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Abstract: Tons of debris end up in the seas and oceans each year, a lot of which sink to the
seafloor. This paper is an attempt to make it easier to rid our seafloors of debris and aiding
the SeaClear Project. The goal is to reduce the murkiness and improve the colour balance of
underwater footage through various image pre-processing methods, namely; CLAHE (Contrast
Limited Adaptive Histogram Equalisation), UCM (Unsupervised Colour Correction Method),
IBLA (Underwater Image Restoration Based on Image Blurriness and Light Absorption) and
funieGAN (Fast Underwater Image Enhancement for Improved Visual Perception), in order to
make object detection easier and more consistent. The YOLOv8 model was chosen to be trained
with these, as it is shown to be one of the highest performing object detection models both
in terms of detection rate and processing speed. The images resulting from each pre-processing
method were used to create a corresponding model for that method. These models are assessed
based on operational speed (FPS), mAP, accuracy, precision, recall and F1 score, and compared
to a model trained with the original (non-pre-processed) images. The combined predictions of all
models was also assessed in order to see what the best results are that can be achieved. The UCM
and the combination of the models achieved higher overall mAP and F1 scores than the original
model, although their processing speeds render them inefficient for real-time use. CLAHE and
funieGAN models can be considered if specific objects are being targeted.

1 Introduction

Our oceans are responsible for about 50 percent
of all oxygen production on our planet, while also
absorbing about 31 percent of our CO2 emissions
(How much oxygen comes from the ocean? (2023),
Quantifying the Ocean Carbon Sink (2022)). On
top of this, a lot of countries rely on them for their
tourism and fishing, which can account for up to
38 percent of a country’s GDP (Frost (2019)). We
dump over 14 million tons of trash into our oceans,
70 percent of which sink towards the ocean floor.
The debris that end up in our seafloors can harm
the ecosystem by altering and degrading marine
habitats. They do this by infusing with the algae,
releasing chemicals into their surroundings and be-
ing consumed by wildlife either directly, or indi-
rectly by altering their food sources (Habitat: Ma-
rine Debris Impacts on Coastal and Benthic Habi-
tats (2016)). These alterations are sure to regress
the way our oceans function. Although most of
those debris are micro-plastics, there is still a lot

of it that could be held by hand. That is what Sea-
Clear attempts to take advantage of (Evers (2021),
Marine Plastic Pollution (2021)).

SeaClear is a project which aims to clear out the
trash that can be physically held from the ocean
and seafloors. They do this by sending a boat to the
target area, mapping the seafloor, and then sending
remotely operated vehicles (ROVs) with visual sys-
tems which make use of object detection algorithms
to detect trash or other objects on the parts of the
ocean floor that seem most likely to contain de-
bris. An issue that can be faced during these dives
of ROVs is the visual limitations that the environ-
ment poses. Water in the deep tends to be murky
and colours tend to be shifted or muted due to the
properties of water. These may impair the vision of
the ROVs on mission, and therefore make debris de-
tection difficult. This paper is an attempt to tackle
this problem.

There are multiple papers that discuss improve-
ment of underwater images through pre-processing.
These methods aim to enhance images in differ-
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ent ways; colour correction, dehazing, contrast en-
hancement and more. Four of such improvement
methods were chosen to be tested against the orig-
inal images. The goal of this paper is to find
out "To what extent can underwater object
detection be improved through image pre-
processing?".

The chosen four methods to be tested will be
explained in the Background section. The Meth-
ods section goes over how these methods were im-
plemented and assessed, the Results section goes
over the numerical outcomes that came from test-
ing, Discussion section is where the results are anal-
ysed and the Conclusion is where the outcomes are
drawn. The Further Research section goes over how
this research can be added onto or improved upon.

2 Background

2.1 CLAHE

Contrast Limited Adaptive Histogram Equalisa-
tion (CLAHE) is a contrast enhancement tech-
nique whose original purpose was to improve med-
ical imaging although it was and is used also in
other contexts. It was developed by Zuiderveld as
an improvement to Adaptive Histogram Equalisa-
tion (AHE) which was an improved version of His-
togram Equalisation (HE).

