
UNIVERSITY OF GRONINGEN

MASTER’S RESEARCH INTERNSHIP

Extensions to Neural Texture
Synthesis

Author:
Lonneke PULLES

Supervisors:
Dr. Cara TURSUN

Prof. Jiří KOSINKA

A Research Internship Report submitted in fulfillment of the
requirements

for the Master’s Degree in Computing Science

in the

Faculty of Science and Engineering

Department of Computing Science

January 8, 2024

i

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1
1.1 Texture classification . 1
1.2 Texture synthesis methods . 2
1.3 Contributions . 3

2 Related Work 4
2.1 Texture perception in humans: Julesz Conjecture 4
2.2 Statistical texture synthesis . 5
2.3 Neural texture synthesis . 7

2.3.1 Gram matrix representations 8
2.3.2 Loss function . 9
2.3.3 Alterations to VGG-19 . 10
2.3.4 Advantages and limitations 10

2.4 Inpainting . 11
2.4.1 Partial convolution . 11

2.5 Receptive field analysis . 12
2.6 Transformer . 12

2.6.1 Encoder and decoder blocks 13
2.6.2 Scaled dot-product attention 13
2.6.3 Multi-head attention . 14
2.6.4 Position . 14
2.6.5 Vision Transformer . 15

3 Method 17
3.1 Mask-aware neural texture synthesis 17

3.1.1 Mask-aware VGG-19 for texture synthesis 18
3.1.2 Conversion of a pretrained VGG into a mask-aware VGG . . 19
3.1.3 Gram matrix representations in mask-aware VGG-19 19

3.2 Constrained neural texture synthesis 20
3.3 Structure-aware texture synthesis 20

3.3.1 Neural texture synthesis with Vision Transformer 21

ii

3.3.2 Neural texture synthesis with a gradient loss 21

4 Results 23
4.1 Mask-aware texture synthesis . 23

4.1.1 Rectangular mask . 23
4.1.2 Random mask . 29

4.2 Structure-aware texture synthesis 33
4.2.1 Neural texture synthesis with Vision Transformer 34
4.2.2 Neural texture synthesis with a gradient loss 36

5 Discussion 38
5.1 Mask-aware texture synthesis . 38

5.1.1 Case 1: unmasked and unconstrained 38
5.1.2 Case 2: unmasked and constrained 38
5.1.3 Case 3: masked and unconstrained 38
5.1.4 Case 4: masked and constrained 39

5.2 Structure-aware texture synthesis 39
5.2.1 Neural texture synthesis with Vision Transformer 39
5.2.2 Neural texture synthesis with a gradient loss 40

6 Conclusion 41

A Additional results - mask-aware texture synthesis 42

B Additional results - structure-aware texture synthesis 43

Bibliography 48

iii

List of Figures

1.1 A texture spectrum arranged by regularity, from regular to stochastic.
Adopted from Lin et al. [15]. 1

2.1 Three images containing two random fields with different probability
distributions for the first, second and third order. Figure adopted
from Julesz [13]. 4

2.2 Four natural textures extended with the statistical method proposed
by Portilla and Simoncelli [19]. Figures adopted from Portilla and
Simoncelli [18]. 5

2.3 A schematic representation of a steerable pyramid [24]. The gray
area is a recursive subsystem, representing only one level Li(−ω).
H0(−ω) represents the highpass band, Bi(−ω) is the (i+ 1)-th ori-
ented subband of a given pyramid layer and K is the number of ori-
ented subbands per layer. L(−ω) is the residual lowpass subband.
Figure adopted from Portilla and Simoncelli [19]. 6

2.4 An example of values in a steerable pyramid with 3 levels and 3
subbands, applied to an image with a black background and a white
circle in the middle. Figure adopted from Simoncelli and Freeman
[24]. 6

2.5 Diagram of the recursive texture synthesis algorithm proposed by
Portilla and Simoncelli [19]. Adopted from Portilla and Simoncelli
[19]. 7

2.6 A schematic overview of the neural synthesis method used in Gatys
et al. [6]. The left side visualises the feature maps extracted from
VGG-19 with the target texture as input. The right side visualises the
extracted feature maps using the synthesised texture as input. Each
layer error is computed using the two Gram matrices computed on
the feature maps from the left and right sides, which are combined
into one weighted loss L(⃗x, ˆ⃗x). Adopted from Gatys et al. [6]. 8

2.7 Four natural textures synthesised with the neural method proposed
by Gatys et al. [6]. Sorted by increasing long-range structure, such
as the uninterrupted horizontal lines of shelves in Figure 2.7g which
span the entire image. 10

2.8 The Transformer model architecture. Adopted from Vaswani et al.
[28]. 13

iv

2.9 An overview of the Vision Transformer architecture. An image is
split into fixed-size patches. Each patch is linearly embedded and
position encoding is added. The result is fed to L consecutive stan-
dard Transformer Encoder blocks. In order to perform classification,
an extra MLP head is added at the end. Adopted from Dosovitskiy et
al. [4]. 15

4.1 Case 1 applied to radishes. Mask updated with max pooling. 25
4.2 Case 1 applied to radishes. Mask updated with min pooling. 25
4.3 Case 2 applied to radishes. Mask updated with max pooling. 26
4.4 Case 2 applied to radishes. Mask updated with min pooling. 26
4.5 Case 3 applied to radishes. Mask updated with max pooling. 27
4.6 Case 3 applied to radishes. Mask updated with min pooling. 27
4.7 Case 4 applied to radishes. Mask updated with max pooling. 28
4.8 Case 4 applied to radishes. Mask updated with min pooling. 29
4.9 Case 2 applied to radishes. The mask is randomly generated with a

probability of 0.5. Mask updated with max pooling. 30
4.10 Case 2 applied to radishes. The mask is randomly generated with a

probability of 0.5. Mask updated with min pooling. 31
4.11 Case 3 applied to radishes. The mask is randomly generated with a

probability of 0.5. Mask updated with max pooling. 32
4.12 Case 3 applied to radishes. The mask is randomly generated with a

probability of 0.5. Mask updated with min pooling. 32
4.13 Case 4 applied to radishes. The mask is randomly generated with a

probability of 0.5. Mask updated with max pooling. 33
4.14 Case 4 applied to radishes. The mask is randomly generated with a

probability of 0.5. Mask updated with min pooling. 33
4.15 ViT-based texture synthesis of pebbles. 34
4.16 VGG-19 based texture synthesis with a ViT-guided texture initialisa-

tion on a texture of pebbles. 35
4.17 VGG-19 based texture synthesis with a ViT-guided texture initialisa-

tion on a texture of stacked cans. 36
4.18 A gradient loss combined with the Gram matrix representation-based

loss proposed by Gatys et al. applied to an image of a cat. 37

A.1 Case 3 applied to radishes. Mask updated with max pooling. 42

B.1 A gradient loss combined with the Gram matrix representation-based
loss proposed by Gatys et al. applied to an image of cans. 43

B.2 A gradient loss combined with the Gram matrix representation-based
loss proposed by Gatys et al. applied to an image of jungle. 44

B.3 A gradient loss combined with the Gram matrix representation-based
loss proposed by Gatys et al. applied to an image of the inside of a
shop. 45

B.4 A gradient loss combined with the Gram matrix representation-based
loss proposed by Gatys et al. applied to an image of pebbles. 46

B.5 A gradient loss combined with the Gram matrix representation-based
loss proposed by Gatys et al. applied to an image of radishes. 47

v

List of Tables

4.1 Mean squared error between the synthesised and original images
over all four cases for a rectangular mask in the upper-left corner
of the image. 24

4.2 Mean absolute error between the synthesised and original images
over all four cases for a rectangular mask in the upper-left corner
of the image. 24

4.3 Mean squared error between the synthesised and original images
over all four cases for a random mask with probability 0.5. 29

4.4 Mean absolute error between the synthesised and original images
over all four cases for a random mask with probability 0.5. 30

1

1 | Introduction

Natural textures are present all around us and humans are uniquely suited to both
recognise and create them. Although a natural texture’s pattern is not repeated in an
exact or geometric way, the similarity in its spatial recurrences can be detected by a
human observer at a moment’s glance. Computers, on the other hand, still have more
difficulty in performing this task and are not yet at a human level of performance.

1.1 Texture classification

Textures are images that consist of repeating elements, which can be subject to some
form of randomization in characteristics such as location and orientation [19]. They
can be classified in a spectrum ranging from regular textures (e.g. checkerboards),
to near-regular textures (e.g. a brick wall), irregular textures (e.g. a box full of both
oranges and lemons), near-stochastic textures (e.g. fire and clouds) and stochastic
textures (e.g. stucco) [15]. Figure 1.1 shows examples of textures arranged according
to this spectrum. Because of its repetitive nature, a texture can be compressed into
a texture representation. This representation can take various forms: the statistical
parameters of a stochastic texture, a singular patch of a regular texture, or other. The
representations of textures in the middle of the spectrum are less straightforward and
require more complex methods.

FIGURE 1.1: A texture spectrum arranged by regularity, from regular
to stochastic. Adopted from Lin et al. [15].

