [19]–[21].

1.5.3 Challenges and Opportunities

The integration of these encryption technologies into control systems is not without challenges.
Differential privacy must be carefully tailored to the specific use case to maintain the system’s
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functionality, and homomorphic encryption often comes with significant computational over-
head. However, the opportunities they present for secure and private control systems are sub-
stantial. Ongoing research continues to refine these methods, making them more accessible and
efficient for real-world applications [15], [22], [23].
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2 Simulation
In this Chapter, we explore the implementation details of a MPC algorithm applied to a QTS
using MATLAB. This part is dedicated to elucidating the intricate workings of the MPC algo-
rithm within the context of a multi-input multi-output (MIMO) system, primarily focused on
regulating water levels in four interconnected tanks. MATLAB has been selected as the plat-
form of choice due to its comprehensive mathematical modelling capabilities and its integrated
environment, which facilitates a seamless transition from conceptual modelling to practical
simulation. The script features a MPC programmed by hand rather than using a black box to
visualise the process of the controller and get a better understanding of the process and what
information is sent to and received by the MPC. Additionally, MATLAB’s advanced visual-
ization tools play a crucial role in the analysis and interpretation of the system’s behaviour,
enabling a clear understanding of the control strategies’ impacts on the system dynamics. This
section aims to provide a detailed walkthrough of the MATLAB code, offering insights into the
practical aspects of implementing MPC in a complex MIMO system.

2.1 System Parameters & Initial Conditions
The parameters used in [11] are defined in the first section of the script. These parameters
entail the cross-sectional areas of the tanks and the holes at the bottom, which are pivotal
for determining the system’s hydrodynamic behaviour. Accurately capturing these dimensions
is essential for modelling the fluid dynamics within the tanks. Gravitational acceleration, a
fundamental constant, is specified to enable precise computation of water flow between the
upper and lower tanks influenced by gravity. This aspect is vital for simulating the realistic
behaviour of fluids within the tanks. Valve positions are described as dimensionless ratios,
playing a key role in controlling the flow between interconnected tanks. The chosen valve
positions of 0.43 and 0.34 make for the nonminimum-phase characteristics of the system, an
aspect critical for understanding and controlling its behaviour. The system’s equilibrium state
is established with pre-defined tank heights, input voltages, and charge carrier mobility. These
initial conditions are set to reflect a typical operational state of the system, providing a baseline
for analyzing the impact of various control strategies implemented via the MPC algorithm. The
initial deviation in height from the equilibrium is denoted as x0 and can be chosen manually as
long as they are within the constraints described later on.

2.2 Dense LQ
The parameters described earlier are included in the non-linear system dynamics. However, the
MPC takes a linear model of the form in (14).{

xk+1 = Axk +Buk

yk = Cxk

(14)

where y ∈ Rp and the matrices A, B and C are defined as in (2) and (3).
The state space representation is the linear form of the system dynamics and forms the

backbone of the control model for the QTS. This representation includes the time constants Ti,
the areas of the tanks Ai, the valve positions γ1 and γ2 and the electric field strength kc.



Chapter 2 SIMULATION 17

These equations describe how the system works. The first part is called matrix A. This
matrix represents the system dynamics, correlating the system’s current state to its next state. It
captures how the internal state variables interact with each other, defining the system’s inherent
behaviour. Matrix B connects the external inputs to the system’s state. It defines how control
inputs, in this case, voltage used by the pumps in the QTS, influence the state variables. This
matrix is crucial for understanding how external actions impact the system. The matrix C maps
the internal state of the system to the observable outputs. It relates the water levels in the tanks
to the output. Furthermore, it’s important to note that MPC requires a discretized model of the
system. While the QTS inherently operates in continuous time, the MPC algorithm works with
a discretized version of the state space model. This discretization is essential for the MPC’s
computational process, allowing it to predict future states and make control decisions at discrete
time intervals. This is done using the zero-order hold method.

2.3 Prediction Horizon & Cost Function Matrices in MPC
For the MPC, the prediction horizon plays a crucial role. It defines the future time frame
over which the controller predicts the system’s behaviour. A well-chosen horizon balances
computational complexity with prediction accuracy, ensuring effective control action over an
appropriate time scale. The prediction horizon is defined as N . The MPC algorithm employs a
cost function to optimize control actions. This function is influenced by matrices Q, R, and P .

2.4 Setup of Matrices for MPC Cost Function
In the development of the MPC algorithm, the setup of specific matrices is fundamental to the
formulation of the cost function. The MPC solves a cost function as in (5). The matrices Q,
R and P are used in these specific matrices. The optimization problem is rewritten in a dense
form in (6).

2.5 Constraint Formulation
Operational constraints are incorporated into the MPC formulation to ensure the system oper-
ates within safe and efficient bounds. These include input constraints, which limit the voltage
that can be applied to the pumps, and state constraints, which ensure the water levels in the
tanks remain within specified limits. This means that the cost function is subject to (15).{

umin ≤ u(t) ≤ umax

ymin ≤ y(t) ≤ ymax
(15)

The constraints are expressed mathematically using inequality expressions as the ’subject
to’ part of (6).

For the constraints on the inputs, the maximum and minimum values for the input have to be
set for both pumps. These values are then integrated in the matrices umax and umin where umax ∈
Rm and umin ∈ Rm. Using these matrices, the matrices for the input constraints following from
the ’subject to’ part of (6) can be constructed. This results in (16).
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

1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1
−1 0 · · · 0
0 −1 · · · 0
...

... . . . ...
0 0 · · · −1


z ≤



umax

umax
...

umax

−umin

−umin
...

