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Introduction

What are Crowds? To give a proper answer to this question, a little history is needed. In the
mid-1950s, Jacques Tits released a paper [1], which introduced the concept of F1, the field with
one element, and an idea of its associated geometry. Recalling the definition of a field, it is clear
such a field cannot exist. Despite the non-existence of such an object, it does not necessarily
imply that geometry over F1 cannot be studied.

Since Tits’ paper, there have been various advances regarding algebraic geometry over F1,
including approaches to the ABC conjecture [2] and even the Riemann hypothesis [3]. The
papers [4] and [5] give a more in-depth introduction to what has been done in this area.

Regarding algebraic groups over F1, a few methods have been tried [6]. However, in a recent
paper [7], Oliver Lorscheid and Koen Thas proposed a new approach that may shed light on
algebraic groups in matroid theory and tropical geometry. This is achieved by modifying the
definition of a group, thereby introducing the crowd structure.

In the first section, we cover the definition of a crowd, a set G, a unit element 1 ∈ G and the
crowd law: a set R ⊂ G3 such that (1, 1, 1) ∈ R, (a, 1, 1) ∈ R implies a = 1, (a, b, 1) ∈ R implies
(b, a, 1) ∈ R and finally (a, b, c) ∈ R implies (b, c, a) ∈ R. We then cover basic properties of a
crowd, crowd morphisms and subcrowds and a few examples, including but not limited to trivial
crowds, maximal crowds and groups. In the second section, we cover the definition of bands and
band morphisms before giving a few examples, including the Krasner hyperfield, which becomes
important in the third section. The Krasner hyperfield can be viewed as a set K = {0, 1}, with
the normal multiplication and hyperaddition ⊞ such that 1⊞ 1 = {0, 1} and 0⊞ 1 = {1}.

In the third section, we cover the definition of special linear groups over bands, before taking
a close look at SLn(K), the special linear group over the Krasner hyperfield. The special linear
group is a matrix group where the coefficients are in K and where the determinant equals one.
We prove that it is a saturated crowd, and that every element has an inverse for all n ∈ N. Then
we describe properties that hold when n = 2 and show that they no longer hold for a larger n.
In particular, the crowd based product and the naive "normal product" agree when n = 2 but
do not agree for n = 3. Many of these last properties were found with the aid of a computer, so
the code to simulate an element of the Krasner hyperfield is included in the appendix.

As background, we assume basic knowledge of group theory, permutations and sets. If in doubt,
then the following lecture notes by Jaap Top can be accessed [8].

1 Crowds

1.1 Definition & Basic Properties

Definition 1.1. A crowd is a triple (G, 1, R) such that G is a set, 1 ∈ G is a unit element, and
R ⊂ G3 with the following properties:

1. (1, 1, 1) ∈ R.

2. (a, 1, 1) ∈ R implies a = 1.

3. (a, b, 1) ∈ R implies (b, a, 1) ∈ R.

4. (a, b, c) ∈ R implies (c, a, b) ∈ R.

Definition 1.2 (Inverse). The inverse of a ∈ G is the set a−1 = {b ∈ G | (a, b, 1) ∈ R}.

Definition 1.3 (Products). The product of two elements a, b ∈ G is the set:

a · b =
{
c ∈ G | c ∈ d−1 and (a, b, d) ∈ R

}
.
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Note: It follows that without inverses there are no products.

Example 1.4 (Groups). Any group G gives a crowd with unit element 1 and crowd law R ={
(a, b, c) ∈ G3

∣∣ abc = 1
}
. This is shown as we have (1, 1, 1) ∈ R, (a, 1, 1) ∈ R implies a = 1,

(a, b, 1) ∈ R implies ab = 1 = ba and thus (b, a, 1) ∈ R. And finally (a, b, c) ∈ R implies abc = 1
thus ab = c−1, cab = 1 and (c, a, b) ∈ R.

Remark. Every element has an inverse that is for all a ∈ G there is a b such that ab1 = 1 and
thus a−1 ̸= ∅.

Also #a−1 = 1. To prove this assume b, c ∈ a−1 then ab1 = 1 = ac1, and thus b = bab1 = bac1 =
c.

Example 1.5 (Trivial crowds). For any non-empty set G with unit element 1 ∈ G, the trivial
crowd is given by (G, 1, Rtriv) where Rtriv = {(1, 1, 1)}.

Example 1.6 (Maximal crowds). For any non-empty set G with unit element 1 ∈ G the maximal
crowd is given by (G, 1, Rmax) where

Rmax = G3 −
{
(a, 1, 1), (1, a, 1), (1, 1, a)

∣∣ a ∈ G, a ̸= 1
}
.