Chapter 1. Introduction 2

1.2 Texture synthesis methods

Texture synthesis is the process of generating a texture via computational methods
based on a target texture. Existing methods of texture synthesis can be divided into
two overarching categories: non-parametric and parametric. An example of a non-
parametric technique is the method by Efros et al. [5], which grows a texture pixel-
by-pixel based on the conditional probability of a pixel given its neighbourhood pix-
els. The estimation of this conditional probability is derived from the target texture,
assuming a Markov random field model. Notably, this non-parametric method fo-
cuses on image synthesis, and less on analysis via the image’s representation. After
all, the method does not operate on a compressed representation of the image, but on
the original image itself. Parametric techniques, though, have a dual purpose: both
their texture analysis and synthesis methods are of interest. Whereas non-parametric
techniques do not extract texture characteristics, parametric techniques represent a
texture with parameters of the texture, such as features or statistical properties.

Non-parametric methods of texture synthesis yield better results on regular textures,
whereas non-parametric techniques are more suitable for irregular textures. More-
over, parametric synthesis techniques generally have a lower computational cost than
non-parametric algorithms [1].

The amount of information that a texture representation of a parametric algorithm
captures can be verified by texture synthesis, but texture synthesis also paves the way
for a multitude of applications in inpainting, lossy compression, super-resolution,
upscaling without distorting the scale of the texture elements (texels) and various
other image processing techniques. The synthesis of textures is therefore an active
research field.

One of the core parametric models before the advent of deep learning was a statistical
model proposed by Portilla and Simoncelli [19]. Their approach consists of two
phases: an analysis and a synthesis phase. In the analysis phase, image statistics
are computed via image decomposition with a steerable pyramid. In the synthesis
phase, the algorithm iteratively applies the computed statistical parameters to obtain
a texture with the same image statistics. Although the method performs well on a
wide range of textures, it does not capture the full scope of irregular textures.

In 2015 Gatys et al. proposed an alternative parametric model based on the feature
maps of a convolutional neural network (CNN), laying the groundwork for most
neural network applications in texture synthesis [6]. Their method is based on the
network architecture VGG-19 and is heavily inspired by Portilla and Simoncelli’s
algorithm [25]. However, Gatys et al.’s method shows an improved naturalness of
synthesised irregular textures over Portilla and Simoncelli’s method, as assessed by
human observers.

A second subfield of neural texture synthesis that quickly originated after Gatys et
al.’s seminal paper is based on the work done by Jetchev et al. on Spatial GANs
(SGANs) [12]. SGANs are a modification of Deep Convolutional GANs (DCGANs),
which are themselves modifications of GANs [20, 7]. SGANs, like GANs, contain
a generator and a discriminator, where the discriminator outputs the probability that

Chapter 1. Introduction 3

its input came from the data rather than the generator. Unlike GANs, however, a
SGAN’s generator produces an RGB image. Moreover, its input noise z is not a
single vector, but a spatial tensor of size Rl×m×d . This report will, however, not use
this alternative approach.

It is the neural network-based method for texture synthesis proposed by Gatys et al.
that provides the foundation for this report [6].

1.3 Contributions

This report provides the following contributions:

• a mask-aware CNN architecture based on VGG-19, containing novel mask-
aware convolutional layers and mask-aware pooling layers, enabling texture
synthesis using target textures with irregular shapes.

• the combination of mask-aware neural texture synthesis with constrained opti-
mization. This is essentially inpainting with neural texture synthesis.

• application of the general idea of neural texture synthesis with Gram matrix
representations to a Vision Transformer (ViT), first proposed by Dosovitskiy
et al. [4].

• structure-aware texture synthesis by combining the original texture loss pro-
posed by Gatys et al. with a novel structure loss based on an approximation of
the gradient of image intensity [6].

Section 2 expounds on previous work related to the project, after which Section 3
describes the methods and algorithms used in this project. Section 4 presents the
results of the proposed methods, which are discussed in Section 5. The project is
concluded in Section 6.

4

2 | Related Work

2.1 Texture perception in humans: Julesz Conjecture

In the 1960s, Béla Julesz investigated the discrimination ability of the human visual
system between textures generated by different stochastic processes. These Markov
processes were specified by their N-th order joint probability distribution, which is
the probability of N selected brightness points having certain values. Figure 2.1
shows three random fields with different first-, second- and third-order probability
distributions.

(A) Different first-order prob-
ability distributions. Pixels on
the left are black with prob-
ability 5

8 , while pixels on the
right are black with probabil-

ity 3
8 .

(B) Identical first-order but
different second-order proba-

bility distributions.

(C) Identical first- and second-
order, but different third-order

probability distributions.

FIGURE 2.1: Three images containing two random fields with dif-
ferent probability distributions for the first, second and third order.

Figure adopted from Julesz [13].

Based on his experimental results, Julesz conjectured that humans can perceive dif-
ferences only up to second-order statistics. He stated that when distributions are
identical up to the second-order and only differing in a higher order, humans would
not be able to discriminate between the random fields. However, in 1973 Julesz et
al. proved themselves wrong by using non-Markovian processes to generate textures
[14]. They found counterexamples where two random fields with different third-
order statistics could also be discriminated, suggesting that the human visual system
can also differentiate between textures with different higher-order statistics. Never-
theless, the Julesz Conjecture paved the way for the current role of texture statistics
in the field of texture synthesis.

Chapter 2. Related Work 5

2.2 Statistical texture synthesis

Before the use of neural networks for texture synthesis, textures were synthesised
and extended with statistical methods. Arguably the best method for natural texture
synthesis before CNNs was proposed by Portilla and Simoncelli in 2000 [19].

(A) Pebbles (B) Radishes

(C) Jungle (D) Cans

FIGURE 2.2: Four natural textures extended with the statistical
method proposed by Portilla and Simoncelli [19]. Figures adopted

from Portilla and Simoncelli [18].

Their method is based on joint statistics of complex wavelet coefficients. The com-
puted statistics function as constraints to synthesise a new instance of the same tex-
ture.

The method consists of two phases, a phase where the target statistics are computed
and a texture synthesis phase. In the first phase, the statistical measurements are
computed by decomposing the original texture with a Steerable Pyramid [24]. A
steerable pyramid decomposes an image linearly in both scale and orientation. Figure
2.3 contains a schematic representation of a steerable pyramid. There are two main
parameters that can be controlled: the number of levels and the number of subbands

Chapter 2. Related Work 6

per level. The levels differ on scale, while the subbands have different orientations.
An image of an example pyramid decomposition is shown in Figure 2.4.

FIGURE 2.3: A schematic representation of a steerable pyramid [24].
The gray area is a recursive subsystem, representing only one level
Li(−ω). H0(−ω) represents the highpass band, Bi(−ω) is the (i+1)-
th oriented subband of a given pyramid layer and K is the number of
oriented subbands per layer. L(−ω) is the residual lowpass subband.

Figure adopted from Portilla and Simoncelli [19].

FIGURE 2.4: An example of values in a steerable pyramid with 3
levels and 3 subbands, applied to an image with a black background
and a white circle in the middle. Figure adopted from Simoncelli and

Freeman [24].

In the synthesis phase, the algorithm starts with Gaussian noise and successively ap-
plies statistical parameter constraints. The input image is decomposed with a Steer-
able Pyramid, after which the statistical measurements are taken on the obtained
coefficients. There are four types of statistical constraints:

• Coefficient correlations. Coefficient auto-correlations in the low-pass band
represent the most important spatial frequencies and regularities.

Chapter 2. Related Work 7

• Magnitude correlations. Auto-correlations of the magnitudes of each sub-
band and cross-correlations of subband magnitudes represent structures, such
as edges and corners.

• Cross-scale phase statistics. The real and imaginary parts of the complex
coefficients are cross-correlated with the next scale.

• Marginal statistics. Statistics are constrained directly on pixel values, such as
the statistical moments mean, variance, skewness and kurtosis of the high-pass
band.

First, coefficient auto-correlations in the reconstructed image with only the low-pass
band are enforced, representing the most important spatial frequencies and regulari-
ties. Next, the algorithm constrains auto-correlations of the magnitudes of each sub-
band and cross-correlations of subband magnitudes, representing structures, such as
edges and corners. Thirdly, cross-scale phase statistics are checked, meaning that the
real and imaginary parts of the complex coefficients (the phases) are cross-correlated
with the next scale. In the end, marginal statistical properties are imposed, such as
skewness and kurtosis of the pixel values and variance of the high-pass band.

These four types of constraints comprise the parameter set. This parameter set is
applied recursively, until a suitable image has been reconstructed. The synthesis
method is visualised in Figure 2.5.

FIGURE 2.5: Diagram of the recursive texture synthesis algorithm
proposed by Portilla and Simoncelli [19]. Adopted from Portilla and

Simoncelli [19].

2.3 Neural texture synthesis

The extensions in this report are based on the original neural texture synthesis method
first proposed by Gatys et al. [6]. The translation equivariant nature of convolutions
are especially suited for capturing the repeating patterns of textures. The basic idea
behind their method is employing a pre-trained convolutional neural network (CNN)
to parameterise the texture. More specifically, the Gram matrices of the network’s
feature maps contain the representation of a texture.

A schematic overview of the approach in this paper is shown in Figure 2.7. The
authors used the first 16 convolutional layers and 5 pooling layers of a VGG-19
network pre-trained on ImageNet [23, 25].