HE is a contrast enhancement technique, that
relies on the frequency distribution (histogram) of
image grey levels to make grey-level assignments
across the whole image. When there are more pix-
els in a certain class of grey levels, it is optimal
to assign a larger part of output grey ranges to
the corresponding pixels. Grey-level transform is
made through cumulative histograms in order to
meet this condition. The result is ideally an approx-
imately flat histogram. This method although can
lead to a higher visibility of noise as irrelevant ar-
eas may be saturated, and does not take local con-
trast requirements and minor contrast differences
into account.

With AHE attempts improve on this by taking
local contrast requirements and minor contrast dif-
ferences into account. This is attempted to be done
by dividing the image into a grid of contextual re-
gions. Separate histograms are calculated for each
of these regions, therefore optimising the contrast

enhancement for each region independently. Visi-
bility of regional boundaries that may occur dur-
ing this process is tackled through a bilinear in-
terpolation scheme. Although these methods helps
with improving contrast enhancement in regions of
interest, it also leads to a substantial increase in
background noise as contrast enhancement is at-
tempted in each of the grid regions, some of which
fall completely on background. This results in a
sub-optimal image representation.

CLAHE is an attempt to fix the background
noise that comes with AHE, by limiting the con-
trast enhancement in homogeneous areas. These ar-
eas are identified by regions where the histogram
shows a high peak, indicating that most pixels are
within the same grey-level range. CLAHE limits
the slope associated with grey-level assignments by
allowing only a maximum number of pixels to be as-
sociated with a local histogram. The rest of the pix-
els are considered “clipped” and are redistributed
across the histogram. Clipping limit is an argument
of CLAHE, with lower clipping limit resulting in
less intense contrast enhancement with prevention
of background noise and possible loss of informa-
tion in regions of interest, while higher clipping lim-
its lead to higher enhancement in regions of inter-
est, while also adding background noise (Zuiderveld
(1994)).

2.2 UCM

UCM is an underwater image enhancement method
whose function is to improve underwater images
by colour balancing (equalisation of RGB colours)
and the contrast correction of both the RGB and
HSI colour models, and was developed by Iqbal et
al. (Iqbal et al. (2010)). The equalisation of RGB
colours is done by determining the dominant colour
by finding the mean R, G and B values across all
pixels and determining which is the highest. We
can assume that this will be the B channel, as the
B (Blue) channel is often the dominant colour in
underwater images.

Thereafter, two gain factors are created for the
two non-dominant channels;

A = Bavg/Ravg (2.1)

B = Bavg/Gavg (2.2)
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And then these factors are applied to every
pixel iteratively with below given equations,
where R and G are the old values for the current
pixel’s R and G channels and the R’ and G’ are the
new values for the current pixel’s R and G channels;

R′ = A ∗R (2.3)

G′ = B ∗G (2.4)

This creates a colour equalisation effect.
Contrast correction of the RGB model is done by

stretching the intensity values to the desired range
of values. The upper and lower limits of the image
are determined which are often (0-255) in the RGB
model. In the following, usually the maximum and
minimum values in the histogram are determined
and stretched to the desired range. In order to pre-
vent being affected by outliers, a certain upper and
lower percentage of pixel values (such as x < 0.2%
and 99.8% < x) are ignored. The contrast correc-
tion is applied to the pixels within this range (0.2%
< x < 99.8%) via the formula below;

P0 = (Pi − c)
(b− a)

(d− c)
+ a (2.5)

where P0 is the contrast corrected pixel value,
Pi is the considered pixel value, a is the lower limit
value (0), b is the upper limit value (255), c is the
minimum pixel value currently present in the image
and d is the maximum pixel value currently present
in the image.

This is applied to the upper values of the inten-
sity range considering the lowest color value com-
ponent, (often) Red (R) in underwater images, and
the lower values of the intensity range, consider-
ing the highest color value component, (often) Blue
(B), and to the entire range with the default for-
mula. When applying to the upper values of the
intensity range, a is substituted as minimum of R
and when applying to lower values of the intensity
range, b is substituted as maximum of B.

Contrast Correction of the HSI model is done
through the Saturation (S) and the Intensity (I)
components. The above mentioned process is ap-
plied to both of these components, where the ap-
plication to the S component helps obtain the true
colours of the underwater image while the applica-
tion to the I component creates better image illu-
mination (Iqbal et al. (2010)).