Remark. As can be seen, although all groups can be considered crowds, not every crowd is a
group. For example, the trivial crowd where #G > 1 has an element which has no inverse. This
shows how crowds can be seen as a generalisation of groups.

Table 1: Inverses and products for trivial crowds, maximal crowds and groups.

a, b ̸= 1 Trivial crowds Maximal crowds Groups

a−1 ∅ G− {1} {i(a)}
a · b ∅ G {ab}

All three examples above behave in a fairly predictable way. However, this is not always the case
as we see with the crowd M below.

Example 1.7. The set M = {a, b, c, e} with unit element e and crowd law

RM = {(e, e, e), (a, b, e), (b, a, e), (e, a, b), (b, e, a), (e, b, a), (a, e, b), (c, c, c)}

is a crowd. Checking the axioms one by one shows this is indeed the case. However, unlike the
crowds above, a and b have an inverse set while c does not. Similarly, a · b = {e} while c · c does
not exist.

Other examples, specifically SLn(K), are covered in more detail later on in section 3.

Some optional axioms that crowds can satisfy are:

• (E1) For all a ∈ G, a−1 ̸= ∅

• (E2) If (a, b, c) ∈ R, then (b, a, c) ∈ R

corresponding to the existence of inverses and the abelian property respectively.

Remark. It is clear to see that the trivial crowd and the maximal crowd satisfy (E2) and that
if a group is abelian, then the crowd from that group satisfies (E2) as well. On the other hand,
crowds from non-abelian groups, the crowd M given above, and SLn(K) do not satisfy (E2).

All crowds from groups, SLn(K) and the maximal crowd satisfy E1, while the trivial crowd where
#G ̸= 1 and M do not.
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Proposition 1.8 (Basic properties). The following properties hold for all crowds:

1. 1−1 = {1} = 1 · 1.

2. a ∈ b−1 ⇐⇒ 1 ∈ a · b ⇐⇒ 1 ∈ b · a ⇐⇒ b ∈ a−1.

3. 1 · a = a · 1 = (a−1)−1.

4. 1 ∈ a−1 ⇐⇒ a = 1 ⇐⇒ 1 ∈ a · 1 = 1 · a.

5. 1 · a = a · 1 ̸= ∅ =⇒ a ∈ 1 · a = a · 1.

Proof. Proof of 1:
{1} = {a ∈ G | (a, 1, 1) ∈ R} = {a ∈ G | (1, a, 1) ∈ R} = 1−1

= {d ∈ G | d ∈ 1−1} = {d ∈ G | d ∈ 1−1 and (1, 1, 1) ∈ R}
= {d ∈ G | d ∈ c−1 and (1, 1, c) ∈ R} = 1 · 1.

Proof of 2:
a ∈ b−1 ⇐⇒ (a, b, 1) ∈ R ⇐⇒ 1 ∈ a · b

b ∈ a−1 ⇐⇒

~w�
(b, a, 1) ∈ R ⇐⇒ 1 ∈ b · a.

Proof of 3:
1 · a =

{
c ∈ G

∣∣ c ∈ b−1 and (1, a, b) ∈ R
}

=
{
c ∈ G

∣∣ c ∈ b−1 and (a, b, 1) ∈ R
}

(a−1)−1 =
{
c ∈ G

∣∣ c ∈ b−1 and b ∈ a−1
}

=

={
c ∈ G

∣∣ c ∈ b−1 and (a, b, 1) ∈ R
}

a · 1 =
{
c ∈ G

∣∣ c ∈ b−1 and (a, 1, b) ∈ R
}

=
={

c ∈ G
∣∣ c ∈ b−1 and (b, a, 1) ∈ R

}
.

Proof of 4:
1 ∈ a−1 ⇐⇒ a ∈ 1−1 ⇐⇒ a = 1.

1 ∈ a · 1 ⇐⇒ 1 ∈ (a−1)−1 ⇐⇒ ∃c ∈ a−1 such that 1 ∈ c−1 ⇐⇒ 1 ∈ a−1 ⇐⇒ a = 1.

Proof of 5:
1 · a = a · 1 ̸= ∅ =⇒

{
c ∈ G

∣∣ c ∈ b−1 and (1, a, b) ∈ R
}
̸= ∅ =⇒ a ∈ b−1 ⊂ 1 · a =⇒ a ∈ 1 · a.

Proposition 1.9. A crowd (G, 1, R) is also a group (G, 1, ∗) where 1 = 1 and ∗ is a group map
induced by R if it satisfies the following properties.

1. ae = dc if d ∈ ab and e ∈ bc for all a, b, c, d, e ∈ G.

2. a−1 and ab are singletons for all a, b ∈ G.

Proof. To show this we define ∗ by a ∗ b = c where c ∈ a · b. This is well defined as #a · b =
#
{
d ∈ c−1

∣∣ (a, b, c) ∈ R
}
= #c−1 = 1 by the second property.