Chapter 2. Related Work 8

FIGURE 2.6: A schematic overview of the neural synthesis method
used in Gatys et al. [6]. The left side visualises the feature maps
extracted from VGG-19 with the target texture as input. The right
side visualises the extracted feature maps using the synthesised texture
as input. Each layer error is computed using the two Gram matrices
computed on the feature maps from the left and right sides, which are
combined into one weighted loss L(⃗x, ˆ⃗x). Adopted from Gatys et al.

[6].

Elements of the neural network are defined mathematically as follows. A layer l has
Nl distinct feature maps of size Ml . The layer’s feature maps can therefore be stored
in one single matrix F l of size Nl ×Ml .

2.3.1 Gram matrix representations

The Gram matrix Gl ∈ RNl×Nl contains the dot products between all feature maps in
a layer l. For two feature maps F l

i and F l
j , the value at row i and column j of Gl is

therefore

Gl
i j = ∑

k
F l

ikF l
jk. (2.1)

Note that this is the same as the dot product Gl = F l(F l)T .

Though we could also directly focus on generating a natural texture with the same
feature maps in the CNN as the target image, Gatys et al. instead chose to compute

Chapter 2. Related Work 9

the Gram matrix on the feature maps first. An advantage of this is that the description
of the natural texture is stationary and does not depend on the location of the specific
texture features in the provided target image. Another advantage is that the Gram
matrix is not dependent on the size of the image, but only on the number of features
Nl in each layer of the network. As a result, we can scale the synthesised image as
we like without changing the resolution of the natural texture.

2.3.2 Loss function
In order to be able to synthesise a texture, we need a loss function that we can opti-
mise and which is therefore differentiable. Gatys et al. define the loss between target
image x⃗ and synthesised image ˆ⃗x as

L(⃗x, ˆ⃗x) =
L

∑
l=0

wlEl, (2.2)

where wl are the weighting factors and the layer loss El is

El =
1

4N2
l M2

l
∑
i, j

(
Gl

i j − Ĝl
i j
)2
. (2.3)

Note that Ml is the normalization factor for a Gram matrix that is computed with
vectorised feature maps of length Ml and N2

l is the normalization factor for the sum
of all values in a Gram matrix Gl ∈ RNl×Nl .

The prerequisite that the loss is differentiable is upheld, because each layer’s loss is
differentiable with respect to the layer’s feature map.

∂El

∂ F̂ l
i j
=

{
1

N2
l M2

l

(
(F̂ l)T (Gl − Ĝl)

)
ji if F̂ l

i j > 0,

0 if F̂ l
i j < 0.

(2.4)

With the gradients of El and back-propagation, we can then compute ∂L(⃗x, ˆ⃗x)
∂ ˆ⃗x

. This

is the gradient that enables the optimisation of the synthesised image ˆ⃗x with a nu-
merical optimisation method. The authors used Limited-memory Broyden-Fletcher-
Goldfarb-Shanno with bound constraints (L-BFGS-B) for this purpose [2]. Though
the analytic gradient is complex and a product of many gradients due to the chain
rule, its computation can be simplified by using automatic differentiation, a method
implemented in most machine learning libraries.

The pretrained VGG-19 network was trained on colour images of 224 by 224 pixels.
When synthesising an image with the same size, this means that one input has 224 ·
224 · 3 = 150,528 parameters. Moreover, pixel intensity is normalized to [0,1] and
continuous in order to be differentiable. In other words, the synthesised image is
ˆ⃗x ∈ R150,528. Therefore, the loss landscape has 150,528 dimensions. The original
image is the point in the loss landscape of the theoretical global minimum.

Chapter 2. Related Work 10

2.3.3 Alterations to VGG-19
Gatys et al. made two alterations to the original VGG-19 network. The first is the
replacement of the original max pooling layers by average pooling layer. The reason
for this is that the authors found that the gradient flow improved with average pooling
layers and in addition the results look slightly cleaner [6].

Secondly, the pretrained weights were scaled such that the mean activation of each
filter over images is equal to one. This rescaling can be done without changing the
output when the scaling factor of the weights in one layer (i.e. by a scaling factor s)
is used to divide the weights in a connected layer (i.e. by 1/s). The mean activations
with which to rescale the network can be found by averaging the activations of the
network on a given dataset, such as the Describable Textures Dataset (DTD) [3].

(A) Radishes - Original (B) Radishes - Synthe-
sised

(C) Pebbles - Original (D) Pebbles - Synthe-
sised

(E) Jungle - Original (F) Jungle - Synthesised (G) Cans - Original (H) Cans - Synthesised

FIGURE 2.7: Four natural textures synthesised with the neural method
proposed by Gatys et al. [6]. Sorted by increasing long-range struc-
ture, such as the uninterrupted horizontal lines of shelves in Figure

2.7g which span the entire image.

2.3.4 Advantages and limitations
The neural texture synthesis method proposed by Gatys et al. was heavily inspired
by the parametric model for texture synthesis by Portilla and Simoncelli. The two
main similarities are:

• Hierarchical architecture. The VGG-19 architecture has a pyramid architec-
ture for feature extraction, even though the convolutional filters in each layer
of the neural network differ from the complex wavelet transformations in the
steerable pyramid. Both architectures downsample the image by a factor of 1

2
a couple of times. It has been said that this hierarchical processing is in line
with the human visual system [6].

Chapter 2. Related Work 11

• Statistics on coefficients. The Gram matrix is essentially an approximation
of correlations between filter activations (i.e. different subbands within one
level). This is highly similar to the magnitude correlations computed in the
parametric texture synthesis method [19].

On the other hand, the neural texture synthesis method does not include correlations
across scales (i.e. layers of the neural network) or marginal statistics of pixel values.
Indeed, when analysing the histogram of pixel values of a texture synthesised with
the method by Gatys, one can see that the histogram does not match the original
texture. In order to account for this, the authors perform a post-processing step of
histogram matching. Other authors have suggested using an alternative representa-
tion to Gram matrices by computing the Sliced Wasserstein distance [9]. This makes
post-processing with histogram matching unnecessary, but it comes at a computa-
tional cost.

Another limitation of the method is that long-range and larger structures in the tex-
ture, such as the straight lines in stacked cans or the tree trunks in Figure 2.7, are
not handled well. The statistical parametric synthesis method by Portilla and Simon-
celli seems better suited to include these structures, as can be seen in Figure 2.2.
Additionally, neural texture synthesis is quite computationally expensive, especially
compared to statistical methods.

Despite these limitations, the results of the neural synthesis method are still perceived
as more natural by the average human observer. A big advantage of the method
is that no training of the neural network is needed, due to the use of a pretrained
recognition network. The only optimization that occurs is the iterative improvement
of a Gaussian noise input with the gradient of the loss function with respect to the
input image.

The method works especially well on a smaller scale. With improvements on long-
range structure of the synthesised textures, this texture synthesis method has the
potential to outperform the statistical parametric method in most aspects of image
quality.

2.4 Inpainting

Image inpainting is the practice of reconstructing missing pixels in an image in a by
humans undetectable manner [27].

by generating a patch of an image that seamlessly merges into the original image and
preferably is indistinguishable from a real image by the human eye.

2.4.1 Partial convolution
In the literature, when inpainting is done with convolutional neural networks, it is
often done with partial convolution layers [16]. The main difference with normal
convolutions lies in the presence of a mask. Next to the activations, each partial
convolutional layer also edits and passes on a mask. For weights W, an input X and
a mask M, the output of a partial convolutional layer x′ is

Chapter 2. Related Work 12

x′ =

{
WT (X◦M) sum(1)

sum(M) +b if sum(M)> 0,

0 otherwise,
(2.5)

where ◦ denotes element-wise multiplication, i.e. the Hadamard product. In the mask
M, a value of 1 indicates that the pixel is included in the input, while 0 means it is
masked.

After a convolution with Equation 2.5, the mask is updated with

M′
i j =

{
1 if (M◦1)i j > 0,
0 otherwise.

(2.6)

In the paper, this partial convolution operation was applied in a U-Net-like ‘hour-
glass’ architecture trained on a large dataset of images, unlike the method by Gatys
et al. [6].

2.5 Receptive field analysis

The receptive field of a convolutional neural network can be computed with [21]

rl[l] = rl[l −1]+ (kl[l]−1)
l−1

∏
i=0

gl[i], (2.7)

where rl[i] is the receptive field of layer i, kl[i] is the filter size of layer i and gl[i] is
the stride in layer i. The receptive layers of both convolutional and pooling layers
adhere to this equation. The receptive field of the image itself, before any operations
of the neural network, is rl[0] = 1.

2.6 Transformer

The Transformer model is a recent addition to the field of deep learning [28]. First
proposed in 2017, the literature around the new neural network architecture has
grown considerably in the few years since its conception. Its main contribution is
the addition of an attention mechanism to neural networks, which draws global de-
pendencies between the input and output. Figure 2.8 depicts the Transformer archi-
tecture.

The Transformer uses a self-attention mechanism. Like most other sequence-to-
sequence models, it uses an encoder-decoder structure. The encoder transforms an
input sequence of symbol representations (x1, ...,xn) into a sequence of continuous
representations z = (z1, ...,zn), i.e. the latent space representation. Based on z, the
decoder then generates an output sequence (y1, ...,ym), where m > n.

Chapter 2. Related Work 13

FIGURE 2.8: The Transformer model architecture. Adopted from
Vaswani et al. [28].