2.3 funieGAN

The goal of FUnIE-GAN(Fast Underwater Image
Enhancement for Improved Visual Perception), de-
veloped by developed by Islam et al., is to learn
a mapping G: X -> Y given a source domain X
and desired domain Y in the context of underwater
images (Islam et al. (2020). It is based on a con-
ditional Generative Adversarial Network (GAN)
model where the generator and discriminator com-
pete against one another in order to create results
closest to the desired outcome. The generator is
made up of an encoder-decoder network. The in-
put to the generator are of dimensions 256 x 256 x
3, and the output dimensions are the same by the
end of encoding and decoding.

A conditional adversarial loss function is created,
where the generator tries to minimise it, therefore
minimising the discriminability of the output from
the desired image. The discriminator tries to max-
imise the loss function, by being good at discrimi-
nating between the output and the desired outcome
even at higher similarities. This leads to both com-
ponents pushing one another to perform better.

The GAN is trained in two different ways; paired
training and unpaired training. In paired train-
ing, the generator attempts to generate an image
(from a low quality image) as close to an existing
ground truth (high quality image) as possible. In
unpaired training, there is no ground truth and in-
stead the generator attempts to both generate an
output from the source, and also the source from
the corresponding output (Islam et al. (2020)).

2.4 IBLA

IBLA (Underwater Image Restoration based on Im-
age Blurriness and Light Absorption) is an im-
age restoration method proposed by Peng & Cos-
man which restores images based on their blurriness
and light absorption (Peng & Cosman (2017)). Im-
age blurriness and light absorption are determined
through estimates of Background Light (BL) and
depth.

Image blurriness is determined on a filtered
greyscale version of the input image where more
visible regions appear relatively highlighted while
the less visible regions appear darker.

BL estimation helps determine the colour and
restore scene radiance of an underwater image. A
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high estimated (bright) BL results in a low scene
radiance while a low estimated (dim) BL results
in high scene radiance upon restoration. A simi-
lar effect applied to the colour of the image, where
the estimated BL colour values will be reversed (an
image with a blue BL will appear more red upon
restoration and vice versa). The BL value is taken
from a region of the image with high blurriness and
low variance (as such a region is likely to be further
back on the scene and reliable).

Depth estimation is derived through the relative
appearance of blue, red and green light in the scene,
based on the location of appearance and abundance
and through image blurriness.

Finally Transmission Map (TM) estimation
and scene radiance recovery is done through
calculating the distance from the camera to scene
points and restoring the image accordingly with
colour adjustments(Peng & Cosman (2017)).

These methods could possibly be applied in real
time, where each frame that the camera records
would be put through a pre-processing method be-
fore the object detection algorithm is applied. This
of course takes time, the duration of which depend-
ing on the method used, and therefore will drop the
rate of which the area can be analysed. As the ob-
ject detection model itself is also a tying factor of
the rate of analysis, it would be to our best interest
to keep the running time of it to a minimum.

3 Methods

3.1 Model Selection

Some studies have shown that YOLO algorithms
can overall match or surpass the performance of
other commonly used model types in terms of mAP,
such as Faster R-CNN (Fulton et al. (2019), Uras
et al. (Unpublished)). They can also achieve this
while working significantly faster and putting out
higher frame rates on most processors (Fulton et
al. (2019)). At the time of this study, YOLOv8 is
the latest version of YOLO models. Ultralytics dis-
play that the YOLOv8 Nano model has the best
mAP to latency ratio in comparison to all the previ-
ous YOLO versions (Ultralytics (2023)). YOLOv8
Nano, the smallest YOLOv8 model, was therefore
chosen to be utilised for model training in order to

minimize frame-rate loss.

3.2 Dataset

The data used to train the pre-trained model was
chosen to be the TrashCan dataset which is a data
set containing 7212 images taken from underwa-
ter footage. This data set has two different ver-
sions; material, which categorises objects into the
classes of the general material they are made of
(metal, plastic), and instance, which categorises ob-
jects into classes of the more specific type of object
that they are (can, bottle). Both were annotated
in the JSON format. In this paper, the instance
version, which contains 22 classes, was chosen in
order to be better informed of what exactly is be-
ing detected as this may help the collection process
in future expeditions if certain objects are to be
targeted (Hong et al. (2020)).