For all a ∈ G, b ∈ a−1 implies a ∈ b−1, and thus, a ∗ b = 1 = b ∗ a.

Let a, b, c, d, f ∈ G, where a ∗ b = d and b ∗ c = f , then by the first property of our proposition
we have

(a ∗ b) ∗ c = d ∗ c = a ∗ f = a ∗ (b ∗ c)

Since all products are singletons, then we have a ∗ e = a = e ∗ a by proposition 1.8 property 5.
This shows that the group axioms are satisfied.
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1.2 Crowd morphisms

Definition 1.10 (Crowd morphisms). A crowd morphism from (G, 1G, RG) to (H, 1H , RH) is a
map ϕ : G→ H such that ϕ(1G) = 1H and

(
ϕ(a), ϕ(b), ϕ(c)

)
∈ RH for (a, b, c) ∈ RG.

Definition 1.11 (Crowd isomorphism). A crowd isomorphism from (G, 1G, RG) to (H, 1H , RH)
is a morphism ϕ : G→ H such that there exists a morphism ψ : H → G and ϕ◦ψ is the identity.

Example 1.12. Any group morphism is a crowd morphism.

Example 1.13. For any crowd (G, 1, R), the identity map gives a crowd morphism:

(G, 1, Rtriv) → (G, 1, R) → (G, 1, Rmax).

Remark. Although this is a bijective map with regard to G, it is not an isomorphism except
for the case when Rtriv = Rmax.

1.3 Saturated Crowds

A question arises when we look at what crowds can be generated by their own inverses and
products.

Definition 1.14. A crowd is saturated if for all a, b, c ∈ G,{
a−1 ⊂ b · c and b−1 ⊂ c · a and c−1 ⊂ a · b

}
implies (a, b, c) ∈ R.

Definition 1.15. The saturation of (G, 1, R) is (G, 1, R̂) where

R̂ =
{
(a, b, c) ∈ G3

∣∣ c−1 ⊂ a · b, b−1 ⊂ c · a and a−1 ⊂ b · c
}
.

Proposition 1.16. The saturation of a crowd is a crowd.

Proof. Firstly, if (a, b, c) ∈ R, then (a, b, c) ∈ R̂. This is because if (a, b, c) ∈ R, then c−1 ⊂ a · b,
b−1 ⊂ c · a and a−1 ⊂ b · c.

Axiom 1: (1, 1, 1) ∈ R ⊂ R̂.
Axiom 2: If (a, 1, 1) ∈ R̂, then 1 ∈ 1−1 ⊂ a · 1 which implies that a = 1.
Axiom 3: If (a, b, 1) ∈ R̂, then we have 1−1 ⊂ a · b and therefore (a, b, 1) ∈ R and so (b, a, 1) ∈
R ⊂ R̂.
Axiom 4: If (a, b, c) ∈ R̂, then c−1 ⊂ a · b, b−1 ⊂ c · a, a−1 ⊂ b · c and thus (c, a, b) ∈ R̂. As
(G, 1, R̂) satisfies the four axioms, it is a crowd.

Proposition 1.17. The operator W : Crowds → Crowds that sends a crowd to its saturation
is well defined.

Proof. This follows from 1.16

Proposition 1.18. The saturation of a crowd is a saturated crowd.

Proof. By definition

Proposition 1.19. Properties of saturated morphisms:

1. id : G→ W(G) is a morphism.

2. W(G) = W(W(G)).
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Proof. Proof of 1: Follows from R ⊂ R̂.

Proof of 2: First, we note that W is the identity on G and acts on R by generating R̂ from the
sets a · b and a−1 for all a, b ∈ G.

Therefore, we only need to show that the sets a · bR = a · b
R̂

and a−1
R = a−1

R̂
.

First we show a−1
R = a−1

R̂
:

b ∈ a−1

R̂
=⇒ (a, b, 1) ∈ R̂ =⇒ 1 ∈ 1−1 ⊂ a · bR =⇒ (a, b, 1) ∈ R =⇒ b ∈ a−1

R .

Likewise:
b ∈ a−1

R =⇒ (a, b, 1) ∈ R =⇒ (a, b, 1) ∈ R̂ =⇒ b ∈ a−1

R̂
.

Now we show, a · bR = a · b
R̂
:

a · b
R̂
=

⋃
d∈G|(a,b,d)∈R̂

d−1 =
⋃

d∈G|(a,b,d)∈R

d−1 = a · bR.

The ⊂ direction of the middle equality follows from the fact that for (a, b, d) ∈ R̂ such that
(a, b, d) /∈ R we have that d−1 ⊂ a · bR, and so we don’t need to count it for the union. The ⊃
direction follows because if (a, b, d) ∈ R, then also (a, b, d) ∈ R̂.

