
Generative AI Art Internship

Report

November 12, 2023

Tom Eijkelenkamp
s1889338

Supervisors:
Michael Wilkinson
Almila Akdag Salah



1 Text to Image Generation

Lately there has been lots of popularity for algorithms that could compute
artistic or real-looking pictures from a text prompts. As the diffusion algorithm
outplayed the earlier variational encoders and generative adversarial networks
on the task of image synthesis, many came to know DALL-E, Midjourney or
Stable Diffusion. The generated images were much more convincing to the
audience, closely compared to realism.

The goal of these algorithms is not only to create images that look realistic,
many styles of visuals could be generated as ones that look like paintings or
drawings, designs for posters or websites. There are many more applications for
image generation.

Image generation algorithms can be measured on their quality in many ways,
Borji (2018) and Borji (2021) show a list of all the metrics out there. For example
you can look at the variety of possible images that can be generated or you can
evaluate how accurate a certain category of visual is displayed. You can qualify
the realism of a generated image. On the other hand you can look at if the
neural network is overfitting, underfitting or generalizing really well.

For the research of this internship we will be looking into evaluating realism
of generated images. We will particularly study one aspect of realism, light
illumination and shading. Our aim is to develop a technique for quantifying the
interaction of light in these images. We conduct a variety of experiments and
suggest several initial approaches for evaluation methodologies.

We start out by showing how the diffusion algorithm operates to synthesize
image. Then we discuss related studies regarding computer image rendering and
evaluating image realism. We conduct various experiments in search of finding
a light qualifying method. We finalize by proposing future directions, possible
light evaluation metrics to be explored.

1



2 Diffusion

In this first section we look into the main elements that make up the architecture
for the text to image syntheses algorithm. We explain the basic concept that is
used to learn a distribution behind a set of images. Then we go into the logical
parts that make up the neural network.

The idea behind using diffusion for image synthesis is that it gives good
control to capture the distribution. For generating images that look like one
that is from the training data set, you need to know what does belong to the
data set and what does not. We are trying to find is the distribution that
describes the data set. A mathematical function that could say, this image is
one we want to generate and another is not, giving us the whole high dimensional
landscape of possible to generate images.

2.1 Concept

In order to find this distribution of the images from the training data set, we
diffuse all these images stepwise with noise.

Figure 1: Incrementally adding noise to one training image

This noise is clearly not part of the distribution, so this can help us find the
true distribution. We make a neural network able to learn the path back from a
noised image to one that we want to generate. To do this we train the network
to learn to subtract noise in an image. We have the training images that are
incrementally noised until complete noise. For every step in this process, we
make the neural network learn to reverse this step. By doing so we find the
gradient in the distribution landscape. A vector that points in the direction in
which the distribution gets more dense.

Figure 2: 2D visualization of a distribution with its gradient.

2



We not only want to generate an image that looks realistic or synthesized
with a certain style, we want the generated image to be in line with the text that
a user gave as input. All the training data is labeled with a textual description
of what is represented in the picture. This is used throughout the algorithm to
guide the synthesis towards a desired composition. The algorithm learns what
visual aspects are related to which text descriptors.

In the end we can start from random noise and calculate using the gradient
towards a picture from the target distribution. We guide this trajectory with a
textual conditioning, to get a picture that is in line with the prompt.

Figure 3: Generated image from a text prompt. Source: Mao et al. (2023)

2.2 Architecture

2.2.1 Training data set

The process is started with the training dataset. For the stable diffusion network
a dataset of 200 million high detailed images were used that was collected from
the internet. For each image a textual description label is required to train the
network. This specific dataset is using the alt-text attribute from the html in
which the image was found.

2.2.2 Noise training images in steps to complete noise

Every image of the dataset is diffused over time. This is done by incrementally
adding guassian noise to every picture for a number of steps.

2.2.3 U-Net

A neural network is used to learn how to detect and remove noise from images.
It is trained to do this using the diffused training images. Every step of diffusion
is used as an training example. The network must predict for an image at time
step t what the image at time step t-1 was. So only one step of guassian noise
is removed. This is repeated for all the steps of the diffusion process.