3.3 Data Pre-processing

To prepare the data for model training, validation
and testing, Roboflow, a website in collaboration
with Ultralytics was used (Everything you need to
build and deploy computer vision models (2023), Ul-
tralytics (2023)). The dataset was uploaded to the
website with the annotations, which are automati-
cally read from the website. The data was split into
train, validation, and test sets. The data split into
each set in terms of percentage were chosen to be
85/15/5, differently from the traditional 80/10/10
to prioritise validation. The images were resized
into 480 by 480 pixels (nearest square) each, which
was done for consistency as there are two different
sizes of images in the data set. This also adjusts
the annotations to fit the new image size. Within
Roboflow, the annotations were converted to the
YOLOv8 format.

In addition to the dataset being used as is, an
augmented version was created for each of the mod-
els. The augmentation of choice was 1.5% noise,
where in an image, 1.5% of the pixels were ran-
domly set as white. This was applied to all the im-
ages in the training set (while retaining the original
images) and resulted in double the number of dat-
apoints in order to enable more thorough training.

Letterboxing was also used when resizing the im-
ages in addition to regular resizing. Letterboxing is
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a way to sustain the original aspect ratio of an im-
age by adding black padding to the part of the en-
larged/shrunk image until it reaches the intended
aspect ratio. For example, some of the images in the
TrashCan data set are 480(height) by 270(width).
In this case, we could add ((480-270)/2) 105 by 480
padding to the top and the bottom of the image
to turn it into a square image while the relevant
area of the image keeps its original aspect ratio. A
demonstration of this can be seen in figure 3.1. This
would help prevent the image distortion with regu-
lar resizing, which causes the images to be stretched
and therefore decreasing in quality and the objects
therefore being slightly altered. This could in turn
lead to a difference in model performance. Letter-
boxed versions of the same pre-processed images
were created in Roboflow, in the pre-processing sec-
tion, by resizing with option ’fit (black edges) in’.

Figure 3.1: A demostration of the letterboxing
method

For the application of the pre-processing meth-
ods, available code implementations were utilised
∗(wangyanckxx (2021), xahidbuffon (2020)). 4 new

∗The repositories where the code implementations
of the pre-processing methods that were used can
be found at https://github.com/wangyanckxx/Single
-Underwater-Image-Enhancement-and-Color-Restoration.
and https://github.com/xahidbuffon/FUnIE-GAN

different versions of the dataset were created.
Some of the aforementioned methods, namely UCM
IBLA and funieGAN, were used to create thier
corresponding pre-processed images (datasets). For
CLAHE, the method was applied via the CLAHE
function of OpenCV to the V component (in the
HSV model) of a coloured image and the clipLimit
(2) was set to 5.0 as lower clip limits did not re-
sult in enough visible contrast and higher clipLim-
its added noise. For each of those pre-processing
methods, a new folder was created, with each file
retaining the original filenames for easy accessibil-
ity. During the pre-processing, the time taken for
each application was recorded in order to be able to
obtain the mean processing time for each method.
All pre-processing methods, except for funieGAN,
were applied to the original images with the original
size, then were resized in Roboflow as previously de-
scribed. funieGAN’s implementation only worked
on images 252 x 252, therefore they had to be first
resized with Roboflow in order to have matching
annotations, and after the processing they were re-
sized back to 480 x 480 in order to have consistent
sizes with the other pre-processed data sets.

3.4 Model Training and Testing

For each model, a remote access to the prepared
data which is given by Roboflow was used in Google
Colab. T4, the fastest of the available free GPUs
was utilised across all models and all processes.
The the number of epochs was set to 27 across all
models, as improvements in metrics were not ob-
served at higher epochs. The models were then each
validated, from which the model’s performance in
terms of precision, recall, mAP50 and mAP95 are
obtained for both boxing and segmentation, and
also provides how many times each of the classes
were observed. Finally each model’s performance
was visually observed on test data. After validation,
confusion matices and other results were generated
to be used for analysis.