Since a · bR = a · b
R̂

and a−1
R = a−1

R̂
we have that the proposition holds.

Remark. A crowd morphism ϕ : G1 → G2 is not necessarily a crowd morphism ϕ : W(G1) →
W(G2). Below is a simple counterexample. LetG1 = {1, a, b, c, d, e, w}, andG2 = {1, a, b, c, d, e, w, f}.
Let ϕ : G1 → G2 be the inclusion, and let the crowd laws be generated by the sets:

R1

{(1, 1, 1), (b, c, d), (a, d, 1), (e, d, 1), (a,w, 1)} and
R2

{(1, 1, 1), (b, c, d), (a, d, 1), (e, d, 1), (a,w, 1), (w, f, 1)}.

Then it is clear that ϕ : G1 → G2 is a crowd morphism. However, as w−1
R1

= {a}, b−1
R1

= c−1
R1

= ∅
and b · c = {a, e}, we have (b, c, w) ∈ R̂1. Similarly w−1

R2
= {a, f}, b · cR2 = {a, e} which implies

w−1
R2

̸⊂ b · cR2 and thus (b, c, w) ̸∈ R̂2. This shows that ϕ : W(G1) → W(G2) is not a crowd
morphism.

1.4 Subcrowds

Definition 1.20. Let (G, 1, R) be a crowd, a subcrowd is given by (H, 1, S), where 1 ∈ H ⊂ G
and S ⊂ R ∩H3.

Remark. The inclusion H → G is a crowd morphism.

Proof. See the definition of a crowd morphism.

Definition 1.21. A full subcrowd of G is a subcrowd (H, 1, S) such that S = R ∩H3.

Remark. A full subcrowd is defined by H and the crowd G.

Example 1.22. A subgroup is a full subcrowd.

Proof. Let H be a subgroup of G, then it is obvious that H is a subcrowd. To show that it is a
full subcrowd, assume (a, b, c) ∈ R with a, b, c ∈ H. Then, abc = 1 and therefore, (a, b, c) in RH ,
and thus, (H, 1, RH) is a full subcrowd.
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Example 1.23. Let (G, 1, R) be a crowd, then the trivial crowd (G, 1, Rtriv) is a subcrowd, but
in most circumstances not a full subcrowd.

Example 1.24. Let G = SLn(K), then the permutation matrices form a subcrowd.

2 Bands

To introduce our main example, SLn(K), we need to define K (the Krasner hyperfield), and
therefore, we introduce the concept of bands.

Definition 2.1. A band is a quadruple (B,1,0, ·) along with a nullset NB, where B is a set,
1,0 ∈ B unit and absorbing elements respectively, · : B ×B → B commutative and associative,
NB a subset of B+ = {

∑
naa | na ∈ N, a ∈ B/ {0} and na = 0 for all but finitely many a },

such that the following axioms hold.

1. 0 · a = 0 for all a ∈ B.

2. 1 · a = a for all a ∈ B.

3. 0 ∈ NB and for all a ∈ B, there exists a unique b ∈ B, such that a+ b ∈ NB.

4. x+ y ∈ NB for all x, y ∈ NB, and a · x ∈ NB for all a ∈ B and x ∈ NB.

Example 2.2. A ring (R,1,0, ·) is a band if we take the nullset to beNR = {
∑
na · a = 0 | a ∈ R,na ∈ N}.

Proof. The axioms follow directly from the axioms for a ring.

Remark. All fields are rings and thus are bands as well.

Definition 2.3. A band morphism is a multiplicative map ϕ : G1 → G2 such that ϕ(0) = 0,
ϕ(1) = 1 and

∑
naf(a) ∈ NG2 for every

∑
naa ∈ NG1 .

Proposition 2.4. A ring morphism is a band morphism.

Proof. Let R1, R2 be rings with ϕ : R1 → R2 a ring morphism, then ϕ(1) = 1, ϕ(0) = 0 and∑
naa ∈ NR1 =⇒

∑
naϕ(a) =

∑
ϕ(na · a) = ϕ

(∑
naa

)
∈ NR2 .

Therefore, every ring morphism is a band morphism.

The following examples should be considered with the expected multiplication and addition
unless stated otherwise.

Example 2.5. The Krasner hyperfield K is a band with K = {0, 1} and nullset

NK = {n · 1 | n ∈ N, n ̸= 1} .

Example 2.6. The zero band is a band with B = {0}, 0 = 1 and NB = {0}.

Example 2.7. The quadratic field extension of F1, F±
1 = {0, 1,−1} is a band with

NF±
1
= {n · 1 + n · (−1) | n ≥ 0}.