−umin


. (16)

For the constraints on the outputs, first the maximum and minimum values for the outputs
need to be defined. These values are then again integrated in the matrices ymax and ymin where
ymax ∈ Rp and ymin ∈ Rp. Again, when using these matrices, the form of (17) is obtained when
using the general form.



CB 0 · · · 0
CAB CB · · · 0

...
... . . . ...

CAN−1B · · · CAB CB
−CB 0 · · · 0
−CAB −CB · · · 0

...
... . . . ...

−CAN−1B · · · −CAB −CB


z ≤



ymax

ymax
...

ymax

−ymin

−ymin
...

−ymin


−



CA
CA2

...
CAN

−CA
−CA2

...
−CAN


x0 (17)

2.6 Optimization Problem
At each sampling instance, the MPC solves a quadratic programming (QP) problem. The QP
problem aims to find the optimal sequence of control inputs z over the prediction horizon
N , that minimizes a cost function subject to the system dynamics and constraints. The cost
function in (5) is derived from the state and control input weighting matrices and includes a
quadratic term for control efforts and a linear term for state deviations. This function is solved
using the function quadprog. This function finds the optimal value for z for each iteration with
respect to the constraints.

2.7 Disturbance
The control system is designed to adjust to the impact of disturbances on the quadruple-tank
process. The disturbance matrix Ed is of the size Ed ∈ Rn×m. The control objective is to
counteract the process disturbance dk. This disturbance represents an external influence on the
system that decays exponentially with time. The system aims to be at rest, meaning that the
control strategy should effectively nullify the influence of this disturbance over time, stabilizing
the system and ensuring that the tanks return to their desired state without any lasting deviation
from the steady-state water levels.
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2.8 Estimate A, B & R

To infer the system matrices A, B, and R, the following steps are taken in the MATLAB
environment. Firstly, the relevant blocks from the transformed F and H matrices are extracted.
These blocks represent parts of the system’s dynamics over the prediction horizon. For F ,
the blocks F1,1 to F1,n+1, each corresponding to a set of state equations at a specific time step
within the prediction horizon, are extracted. Similarly, for H , the blocks H1,1 to Hn+1,1 are
obtained, each related to the input weighting matrices at each time step.

Using the extracted blocks, the matrix C is constructed from the first four blocks of F . This
matrix is used in the equation

A⊤ [
F1,1 F1,2 . . . F1,n

]
=

[
F1,2 F1,3 . . . F1,n+1

]
, (18)

which forms the basis for calculating the transpose of matrix A, A⊤. By solving this equation,
A⊤, and consequently A by transposition are obtained.

Next, matrix B is addressed by setting up the equation

B⊤C =
[
H⊤

2,1 H⊤
3,1 . . . H⊤

n+1,1

]
. (19)

Solving for B⊤ yields the transpose of the input matrix B, which is transposed back to find B.
Using the obtained matrix B, the pair Ȳ B can be obtained from A⊤

...
(A⊤)n+1

 Ȳ B =

 F1,1
...

F1,n+1

 . (20)

Finally, the matrix R can be inferred by the cloud by using the following formula:

R +B⊤Ȳ B = H1,1. (21)

Using the previously calculated B⊤ and pair Ȳ B, we resolve for R.
With these computations, the system matrices are effectively retrieved without direct knowl-

edge of the system’s internal structure, solely from the input-output data as encapsulated in the
F and H matrices.

2.9 Estimate Q & P

To estimate the system matrices Q and P , the MATLAB environment executes a series of steps.
Initially, the code constructs the matrices S̄ and T̄ by iterating over a prediction horizon N like
S̄ and T̄ were described before but this time the estimated values of A and B are used. The
estimation for the block-diagonal weighting matrix R is built as described earlier.

Now the matrices are substituted into (13) to obtain the matrix Q̂. The MATLAB code
further processes the solution to extract the matrix Q̂ by summing and averaging its block
components. The estimated matrix P̂ is retrieved from the last block of the solution.

A semidefinite program (SDP) is then formulated and solved using the CVX framework
to check for the feasibility and uniqueness of the estimated matrices. The problem constraints
are such that a symmetric matrix X must satisfy the inequalities for Q̂ and P̂ with respect to
the discretized system dynamics. The feasibility and the potential uniqueness are examined by
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finding the eigenvalues of the matrices involved in the inequalities. The script returns if it is
likely that (12) is a singleton.

Through these computations, the MATLAB code effectively estimates the system matrices
Q and P , which are essential for the design of optimal control strategies.

2.10 Noise
For the differential privacy, Gaussian noise is applied to the matrices H and F within a control
system framework since it keeps a higher level of accuracy in comparison to Laplacian noise.
In the context at hand, it is employed to safeguard the information about the system’s internal
components or states. The degree of privacy is modulated by two pivotal parameters: ϵ and
δ. The variable ϵ, known as the privacy budget, inversely controls the level of noise added, the
higher the value of ϵ, the smaller the amount of noise. This means that with a larger ϵ, individual
data points are less masked, which could reduce privacy. On the other hand, the parameter δ
allows for a small chance that privacy could be compromised. These two parameters, ϵ and δ are
crucial for calculating the standard deviation, σ, which determines the spread of the Gaussian
noise. The sensitivity of the function indicates the maximum possible change in the output for
any single change in the input. This sensitivity level is directly related to how much noise is
needed to maintain a certain level of privacy. Noise from a Gaussian distribution is created
using the ‘randn‘ function which create a correct sized matrix with random numbers and then
adjusted by the value of σ to match the chosen privacy settings. This noise is then added to
the matrices H and F . To make sure matrix H stays symmetrical, which is a requirement for
certain optimization calculations like quadratic programming, the altered H matrix is made
symmetrical by averaging it with its transpose. The equation for σ is given below as stated in
[15].