These trained models were manually tested for
their accuracy. This was done by creating a list of
images with their corresponding labels. Each model
was run on their corresponding pre-processed test
set. When any of the model’s predictions matched
any of the image labels or when there was no la-
bel in the image and the model made no predic-
tions, that was counted as a correct prediction on
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the image, and otherwise not. The accuracy was
calculated as the n of correct predictions/n of total
predictions for each model.

Each of the models’ predictions were combined
and assessed in the same way. The combined
predictions were achieved though storing the
predictions of each of the models for each image
in separate lists, and then combining them into
one list by image. This results in a list where each
item corresponds to all of the predictions made by
each model for a specific image. This was done to
combine each of the models’ strengths and achieve
a higher accuracy score. This was also used for
recall and precision, as described below.

The recall in this case is given by

R =
TP

TP + FN
(3.1)

where TP is the number of predictions that are a
part of the labels and FN is the number of labels
that are not a part of the predictions. Similarly, the
precision is given by

P =
TP

TP + FP
(3.2)

where TP means the same and FP is the num-
ber of predictions that are not in the labels. Recall
refers to the capability of the model to detect an
object when its there, and the precision refers to
the model’s ability to predict only what is present
and nothing else. Both of these metrics can be com-
bined into one with the F1 score, which is

F1 = 2
P ∗R
P +R

(3.3)

The F1 score is viewed as a better metric than
accuracy, as its considers specific attributes of a
model’s detection and identification capabilities,
namely, recall and precision.

4 Results
In table 4.1, the corresponding processing times for
each model are displayed. The processing time of
the original model indicates the inference time of
the YOLOv8 model which was identical for all mod-
els, and the rest of the processing times indicate

how much additional processing time is required
on top of the model inference time. The FPS indi-
cate the resulting frame rate from the addition of
inference time and pre-processing time.

In figure 3.2 below, some example produced out-
puts of each of the pre-processing methods, in ad-
dition to the original images can be seen.

In Table 3.1, the Box mAP scores for the 22
classes, with the addition of mAP accross all classes
combined, can be seen for each of the models
with their corresponding pre-processing methods.
UCM model has achieved the highest score across
9 classes, the Original model 7, the CLAHE model
2, the IBLA model 3, and the funieGAN model 2.

To test whether these mAP score differences
between the models are statistically significant,
one-tailed t-tests were performed with each of
the models against one another. The input to
these t-tests were the models’ corresponding mAP
scores for each class. The most notable differences
were between UCM and CLAHE (t=2.381, df=42,
p=0.021) and Original and CLAHE (t=1.995,
df=42, p=0.053). On the basis of p(0.021) < 0.05,
we can consider the UCM model as significantly
better in terms of mAP than the CLAHE model.
While the p=0.053 obtained from comparing the
Original model to the CLAHE model is not statis-
tically significant, it is close enough to being signif-
icant for the mAP differences to be taken into con-
sideration. The mAP differences between the two
highest overall performing models, UCM and Orig-
inal, were found to be highly statistically insignifi-
cant (t=0.207, tf=42, p=0.837).

Despite the non-significant overall differences be-
tween the Original and UCM model their perfor-
mances were observably skewed to opposite sides.
This can be seen in the confusion matrices in figure
3.3 below, where in the top left corner, the UCM
model has visibly less divergence from the true class
in comparison to the Original model, which is where
the organism classes are located. In addition to this,
when looked at the class mAP scores, the UCM
model scores higher than the Original model for
5 of the 7 classes that are organisms (crab, eel,
fish, shells, starfish, plant, etc) while the Original
model scores higher than the UCM model for 8 of
the 14 classes that are debris. The mAP scores of
the UCM model and the Original model for organ-
ism and debris classes can be seen in table 4.2. We
test for significance with a t-test with only these
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Object Instance original clahe ucm ibla funieGAN
all 0.86 0.792 0.866 0.795 0.817

animal_crab 0.746 0.74 0.863 0.664 0.624
animal_eel 0.838 0.688 0.824 0.724 0.811
animal_etc 0.609 0.735 0.833 0.515 0.653
animal_fish 0.893 0.826 0.865 0.844 0.88

animal_shells 0.626 0.697 0.651 0.477 0.5
animal_starfish 0.712 0.674 0.864 0.835 0.754