The network must learn to segment the noise and replace it with expected
content. The input image has the same dimensionality as the output image. A
u-net structure is used to translate noisy patterns in the data to patterns that

3



Figure 4: Architecture of the whole algorithm. Source: Rombach et al. (2022)

belong to the distribution. The network can be seen as a function that points in
the direction of the desired distribution. Somehow there is a relation between
both shallow and complex patterns, to go from a noisy picture to a less noisy
one. The u-net learns this translation, by iterively showing it a picture with
noise and the same picture with less noise. The u-net tries to predict the less
noisy image. The network is updated according to the amount of error that it
makes on this prediction.

2.2.4 Convolution layers

The u-net is made up by many convolutional layers. The idea of such a layer
is that a kernel is used to detect the location of a certain pattern in a picture.
This is done by sliding the kernel over the image and compute how much the
pattern correlate to the picture at that location. If the pattern correlates the
values are high, and on the opposite when the kernel pattern has nothing to do
with the local pattern in the picture then the resulting value is low. Pictured
in figure 5.

Figure 5: Kernel moving across a feature map.

4



The convolution layers are followed up by eachother. Each layer is detecting
the locations of the patterns of the earlier layer. So the following layer is finding
how patterns are combined with eachother. The deeper layers represent more
complex patterns in the sense that they detect, patterns that are made out of
patterns, that are made out of patterns, and so on.

2.2.5 Skip layers

For deeper networks it helps to not only have this specific follow up order of
layers. When adding connections between layers that skip one or more layers in
between, more layers can be added to increase learning potential. For the u-net
this is done even more than normal convolution networks. Here shallow layers
are connected to shallow output layers, but also complex layers are connected
to complex layers. In this manner the network is able to learn the correlation
between patterns on every level. How to replace noisy patterns for patterns
that belong to the distribution is learned on shallow level, but also in higher
complexity.

Figure 6: The u-net uses skip layers to create connections on every level. Ron-
neberger et al. (2015)

2.2.6 Cross attention

Cross attention is used to guide the translation from noisy patterns into pictural
patterns with a text prompt. Not only is the noisy pattern replaced by a pattern

5



from the distribution, also it’s directed by the text. The attention mechanism
is a way to learn what kind of visual representation the text is related to. Then
the denoising process is using this as a guidance to create a picture.

2.2.7 Text labels

As described earlier, every image comes with a textual description of what is
represented in the picture. The network learns the relation between the text
and the visual representation, using the cross attention mechanism.

2.2.8 Image to latent encoder and decoder

The training data consists of high detailed images. It is computationally very
expensive to do the whole training process using images in this detail. In stud-
ies it is show that it is not necessary to do this using this high dimensional
representation. You don’t get worse results by running the algorithm on a com-
pressed version of the images. To improve computational efficiency, an encoder
and decoder are put at the start and end of the algorithm. First an image is
compressed to latent space, and at the end it is translated again back to pixel
space.

3 Related literature

For this next section we look at existing methods for qualifying light illumina-
tion in pictures. We look at how light is simulated for image rendering using
computer graphics. Additionally we show various related studies about what
makes up a realistic image regarding light or other aspects.

A realistic photo is created from light. Waves of light move through the
world, bounce on objects following particular laws. A camera can catch light
and translate this to a picture. When you do this in the real world, you will get
a realistic picture. There you have the realistic laws of nature.

But now we create images with an ai system. This computes what an image
will look like from looking at example pictures. The system learns what the
world looks like, from images. Trying to capture this into a mathematically
formalized distribution. A set of rules from which we create new images. These
pictures can be anything, but a subset of it will be realistic photos. But what
defines this realism. For our research we will look into how the laws of nature
regarding light movement is expressed in ai generated images.

In the world of computer graphics, there has been profound research on how
to render realistic-looking scenes to a computer screen. Many studies on how to
approximate how light flows through the world before it possibly hits the camera
plane. Simplistically shown in figure 7, which sets the basis for an algorithm
to compute how light rays scatter through the scene from a light source. This
abstracts how in computer graphics images can be synthesized from a 3D data
point composition.

6



Figure 7: Basis of the ray tracing algorithm. Source: https://en.wikipedia.
org/wiki/Ray_tracing_(graphics)

As diffusion models share the same goal of creating digital images, we can
question how these methods compare. Ray tracing methods work very well
for visualizing realistic reflections on object surfaces and create shadows nicely
aligned to how the objects intersect the light. More advanced concepts as the
refraction of light within glasslike objects are simulated well. For this research
we look at how these concepts, as illumination, shadows, and refraction, are
simulated in generative AI.