σ =

√
2 · log

(
1.25

δ

)
· sensitivity

ϵ
(22)
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3 Results

3.1 Numerical Setup
In this section, the numerical setup foundational to the MPC analysis for the QTS are presented.
Essential to the efficacy of the MPC framework is the precise definition and calibration of
various parameters. This section details these values and the rationale behind their selection,
laying the groundwork for the subsequent analysis of the MPC’s performance.

3.1.1 Sample Time

Upon detailed analysis of the quadruple tank system’s characteristics and the control objectives,
a sample time of Ts = 2 has been determined to be the most suitable for discretizing the system.
The natural response time of the tank levels to control inputs is relatively slow, which is typical
for fluid dynamics systems where changes occur over several seconds or minutes. This delay
within the system dynamics allows for a sample time that is sufficiently long to capture the
critical dynamics without the need for high-frequency sampling that could result in excessive
computational load. Besides this, the control strategy aims to balance responsiveness with
stability. A 2-second sample time provides a good compromise, offering timely updates to the
controller to react to disturbances, while also allowing for a manageable computational load.
This ensures that the control algorithm can be executed within the time constraints, maintaining
the real-time requirements of the system.

3.1.2 Prediction Horizon

In the development of the MPC framework for the QTS, careful consideration was given to the
selection of the prediction horizon. After a thorough analysis of the system’s dynamics and
response characteristics, the prediction horizon was set to N = 20. This duration was chosen
based on several key factors:

• System Dynamics: The QTS exhibits certain time-dependent behaviours and response
characteristics that require a sufficient window of time to be accurately captured and con-
trolled. A 20-second horizon provides a comprehensive view of the response to various
control actions, ensuring that the MPC can effectively anticipate and mitigate fluctua-
tions.

• Control Objective: The primary aim of the MPC in this context is to maintain stability
and achieve desired operational targets within the QTS. A 20-second horizon aligns well
with these objectives, offering an optimal balance between short-term reactivity and long-
term planning.

• Computational Feasibility: While a longer prediction horizon can potentially lead to
more informed control decisions, it also increases computational complexity. The 20-
second horizon represents a practical compromise, capturing essential dynamics without
imposing excessive computational demands on the system.

For certain analyses this value can still be changed, however for the standard model the
prediction horizon is set to N = 20.
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3.1.3 Cost Matrices

In the model predictive control framework applied to the quadruple tank system, the selec-
tion of the cost matrices Q, R and P is paramount to achieving the desired balance between
state regulation and control effort. The chosen values for these matrices have been carefully
considered to align with the operational objectives and constraints of the system.

• Q : This matrix has been determined to ensure that the system states are maintained
within a tightly controlled range and is set to Q = 2I4. This weighting, which is twice
that of a standard identity matrix, reflects the system’s sensitivity to deviations from the
desired states. Due to the coupling between the tanks in the quadruple tank system, an
increased penalty for state deviations is crucial. This increased penalisation enforces
a stricter system response to any deviations from the desired state, thereby securing a
significant degree of accuracy in maintaining the desired tank levels.

• R : The control effort matrix R = I2 represents a balanced approach, penalising ex-
cessive control input while still allowing for the necessary adjustments to be made by
the actuators. This matrix was chosen to reflect a linear relationship between control
effort and associated costs. The identity matrix indicates that the effort of each actuator
is equally weighted, which is appropriate given the similar roles and influence on system
behaviour.

• P : Lastly, the terminal cost matrix P = 04 is indicative of the emphasis on the state
trajectory over the prediction horizon rather than the terminal state. This approach is
justified by the system’s design for steady-state operation, negating the necessity for a
terminal state penalty.

3.1.4 Constraints

In the MPC framework for the QTS, input and output constraints play an important role in
ensuring the feasibility of the system operation. For the input, the two pumps are constrained
at both the upper and lower levels. The constraints are determined so that the actuators do not
receive unrealistically high or low voltage inputs to solve sudden changes in the system. This
reason is why the constraints are set to deviate 1 volt from the voltage applied at steady-state.
This gives the following matrices for umax and umin:

umax =

[
1
1

]
,

umin =

[
−1
−1

]
.

The output constraints are necessary to keep the water levels within the limits of the tanks
and make sure that the system does not allow the levels to deviate too much from the steady-
state levels. Because of this reason, the constraints are set so that the water levels in the output
tanks (which are tanks 1 and 2) cannot deviate more than 1 centimetre from their steady-state
values. This results in the following matrices for ymax and ymin:

ymax :=

[
1
1

]
,
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ymin :=

[
−1
−1

]
.

3.1.5 Disturbance

As described earlier, the control objective is to react to and overcome the effects of the distur-
bance dk. In this case dk = [2 − 3]⊤(1/2)k for k ≥ 12. The disturbance matrix Ed should
be constructed so that the system is optimally tested. This is for instance done by suddenly
creating a surplus of water in the left side tanks and a shortage of water in the right side tanks.
However, the sudden input should not conflict with the constraints. This results in the following
matrix:

Ed =


0.1 −0.1
−0.1 0.1
0.1 −0.1
−0.1 0.1

 .

3.2 Plots
Using the numerical setup described above, the system is simulated over time. This is done in
MATLAB over a period of 200 seconds. The system is set to start under steady-state conditions.
Both the water levels in all four tanks in centimeters as well as the voltage applied to the two
pumps are plotted over this period. This results in the plots in figure 6 & 7.