plant 0.873 0.788 0.919 0.835 0.856
rov 0.937 0.927 0.957 0.93 0.944

trash_bag 0.908 0.928 0.913 0.886 0.909
trash_bottle 0.937 0.868 0.975 0.819 0.839
trash_branch 0.937 0.897 0.899 0.933 0.94

trash_can 0.907 0.894 0.906 0.883 0.859
trash_clothing 0.885 0.895 0.995 0.995 0.884
trash_container 0.969 0.965 0.939 0.89 0.953

trash_cup 0.995 0.829 0.946 0.881 0.928
trash_net 0.791 0.588 0.665 0.564 0.793
trash_pipe 0.921 0.824 0.815 0.938 0.929
trash_rope 0.79 0.523 0.811 0.646 0.523

trash_snack_wrapper 0.968 0.658 0.827 0.609 0.884
trash_tarp 0.826 0.785 0.801 0.838 0.757

trash_unknown_instance 0.88 0.859 0.9 0.857 0.862
trash_wreckage 0.974 0.842 0.889 0.942 0.884

Table 3.1: (Box) mAP scores of each model with the corresponding pre-processing method, for
each of the object classes. The highest score for each class is marked red (green if even), which
indicates that the corresponding model for that score detects this class the best.
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original clahe ibla ucm funiegan

Figure 3.2: Some examples of how the given pre-processing method changes an image that it’s
applied to.

original clahe ucm ibla funieGAN
Processing Times 7ms +3ms +2.9s +9.8s +30ms

FPS 142 100 0.34 0.10 27

Table 4.1: Processing speeds of each model with their corresponding pre-processing method.

Organism Debris
original 0.756 0.906

ucm 0.831 0.877

Table 4.2: The mAP scores of the UCM model
and the Original model for organism and debris
classes (YOLOv8 validation output)

specific classes as inputs. For organism classes, the
difference between the UCM model’s and Original
model’s mAP scores was found to be insignificant
(t=1.377, df=12, p=0.193) and for debris classes,
the difference between the UCM model’s and Orig-
inal model’s mAP scores was found to be also in-
significant (t=1.000, df=26, p=0.326).

The accuracy scores obtained by each of the mod-
els, and the accuracy score of their combination can

Accuracy
original 0.122
clahe 0.112
ucm 0.134
ibla 0.114

funieGAN 0.118
combined 0.151

Table 4.3: Accuracy scores of each model with
the corresponding pre-processing method, in-
cluding the accuracy of their combination (man-
ually calculated).

be seen in table 4.3 below. The rankings were in
accordance with the overall mAP scores. The com-
bination of all models (explained in section 3) re-
sulted in the highest accuracy score of 0.151.
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original clahe ucm ibla funieGAN combined
Precision 0.074 0.066 0.081 0.066 0.71 0.075
Recall 0.079 0.077 0.091 0.074 0.078 0.125

F1 0.076 0.071 0.086 0.070 0.074 0.094

Table 4.4: Recall, Precision and F1 scores of each model with the corresponding pre-processing
method, including the scores of their combination (manually calculated).

The results displayed in table 4.4 show that the
UCM model is the best model on all the metrics.
In contrary to the mAP scores and the accuracy
scores, the IBLA model has performed worse than
the CLAHE model, evidently by the lower F1 score.
The combination of all models provides the second
highest Precision, while resulting in the highest Re-
call by a substantial amount. Given this, it also re-
sults in the highest F1 score of 0.094.

The overall mAP results from the models which
were trained and validated with Letterboxed im-
ages against the models which were trained and
validated on normally resized images can be seen
in table 4.5.

The overall mAP results show that letterboxing
causes a slight improvement for UCM and CLAHE
models while being a detriment to the Original
and IBLA models.

Finally, the overall mAP results from the models
which were trained on augmented dataset (as ex-
plained in section 3) against the models trained on
the original dataset can be seen in 4.6.

The overall mAP results from the augmented-
dataset models show that data augmentation is an
improvement for all of the models. The CLAHE,
IBLA and funieGAN models saw the highest im-
provement with over 5% higher mAP scores.

5 Discussion

To answer the question of "To what extent can
underwater object detection be improved
through image pre- processing?", all aspects
of each of the models have to be considered.