2.6.1 Encoder and decoder blocks
The encoder and decoder of a transformer are build by stacking N encoder blocks
and N decoder blocks on top of each other, respectively.

The encoder block contains two sub-layers: a so-called multihead self-attention layer
followed by a position-wise fully connected neural network. In addition, each sub-
layer is surrounded by a residual connection like the ones used in ResNets.

The decoder block contains three sub-layers. Next to the multihead self-attention
layer and the fully connected neural network in the encoder block, it also contains a
third sub-layer that performs multihead attention on the output of the entire encoder.

2.6.2 Scaled dot-product attention
The self-attention operator is at the core of the Transformer architecture and the main
reason for its effectiveness. To get an intuitive idea of what self-attention is, we can
take a look at movie recommendations.

Let us take a situation where we want to check if a movie m should be recommended
to a user u. Both the movie and the user are represented by vectors of the same length,
representing facts like ’is this movie a comedy?’ and ’does this user like comedy?’.
A way of computing the similarity between the movie and the user’s preference is by
taking the dot product.

Chapter 2. Related Work 14

The attention mechanism used is called scaled dot-product attention. Its input con-
sists of three elements: queries q, keys k and values v. The user in the example above
represents a query and the movie is similar to a key. The naming is based on the
concept of key-value pairs in dictionaries. A key is connected to a certain look-up
value in a dictionary. However, in our case queries don’t exactly match the keys of
a dictionary, so instead we can compute a similarity score between the query and all
possible keys, to generate an aggregated look-up value. In essence, attention is a lin-
ear transformation of the values, where the coefficients are a function of the queries
and keys.

To avoid exploding gradients, the dot product is scaled by
√

dk, where dk is the length
of the query q and key k, to ensure the variance is equal to the input variance.

When multiple queries, keys and values are packed together in matrices Q, K and V
to speed up the calculations, the attention mechanism is

Attention(Q,K,V) = softmax
(

QKT
√

dk

)
V. (2.8)

The softmax function maps the values to a probability interval [0, 1] that sum to 1.

2.6.3 Multi-head attention
The scaled dot-product attention is extended into a multi-head attention mechanism.
Each of the h heads headi employ the single attention mechanism in equation 2.8,
which are concatenated as

MultiHead(Q,K,V) = Concat(head1, ...,headh)W O. (2.9)

where headi = Attention(QW Q
i ,KW K

i ,VWV
i), of which the projections are parameter

matrices W Q
i , W K

i and WV
i , such that for the same input each head pays attention to a

different part of the input.

This multi-head attention mechanism is used as a self-attention mechanism in one
sub-layer of both the encoder and decoder blocks. Self-attention describes the fact
that both the query, key and value are the same. In the transformer architecture, this
is the output vector of the previous encoder or decoder block.

2.6.4 Position
It is important to note that the transformer model does not look at the input sequence
as a sequence per se: the positions of each element in the sequence are not taken into
account. This can amongst others be seen in the second and third sub-layers of the
encoder and decoder blocks, respectively. These are fully connected neural networks
that are applied to each position of the input sequence in the same way, of the form

f (x) = max(0,xW1 +b1)W2 +b2, (2.10)

Chapter 2. Related Work 15

where x is the input activation map, W1 and W2 are weights and b1 and b2 are biases.

To ensure that the transformer does take position into account, a positional encoding
is added to the input embeddings of both the encoder and decoder stacks. In the
original transformer paper, these positional encodings are sines and cosines

PE(pos,2i) = sin(pos/100002i/dmodel),

PE(pos,2i+1) = cos(pos/100002i/dmodel),

where pos is the position in the sequence, i is the dimension in the embedded vector,
dmodel represents the size of the output vectors of all layers and 1 ≤ i ≤ dmodel . In the
original paper, dmodel = 512.

2.6.5 Vision Transformer
Though the Transformer architecture was initially developed with natural language
processing tasks in mind, a new architecture based on the Transformer called the
Vision Transformer (ViT) was adapted to handle 2D visual inputs [4]. An overview
of its architecture is shown in Figure 2.9.

FIGURE 2.9: An overview of the Vision Transformer architecture. An
image is split into fixed-size patches. Each patch is linearly embedded
and position encoding is added. The result is fed to L consecutive stan-
dard Transformer Encoder blocks. In order to perform classification,
an extra MLP head is added at the end. Adopted from Dosovitskiy et

al. [4].

Whereas in a basic Transformer input tokens consist of words, a ViT requires patches
of an image as input, to which it adds a position embedding. Moreover, the ViT does
not use decoders, but only L consecutive encoders.

Chapter 2. Related Work 16

Inductive bias An inductive bias in the context of machine learning refers to an
assumption of a learning algorithm in order to perform induction. In this case, in-
duction refers to the ability to generalize what the model learned from training data.
That means that certain mechanistic choices influence a learning algorithm’s general-
ization ability. Without these mechanistic choices, multiple types of generalizations
can be made. A learning algorithm therefore always has to have an inductive bias
[11, 17].

The inductive biases of Vision Transformer is different from the inductive biases of
CNNs [27]. A CNN has three major inductive biases: locality, a 2D neighbourhood
structure and translation equivariance due its convolution operations. ViT does not
have these biases and therefore do not generalize well when trained on insufficient
amounts of data [4]. In general, ViT has a much less image-specific inductive bias
than CNNs. In ViT only the multi-layer perceptron layers exhibit the inductive biases
of locality and translation equivariance, but two-dimensional neighbourhood struc-
ture is used sparingly. On the other hand, the self-attention layers in ViT have the
additional inductive bias of globality [4].

17

3 | Method

The project was implemented in Python and PyTorch on a computer with Windows
11 Pro. A preview version of PyTorch with GPU support using CUDA 12.1 was
installed. The code is stored in a private GitLab repository and can be made available
upon request. The original method by Gatys et al. was reproduced and built upon as
a starting point.

3.1 Mask-aware neural texture synthesis

Inpainting is often performed with neural networks trained specifically for the task
of inpainting. An example of a network architecture used in such cases is the U-Net
neural network architecture, first developed for biomedical image segmentation [22].
This U-Net architecture is also used in diffusion probabilistic models in the denoising
steps and as such this type of network architecture is the backbone of many modern
image generation methods [10].

These models are huge and take massive amounts of time to train on enormous
datasets. Additionally, the models generally require textual input to generate images,
which is not always the preferred method.

A big advantage of the neural texture synthesis by Gatys et al. is therefore that it
does not need training specific for texture synthesis, but instead it can be performed
directly with a neural network pretrained as an image recognition network.

It has been shown that constrained optimization in the context of neural texture syn-
thesis is possible [26]. When we want to convert the neural texture synthesis method
proposed by Gatys et al. to also apply to inpainting, we could use a similar con-
strained optimization method, where we hold static the pixels of the original image
we want to retain and optimise the remaining pixels, such that the entire synthesised
image has a similar Gram matrix representation as the original image.

The main difficulty lies in the difference between the target image and the synthesised
image. Only specific pixels in the target image are relevant for texture synthesis. If
the entire image were used as the target image, an irregularity in the texture (such
as a leaf on a texture of pebbles) is simply copied in the synthesised image. If one
wanted to remove this irregularity, this method would not work. Instead, to remove
any part of the image and fill it with the specified texture, only selected pixels that
contain the wanted texture need to be included in the texture representation.

Chapter 3. Method 18

A solution to this problem could be a mask-aware network, that can focus on the
relevant parts of an image containing the texture and ignore the parts that do not.

3.1.1 Mask-aware VGG-19 for texture synthesis
The VGG-19 network was adapted for texture synthesis by Gatys et al. [6] by only
including layers meant for feature extraction in the computation of the loss function.
These layers consist of 2D convolutional layers, ReLU activation layers and pooling
layers. Though the original VGG-19 architecture used max pooling layers, Gatys et
al. replaced these layers by average pooling to improve the gradient flow. Therefore,
in transforming their architecture into a mask-aware architecture, the pooling layers
will be mask-aware average pooling layers.

There are three types of layers that we need to convert to mask-aware versions: 2D
convolutional layers, ReLU activation layers and average pooling layers. The con-
version of the ReLU activation layers are straight-forward: because the activation
function only applies to a single pixel, the input mask can be returned directly.

Mask-aware convolutions. For the conversion of 2D convolutional layers into
mask-aware 2D convolutional layers, the partial convolutional layers proposed by
Liu et al. [16] are taken as a starting point, but directly using these layers causes
exploding gradients in areas with masked pixels. The reasons for this is that the scal-
ing factor sum(1)/sum(M) mentioned in Equation 2.5 causes the influence of the
unmasked pixels to increase by this scaling factor. This means that the gradients of
these pixels are also increased in the same ratio, which is a problem when the scaling
factor has a value larger than 1. Because this increased influence is not only perpetu-
ated in the network, but also increased in each convolutional layer by another scaling
factor above 1, the effect is a compound effect.

As a result, this scaling factor should be left out to make sure that the influence
of each pixel on the final loss is equal. The mask-aware convolution operation is
therefore

X′ =

{
WT (X◦M)+b if sum(M)> 0,
0 otherwise.