Figure 6: Water Levels over Time
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Figure 7: Applied Voltages to Pumps over Time

3.3 Estimations of Matrices A, B & R

The estimations of the system matrices A, B, and R have been conducted following the method-
ologies outlined in Chapter 2.8. To assess the performance and robustness of the estimations,
we considered various prediction horizons. Specifically, we evaluated the estimations of the
three matrices for prediction horizons N = 5, N = 10, N = 20, N = 30, N = 40 and
N = 100. The outcomes are compared by using the Frobenius norm per estimated matrix per
prediction horizon. The Frobenius norm, often used to measure the error of a matrix, is defined
as the square root of the sum of the absolute squares of its elements. For an m × n matrix X ,
with elements xij , the Frobenius norm ||X||F is expressed by the equation:

||X||F =

√√√√ m∑
i=1

n∑
j=1

|xij|2 (23)

This norm provides a scalar measure of the magnitude of a matrix, which in the context
of estimation errors, quantifies how much an estimated matrix deviates from the true matrix.
The smaller the Frobenius norm, the closer the estimated matrix is to the true matrix, implying
higher estimation accuracy. The outcomes for the matrices A, B, and R are given in the table
below.

N A B R

5 11.214 1.7454 8.8326e-04
10 1.3466 0.2178 1.7144e-04
20 0.3188 0.0579 6.8554e-06
30 0.1562 0.0337 1.7833e-06
40 0.1017 0.0248 1.1150e-06
100 0.0315 0.0141 7.4775e-08

Table 2: Frobenius Norm of the Error for Matrices A, B and R

The Frobenius norm results presented in Table 2 provide insightful data on the estimation
accuracy for the matrices A, B, and R of the quadruple-tank system as a function of the sample
size N . As N increases, we observe a clear trend of diminishing error norms, indicative of en-
hanced estimation precision. Particularly, for matrix A, the decrease in error norm from N = 5
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to N = 100 is substantial, suggesting that a longer prediction horizon significantly improves
the fidelity of the system model. Matrices B and R exhibit a similar trend, however, with a less
pronounced decrease, which may be due to their respective roles and sensitivity in the MPC
algorithm. Based on the assumptions delineated in Section 1.4, it is inferred that the prediction
horizon asymptotically approaches infinity. This implies that, under these conditions, the ac-
curacy of estimations is expected to surpass those obtained with a finite prediction horizon of
N = 100.

The above estimations provide valuable insights into the cloud’s ability to estimate the
systems matrices when matrix H and F are known by the cloud.

3.4 Estimations of Matrices Q & P

Through the computational experiments conducted, it has become evident that the characteri-
sation of the set J , as defined by the conditions previously outlined, exhibits non-singularity
when the estimated matrices A, B, and R are used. This results in the computational results
not being aligned with the expectations.

When looking closely at the systems response to using the matrices A, B and R, it becomes
clear that the set J in (12) does not become a singleton. This means that Q and P cannot be
inferred using the current methods and system settings. Since the set is not a singleton, there
are several possible answers, and finding one unique pair for the matrices Q and P becomes
impossible.

The implications of these results are twofold. On the one hand, they highlight the sensitivity
of the system to the accuracy of the underlying matrices. On the other hand, they unveil the
complexity of ensuring the singularity of the set J , which is a precondition for finding Q and
P . Future investigations are necessitated to unravel the factors contributing to this phenomenon
and to devise strategies that can guarantee the singularity of the set, thereby obtaining matrices
Q and P .

3.5 Estimation of Matrices A, B & R with noise
Noise is added as described in Chapter 2.10 with the values ϵ = 10, δ = 0.5 and sensitivity
set to 1. The noise is randomly added so no simulation will return the same figure. Below a
figure for N = 20 is provided with a longer simulation time of 400 seconds to visualise that
the system never reaches equilibrium due to the noise.

The figure shows that with noise, the states do not stay within the boundaries which are
removed for this case. With the constraints the problem is infeasible. The estimations of the
matrices A, B & R are revisited after adding noise to the matrices H and F as described in
Chapter 2.10. However, this time the matrices H and F do not represent their true matrices
because of the noise. Because of this, the Frobenius norm for the error for these matrices is
also provided. The same prediction horizons are used and depicted in the table below.

As seen in the table, the matrices A, B and R are not properly estimated anymore. This is
mainly because the matrices H and F are also not representing the system accurately.
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Figure 8: Water Levels with Noise over Time

N A B R H F
5 2.8503 0.4021 0.6982 1.0295 0.7556

10 2.2896 0.6175 0.2936 2.0151 1.1176
20 2.4216 0.8124 2.9052 3.9045 1.6360
30 2.0428 0.3845 0.1484 5.6700 2.2126
40 2.8211 0.6490 12.3712 7.6184 2.7050

100 2.1487 0.5628 0.2873 19.0710 3.9386

Table 3: Frobenius Norm of the Error for Matrices A, B, R, H and F

3.6 Privacy Preservation in Control Systems
The two main ways to keep control systems private and secure are using differential privacy and
homomorphic encryption. After looking into both, homomorphic encryption is a better choice
for this case, even though the implementation of such encryption is not possible in MATLAB.

Differential privacy works by adding a bit of randomness to the data. This helps to hide the
details about individuals in the data. But this can also make the data less accurate, which would
not be favourable for control systems.