The rendering pipeline for computer graphics can become very complicated.
For simulating all kinds of materials, shapes, any type of fluid or chemical effect.
For simplicity we will focus on some basic illumination principles.

The basic Phong shading algorithm simulates the reflection of a light wave
on a surface. This is simplified to three kinds of light interactions: ambient,
diffuse and specular. The last two have to do with how rough or mirror-like the
material is that the light bounces off, shown in figure 8.

Figure 8: Diffuse and specular components of phong shading

There is always a layer of light particles endlessly scattering on the objects
illuminating the whole composition, but taking too much time to compute. In
the phong equation this is simplified by adding a small light intensity on every
object. This creates an overall more illuminated scene. The three parts are

7



Figure 9: Phong equation

computed separately and added together, shown in figure 9.
The blender engine can render many kinds of light interactions, to simulate

any type of material. Figure 10 shows a visualization of the possibilities.

(a) (b)

Figure 10: Blender material spectrum and settings

3.1 Color compatibility and realism

In Wong et al. (2012) they evaluate how the compatibility of colors on different
objects in a picture can make a photo look unrealistic. When a part of one
image is inserted into another picture it can look unrealistic.

They say the colors do not match from both pictures. I think this is because
the lights are different. The lights in both images can have different colors,
intensities and can come from other angles. I believe this will influence the
color appearance. When both light compositions do not match, it will make

8



Figure 11: Unrealistic image composite with a white car and a man in gray
pants inserted into a street under yellow lights Lalonde et al. (2007)

the picture unrealistic. In their study they develop an algorithm to transform
the image, by changing the color distribution. When the color spectrum of the
objects matches better, it makes the image look more realistic.

3.2 Predict realism using machine learning

In Fan et al. (2018) they use an annotated dataset of images with realism scores
to predict the perceived realism for generated images. For our study we could
use this as an inspiration for developing a shading qualifier. If we could predict
the realism of images regarding illumination of light on surfaces, this could be a
possible metric for our qualification objective. Their method does require a large
annotated dataset which is a downside, compared to a complete computational
method.

3.3 How do properties of an image correlate to perceived
realism

According to Pardo et al. (2018) shading is not contributing as much as other
aspects to how real an image looks. They have done an human evaluation study
on two sets of images, one set of images of real world photographs and another
set of images with an identical composition rendered by a computer graphics
engine, Unreal.

Figure 12: Correlation Coefficients between Perceived Realism. Source: Pardo
et al. (2018)

9



They find that the properties color and texture of an object contribute most
to perceived realism. Figure 12 shows their statistical results in a table.

3.4 Shadows in art

As we are looking at an art generation system we can look at how important
it is to have realistic shadows in visual art. In Cavanagh (2005) they find that
errors in shadow depiction are not so easily noticed. They say that the mind
might interpret shadows in a more simplistic way than the complicated physics of
reality. Artists use this in their works, creating more simplistic-looking shadows.
Experiments show that unrealistic depictions often go unnoticed. Example show
in figure 13.

Figure 13: By 1467, artists such as Fra Carnevale had mastered consistent
perspective but not consistent lighting. Source: Cavanagh (2005)

3.5 Illumination inconsistencies

The study of Ostrovsky et al. (2005) looks into shading and illumination where
they also find that unrealistic visualizations are not so easily noticed. They
perform a number of experiments on shading depiction where they look at what
aspects are noticed and which are not. Figure 14 show pictures of the experi-
ments.

For example, they do an experiment where they show an experiment partic-
ipant a picture of a number of cubes all illuminated from one side. For only one
of them, the light comes from the other side. The participants have to tell which
cube is the odd one out. Another experiment they do is on images which show
illumination inconsistencies. Here they use images where one part of the image
is deliberately showing a shadow direction towards the other side, compared the
the shadow direction of the rest of the image.

10



(a) Experiment image where par-
ticipants have to find the odd one
out Ostrovsky et al. (2005). All
objects are illuminated from one
side except one.

(b) Image in where par-
ticipants have to say if
they notice inconsistency
in the illumination Ostro-
vsky et al. (2005).

Figure 14

4 Method

In the coming section we perform a number of experiments to find direction in
our search for a suitable metric. We use an existing realism qualifier as a basis
point. From there we finetune this towards a method we could use for qualifying
light in images. We identify problems with the studied method and experiment
with possible solutions to overcome these.