(3.1)

Mask-aware average pooling. Regarding a mask-aware average pooling opera-
tion, two ways to perpetuate the masks are compared. When masked and unmasked
pixels are clustered together, we can either make the resulting pixel masked or un-
masked. We took the following consideration: to preserve the texture that the pooling
operation needs to compress without including seemingly black boundary pixels, the
resulting pixel should be masked. On the other hand,

In Section 2, it is mentioned that masked pixels are represented by 0 and unmasked
pixels by 1. With the above consideration in mind, the operation to pool the masked
pixels is then effectively min pooling of the input masks. Vice versa, when the com-
bination of masked and unmasked pixels should be unmasked, the operation is max
pooling of the input masks.

Chapter 3. Method 19

Because min pooling is not implemented in PyTorch, this operation was conducted
via max pooling, where for an input mask M

MinPool(M) =−MaxPool(−M). (3.2)

The output feature map X′ of the mask-aware average pooling layer should contain
the average value of all non-masked pixels in each filter operation. To prevent ex-
ploding gradients, by the same reasoning as for mask-aware convolutions we do not
make the average pooling dependent on the number of masked pixels. For an input
feature map X, the mask-aware average pooling operation is

X′ = (X◦M)
1

sum(1)
(3.3)

Influence on the receptive field. The value of a pixel in the output of the 5th pool-
ing layer in VGG-19 is based on 1+2 · (16+5) = 43 pixels in width and height, so
43 ·43 = 1,849 pixels in total, each containing 3 colour channels. This computation,
however, is based on the assumption that the input is a square matrix. When masks
are included, the receptive field is less straightforward.

This mainly becomes a problem when the masked pixels are spread evenly over the
image and this results in many masked pixels in the higher-level layers with large
receptive fields. If there is even one masked pixel among the 1,849 pixels in the
receptive field of the 5th pooling layer, this pixel is also masked. In these cases, the
choice can be made to instead perform a MaxPool operation on the feature maps
passing through the mask-aware average pooling layers, though it comes with a po-
tential reduction in image quality.

3.1.2 Conversion of a pretrained VGG into a mask-aware VGG
Because ReLU layers and pooling layers do not have weights or biases, these layers
do not have to be trained and can simply be replaced by their mask-aware counter-
parts. The convolutional layers can be converted to mask-aware versions by copying
the pretrained weights and biases of the convolutional layers in the standard VGG-19
network pretrained on ImageNet into the mask-aware network [23].

Of course, it would be more ideal to directly train the mask-aware VGG-19 network
as a recognition network on a large dataset like ImageNet [23]. However, because
it takes multiple weeks on a normal personal computer to train a dataset of more
than 14 million images, this alternative route was chosen instead. Training the mask-
aware network on the smaller Describable Textures Dataset (DTD) was attempted,
but the relatively short training time yielded insufficient network weights and biases
for any texture to emerge from the input Gaussian noise during synthesis.

3.1.3 Gram matrix representations in mask-aware VGG-19
Each entry in a Gram matrix is the mean product between two feature maps. In
other words, the Gram matrix is simply a correlation for each individual position in

Chapter 3. Method 20

a feature map between different filter values. This means the shape of these feature
maps does not influence the final result and the Gram matrix does not capture the
relation between different positions within the same feature map.

Because of this lack of relationship, certain positions in the feature maps can be left
out, which should result in the same static texture representation as before given that
the input texture is the same:

Gl
i j = ∑

k
MkF l

ikF l
jk, (3.4)

where Mk is the value at index k in the vectorised mask M.

The layer loss is based on Equation 2.3, which only differs in the normalization
parameter Ml . This term should be replaced with the value sum(M), because the
length of the feature map has now reduced to sum(M).

3.2 Constrained neural texture synthesis

In the paper by Surace et al. [26], the neural texture synthesis method proposed by
Gatys et al. has been used in conjunction with a randomly sampled set of constrained
pixels in order to additionally preserve the higher-level structures in a natural texture.
Their GAN-based method shows that in this way the structure problem can be solved.
When we extend this idea of constraining random pixels to manually selected pixels,
the problem can amongst others become an image inpainting problem. Especially
inpainting of patches where the surrounding natural texture should be extended could
benefit from this approach of neural texture inpainting.

When combining this constrained optimization with the mask-aware network de-
scribed above, texture synthesis accepts a flexible image input shape instead of only
the standard rectangular shape, allowing the extraction of irregularly shaped patches
of texture from an image and upscaling it to both the wanted size and shape. More-
over, it can be extended into neural texture inpainting, of both rectangularly shaped
holes but also irregularly shapes ones. When this method of textures synthesis is
combined with texture segmentation using pre-existing texture segmentation net-
works, the texture in one area of an image could be synthesised in another.

Constraints can naturally be added with the optimisation method L-BFGS-B [2]. The
original RGB values of the constrained pixels serve as both lower and upper bounds.

3.3 Structure-aware texture synthesis

In Section 2.3.4 and Figure 2.7 it was mentioned and shown that the neural synthesis
method by Gatys et al. has difficulties in synthesising textures that have long-ranged
structures and that do not only exist on a small scale. This is in line with the inductive
bias of locality present in CNNs, which were mentioned in Section 2.6.5.

Chapter 3. Method 21

We propose two alternative methods to neural texture synthesis that include long-
ranged structures. Both are structure-aware texture synthesis methods. The main
goal is to preserve the structure of the original image while synthesising the texture
onto a structural backbone. However, the synthesised image should not be exactly
the same as the original. Instead, the texture should be the same to the human eye,
but the images should deviate pixel-wise. This is to show that the algorithm did not
only reproduce the old image, but was able to synthesise a realistic new image using
structure and a static texture representation.

3.3.1 Neural texture synthesis with Vision Transformer
The authors of the Transformer architecture mention that the model is especially
good at recognising global dependencies, i.e. longer-ranged structures, due to its
self-attention layers [28]. In addition, Portilla and Simoncelli state that in their ar-
chitecture, the magnitude correlations in each subband represented structures, such
as edges and corners.

Gatys et al. showed that only including in-place filter correlations was already an
accurate texture representation on feature maps extracted from a VGG-19 network.
It would be interesting to see if the same holds for the Vision Transformer, and if
the Gram matrix representation on ViT’s activations indeed captures the long-range
structures that are missing from Gatys’s approach.

The number of patches of the ViT used for feature extraction were set to 14 ·14= 196.
The feature maps of all layers were included in the loss function.

3.3.2 Neural texture synthesis with a gradient loss
Like in neural texture synthesis with a loss purely based on Gram matrix represen-
tations of feature maps extracted from VGG-19, the global minimum of the loss
landscape (or at least one of the global minima) in texture synthesis with a gradient-
based loss is the target image. When adding a structure loss that is aimed to build the
original structure but with a slightly different texture, it is therefore important that
the structural loss only contains information about the structure and no information
about the texture. The main difference between long-range structure and texture is
the scale at which these structures occur.

The gradient of an image captures differences in image intensity values, but these
image intensity gradients could also be a textural characteristic. However, if the
images were blurred and downsampled, only the higher-level structures remain. This
forms the basis for a gradient loss function.

For a target image T and a synthesised image S, the gradient loss is defined as

Lgrad =
1

M2

√
(Gx(T)−Gx(S))2 +(Gy(T)−Gy(S))2, (3.5)

where M is the width and height of the result of operations Gx and Gy. These opera-
tions consecutively:

Chapter 3. Method 22

1. Convert the image to a grayscale image

2. Blur the image with a Gaussian blur filter of size 7×7

3. Downsample the image 2 times by a factor 1/2

Note that this loss can only be applied when the sizes of T and S are equivalent.

This gradient loss can be combined with Gatys et al.’s Gram matrix loss as:

L = LGatys +α ·Lgrad, (3.6)

where α is the weight of the gradient loss.

23

4 | Results

4.1 Mask-aware texture synthesis

Four cases were researched with the mask-aware VGG-19 network in conjunction
with constrained optimisation. When we mention ‘unmasked’, we mean all values in
the mask are set to 1. This is effectively normal texture synthesis with a mask-aware
neural network.

The four cases are:

1. Unmasked and unconstrained. An unmasked target image with an uncon-
strained synthesised image.

2. Unmasked and constrained. An unmasked target image with a constrained
synthesised image.

3. Masked and unconstrained. A masked target image with an unconstrained
synthesised image.

4. Masked and constrained. A masked target image with a constrained synthe-
sised image. This is effectively inpainting.

Figures showing the masked target images have black pixels where the mask has
zero-valued pixels. The algorithm was tested on ten different textures. This section
shows the results on the texture of radishes. For the results of the other textures we
refer to the GitHub repository, due to the high amount of synthesised images.

4.1.1 Rectangular mask
All masked cases used an identical mask of a rectangle in the upper-left corner. In
these cases, the masked area covered 7.6% of the image. Vice versa, the constrained
pixels covered 92.4% of the image in the constrained cases.

Chapter 4. Results 24

TABLE 4.1: Mean squared error between the synthesised and original
images over all four cases for a rectangular mask in the upper-left

corner of the image.