Example 2.8. The tropical hyperfield T = R≥0 is a band with nullset

NT =
{∑

naa
∣∣∣ na = 0 for all a ∈ R>0 or nb ≥ 2 for b = max{a | na ̸= 0}

}
.

7



Proposition 2.9. For all bands B, there is a band morphism ϕ from F±
1 to B.

Proof. Take the morphism that sends 0 → 0, 1 → 1 and −1 to the unique element b ∈ B such
that 1 + b ∈ NB.

Proposition 2.10. For all bands B, there is a band morphism ψ from B to the zero band.

Proof. The morphism is given by ψ : g 7→ 0 for all g ∈ B.

3 Special Linear Group

As the previous section has defined bands, we introduce the special linear group over bands in
general before going on to show that SLn(K) is in fact a crowd.

3.1 General Definition

Definition 3.1. Let B be a band, then matrices over B are defined as the set Matn×n(B) =
{(aij) ∈ Bn×n}.

Definition 3.2. The determinant of A ∈Matn×n(B) is given by
∑

σ∈Sn
sign(σ)

∏n
i=1 ai,σ(i).

Definition 3.3. The special linear group SLn(B)

SLn(B) =
{
A ∈Matn×n(B)

∣∣∣ det(A)− 1 ∈ NB

}
with identity element 1 = (δij) and crowd law

R =

{(
A(1), A(2), A(3)

) ∣∣∣∣∣ ∀σ ∈ A3 ∀i, j = 1, . . . , n∑
k,l=1,...n a

σ(1)
i,k a

σ(2)
k,l a

σ(3)
l,j − δi,j ∈ NB

}

is a crowd.

3.2 The Krasner hyperfield K

Theorem 3.4. (SLn(K), 1, R) is indeed a crowd, with 1 being the identity matrix, and crowd law

R =

{(
A(1), A(2), A(3)

) ∣∣∣∣∣ ∀σ ∈ A3 ∀i, j = 1, . . . , n

δi,j ∈
∑⊞

k,l=1,...n a
σ(1)
i,k a

σ(2)
k,l a

σ(3)
l,j

}
.

Proof. We note that (1, 1, 1) ∈ R as we have δk,l ∈ {δk,l} =
∑⊞

i δk,iδi,l =
∑⊞

i,j δk,iδi,jδj,l, and
permutations don’t matter since the elements are all the same.

If (a, 1, 1) ∈ R, then we have:

δk,l ∈ {ak,l} =

⊞∑
i,j

ak,iδi,jδj,l.

This implies that ak,l = δk,l, and therefore, a = 1.

If (a, b, 1) ∈ R, then we have:

δk,l ∈
⊞∑
i

ak,ibi,l =
⊞∑
i,j

ak,ibi,jδj,l and δk,l ∈
⊞∑
j

bk,jaj,l =
⊞∑
i,j

bk,iδi,jaj,l.
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These imply in turn that:

δk,l ∈
⊞∑
i,j

ak,iδi,jbj,l, δk,l ∈
⊞∑
i,j

bk,iai,jδj,l and δk,l ∈
⊞∑
i,j

δk,jbi,jaj,l.

Which by symmetry implies that (b, a, 1) ∈ R.

If (a, b, c) ∈ R, then (c, b, a) ∈ R, as it is a cyclic permutation and the conditions are also
cyclic.

Proposition 3.5. Let a, b,∈ SLn(K), then the following are equivalent.

1. b ∈ a−1 .

2. a ∈ b−1.

3. δk,l ∈
∑⊞

i ak,ibi,l and δk,l ∈
∑⊞

i bk,iai,l .

Proof. To prove this, we only show the equivalence of 1 and 3, as their equivalence to 2 follows
by symmetry. An equivalent statement to b ∈ a−1 is (a, b, 1) ∈ R, taking this, we get:

(a, b, 1) ∈ R ⇐⇒ δk,l ∈
⊞∑
i,j

ak,ibi,jδj,l and δk,l ∈
⊞∑
i,j

bk,iδi,jaj,l and δk,l ∈
⊞∑
i,j

δk,iai,jbj,l

⇐⇒ δk,l ∈
⊞∑
i

ak,ibi,l and δk,l ∈
⊞∑
i

bk,iai,l and δk,l ∈
⊞∑
j

ak,jbj,l

⇐⇒ δk,l ∈
⊞∑
i

ak,ibi,l and δk,l ∈
⊞∑
i

bk,iai,l.

Definition 3.6. The adjoint of a ∈ SLn(K) is defined pointwise as

a#ij =

{
1 if 1 ∈ dji

0 otherwise
,

where

dji =
⊞∑

σ∈Sn|σ(j)=i

∏
k=1,...,̂i,...,n

ak,σ(k).