Homomorphic encryption is like locking data in a safe and still being able to use it without
unlocking the safe. This method keeps data secure, even when it is being used or processed.
It does not change or add anything to the data, so the results are precise. This accuracy is
very important for control systems that need exact information to work properly. For the case
of the quadruple-tank system, it would be of high importance to have the precise results back
from the MPC because the optimal control inputs are desired. One big problem with homo-
morphic encryption is that it needs relatively much computing power when compared to dif-
ferential privacy. Besides this, homomorphic encryption requires some special programming
that MATLAB does not have. MATLAB is not set up to handle the complex math needed for
homomorphic encryption.
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4 Conclusion

4.1 Comprehensive Summary of Research
The research project ”Outsourced Private Model Predictive Control” primarily revolved around
the development of a sophisticated MATLAB code designed to facilitate the outsourcing of
model predictive control to cloud services. This coding effort was directed towards creating a
simulation environment for a quadruple-tank system that could effectively simulate the physical
system and shed light on the possible privacy issues that come with outsourcing a MPC. The
core of the research entailed the construction and refinement of this MATLAB code, ensuring
its capability to simulate the QTS controlled by a MPC. The physical system has been simulated
realistically and with a working MPC that controls the system effectively.

Following the development of the MATLAB framework, the research delved into the infer-
ence of data by the cloud. The matrices A, B and R were obtained by cloud which violates the
privacy of the system. The matrices Q and P could not be inferred because the cloud could not
obtain unique solutions for the matrices.

Finally, two pivotal cryptographic methods were examined to overcome privacy breaches:
differential privacy and homomorphic encryption. The primary objective was to assess their
applicability and efficiency in protecting data privacy within the cloud-computing environment
of MPC. Differential privacy was explored for its potential to add statistical noise to data,
thereby safeguarding sensitive information. The precision of this method turned out to be
unsatisfactory not returning accurate system inputs while the data its privacy was maintained
better than before as can be seen in Chapter 3.5. Homomorphic encryption was investigated
for its ability to perform computations on encrypted data only in a theoretical way because of
the limitations of implementing this method in MATLAB. In theory, the homomorphic method
should provide a better solution to the problem.

4.2 Impact and Significance of Findings
The research findings on the outsourcing of MPC to cloud services have significant implica-
tions for the field of industrial engineering and cloud-based MPC systems. The simulation of
how certain data can be obtained by only sending little pieces of data, in a MATLAB-based
simulation environment paves the way for enhanced data security in industrial control systems.
This breakthrough is particularly vital in today’s era, where the integration of cloud computing
with industrial processes is becoming increasingly relevant. The findings provide a valuable
framework for industries to leverage cloud computing while ensuring data privacy, potentially
revolutionizing the way industrial control systems are managed and operated. The research
thus marks a significant step forward in balancing operational efficiency with stringent security
measures in cloud-based industrial environments.

4.3 Contributions to the Field
This research significantly advances the understanding of data privacy in cloud-based MPC sys-
tems, particularly through the MATLAB simulation of a quadruple-tank system. By addressing
potential privacy breaches, such as the inference of matrices A, B, and R by the cloud, this
work highlights crucial security considerations in cloud computing for industrial applications.
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This focus on the practical aspects of data privacy in a real-world physical system simulation
enriches the existing body of knowledge, offering valuable insights for the secure integration
of cloud technology in control systems.

5 Discussion

5.1 Critical Analysis of Findings
The research findings from the MATLAB simulation of the quadruple-tank system offer several
strengths, notable weaknesses, and some unexpected results that can lead to further discussion.

5.1.1 Strengths

The main strength of this study lies in its rigorous approach to simulating a complex physical
system within a MATLAB environment. The use of a well-established computational platform
provided a robust foundation for accurate system modelling and analysis. Additionally, the
discussion of potential privacy breaches, specifically regarding the inference of matrices A, B,
and R, highlights the study’s comprehensive consideration of privacy issues within cloud-based
MPC systems.

5.1.2 Weaknesses

The integration of differential privacy into model predictive control systems presents a unique
set of challenges that can significantly affect the performance and optimality of the control
strategy. Differential privacy, by design, introduces noise into the system. However, this added
noise can have adverse effects on the predictive accuracy of the MPC, as the controller relies
on precise predictions of future system states to calculate optimal control actions.

The essence of MPC is to optimize control inputs over a defined horizon based on accurate
model predictions. When differential privacy is applied, the noise introduced into the system’s
data can lead to inaccurate state estimates and predictions. Consequently, the MPC may com-
pute suboptimal control actions that deviate from the true optimal path. The magnitude of this
deviation is directly proportional to the intensity of the noise: higher levels of privacy (lower
values of the privacy budget ϵ) result in greater noise and hence, larger deviations from the
optimal control trajectory.

Besides these two points, the problem automatically becomes infeasible when the noise is
added. This is because the water levels in tanks 1 and 2 deviate more than 1 centimetre from
the steady-state levels. Because of this, the constraints are temporarily removed and are not
maintained as described earlier.

Another one of the limitations of the current study is the lack of empirical testing of the
cryptographic method of homomorphic encryption. Although this method was mentioned and
its potential impact discussed, empirical evidence to support the theoretical findings would
strengthen the study’s conclusions.

5.1.3 Unexpected Results

Contrary to expectations, the study encountered difficulties in accurately estimating the matri-
ces Q and P for all prediction horizons. This was an unexpected outcome, as it was initially
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hypothesized that the simulation would yield these matrices with more precision across varying
values of N . The root of this challenge was traced back to the use of estimated values within the
MATLAB simulation, which did not maintain consistent accuracy for all N . The discrepancy
raises questions about the sensitivity of the MPC algorithm to the precision of computed val-
ues. It suggests that the algorithm’s robustness may be not fully accounted for in the simulation.
This finding points to further investigation into the stability of the MPC algorithm’s parameters
and their influence on the system’s predictive accuracy. Besides this, the set provided in (12)
turned out to be unable to find a unique solution for the matrices Q and P even when using the
true values for the matrices required in the estimation because of the lack of singularity.