Image Case 1 Case 2 Case 3 Case 4
Min Max Min Max Min Max Min Max

radishes 6047 5717 1158 61 6200 5836 1153 828
cans 8987 8915 1209 252 8798 8832 1196 1331

pebbles 5225 5019 930 144 5211 4976 1029 752
jungle 4031 3507 1220 66 4096 3643 1251 569

non-texture 6759 6005 1195 349 6246 5763 1173 1004
bubbly 4037 4111 1094 106 4275 4667 1025 2145
cobweb 7041 6821 1256 420 6903 6876 1226 754

grid 17636 13710 2415 650 18058 13667 2430 629
wrinkled 2438 2380 845 132 2517 2522 817 797
stochastic 2084 1993 776 109 2088 2364 774 1039

TABLE 4.2: Mean absolute error between the synthesised and original
images over all four cases for a rectangular mask in the upper-left

corner of the image.

Image Case 1 Case 2 Case 3 Case 4
Min Max Min Max Min Max Min Max

radishes 62.2 59.7 7.5 1.6 62.8 60.6 7.6 6.2
cans 75.6 75.9 7.8 3.2 74.3 75.7 7.8 8.6

pebbles 57.4 55.7 7.4 2.5 57.1 55.9 7.8 6.5
jungle 52.3 48.4 8.1 1.7 52.4 49.0 8.2 5.5

non-texture 65.0 62.1 8.1 3.9 63.6 61.1 8.0 7.3
bubbly 46.8 46.7 6.9 2.0 47.8 49.8 6.6 11.7
cobweb 67.4 66.7 8.5 4.3 67.3 66.6 8.3 6.2

grid 113.6 98.7 11.3 5.1 115.1 98.4 11.3 5.3
wrinkled 39.6 39.4 7.0 2.4 40.1 40.0 6.8 6.6
stochastic 35.1 34.4 6.7 2.2 35.1 37.4 6.6 7.9

Case 1: unmasked and unconstrained. Figure 4.3 contains the results for an un-
masked target image with unconstrained optimisation, given that the mask is updated
with max pooling. Artefacts such as the white end of a radish can be reproduced
almost exactly. This observation is supported by Table 4.1 and Table 4.2, which
show relatively low errors, although updating the mask with max pooling in all cases
shows lower errors than min pooling. Compared to the results of the original method
by Gatys et al. visualised in Figure 2.7, these images are lighter and show a shift to
the right in their histograms compared to the original image’s histogram.

Figure 4.4 contains the results for an unmasked target image with unconstrained
optimisation, given that the mask is updated with min pooling.

Chapter 4. Results 25

(A) Target (B) Initial image (C) Synthesised

(D) Losses (E) Original colour distribu-
tion

(F) Synthesised colour distri-
bution

FIGURE 4.1: Case 1 applied to radishes. Mask updated with max
pooling.

(A) Target (B) Initial image (C) Synthesised

(D) Losses (E) Original colour distribu-
tion

(F) Synthesised colour distri-
bution

FIGURE 4.2: Case 1 applied to radishes. Mask updated with min
pooling.

Case 2: unmasked and constrained. Figure 4.3 contains the results for an un-
masked target image with constrained optimisation, given that the mask is updated
with max pooling. As Table 4.1 and Table 4.2 also indicate, the difference between
the synthesised texture and the original one is minimal.

Chapter 4. Results 26

Figure 4.4 contains the results for an unmasked target image with constrained opti-
misation, given that the mask is updated with min pooling. With min pooling, the
synthesised pixels are lighter than the constrained ones.

(A) Target (B) Initial image (C) Synthesised

(D) Losses (E) Original colour distribu-
tion

(F) Synthesised colour distri-
bution

FIGURE 4.3: Case 2 applied to radishes. Mask updated with max
pooling.

(A) Target (B) Initial image (C) Synthesised

(D) Losses (E) Original colour distribu-
tion

(F) Synthesised colour distri-
bution

FIGURE 4.4: Case 2 applied to radishes. Mask updated with min
pooling.

Chapter 4. Results 27

Case 3: masked and unconstrained. Figure 4.5 contains the results for a masked
target image with unconstrained optimisation, given that the mask is updated with
max pooling.

Figure 4.6 contains the results for a masked target image with unconstrained optimi-
sation, given that the mask is updated with min pooling.

(A) Target (B) Initial image (C) Synthesised

(D) Losses (E) Original colour distribu-
tion

(F) Synthesised colour distri-
bution

FIGURE 4.5: Case 3 applied to radishes. Mask updated with max
pooling.

(A) Target (B) Initial image (C) Synthesised

(D) Losses (E) Original colour distribu-
tion

(F) Synthesised colour distri-
bution

FIGURE 4.6: Case 3 applied to radishes. Mask updated with min
pooling.

Chapter 4. Results 28

Case 4: masked and constrained. Figure 4.7 contains the results of a masked
target image with constrained optimisation, given that the mask is updated with max
pooling. The results do not contain a reconstruction of the original texture, though
a very slight low-level structure appears. However, the colours are darker and not
based on the original texture.

Figure 4.8 contains the results of a masked target image with constrained optimisa-
tion, given that the mask is updated with min pooling. The texture of the target image
emerges in the area that is being synthesised, but the colour distribution does not ac-
curately represent the original image’s. Instead, colours look lighter and are clearly
distinguishable from the original texture’s colours.

(A) Target (B) Initial image (C) Synthesised

(D) Losses (E) Original colour distribu-
tion

(F) Synthesised colour distri-
bution

FIGURE 4.7: Case 4 applied to radishes. Mask updated with max
pooling.

Chapter 4. Results 29

(A) Target (B) Initial image (C) Synthesised

(D) Losses (E) Original colour distribu-
tion

(F) Synthesised colour distri-
bution

FIGURE 4.8: Case 4 applied to radishes. Mask updated with min
pooling.

4.1.2 Random mask
We generated a random mask in which each pixel had a probability of 0.5 of having
a value of one. The constraints were the inverse of the mask, i.e. a one in the mask
was a zero in the binary image with constraints and vice versa.

We only look into cases 2 to 4, because case 1 is identical to the case presented in
Section 4.1.1.

TABLE 4.3: Mean squared error between the synthesised and original
images over all four cases for a random mask with probability 0.5.

Image Case 2 Case 3 Case 4
Min Max Min Max Min Max

radishes 1058 538 6813 6497 1390 4455
cans 1316 770 10774 13231 2532 11376

pebbles 569 207 6782 7896 683 7136
jungle 617 314 3720 4651 1022 3530

non-texture 1283 614 9362 8395 940 6819
bubbly 898 627 8132 15629 1481 15326
cobweb 1076 314 8625 8150 1623 6250

grid 2548 342 9144 13051 1888 2620
wrinkled 535 137 4172 6421 729 6655
stochastic 471 279 3641 8980 976 8890

Chapter 4. Results 30

TABLE 4.4: Mean absolute error between the synthesised and original
images over all four cases for a random mask with probability 0.5.

Image Case 2 Case 3 Case 4
Min Max Min Max Min Max

radishes 17.7 12.6 62.1 66.7 19.5 37.5
cans 19.2 14.5 82.5 93.9 26.1 65.7

pebbles 12.8 7.7 65.7 73.2 12.4 52.0
jungle 13.2 9.5 45.9 56.2 15.7 34.6

non-texture 19.0 12.8 77.6 74.0 14.6 48.3
bubbly 15.2 12.7 64.2 98.4 18.2 76.7
cobweb 17.8 9.4 75.6 72.8 21.1 46.6

grid 22.5 6.6 86.7 102.9 15.1 19.4
wrinkled 12.6 6.3 51.6 64.8 13.2 50.4
stochastic 11.7 9.0 46.6 78.1 16.0 61.0

Case 2: unmasked and constrained. Figure 4.9 contains the results for an un-
masked target image with constrained optimisation, given that the mask is updated
with max pooling. Figure 4.10 contains the results for an unmasked target image
with constrained optimisation, given that the mask is updated with min pooling. It
can be seen that the main difference between these two settings is the synthesis near
the borders of the image.

For all images that case 2 was applied to in both Table 4.3 and Table 4.4, case 2
in combination with max pooling to update the mask reach the lowest reproduction
errors and come closest to the global minimum that is the original texture.

(A) Target (B) Initial image (C) Synthesised

(D) Losses (E) Original colour distribu-
tion

(F) Synthesised colour distri-
bution

FIGURE 4.9: Case 2 applied to radishes. The mask is randomly gen-
erated with a probability of 0.5. Mask updated with max pooling.

Chapter 4. Results 31

(A) Target (B) Initial image (C) Synthesised

(D) Losses (E) Original colour distribu-
tion

(F) Synthesised colour distri-
bution

FIGURE 4.10: Case 2 applied to radishes. The mask is randomly
generated with a probability of 0.5. Mask updated with min pooling.

Case 3: masked and unconstrained. Figure 4.11 contains the results for an un-
masked target image with constrained optimisation, given that the mask is updated
with max pooling. The masked target texture does not seem sufficient to capture the
original texture. The colour distribution is shifted to the right with respect to the orig-
inal colour distribution and the texture of the original image does not emerge based
on the masked target during the unconstrained optimisation.

Figure 4.12 contains the results for an unmasked target image with constrained opti-
misation, given that the mask is updated with min pooling. This case shows the least
resemblance to the original texture. The colour distribution has shifted to the left
with respect to the original colour distribution and the texture of the original image
does not emerge based on the masked target during the unconstrained optimisation.