Proposition 3.7. For all a ∈ SLn(K), we have a# ∈ a−1.

Proof. For this to be the case, we need the following condition to hold:

n∑
i=1

ak,ia
#
i,l + δk,l ∈ NK and

n∑
i=1

a#k,iai,l + δk,l ∈ NK for all k, l ∈ n.

.

First, we show that
∑n

i=1 ak,ia
#
i,l + δk,l ∈ NK is the case for all k, l ∈ n. As a ∈ SLn(K), we know

that det(a) + 1 ∈ NK, and so for some σ ∈ Sn,
∏n

k=1 ak,σ(k) = 1.

If k = l, then ak,σ(k) = 1 and a#σ(k),k = 1. This implies that ak,σ(k)a
#
σ(k),k = 1 is an element of

the sum, and as δk,k = 1 this is sufficient.
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If k ̸= l, then we have two options, either ak,ia
#
i,l = 0 for all i ∈ n, or for at least one i ∈ n,

ak,ia
#
i,l = 1. If all are 0, then we are done as δk,l = 0.

If at least one element of the sum is equal to 1, then take i ∈ n such that ak,ia
#
i,l = 1.

As a#i,l = 1, there exists a π ∈ Sn such that π(l) = i and
∏

m∈n−l am,π(m) = 1. Let j = π(k), and
let τ = π ◦ (kl), where (kl) is the permutation that takes k to l and l to k. Then, τ(k) = i and
τ(l) = j and τ(w) = π(w) for w not equal to k or l.

This implies that ak,j = 1 and a#j,l = 1 as τ is such that τ(l) = j and
∏

m∈n−l am,τ(m) = 1.

Since at least one element of the sum equals 1 implies another also equals 1, the relationship is
satisfied, and

∑
i ak,ia

#
i,l + δk,l ∈ NK holds for all k, l ∈ n.

Similarly, for ∑
i

a#k,iai,l + δk,l ∈ NK :

If k = l, then aσ−1(k),k = 1 and a#
k,σ−1(k)

= 1. This implies that a#
k,σ−1(k)

aσ−1(k),k = 1 is an
element of the sum, and as δk,k = 1, this is sufficient.

If k ̸= l, then we have two options, either a#k,iai,l = 0 for all i ∈ n, or at least one is equal to 1.
If all are 0 then we are done as δk,l = 0.

If at least one element is equal to 1, then let us call it a#k,iai,l for a specific i ∈ n.

Then, there exists a π ∈ Sn such that i = π−1(k) and
∏

m∈n−l am,π(m) = 1. Let j = π−1(l), and
let τ = π ◦ (kl), where (kl) is the permutation that takes k to l and l to k. Then, τ−1(k) = j
and τ−1(l) = i and τ(w) = π(w) for w not equal to k or l.

This implies that aj,l = 1, as π(j) = l; and a#k,j = 1, as τ is such that τ(j) = k and∏
m∈n−l am,τ(m) = 1.

Since at least one element of the sum equals 1 implies another also equals 1, the relationship is
satisfied and

∑n
i=1 ak,ia

#
i,l + δk,l ∈ NK holds for all k, l ∈ n.

Therefore, since both sums hold, a# ∈ a−1.

Theorem 3.8. SLn(K) is a saturated crowd.

Proof. To prove this we take a, b, c ∈ SLn(K) such that a−1 ⊂ b · c, b−1 ⊂ c · a and c−1 ⊂ a · b,
and show this implies (a, b, c) ∈ R.

If we expand our assumption, we get:

∀w ∈ G s.t. (w, b, 1) ∈ R ∃d ∈ G s.t. (w, d, 1) ∈ R and (c, a, d) ∈ R.

∀w ∈ G s.t. (w, c, 1) ∈ R ∃d ∈ G s.t. (w, d, 1) ∈ R and (a, b, d) ∈ R.

∀w ∈ G s.t. (w, a, 1) ∈ R ∃d ∈ G s.t. (w, d, 1) ∈ R and (b, c, d) ∈ R.

Taking the first condition, we have that for w ∈ G such that (w, b, 1) ∈ R there exists a d ∈ G such
that (w, d, 1) ∈ R. By Prop 3.7, w exists therefore, d also exists and this implies δk,l ∈

∑⊞
i bk,iwi,l

and δk,l ∈
∑⊞

i wk,idi,l. Using this for substitution purposes we have:
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δk,l ∈
⊞∑
i,j

ck,iai,jdj,l ⇐⇒ δk,l ∈
⊞∑
i,j

ck,iai,j

⊞∑
t

δj,tdt,l ⇐⇒ δk,l ∈
⊞∑
i,j,t

ck,iai,jδj,tdt,l

⇐⇒ δk,l ∈
⊞∑
i,j,t

ck,iai,j

(
⊞∑
r

bj,rwr,t

)
dt,l ⇐⇒ δk,l ∈

⊞∑
i,j,t,r

ck,iai,jbj,rwr,tdt,l

⇐⇒ δk,l ∈
⊞∑

i,j,r

ck,iai,jbj,r

⊞∑
t

wr,tdt,l ⇐⇒ δk,l ∈
⊞∑

i,j,r

ck,iai,jbj,rδr,l

⇐⇒ δk,l ∈
⊞∑
i,j

ck,iai,jbj,l.