5.1.4 Implications of the Analysis

The critical analysis of these findings underscores the necessity for a careful and balanced
approach to cloud-based MPC system design. It emphasizes the importance of considering
the trade-offs between computational feasibility and privacy, as well as the need for rigorous
testing in conditions that closely mimic the complexities of real-world operations.

5.2 Limitations and Challenges
Throughout this research, several limitations and challenges were encountered, which are im-
portant to acknowledge as they provide context for the findings and suggest directions for future
work.

Firstly, the simulation of the quadruple-tank system within a MATLAB environment, while
robust, may not fully encapsulate the complexities and unpredictable nature of real-world phys-
ical systems. An example of this is the fact that the system is discretized. The simplifications
required for computational modelling can lead to discrepancies between the simulated and ac-
tual systems. This represents a limitation in terms of the external validity and generalizability
of the research findings.

Another challenge was the theoretical nature of the discussion surrounding the crypto-
graphic methods of differential privacy and homomorphic encryption. Without empirical test-
ing and validation of the homomorphic encryption within the QTS context, the conclusions
drawn about its efficacy and practicality remain speculative. Future research should aim to
implement this cryptographic technique in a practical setting to evaluate its real-world applica-
bility.

Additionally, a notable challenge faced during the research was the substantial amount of
time required to build the simulation model. Despite prior experience with MATLAB, the
complexity and the iterative nature of developing an accurate and reliable simulation for the
QTS extended beyond initial time estimates. The process of translating the physical system
into a computational model involved numerous adjustments and refinements to ensure that the
simulation accurately reflected the dynamics of the QTS controlled by a MPC.

Each of these limitations and challenges points to the need for continued research in the
field, particularly with a focus on practical implementation and empirical testing to validate the
theoretical models and simulations presented in this study.
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5.3 Future Research Opportunities
The developed MATLAB model for the quadruple-tank system serves as a robust platform for
future research, particularly in the domain of data privacy within cloud-based model predictive
control systems. A significant opportunity for subsequent studies is to utilize the model to
investigate how the knowledge of certain matrices could potentially lead to the inference of
other system matrices.

Another primary opportunity involves the empirical testing of the homomorphic encryption,
within the quadruple-tank system environment. Real-world implementation and testing would
provide valuable data on its practicality and effectiveness in ensuring data privacy in cloud-
based MPC systems.

Moreover, exploring alternative methods for securing data privacy, beyond the scope of
differential privacy and homomorphic encryption, could yield novel solutions to the privacy
concerns in cloud-based MPC. This could include investigating newer cryptographic techniques
or developing proprietary methods tailored to the specific needs of industrial control systems.

5.4 Practical Implications and Industrial Applications
The development of a MATLAB model for simulating the quadruple-tank system has several
immediate practical implications and potential applications within the field of industrial en-
gineering, particularly in the design and operation of cloud-based model predictive control
systems.

The insights gained from this research regarding the potential privacy breaches, such as the
inference of matrices A, B, and R, are crucial for enhancing the security protocols of cloud-
based MPC systems. Industries employing cloud-based MPC can use these findings as an
example to eventually implement more robust privacy measures, ensuring that sensitive control
system data remains protected against unauthorized access and inference attacks.
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Appendices

A MATLAB Script

clear; clc;

%% Parameters

% Constants and Parameters
Area = [28 32 28 32]; % Area of the

tanks in cmˆ2
a = [0.071 0.057 0.071 0.057]; % Area of the

holes at the bottom of each tank in cmˆ2
g = 981; % Gravitational

acceleration in cm/sˆ2
gamma = [0.43 0.34]; % Valve positions,

dimensionless (ratio)
kc = 0.5; % Gain factor in V

/cm
k = [3.14 3.29]; % Pump constants

in cmˆ3/V*s

% Initial state
h0 = [12.6; 13; 4.8; 4.9]; % Initial height

in cm
x0 = [0; 0; 0; 0]; % Initial x

%% State Space Equations

% State-Space Equations
T1 = 63; % Time constant

for tank 1 in s
T2 = 91; % Time constant

for tank 2 in s
T3 = 39; % Time constant

for tank 3 in s
T4 = 56; % Time constant

for tank 4 in s

% Continuous-time system matrices
A = [-1/T1 0 Area(3)/(Area(1)*T3) 0; % System matrix A

in continuous time
0 -1/T2 0 Area(4)/(Area(2)*T4);
0 0 -1/T3 0;
0 0 0 -1/T4];
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B = [(gamma(1)*k(1))/Area(1) 0; % Input matrix B
in continuous time

0 (gamma(2)*k(2))/Area(2);
0 ((1-gamma(2))*k(2))/Area(3);
((1-gamma(1))*k(1))/Area(4) 0];

C = [kc 0 0 0; % Output matrix C
in continuous time

0 kc 0 0];

D = zeros(2,2);

% Continuous-time state-space system
sys_ct = ss(A, B, C, D); % Creating a

continuous-time state-space object

% Discretize system
Ts = 2; % Sample time in s
sys_dt = c2d(sys_ct, Ts, 'zoh'); % Discretizing the

system with zero-order hold method

% Extracting discrete-time matrices
Ad = sys_dt.A; % System matrix A

in discrete time
Bd = sys_dt.B; % Input matrix B

in discrete time
Cd = sys_dt.C; % Output matrix C

in discrete time

% Assuming the disturbance affects tanks 1 and 2
Ed = [0.1 -0.1; % Disturbance

matrix E
-0.1 0.1;
0.1 -0.1;
-0.1 0.1];