We want to create a good metric to measure the quality of shading in an
image. To start out, we look at already existing methods out there that are
used to evaluate the quality of image generation algorithms. One widely used
metric is Fréchet Inception Score Heusel et al. (2018). This shows the distance
between the feature distributions for two sets of images. Using the Inception
classification network Szegedy et al. (2015), the present features in the images
are detected. All the features in the two sets of images are counted. Then the
distributions are compared for the two sets, resulting in a distance value.

This method can be used to qualify the realism of generated images. You
can use a set of realistic photos, and compute the Fréchet distance to generated
images. From this you can say something about how truly the generative model
synthesizes realism.

For our research we want to say something about how well the model per-
forms for shading properties. To get an idea, we rendered a set of images that
contain very clear aspects about shading and see how closely the generative
algorithm relates to these patterns for shading. Blender does a good job for
creating realistic looking shading properties in images. It is not as exact as real
life photos, but it makes it easy to make images that show clear patterns for

11



shading and leave out all other patterns that are not important for this research.
We can create images that only contain a simple shape against a background
with one light source. This image shows in clear detail how the shadow aligns
to the shape that casts it, also it shows how the gradient moves across the shape
according to the angle of how the light hits the object. You can see an example
of this in figure 15.

Figure 15: A cylinder shaped object against a background, illuminated by one
light source. Created with Blender. Here you can see clear characteristics of
shading. The position of light influences how bright each part of the object is
displayed. The intensity gradient is shaped according to the normal along the
surface.

We rendered many of these kinds of images using different shapes and ma-
terials, to synthesize a set of images containing simple details about shading.
Using the Fréchet Inception Score we can study how stable diffusion generates
similar images.

The problem of course is that stable diffusion can generate much more com-
plicated scenes than those created with blender. You can have images of com-
plete cities, containing many light sources and objects making the light scatter
in complicated ways through the scene. Also you can create images that are
not representing a 3D world, where shading properties are not important. As
a starting point, we focus on how well the generative network is performing for
very simplistic 3D scenes in terms of shading.

Using stable diffusion we generate a set of images, similar to what we can
create with blender. Just one object on a surface, both made from some material
and the scene is illuminated by a light. Then we create this set of images with
blender as well. The results can be compared using Fréchet Inception Score.

For generating using stable diffusion, we use the xl-base-1.0 and xl-refiner-
1.0 parameter sets 1. We want to create a set of images containing a number
of shapes: cubes, pyramids, cones, cylinders, and toruses. Also, we vary the
materials (metallic, plaster, wood, pvc, cloth, stone, cardboard) for what the
shapes are made out of, as for the background. We created a prompt ”even flat
{1} diffuse ground surface, one solid {2} made out of an even flat {1} diffuse

1https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0

12



Figure 16: A small fraction of images rendered with blender

Figure 17: A small fraction of images generated with stable diffusion

material”. Here we replaced {1} with the material and {2} with the shape2.
For the set we create with blender, we create these simple shapes as well.

The materials we simplify by just varying the color, specular, metallicness and
roughness properties. We don’t create woodlike structures or other variations
in the appearance. We use a script to vary light and camera position, looping
through a random number of compositions. The number of shape-material
variations are equal and replicate the number created with SD.

Doing a simple unfiltered FID test Seitzer (2020) on both sets results in a
score of 115.036

This relative high score might be due to the high detail of the images. The
resolution here is 1024x1024 pixels. We do the test again scaling the images
down to a resolution of 64x64 to test this hypothesis. This results in a FID

2https://github.com/TomEijkelenkamp/stable_diffusion_generator/

13



score of 130.313 which is higher than the earlier obtained result, showing that
the high value is not due to the size of the images.

The generated images from stable diffusion also contain many images that
do not look like the composition we created with blender. For our study we do
not test how well the generated image is in line with the text prompt, we just
want to see how realistic the shading looks. For a next test we filter out all
the images from SD that do not contain a similar composition as the ones from
blender. We are not cherry picking on shading quality, we filter on composition.

We use a similar metric to filter all the images. We only want the images that
have a certain composition. We use a couple of example images that show this
composition. For each shape and material we have one example picture. Again
we use the inception network to calculate the features within those images. Then
we calculate the features within the whole collection of generated images. Then
we only use the images that are within a threshold similarity distance from the
example pictures. We use the angle between the feature vectors as a distance
measure3.