Note: The first implication is valid as
∑⊞

t δj,t = 1 for fixed j. The third implication is valid as
δj,t ∈

∑⊞
r bj,rwr,t. The sixth implication is valid as δr,l ∈

∑⊞
t wr,tdt,l.

By symmetry, we have:

δk,l ∈
⊞∑
i,j

ak,ibi,jcj,l and δk,l ∈
⊞∑
i,j

ck,ibi,jaj,l,

which implies that (a, b, c) ∈ R.

Directly from 3.7, we have that SLn(K) has the property E1.

3.3 SL2(K) and SL3(K)

In the last subsection, we covered the general case for all n. Now we cover SL2(K) in detail,
describing its elements, products and inverses. It can be noted that when n = 2, SLn(K) behaves
fairly close to SLn(F), when F is a field. However, this behaviour does not last, as can be seen
from the counterexamples given for when n = 3. Although it is not difficult to compute the
information for SL2(K) by hand, by the time we are searching for counterexamples in SL3(K)
and higher, the aid of a computer is beneficial. Indeed, all counterexamples were found with
computer aid.

A complete description of SL2(K) is given as follows. The elements are:

SL2(K) =

{[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 1
1 0

]
,

[
0 1
1 1

]
,

[
1 0
1 1

]
,

[
1 1
0 1

]
,

[
1 1
1 1

]}
.

Inverses are unique, and given by:

a−1 =

[
a11 a12
a21 a22

]−1

=

{[
a22 a12
a21 a11

]}
.

The adjoint of an adjoint of an element is the element again.([
a11 a12
a21 a22

]#)#

=

[
a22 a12
a21 a11

]#
=

[
a11 a12
a21 a22

]
.

Definition 3.9. The naive product, ·⊞, of a, b ∈ SLn(K) is a set a ·⊞ b ⊂ SLn(K) where every
element can be derived from matrix multiplication by taking advantage of Krasner hyperaddition
combinations.
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Example 3.10. As an example, we show the naive multiplication of
[
1 0
1 1

]
and

[
0 1
1 1

]
.

[
1 0
1 1

]
·⊞
[
0 1
1 1

]
=

[
1 · 0⊞ 0 · 1 1 · 1⊞ 0 · 1
1 · 0⊞ 1 · 1 1 · 1⊞ 1 · 1

]
=

[
{0} {1}
{1} {0, 1}

]
=
{[0 1

1 0

]
,

[
0 1
1 1

]}
Proposition 3.11. The crowd product of a, b is the same as the naive product of a, b, in formula:

ab =
{
c ∈ SL2(K)

∣∣∣ ∃d ∈ SL2(K), c ∈ d−1 and (a, b, d) ∈ R
}

=
{
c ∈ SL2(K)

∣∣∣ ck,l + ⊞∑
i

ak,ibi,l ∈ NK

}
= a ·⊞ b.

Proof. See [7].

The following is a case where ab ̸= a ·⊞ b.

a =

0 0 1
0 1 0
1 0 0

 , b =
0 0 1
0 1 1
1 1 0

 , ab = {
1 1 0
0 1 1
0 0 1

 ,
1 1 1
0 1 1
0 0 1

} and a ·⊞ b =

1 1 0
0 1 1
0 0 1

 .
The following is a case with non-unique inverses.

a =

0 0 1
0 1 1
1 1 1

 , a−1 =

{0 1 1
1 1 0
1 0 0

 ,
1 1 1
1 1 0
1 0 0

}.
The adjoint of an adjoint is not the matrix itself.

a =

0 0 1
0 1 1
1 1 0

 , a# =

1 1 1
1 1 0
1 0 0

 , (a#)# =

0 0 1
0 1 1
1 1 1

 , ((a#)#)# =

1 1 1
1 1 0
1 0 0

 .
Remark. The crowd SL2(K) has 7 elements, SL3(K) has 247, SL4(K) has 37823 and SL5(K)
has 23191071 elements. These numbers and the examples above were found using computer aid.

4 Conclusion

In the introduction, we gave a brief history of F1 and its geometry as background and motivation
for the creation of crowds. In the first section, we defined crowds, crowd morphisms and
subcrowds and gave examples of each type of structure. In the second section, we defined
bands, band morphisms and the Krasner hyperfield (K) as an example of a band.