Chapter 4. Results 32

(A) Target (B) Initial image (C) Synthesised

(D) Losses (E) Original colour distribu-
tion

(F) Synthesised colour distri-
bution

FIGURE 4.11: Case 3 applied to radishes. The mask is randomly
generated with a probability of 0.5. Mask updated with max pooling.

(A) Target (B) Initial image (C) Synthesised

(D) Losses (E) Original colour distribu-
tion

(F) Synthesised colour distri-
bution

FIGURE 4.12: Case 3 applied to radishes. The mask is randomly
generated with a probability of 0.5. Mask updated with min pooling.

Case 4: masked and constrained. Figure 4.13 contains the results for an un-
masked target image with constrained optimisation, given that the mask is updated
with max pooling.

Figure 4.14 contains the results for an unmasked target image with constrained opti-
misation, given that the mask is updated with min pooling.

Chapter 4. Results 33

(A) Target (B) Initial image (C) Synthesised

(D) Losses (E) Original colour distribu-
tion

(F) Synthesised colour distri-
bution

FIGURE 4.13: Case 4 applied to radishes. The mask is randomly
generated with a probability of 0.5. Mask updated with max pooling.

(A) Target (B) Initial image (C) Synthesised

(D) Losses (E) Original colour distribu-
tion

(F) Synthesised colour distri-
bution

FIGURE 4.14: Case 4 applied to radishes. The mask is randomly
generated with a probability of 0.5. Mask updated with min pooling.

4.2 Structure-aware texture synthesis

We explore two approaches to structure-aware texture synthesis: one based on Vision
Transformer and the other based on a gradient loss.

Chapter 4. Results 34

4.2.1 Neural texture synthesis with Vision Transformer
We consider two settings for texture synthesis with Vision Transformer. In the first,
texture synthesis is purely based on the Gram matrix representations computed from
all layers of a Vision Transformer. In the second, synthesised image resulting from
ViT-based texture synthesis is used as a guided initialisation for the neural texture
synthesis method by Gatys et al. [6].

Vision Transformer. It can be seen in Figure 4.15 that texture synthesis purely
based on ViT has an image intensity gradient that has some semblance to the gradient
of the original image’s intensity. Nevertheless, the original colour values are not
reproduced. Instead, the texture consists of a noisy pattern that is reminiscent of
Gaussian noise, albeit with additional local patterns.

(A) Target image (B) 1,000 epochs

(C) 10,000 epochs (D) 15,000 epochs

FIGURE 4.15: ViT-based texture synthesis of pebbles.

VGG-19 and Vision Transformer. Figure 4.16 shows VGG-19-based texture syn-
thesis with an initialisation that is not based on Gaussian noise, but which is instead
the result of ViT-based texture synthesis. The mean squared error between the origi-
nal image and the synthesised image is 293.1 and the mean absolute error is 13.4.

Figure 4.17 shows the same procedure applied to an image of cans. With this target
image, the mean squared error is higher at 4167.6. The mean absolute error is 49.9,
indicating almost a four-fold increase in error with respect to the procedure applied
to the pebbles texture. Figure 4.17 shows a decreased capacity of the consecutive

Chapter 4. Results 35

application of VGG-19-based and ViT-based texture synthesis to accurately capture
the global structure, compared to the previous figure.

(A) Target image (B) Initialisation

(C) 250 epochs (D) 2,500 epochs

FIGURE 4.16: VGG-19 based texture synthesis with a ViT-guided
texture initialisation on a texture of pebbles.

Chapter 4. Results 36

(A) Target image (B) Initialisation

(C) 250 epochs (D) 2,500 epochs

FIGURE 4.17: VGG-19 based texture synthesis with a ViT-guided
texture initialisation on a texture of stacked cans.

4.2.2 Neural texture synthesis with a gradient loss
Figure 4.18 shows the results of texture synthesis including a gradient-based loss on
an image of a cat. The appendix contains the application of this method to various
images of textures. The results were created with α = 107.

The mean squared error between the target image in Figure 4.18a and the synthesised
image in Figure 4.18d is 729.0, while its mean absolute error is 21.2.

Chapter 4. Results 37

(A) Target image (B) L = LGatys

(C) L = LGatys +Lgrad (D) Loss LGatys +Lgrad

(E) L = Lgrad (F) Loss Lgrad

(G) Gx(T) (H) Gy(T)

FIGURE 4.18: A gradient loss combined with the Gram matrix
representation-based loss proposed by Gatys et al. applied to an im-

age of a cat.

38

5 | Discussion

5.1 Mask-aware texture synthesis

5.1.1 Case 1: unmasked and unconstrained
The short-range textural structures are captured by the mask-aware neural network
and show many similarities to the short-range textural structures exhibited in Figure
2.7b. The difference in mask modification is most obvious at pixels proximate to the
edges, where a min pooling strategy causes the patterns to blur. This is as expected,
since the min pooling operation causes the mask to shrink over an increased depth
in the neural network. In other words, the mask-aware network with a min pooling
mask update method does not ’perceive’ boundary pixels in layers above the first
mask-aware convolutional layer.

5.1.2 Case 2: unmasked and constrained
In case 2, the synthesised texture comes close to the global minimum that is the
original texture with max pooling method, as indicated by the root mean squared
error of below 8 and the mean absolute error of 1.6 for the radishes image. Details
like white endings of radishes and specific irregularities in the leaves are reproduced.

With the substitution of the max pooling strategy by the min pooling strategy, there
is a change in textural structure and colour distribution. The algorithm does not
converge to the global minimum. Instead, the synthesised pixels are lighter than the
constrained ones.

5.1.3 Case 3: masked and unconstrained
Case 3 with max pooling exhibits straight, dark lines as part of the synthesised tex-
ture. This is likely due to the sensitivity of the algorithm to boundaries, which are
black due to the Hadamard product of the mask and the input. Indeed, min pooling
does not contain dark lines. This advantage is counterbalanced by the blurring of
textural structures near the border.

Chapter 5. Discussion 39

5.1.4 Case 4: masked and constrained
Case 4 performs best when min pooling is used to update the masks. When max
pooling is used instead, the network likely reproduces the black boundaries it detects
in the original texture within the area that it needs to synthesise.

With a min pooling mask update strategy, the colour distribution displays a slight
rightward shift, adding the requirement of post-processing steps like histogram match-
ing to the synthesised area specifically. However, low-level textural structures emerge
that bear similarities to the original texture in the same way as the original method
proposed by Gatys et al. [6]. Moreover, the synthesised pixels show a slight blurring,
which was also present in the min pooling version of case 2 and 3. Unfortunately,
though, the max pooling method, which performs better for cases

If this method were used as an inpainting algorithm, its notable strength would lie
in its ability to function without the need for training. As a result, the need for large
datasets or vast computational resources is eliminated and substantial computational,
making the inpainting algorithm accessible to a broader audience. The model’s inde-
pendence from a vast dataset also mitigates concerns about data cleanliness and po-
tential artifacts, affording users increased control and transparency in the inpainting
process. However, it is essential to acknowledge its limitations, as the method still
needs post-processing steps to improve the colour distribution. Moreover, the method
is specifically intended for extending textures and lacks the capability to comprehend
higher-level structures. Additionally, while the inference phase may demand more
resources, this is counterbalanced by the reduced upfront resource requirements. Ul-
timately, the decision on whether to employ this inpainting method depends on the
specific use case, allowing users to weigh the advantages and limitations based on
their unique situation.

The method could be extended to function in a two-stream architecture separating
a texture and a structure stream, as a similar but alternative method to the texture
and structure dual generation inpainting method proposed by Guo et al. [8]. Their
method is based on the alternative hourglass-shaped U-Net-architecture and needs to
be trained on extensive datasets, instead of a pyramid-shaped neural network archi-
tecture like VGG-19 which needs no training.

5.2 Structure-aware texture synthesis

5.2.1 Neural texture synthesis with Vision Transformer
A Gram matrix representation is not a static texture representation of ViT activations
that captures the full texture characteristics, even though the obtained higher-level
structures could potentially be a useful structure extractor. It is however very likely
that less computationally intensive methods exist for this purpose, that do the job
just as well if not better. Structures that are due to image intensities seem to be
more likely to be captured by the ViT-based method than structures based on colour
differences, but further research is needed to conclude this with certainty.

Chapter 5. Discussion 40

By patchifying the original image into very small patches, it is easier to exactly repli-
cate the original structures. Moreover, the current implementation does not allow for
upscaling, due to the patches and positional encoding.

5.2.2 Neural texture synthesis with a gradient loss
Figures generated solely based on the gradient loss show that this loss function cap-
tures a lot of information of relatively detailed textures, despite the presence of blur-
ring in the computation of the gradient loss. With increased blurring, however, some
of the larger structures were not preserved in the synthesised images, such as the
position of the eyes in the cat image.

In Figure B.3, we can clearly see the influence of image intensity on gradient-based
texture synthesis. Here, the structure is influenced by the occurrence of a shadow, that
distorts the gradients of the texture, even though to the human eye texture perception
would not depend on a sporadic shadow.

Though the method is simple, it works relatively well to preserve structure. The
main area of improvement is the exclusion of relative differences in image intensity
that are relatively large, not excluded by blurring and part of the texture. Currently,
disrepancies between the original and synthesised images are largely due to colour
dissimilarities, but excluding this larger structures that are actually part of the texture
from the structure loss could increase the uniqueness of the synthesised image.