Figure 18: A small fraction of filtered set of images generated with stable diffu-
sion

Now we obtained a new set of images and compute the FID score again. This
time it results in a score of 100.903 being lower than our first result.

To make the score even more accurate we would have to make the two sets
completely identical on all variables other then shading. We want to know if the
light interaction in an ai generated image is following the laws of the real world.
If we create images with stable diffusion and identical images with blender, we
could compare the light interaction. Identical meaning, the composition in the
image is the same. The same shape is displayed at the same location. The
material and the color of the object is in both images the same. The textures

3https://github.com/TomEijkelenkamp/image_similarity_clustering/blob/main/

similar_to_examples.py

14



are identical. The only variable is how stable diffusion displays shading and
how blender does this. If we would create two large sets, and do the FID score,
to only measure shading properties, we should eliminate all variation on other
features.

We tried to eliminate part of the variation by filtering out compositions
that do not show only one object of a particular shape displayed against a
background. We could continue to eliminate variation by improving the material
and color properties. If we could create a better replicate for materials using
blender, we could improve our shading score.

On another experiment we calculated the main colors used in the set of
images created with stable diffusion. We calculated the histogram for the used
colors in all the images. Then we excecuted the k-means algorithm to compute
32 mostly used colors. Those colors we used to generate a new set of images
in blender. The goal was to create a set of images that is more closely related
to the ones from stable diffusion. We try to eliminate the variation of used
colors. We want to make the two sets of images be mainly of the same color
distribution4.

Figure 19: Snapshot of the set created with blender, using the colors obtained
through the k-means algorithm.

We failed to create a set that is more closely related then the previous
experiment. The resulting FID score here is 123.440.

4.1 Problems with FID score

• FID score uses all features in the two sets of images, not only
shading features. The FID score is not designed to specifically measure
shading quality of images. It measures the performance for generated
images comparing general features that are present to a set of realistic
images. You can do a FID score with image sets as CIFAR-10 or ImageNet.

4https://github.com/TomEijkelenkamp/image_color_distribution

15



For our shading study it’s only important to look at a particular proportion
of the features captured by the inception network. We want to see if
features for shading are in line with what you would expect in reality.
It would be better if we would have a network that can detect shading
features for images, and then find the Fréchet distance between a generated
set and a realistic set.

The inception model is designed to categorize images. There are 1,000
different classes it can classify images into. It does this by detecting all
kinds of features in images, that can direct a prediction for which class
the image belongs to. For example, when you got an image of a car, it will
have wheels, a number of doors and windows, a certain shape. When these
elements are there within an image, the change goes up that it categorizes
as a car.

Features that have to do with shading are only a small proportion influ-
encing the classification. You would expect the change of a good catego-
rization to go down, when the shading realism is completely off. When
there is a cube in the image, but the shadow is round, the image is less
likely to classify as displaying a cube. It might as well display a sphere, if
you look at the shadow.

Also the color gradient on a shape indicates the form of that shape. When
this property of shading is not correct, the classification also might be less
confident.

We do not know to what proportion these features for shading are influ-
encing the categorization. Because of this we do not know how the FID
score is influenced by these features.

• InceptionV3 is trained on a particular set of images. Similar to
the problem described above, the inception network is trained to classify
a particular set of classes. For these types of images the network can
detect features very well. For images that contain other properties, many
important features will not be detected, simply because the network was
not trained to detect such features. For our problem, we want to detect
very smooth flat and clear surfaces. The images used for training inception
network are rich in complexity and intricate details. The network will
perform less at classifying the features we are lookinig for. It would be
better to use a classifier that is particularly good at these simple images
we use.

• InceptionV3 requires images to be of a certain size. The inception
network needs images of the dimensions 299x299. Our generated and ren-
dered images have the dimensions 1024x1024. For this, the images need to
be scaled down, losing detail for feature extraction. High detailed aspects
of shading will not be captured by the network and so the FID score is
not able to take this into account. The score will more be an approximate
blurred measure of shading properties. A sharp shadow outlining the edge

16



of a box cannot be perfectly matched as realistic or not realistic. The FID
score will more be a rough estimate how shading features are compared
to shading features that blender simulates.