In the third section, we defined special linear groups over bands. We proved that SLn(K) is
a crowd, that it is saturated, and that every element in SLn(K) has an inverse (given by its
adjoint). Then, we gave a complete description of SL2(K) showing some properties that only
hold when n = 2, and then examples where those properties fail when n = 3. Finally, in the
appendix, we included a Python class that simulates an element in the Krasner hyperfield and
gave a short description of how to compute questions for SLn(K).

Further ideas could include studying SLn(B) for general bands as well as GLn(K), On(K) and
SOn(K). Another possibility is constructing and categorising finite crowds of low cardinality.
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A Appendix

The code below simulates an element of the Krasner hyperfield. Using this class and the Python
library numpy to generate matrices, it is fairly easy to compute solutions to problems in SLn(K)
for small n. It should be noted however that as n increases it starts to take an unreasonable
amount of time.

c l a s s K:

de f __init__( s e l f , n ) :
i f n == 0 or n == [ 0 ] :

s e l f . z e ro = True
s e l f . one = False

e l i f n == 1 or n == [ 1 ] :
s e l f . one = True
s e l f . z e ro = False

e l i f n == [ 0 , 1 ] :
s e l f . one = True
s e l f . z e ro = True

e l s e :
r a i s e TypeError

de f __bool__( s e l f ) :
r e turn s e l f . one

de f __str__( s e l f ) :
i f s e l f . one and s e l f . z e ro :

msg = ’ [ 0 , 1 ] ’
e l i f s e l f . one :

msg = ’ [ 1 ] ’
e l i f s e l f . z e ro :

msg = ’ [ 0 ] ’
r e turn msg

de f __repr__( s e l f ) :
r e turn s e l f .__str__( )

de f __add__( s e l f , o ther ) :
i f i s i n s t a n c e ( other , K) :

i f s e l f . one and other . one :
r e turn K( [ 0 , 1 ] ) # At l e a s t two ones

i f not s e l f . one :
r e turn other

i f not other . one :
r e turn s e l f

e l i f i s i n s t a n c e ( other , i n t ) :
i f o ther == 1 :

re turn s e l f .__add__(K(1 ) )
e l i f o ther == 0 :

re turn s e l f .__add__(K(0 ) )
re turn NotImplemented

de f __eq__( s e l f , o ther ) :
i f i s i n s t a n c e ( other , K) :

i f s e l f . z e ro and other . ze ro and not s e l f . one and not other . one :
r e turn True

i f s e l f . z e ro and other . ze ro and s e l f . one and other . one :
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r e turn True
i f not s e l f . z e ro and not other . ze ro and s e l f . one and other . one :

r e turn True
re turn Fa l se

i f i s i n s t a n c e ( other , i n t ) :
i f o ther == 1 and s e l f . one and not s e l f . z e ro :

r e turn True
i f other == 0 and s e l f . z e ro and not s e l f . one :

r e turn True
re turn NotImplemented

de f __req__( s e l f , o ther ) :
r e turn s e l f .__eq__( other )

de f __neg__( s e l f , o ther ) :
r e turn s e l f

de f __sub__ ( s e l f , o ther ) : # the add i t i on o f negat ion
return s e l f .__add__( other )

de f __mul__( s e l f , o ther ) : # Only de f ined when only one o f
i f s e l f . z e ro and s e l f . one :

r e turn NotImplemented
i f i s i n s t a n c e ( other , K) :

i f o ther . ze ro and other . one :
r e turn NotImplemented

i f s e l f . z e ro :
r e turn s e l f

i f s e l f . one :
r e turn other

e l i f i s i n s t a n c e ( other , i n t ) :
i f o ther == 0 :

re turn K(0)
e l i f o ther == 1 :

re turn s e l f
e l s e :

r e turn NotImplemented
e l i f i s i n s t a n c e ( other , W) :

i f s e l f . one :
r e turn 1

i f s e l f . z e ro :
r e turn 0

e l s e :
r e turn NotImplemented

de f __rmul__( s e l f , o ther ) :
r e turn s e l f .__mul__( other )

de f __radd__( s e l f , o ther ) :
r e turn s e l f .__add__( other )

de f __rsub__( s e l f , o ther ) :
r e turn s e l f .__sub__( other )

de f i n_nu l l s e t ( s e l f ) :
r e turn s e l f . z e ro

c l a s s W:
de f __int__( s e l f ) :

pass
de f __add__( s e l f , o ther ) :
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i f i s i n s t a n c e ( other , K) :
i f o ther . one :

r e turn 1
i f other . ze ro :

r e turn 0
return 0

de f __radd__( s e l f , o ther ) :
r e turn s e l f .__add__( other )
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