%% Setup MPC

% Define the prediction horizon and control horizon
N = 20; % Prediction horizon

% Get number of states and inputs
n = size(Ad,1); % Number of states
m = size(Bd,2); % Number of inputs
p = size(Cd,1); % Number of outputs
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% Create Q, R and P matrix
Q = diag([2, 2, 2, 2]); % State weighting

matrix
R = diag([1, 1]); % Control

weighting matrix
P = diag([0, 0, 0, 0]); % Terminal state

weighting matrix

%% Setup Matrices

% Initialize S and T matrices
S_bar = zeros(N*n, m*N);
T_bar = zeros(N*n, n);

% Fill S and T matrices
for i = 1:N

% Build S bar matrix block row
for j = 1:i

S_bar((i-1)*n+1:i*n, (j-1)*m+1:j*m) = Adˆ(i-j)*Bd;
end
% Build T bar matrix
T_bar((i-1)*n+1:i*n, :) = Adˆ(i-1);

end

% Create a cell array with N-1 Q matrices
Q_cells = repmat({Q}, 1, N-1);

% Add the P matrix as the last element in the cell array
Q_cells{end+1} = P;

% Create Q bar and R bar
Q_bar = blkdiag(Q_cells{:});
R_bar = blkdiag(kron(eye(N), R));

% Create H, F and Y matrices
H = (R_bar + S_bar'*Q_bar'*S_bar);
F_trans = T_bar'*Q_bar*S_bar;
Y = (Q + T_bar'*Q_bar*T_bar);

%% Constraints

% Input constraints
u_min = [-1; -1];
u_max = [1; 1];
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% Create G matrix for inputs
G_u_upper = eye(m*N);
G_u_lower = -eye(m*N);

% Create W matrix for inputs
W_u_upper = repmat(u_max, N, 1);
W_u_lower = repmat(-u_min, N, 1);

G_u = [G_u_upper; G_u_lower];
W_u = [W_u_upper; W_u_lower];

% Output constraints
y_min = [-04616; -04616]; % Lower

bound for all outputs
y_max = [04616; 04616]; % Upper

bound for all outputs

% Initialize the matrix G_y with zeros
G_y_upper = zeros(p*N, m*N);

% Construct the controllability matrix
for i = 1:N

for j = 1:N
if i == j

% Diagonal blocks are C*B
G_y_upper(p*i-round(p/2):p*i, m*j-round(p/2):m*j)

= Cd * Bd;
elseif i < j

% Upper triangular blocks are zeros
G_y_upper(p*i-round(p/2):p*i, m*j-round(p/2):m*j)

= zeros(p, m);
else

% Lower triangular blocks are C*Aˆ(i-j)*B
G_y_upper(p*i-round(p/2):p*i, m*j-round(p/2):m*j)

= Cd * Adˆ(i-j) * Bd;
end

end
end

G_y_lower = -G_y_upper;

% Create the repeated y_max and y_min vector
y_max_matrix = repmat(y_max, N, 1);
y_min_matrix = repmat(y_min, N, 1);

% Initialize the matrix
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CA_powers_matrix = zeros(p*N, n);

% Calculate each Cd * Adˆi and assign it to the matrix
for i = 1:N

CA_powers_matrix(p*i-round(p/2):p*i, :) = Cd * (Adˆi);
end

%% Differential Privacy

% Parameters for differential privacy
epsilon = 10; % The privacy parameter
delta = 0.5; % Additional parameter for Gaussian noise
sensitivity = 1; % The sensitivity of the function

% Scale of Gaussian noise
sigma = sqrt(2 * log(1.25/delta)) * sensitivity / epsilon;

% Add Gaussian noise to H and F
H_noisy = H + sigma * randn(size(H));
F_noisy = F_trans + sigma * randn(size(F_trans));

H_noisy = (H_noisy + H_noisy') / 2;

% Compute error matrices
E_H = H - H_noisy;
E_F = F_trans - F_noisy;

% Compute Frobenius norm
frob_norm_H = norm(E_H, 'fro');
frob_norm_F = norm(E_F, 'fro');

%% Simulation Loop

nSteps = 200;

xHistory = zeros(size(x0, 1), nSteps);
xHistory(:, 1) = x0;

for k = 2:nSteps

% Perform the subtraction
W_y_upper = y_max_matrix - (CA_powers_matrix * x0);
W_y_lower = -y_min_matrix + (CA_powers_matrix * x0);

G_y = [G_y_upper; G_y_lower];
W_y = [W_y_upper; W_y_lower];



Chapter A MATLAB SCRIPT 38

G = [G_u; G_y];
W = [W_u; W_y];

% Define the disturbance d_k for k >= 12
if k >= 12

d_k = [2; -3] * (1/2)ˆ(k-12);
else

d_k = [0; 0];
end

% Solve the MPC optimization problem to get the optimal
control input

[z] = Noise_Function(x0, H_noisy, F_noisy, Bd, G, W);

% Apply the control input to the system
x_next = Ad*x0 + Bd*z + Ed*d_k;

% Update the system state
x0 = x_next;

% Store data for analysis and plotting
xHistory(:, k) = x_next;
zHistory(:, k) = z;

end

%% Plot Results

% Adjusted time vector
timeVector = Ts * (0:nSteps-1);

% Plot the results
figure;

% Plot for State Trajectory
subplot(2,1,1);
hold on; % Hold on to the current plot

% Assuming xHistory has multiple rows for different states
for i = 1:size(xHistory, 1)

plotHandle = plot(timeVector, xHistory(i, :));
set(plotHandle, 'DisplayName', ['Tank ' num2str(i)]); %