4.2 Finding features that relate to shading in InceptionV3

We want to modify the FID score for our research specifically qualify shading
properties. We are going to look at which of the features that the InceptionV3
network captures, relate to shading. Then we can segment these features, and
only use these to find a shading pattern distribution for a set of images. Then
we can compare the shading properties of two sets of images and see how much
they differ. Simply put, we do a FID score only using shading features.

To find out what features relate to shading, we are going to do an experiment.
We create images in which we vary components that display all characteristics
of shading. Because it’s easy to simulate these kind of images using blender, we
use this to render the shading depictions. We vary the following apsects:

• Object to be displayed. Similar to what we did in an earlier experiment
we create a scene showing one object against a background. We vary the
scene using the same type of shapes: cube, pyramid, sphere, cone, torus.

• Color of the object. Here we use loop through a set of hue values in the
HSV spectrum.

• Material characteristics. We again use different values for metallicness
and roughness.

• Position of the light illuminating the object. We use nine positions, cre-
ating a three by three grid of options, not varying the height. So the light
is casted from the back, front, the sides and corners.

Figure 20: A small fraction of images simulating shading characteristics, created
with blender

17



With all these images created, we find out how they activate features in the
inception network. We look at the last layer, just as done with FID score. We
expect that shading features will be located in earlier layers of the network.
The last layer stores more complete objects, complex combinations of forms.
Shading relates more to how color gradients go across surfaces. Intuition guides
us to look more into shallower layers as well, as they store color patches and
gradients.

First we look at the activations in the last layer. We use pearson correlation
to find out what features correlate to our list of shading characteristics.

Image categorization should not be influenced by the way an most of these
shading properties. The direction where the light comes from, or the rotation
of the object does not make it another object. The network should be invariant
to these variables. This casts doubt on finding features in the inception network
for these properties. The material and color should be detected, because this
indicates what kind of object it is.

After running the pearson correlation we get a large matrix of numbers.
Every number represents how this one feature correlates linearly to one char-
acteristic, such as metallicness. There are 2048 features we are looking at. To
make more sense out of this, we only look at features that really correlate. For
every characteristic, we order the features on how much they correlate. We look
at the most correlating features.

From the table we find that the different shapes are influencing the activa-
tions the most. There is a large correlation between the shape (cube, pyramid,
etc) in the picture and the feature activations. Also for the different colors,
there correlation is high, but lower then for shapes. What is interesting to see is
that also the light position is captured by the network. The feature activations
relate to the light position of the presented picture. There might be a way to
make use of this, to detect any error in light direction. At last we looked at the
matellicness and roughness, this is also detected by the network, but the feature
activations are less influenced by this5.

From these numbers it is still hard to get an intuition for what these fea-
tures are representing. Is this really the feature that represents the direction
of the light shining on the object. Is it really capturing the color of the object
displayed. To get a better intuition where the shading features are detected in
the inception network, we are going to do a visualization.

A possible way to visualize what is happening inside the inception network is
to show the activations of the feature maps. We can input an example picture
and see how the network reacts. As an experiment we show an image of a
cube to the network. The whole network consist of many layers, including 93
convolution layers. Each convolution layer contains ranging from 32 to 384
kernels. In figure 21 the output of the convolution layers 30, 50 and 70 are
show, when the network is shown a picture of a cube6.

These feature maps are difficult to interpret. We wanted to visualize the

5https://github.com/TomEijkelenkamp/shading_features_inception
6https://github.com/TomEijkelenkamp/feature_visual_inception

18



Figure 21: Feature map activations of convolution layer 30, 50 and 70 respec-
tivily on an input image showing a cube.

corresponding features from the experiment before. There we checked for 2048
detected features, which relates to the shading characteristics. The problem
here is that there are many layers in between the last convolution layer and the
activation layer we use to detect features. Because of these difficulties we should
find another way to find out what features correlate with shading characteristics.

5 Future work

5.1 Three dimensional representation translation

To get an accurate scoring mechanism regarding shading, it would be good to
have a ground truth per tested image. We want to see how accurate the shading
features are in image. We could create an algorithm that computes the 3D
representation of an image. Then using this representation, we could compute
a realistic render using theory from computer graphics. We could compute for
a whole set of images made with stable diffusion, a whole set of images that
are the ground truths. Then the distance between the two sets is the quality of
shading. Still we compare to a computer simulation, not the real world.