Given the processing speed and the overall pefor-
mance, the IBLA model can be left out of consider-
ation when it comes to its real-time deployment in
ROVs. Its slow functioning in comparison to other
models is caused by the relatively high complexity

of its process as described in section 2 (Peng & Cos-
man (2017)). This is reflected by the number of dif-
ferent processes the image goes through before the
output is obtained. The evidence of colour shifting
into red and blue hues can be observed in Figure
3.1, as some images appear relatively blue while
the others red. As this inconsistency is reflected
along the whole dataset, it may have resulted in
an inefficient training process. In addition to this,
this method was initially constructed for larger im-
ages which affects the filtering process during BL
calculation (as described in section 2). These im-
ages in the TrashCan dataset being of smaller size
may have caused a faulty or non-ideal filtering pro-
cess. Conclusively, the IBLA model performs the
best among only the trash_pipe and trash_tarp
classes, and the second worst in terms of overall
mAP. Even if those two classes were the only ones
to be focused on, its long processing time (9.8s on
Colab T4 GPU) can’t justify its usage for two rea-
sons;
1) If the ROV is to move at a constant rate, it is
likely to miss any debris that do not stay in frame
for at least 9.8 seconds.
2) Stopping the ROV for at least 9.8 seconds on
suspected debris would be inefficient for the overall
debris removal efforts.

When it comes to the CLAHE model, given
its very quick processing time (3ms on Colab T4
GPU), it can achieve a frame rate that is more than
necessary to analyse any frame that may contain
and object of interest (100 FPS with the model in-
ference time and pre-processing combined). This is
a result of the lack of complexity of its process as
described in section 2 (Zuiderveld (1994)). Its poor
performance across the metrics in comparison to
the other models is likely caused by the process’s
original intent, which is to be used on greyscale
images. In this case, it was applied to the V com-
ponent of the HSV model, which resulted in the
brighter areas of the images appearing green and a
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original clahe ucm ibla
Letterbox-resized 0.838 0.795 0.869 0.782
Regular-resized 0.860 0.792 0.866 0.795

Table 4.5: The mAP scores of each model, with letterboxing and with regular image resizing
(YOLOv8 validation output).

original clahe ucm ibla funieGAN
Augmented Dataset 0.882 0.855 0.896 0.852 0.869

Original Dataset 0.860 0.792 0.866 0.795 0.817
Difference +0.022 +0.063 +0.030 +0.057 +0.052

Table 4.6: The mAP scores of each model, trained and validated on the augmented dataset and
with the original dataset (YOLOv8 validation output).

slight hue shift and a reduction of brightness in the
rest of the image. This causes a reduction in visibil-
ity towards the objects that aren’t fully lit, causing
a high inconsistency in object appearances depend-
ing on the light reflection from the object in the
scene. This is made apparent by the low precision
obtained by the CLAHE model, as seen in Table
4.2. Despite this, the CLAHE model performs the
best in the animal_shells and trash_bag classes.
In case of bags being the exclusive focus of an ex-
pedition, the usage of the CLAHE model can be
considered. Shelled creatures often only settle on
hard surfaces, therefore being able discern the best
between bags and shells or shells on bags is unlikely
to pose an advantage for the CLAHE model during
an on-field deployment.

In all of the overall metrics, both the ones out-
putted by the YOLOv8 validation procedure and
the ones manually obtained, the UCM model has
achieved the highest scores, which makes it seem to
be the most suitable model for deployment. This is
likely caused by the UCM process being structured
based on widely applicable generalisations, such as
the blue colour often being the dominant colour in
underwater images and the red colour being the
first to disappear (Iqbal et al. (2010)). The steps
taken throughout the process are simple and consis-
tent, without leaving any variables that have to be
fine tuned to the dataset, thus giving consistent re-
sults. The one detrimental factor of this model, like
the IBLA model, is the long pre-processing dura-
tion (2.9s on Colab T4 GPU). Although it takes less
than 1/3 of the time that the IBLA model takes,
it is still prone to missing debris while the ROV is

in motion. Rather than being used for debris detec-
tion, the UCM method seems to be more suitable
for identifying underwater creatures, for example,
for a documentary, as it has shown to be better at
detecting animal classes than the other models, and
if an animal is in motion, it would likely be followed
for over 2.9 seconds, making the pre-processing du-
ration potentially applicable.