Label each line
end

hold off; % Release the hold after plotting all states
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title('State Trajectory');
xlabel('Time (s)');
ylabel('States (cm)');
legend('show'); % Display the legend

% Plot for Control Input Trajectory
subplot(2,1,2);
hold on; % Hold on to the current plot

% Assuming zHistory has multiple rows for different control
inputs

for i = 1:size(zHistory, 1)
plotHandle = plot(timeVector, zHistory(i, :));
set(plotHandle, 'DisplayName', ['Pump ' num2str(i)]); %

Label each line
end

hold off; % Release the hold after plotting all control inputs
title('Control Input Trajectory');
xlabel('Time (s)');
ylabel('Control Input (V)');
legend('show'); % Display the legend

%% Estimate A, B, R

% Get blocks from F
for i = 1:n+1

F_blocks{i} = F_noisy(1:n, (i-1)*m+1:i*m);
end

% Get blocks from H
for i = 1:n+1

H_blocks{i} = H_noisy((i-1)*m+1:i*m, 1:m);
end

% Build C
CF = [F_blocks{1}, F_blocks{2}, F_blocks{3}, F_blocks{4}];

% Build right hand side in A.28
F_trans_12_15 = [F_blocks{2}, F_blocks{3}, F_blocks{4},

F_blocks{5}];

% Calculate right hand side in A.29
H_21_51_trans = [H_blocks{2}', H_blocks{3}', H_blocks{4}',

H_blocks{5}'];
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% Solve for AˆT
Ad_trans_calc = F_trans_12_15 * pinv(CF);
Ad_calc = Ad_trans_calc';

% Solve for BˆT
Bd_trans_calc = H_21_51_trans * pinv(CF);
Bd_calc = Bd_trans_calc';

% Build left column matrix in A.27
for i = 1:n+1

% Build T bar matrix
A_trans_power_col((i-1)*n+1:i*n, :) = (Ad_calc')ˆi;

end

% Build right hand side of A.27
F_trans_11_15_col = [F_blocks{1}; F_blocks{2}; F_blocks{3};

F_blocks{4}; F_blocks{5}];

% Solve for Y_bar
Y_bar_Bd_calc = pinv(A_trans_power_col) * F_trans_11_15_col;

R_calc = H_blocks{1} - Bd_trans_calc * Y_bar_Bd_calc;

% Compute error matrices
E_A = Ad - Ad_calc;
E_B = Bd - Bd_calc;
E_R = R - R_calc;

% Compute Frobenius norm
frob_norm_A = norm(E_A, 'fro');
frob_norm_B = norm(E_B, 'fro');
frob_norm_R = norm(E_R, 'fro');

%% Estimate Q, P

for i = 1:N
% Build S bar matrix block row
for j = 1:i

S_bar_calc((i-1)*n+1:i*n, (j-1)*m+1:j*m) = Ad_calcˆ(i-
j)*Bd_calc;

end
% Build T bar matrix
T_bar_calc((i-1)*n+1:i*n, :) = Ad_calcˆ(i-1);

end

R_bar_calc = blkdiag(kron(eye(N), R_calc));
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S_bar_T_bar_calc_trans = [S_bar_calc'; T_bar_calc'];

Q_P_hat_calc = pinv(S_bar_T_bar_calc_trans) * (1/2) * [(H-2*
R_bar_calc); F_trans] * pinv(S_bar_calc);

Sum_Q_hat_calc = zeros(n);

% Extract and sum all Q_hat_calc matrices from the block
diagonal

for i = 1:N-1
Current_Q_hat_calc = Q_P_hat_calc((i-1)*n+1:i*n, (i-1)*n

+1:i*n);
Sum_Q_hat_calc = Sum_Q_hat_calc + Current_Q_hat_calc;

end

% Calculate the average of the Q_hat_calc matrices
Q_hat_calc = Sum_Q_hat_calc / (N-1);

% Extract P_hat_calc from the block diagonal
P_hat_calc = Q_P_hat_calc(end-n+1:end, end-n+1:end);

cvx_begin sdp
variable X(n,n) symmetric

% Define the constraints for the feasibility problem
subject to

Q + X - Ad' * X * Ad >= 0;
P + X >= 0;
X * Bd == 0;

cvx_end

% Display the status of the problem
disp(cvx_status);

% If the problem is feasible, check for uniqueness
if strcmp(cvx_status, 'Solved')

% Check if the solution is on the boundary of the feasible
set

eigenvalues_Q = eig(Q_hat_calc + X - Ad_calc' * X *
Ad_calc);

eigenvalues_P = eig(P_hat_calc + X);

% Count the number of small positive eigenvalues close to
zero

threshold = 1e-5;
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num_small_eigenvalues_Q = sum(eigenvalues_Q > 0 &
eigenvalues_Q < threshold);

num_small_eigenvalues_P = sum(eigenvalues_P > 0 &
eigenvalues_P < threshold);

% If there are small positive eigenvalues, the solution
may not be unique

if num_small_eigenvalues_Q > 0 || num_small_eigenvalues_P
> 0
disp('The solution may not be unique.');

else
disp('The solution is likely unique.');

end
else

disp('The problem is not feasible, or it is unbounded.');
end

B MATLAB Function

function [z] = Noise_Function(x0, H, F_trans, Bd, G, W)

% Quadratic term in the cost function
f = (x0'*F_trans)';

% Options and initial point
options = optimoptions('quadprog', 'Display', 'iter', '

Algorithm', 'interior-point-convex');

% Solve the problem
[z] = quadprog(H, f, G, W, [], [], [], [], [], options);

% Extract the optimal control input
z = z(1:size(Bd,2)); % Only

apply the first input

end