Due to time reasons we were not able to complete the following proposals.
We started sketching out some ideas to compute the 3D representation for cube
and sphere images.

For images displaying a cube, you could use the canny edge detection algo-
rithm to find all the edges of the cube. Then using this we could compute this

19



to a set of lines with hough transform7.

Figure 22: Edge detection on an image of a cube, and compute it to lines.

If you extend these lines, the vanishing points on the horizon can be found
on the intersection point. Find the focal length using the equation: (u1, v1, f) ·
(u2, v2, f) = 0. If this results in similar focal lengths for all the sides of the
cube, it’s really a cube and not a irregular shape. Using all the lines you could
compute this to the 3D representation using geometry and perspective theory.
It might be possible to compute the light position using the light intensity levels
on the cube surfaces and the normals. This is an ill posed problem, since we do
not know what type of lights are used and how many there are.

Figure 23: Possible calculation metric for 3D representation of a cube

For an image with a sphere you can find out a light position measuring the
distance of the highlight from the center of the sphere8. Shown in figures 24
and 25. Using the measured radius relative to distance from the center to the
highlight, you can obtain an angle. This is the angle between two vectors. One
vector goes from the center of the sphere to the camera, and the other one goes
from the center to the highlight.

7https://github.com/TomEijkelenkamp/cube_3d_computation
8https://github.com/TomEijkelenkamp/sphere_3d_computation

20



Figure 24: Possible metric to compute light position on an image displaying a
sphere.

(a) (b) (c) (d) (e)

Figure 25: Using canny edge detection and hough transform to detect the sphere
position. The find the brightest spot within the sphere region. Angle between
the vector that goes from the sphere center to the highlight and the vector that
goes from the sphere center towards camera: 70 degrees.

6 Conclusion

After all our experiments we find that it we could not create a computational
method yet for analyzing shading realism. The problem is more complex to
come to a complete solution. We proposed directions in which further research
could be useful. A neural network could be used to detect shading feature in
images. Similar to FID score, you could use this network to find the frechet
distance between two distributions of shading features. Another method could
be to compute a three dimensional representation out of an image. Then you
could use this to render this with realistic lighting properties. The starting
image and computed image can then be compared, where the difference is the
score.

21



References

Borji, A. (2018). Pros and cons of gan evaluation measures.

Borji, A. (2021). Pros and cons of gan evaluation measures: New developments.

Cavanagh, P. (2005). The artist as neuroscientist. Nature 434 (7031), 301–307.

Fan, S., T.-T. Ng, B. L. Koenig, J. S. Herberg, M. Jiang, Z. Shen, and Q. Zhao
(2018). Image visual realism: From human perception to machine computa-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (9),
2180–2193.

Heusel, M., H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter (2018).
Gans trained by a two time-scale update rule converge to a local nash equi-
librium.

Lalonde, J.-F., D. Hoiem, A. A. Efros, C. Rother, J. Winn, and A. Criminisi
(2007, jul). Photo clip art. ACM Trans. Graph. 26 (3), 3–es.

Mao, J., X. Wang, and K. Aizawa (2023). Guided image synthesis via initial
image editing in diffusion model.

Ostrovsky, Y., P. Cavanagh, and P. Sinha (2005). Perceiving illumination in-
consistencies in scenes. Perception 34 (11), 1301–1314. PMID: 16358419.

Pardo, P. J., M. I. Suero, and Ángel Luis Pérez (2018, Apr). Correlation between
perception of color, shadows, and surface textures and the realism of a scene
in virtual reality. J. Opt. Soc. Am. A 35 (4), B130–B135.

Rombach, R., A. Blattmann, D. Lorenz, P. Esser, and B. Ommer (2022). High-
resolution image synthesis with latent diffusion models.

Ronneberger, O., P. Fischer, and T. Brox (2015). U-net: Convolutional networks
for biomedical image segmentation.

Seitzer, M. (2020, August). pytorch-fid: FID Score for PyTorch. https://

github.com/mseitzer/pytorch-fid. Version 0.3.0.

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna (2015). Rethinking
the inception architecture for computer vision.

Wong, B.-Y., K.-T. Shih, C.-K. Liang, and H. H. Chen (2012). Single image
realism assessment and recoloring by color compatibility. IEEE Transactions
on Multimedia 14 (3), 760–769.

22