41

6 | Conclusion

This report proposed a mask-aware extension to the neural texture synthesis method
first proposed by Gatys et al. [6]. Though various settings show different perfor-
mances, the mask-aware VGG-19 network is an effective mask-aware generalization
of the original algorithm. Textural structures are synthesised, though slightly blurrier
versions when a min pooling method is used to perpetuate the masks through the
network layers. The method could, however, be an interesting alternative to U-Net-
based inpainting methods, as it requires no additional training, especially when used
in conjunction with pretrained texture segmentation networks.

In addition, this report researched the suitability of applying the concept of Gram
matrix-based texture synthesis to a Vision Transformer, due to its inductive bias of
globality. Though this method captures long-range textural structures, its texture is
not synthesised accurately. When using this ViT-based texture synthesis as a structure
prior for the original CNN-based neural texture synthesis method, the original image
can be reproduced with only a small mean squared error.

The final research focus was neural texture synthesis with a gradient loss, to enable
structure-aware texture synthesis. Though the method is simple, it works relatively
well to preserve structure. The synthesised image mainly varies in colour, however,
so it could be an interesting direction of future investigation to reduce the amount of
small textural structure that is captured in the structure loss.

42

A | Additional results - mask-aware
texture synthesis

Figure A.1 shows a result of case 3 with max pooling to update the masks. It can
clearly be seen that the algorithm considers the black boundaries of the hole as part
of the texture, as a black square is synthesised in another position than the masked
area in the original mask.

(A) Target (B) Initial image (C) Synthesised after 90
epochs

(D) Losses (E) Original colour distribu-
tion

(F) Synthesised colour distri-
bution

FIGURE A.1: Case 3 applied to radishes. Mask updated with max
pooling.

43

B | Additional results - structure-aware
texture synthesis

(A) Target image (B) L = LGatys (C) L = LGatys +Lgrad

(D) Loss LGatys +Lgrad (E) L = Lgrad (F) Loss Lgrad

(G) Gx(T) (H) Gy(T)

FIGURE B.1: A gradient loss combined with the Gram matrix
representation-based loss proposed by Gatys et al. applied to an im-

age of cans.

Appendix B. Additional results - structure-aware texture synthesis 44

(A) Target image (B) L = LGatys (C) L = LGatys +Lgrad

(D) Loss LGatys +Lgrad (E) L = Lgrad (F) Loss Lgrad

(G) Gx(T) (H) Gy(T)

FIGURE B.2: A gradient loss combined with the Gram matrix
representation-based loss proposed by Gatys et al. applied to an im-

age of jungle.

Appendix B. Additional results - structure-aware texture synthesis 45

(A) Target image (B) L = LGatys (C) L = LGatys +Lgrad

(D) Loss LGatys +Lgrad (E) L = Lgrad (F) Loss Lgrad

(G) Gx(T) (H) Gy(T)

FIGURE B.3: A gradient loss combined with the Gram matrix
representation-based loss proposed by Gatys et al. applied to an im-

age of the inside of a shop.

Appendix B. Additional results - structure-aware texture synthesis 46

(A) Target image (B) L = LGatys (C) L = LGatys +Lgrad

(D) Loss LGatys +Lgrad (E) L = Lgrad (F) Loss Lgrad

(G) Gx(T) (H) Gy(T)

FIGURE B.4: A gradient loss combined with the Gram matrix
representation-based loss proposed by Gatys et al. applied to an im-

age of pebbles.

Appendix B. Additional results - structure-aware texture synthesis 47

(A) Target image (B) L = LGatys (C) L = LGatys +Lgrad

(D) Loss LGatys +Lgrad (E) L = Lgrad (F) Loss Lgrad

(G) Gx(T) (H) Gy(T)

FIGURE B.5: A gradient loss combined with the Gram matrix
representation-based loss proposed by Gatys et al. applied to an im-

age of radishes.

48

Bibliography

[1] A. Akl, C. Yaacoub, M. Donias, J.-P. Da Costa, and C. Germain. A survey of
exemplar-based texture synthesis methods. Computer Vision and Image Under-
standing, 172:12–24, 2018.

[2] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm
for bound constrained optimization. SIAM Journal on scientific computing,
16(5):1190–1208, 1995.

[3] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing
textures in the wild. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3606–3613, 2014.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. ICLR,
2021.

[5] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling.
ICCV, 1999.

[6] L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis using convolutional
neural networks. Advances in neural information processing systems, 28, 2015.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial networks. Communications
of the ACM, 63(11):139–144, 2020.

[8] X. Guo, H. Yang, and D. Huang. Image inpainting via conditional texture
and structure dual generation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 14134–14143, 2021.

[9] E. Heitz, K. Vanhoey, T. Chambon, and L. Belcour. A sliced wasserstein loss
for neural texture synthesis. In CVPR, pages 9412–9420. 2021.

[10] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models.
NeurIPS, 33:6840–6851, 2020.

[11] E. Hüllermeier, T. Fober, and M. Mernberger. Inductive Bias, pages 1018–1018.
Springer New York, New York, NY, 2013.

[12] N. Jetchev, U. Bergmann, and R. Vollgraf. Texture synthesis with spatial gen-
erative adversarial networks. NeurIPS, 2016.

BIBLIOGRAPHY 49

[13] B. Julesz. Visual pattern discrimination. IRE transactions on Information The-
ory, 8(2):84–92, 1962.

[14] B. Julesz, E. N. Gilbert, L. A. Shepp, and H. L. Frisch. Inability of hu-
mans to discriminate between visual textures that agree in second-order statis-
tics—revisited. Perception, 2(4):391–405, 1973.

[15] W.-C. Lin, J. Hays, C. Wu, Y. Liu, and V. Kwatra. Quantitative evaluation of
near regular texture synthesis algorithms. volume 1, pages 427– 434, 07 2006.

[16] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro. Image
inpainting for irregular holes using partial convolutions. In Proceedings of the
European conference on computer vision (ECCV), pages 85–100, 2018.

[17] T. M. Mitchell. The need for biases in learning generalizations. 1980.

[18] J. Portilla and E. P. Simoncelli. Representation and synthesis of visual texture.
https://www.cns.nyu.edu/~lcv/texture/. Accessed: 2023-11-
08.

[19] J. Portilla and E. P. Simoncelli. A parametric texture model based on joint
statistics of complex wavelet coefficients. International Journal of Computer
Vision, 40:49–70, 2000.

[20] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks, 2016.

[21] M. L. Richter, J. Schöning, A. Wiedenroth, and U. Krumnack. Receptive
field analysis for optimizing convolutional neural network architectures without
training. In Deep Learning Applications, Volume 4, pages 235–261. Springer,
2022.

[22] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation, 2015.

[23] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recog-
nition challenge. International journal of computer vision, 115:211–252, 2015.

[24] E. P. Simoncelli and W. T. Freeman. The steerable pyramid: A flexible archi-
tecture for multi-scale derivative computation. https://www.cns.nyu.
edu/~eero/steerpyr/, 1995. Accessed: 2023-11-08.

[25] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. In 3rd International Conference on Learning Repre-
sentations (ICLR 2015). Computational and Biological Learning Society, 2015.

[26] L. Surace, M. Wernikowski, C. Tursun, K. Myszkowski, R. Mantiuk, and
P. Didyk. Learning gan-based foveated reconstruction to recover perceptually
important image features. ACM Transactions on Applied Perception, 20(2),
2023.

https://www.cns.nyu.edu/~lcv/texture/
https://www.cns.nyu.edu/~eero/steerpyr/
https://www.cns.nyu.edu/~eero/steerpyr/

BIBLIOGRAPHY 50

[27] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 9446–
9454, 2018.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is all you need. NeurIPS, 30, 2017.

	Contents
	List of Figures
	List of Tables
	Introduction
	Texture classification
	Texture synthesis methods
	Contributions

	Related Work
	Texture perception in humans: Julesz Conjecture
	Statistical texture synthesis
	Neural texture synthesis
	Gram matrix representations
	Loss function
	Alterations to VGG-19
	Advantages and limitations

	Inpainting
	Partial convolution

	Receptive field analysis
	Transformer
	Encoder and decoder blocks
	Scaled dot-product attention
	Multi-head attention
	Position
	Vision Transformer

	Method
	Mask-aware neural texture synthesis
	Mask-aware VGG-19 for texture synthesis
	Conversion of a pretrained VGG into a mask-aware VGG
	Gram matrix representations in mask-aware VGG-19

	Constrained neural texture synthesis
	Structure-aware texture synthesis
	Neural texture synthesis with Vision Transformer
	Neural texture synthesis with a gradient loss

	Results
	Mask-aware texture synthesis
	Rectangular mask
	Random mask

	Structure-aware texture synthesis
	Neural texture synthesis with Vision Transformer
	Neural texture synthesis with a gradient loss

	Discussion
	Mask-aware texture synthesis
	Case 1: unmasked and unconstrained
	Case 2: unmasked and constrained
	Case 3: masked and unconstrained
	Case 4: masked and constrained

	Structure-aware texture synthesis
	Neural texture synthesis with Vision Transformer
	Neural texture synthesis with a gradient loss

	Conclusion
	Additional results - mask-aware texture synthesis
	Additional results - structure-aware texture synthesis
	Bibliography