The funieGAN model, although lower than that
of CLAHE, is able to process visuals at a real-time
suitable frame rate of 27 FPS. The one challenge
faced with the funieGAN model was the forced re-
sizing of the images, which had to be first shrunk
and then enlarged. The shrinking before inputting
into the GAN model has likely caused a decrease in
image quality and detail. Another detriment to the
functioning of this model is that the paired training
of this model was done on a certain dataset (Islam
et al. (2020)), which appeared to consist of images
of higher resolution and quality and different con-
text. Instead of the camera pointing diagonally to
the ocean floor, it is pointed horizontally in open
ocean in most images. This may have resulted in
the model not being accustomed to images of lower
or quality or images of this specific context and thus
not functioning optimally on the TrashCan dataset.
Despite this, given that it performs the best in two
classes, namely trash_branch and tash_net, its de-
ployment can be considered if either of those two
classes are to be targeted specifically.

With all the models having been considered, the
Original model still remains the most real-time de-
ployable out of them. It can achieve a working speed
of 147 FPS (on Colab T4 GPU), which makes it cer-
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tain that it won’t miss any frames, given that the
maximum speed of the ROVs do not surpass 2.6
m/s. It is also the best performing model in terms
of mAP when it comes to detecting debris (as op-
posed to living creatures, in which UCM displays
the higher performance). As it does not suffer from
any delay due to image pre-processing, the original
model would be the most efficient model for deploy-
ment, and would likely result in the most debris
being cleaned of the ocean and sea floors.

Something else that can be considered upon de-
ployment is combining the predictions of the fastest
running models. As shown in the Results section,
the combination of all models has resulted in the
overall highest measured accuracy and recall. Ide-
ally, the Original, CLAHE and funieGAN models
could be run in parallel and retain the minimum
FPS of 27 FPS. If they were to be run sequentially,
this would drop the fame rate to 18 FPS, which is
still considerable given that the ROVs deployed by
SeaClear have a maxmimum speed of 5 knots (2.57
m/s) , and assuming that a visible distance of an
object is 1 meter, each possible object of interest
would have a minimum of 7 chances to be detected
(Subsea Tech (2023)).

The models trained on augmented data (as ex-
plained in section 3) have displayed a substantial
increase in performance. While their relative per-
formance stayed similar, CLAHE, IBLA and fun-
ieGAN models have seen further increase than the
rest. This makes the deployment of CLAHE and
funieGAN models more considerable, as with aug-
mentation, the gap of performance between them
and the Original model is reduced.

Finally, the letterboxing results indicate that
they are unlikely to cause any effective improve-
ments to the models, as displayed in Table 4.3, no
substantial increase was observed, although a de-
crease can be seen for two models, namely Original
and IBLA. This may be a result of the relevant
area of the image being smaller in size (although
less distorted), and therefore containing less infor-
mation for the model to learn from.

6 Conclusion

In summary, the pre-processing methods did not
prove to create an overall advantage when it comes
to underwater debris detection. The usage of the

CLAHE and funieGAN models can be justified
when the specific classes that they perform the best
at are targeted, especially when data augmentation
is involved in the training process. The UCM and
the IBLA models are rendered unusable due to their
long pre-processing times. These models could only
be effectively used if they are run on a more capable
GPU which can boost their operating speed up to
at least 3 FPS. This would be the minimum number
of frames necessary to process any frame contain-
ing an object at least once if their visible distance
is considered to be 1 meter away or less, at maxi-
mum ROV speed. All things considered, the orig-
inal model without any image pre-processing, es-
pecially with data augmentation, is observably the
most suitable model for real-time debris detection
due to having the highest mean debris mAP and
the highest processing speed.

7 Further Research

An improvement on this study could be getting rid
of the irrelevant information in each of the images,
or using a different data set that does not contain
them. In the images that were used in this study,
there is technical and recording information over-
laid, which may interfere with the model’s learning
of object properties, in which some of the objects
will have such text overlaid on top of them and the
others will not. Not having such noise would lead to
a more consistent training and detection process.
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