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Abstract

In this thesis we study matroids whose elements are the points of a projective plane over some finite field.
We start by introducing matroids, giving multiple ways of defining a matroid, and explaining what it means
for a matroid to be representable. We also touch upon the cross ratio, an essential invariant in projective
geometry, and explore the connection to matroid representability. To formally establish this connection,
partial fields are introduced. Partial fields are an algebraic structure which was originally studied to classify
certain kinds of matroids that can be represented by a matrix whose subdeterminants are constrained to
some multiplicative group. The final concept we introduce is the universal partial field. If a partial field is
the universal partial field of a matroid, then every other representation of the matroid can be obtained from
this universal partial field. We explain how to compute the universal partial field, which is where cross ratios
become relevant again. In the results section we define a matroid represented over the finite field of order p.
We then show that its universal partial field is exactly equal to this field for infinitely many primes p and for
p < 1000.
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1 Introduction

A subject of interest in combinatorics is the study of incidence structures. An incidence structure describes what
is left after stripping away all of the more complicated concepts of a geometry, leaving only points, lines, and
their relations. Affine and projective geometries are the simplest examples of these structures. In this thesis we
will be studying projective planes over finite fields.

Projective geometry became a field of study when Renaissance painters were trying to establish the laws of
perspective. They wanted to formally establish what happens when a three-dimensional object is turned into a
two-dimensional image. In this process angles and relative magnitudes of lines easily become distorted. Even
parallel lines might converge, even if only at some far-away point. Still, if two lines meet at a point, they will
still meet at the same point after the image is finished. These observations form the basis of the projective
plane and were later used to generalize the concept further. Projective transformations are then those that
preserve these aspects of a geometry. The cross ratio features prominently when studying projective geometries,
especially projective planes and lines. It is an invariant that ascribes a magnitude to an ordered quadruple of
collinear points. The cross ratio remains unchanged under projective transformations. Due to this property it
is the most fundamental invariant of projective geometry[1].

The study of the combinatorial aspects of point-line configurations will require the introduction of matroids.
A matroid is an abstraction of the concept of linear independence. An incidence structure of a projective plane
defines a matroid. In this thesis we will establish some elementary properties of matroids. Then we will explain
what it means for a matroid to be represented over some field. We will also investigate why a matroid might be
representable by a point-line configuration over one field but not another. As it turns out, the answer is heavily
related to cross ratios.

We will also introduce partial fields and universal partial fields. A partial field is an algebraic structure first
conceived by Semple and Whittle for the purpose of studying matroid representations[2]. The universal partial
field was defined by Pendavingh and van Zwam, see [3] [4]. It is the final concept covered in the background
section. We will explain how it is important, give its definition and a way of computing it. This thesis is built
around van Zwam’s PhD thesis [5].

In the results section we will show some attempts to explicitly compute the universal partial field of a matroid
represented by a specific matrix, which was described by Brylawski in 1982 [6] to prove a related result. This is
a rank-three matrix with 2⌊log2(p+ 1)⌋+ 6 elements. We would like to show that the universal partial field of
this matroid is exactly Z/pZ. What we will show is that its universal partial field is a sub-partial field of Z/pZ
and that it is in fact isomorphic to Z/pZ for primes smaller than a thousand.

A full dive into representation theory of matroids would be beyond the scope of the thesis, so if one wants
to develop a more in-depth understanding, the joint works of Pendavingh and van Zwam [3] [4] [7], as well as
van Zwam’s PhD thesis [5] are excellent starting points. The textbook by Oxley [8] is also incredibly helpful for
those with interest in matroid theory.

2 Preliminaries

2.1 Finite fields

It is assumed that the reader has at least rudimentary knowledge of the theory of fields, rings and groups. In
this section we will outline some notation and conventions used from now on. An arbitrary field throughout
the thesis will typically be denoted by F. The finite field with q elements, where q is some prime power, will
typically be denoted by Fq. We will also point out that Fp

∼= Z/pZ when p is a prime number. The unit group
of a field F will typically be denoted by F∗.

2.2 The projective plane

In this subsection we will give a brief overview of the basics of projective geometry. We use S to denote the
linear subspace spanned by elements in S.

Definition 2.2.1. [9, Def. 2.1] For any vector space V define P (V ) = {v|0 ̸= v ∈ V } and the dimension of
P (V ) is dim(V )− 1. Also define PG(n,F) = P (Fn+1).
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Definition 2.2.2. [9, Def. 2.3] For F ⊆ E we can write P (F ). If F is a linear subspace of E we say that P (F )
is a projective subspace of P (E). The 0, 1, and 2-dimensional cases are referred to as projective points, lines
and planes respectively.

Definition 2.2.3. [9, Def. 2.2] We say v ∈ P (V ) has homogeneous coordinates [h1 : h2 : . . . : hn] with respect
to the basis b1, . . . , bn of V if v =

∑n
i=1 h

ibi.

Homogeneous coordinates are unique up to multiplication by a scalar. When working over Fn, the basis will
typically be the standard basis {ei}i∈{1,...,n}, where eji = 0 if i ̸= j and = 1 if i = j.

Definition 2.2.4. [9, Def. 2.6] To any injective linear map L : V → W we associate a map P (L) : P (V ) → P (W )
defined by P (L)(v) = L(v), called the associated projective transformation.

Applying a projective transformation is the same as multiplying a vector consisting of the homogeneous
coordinates by an invertible square matrix of appropriate size. In fact, the group of projective transformations
of PG(n,F) is GL(F)n+1 [5]. Projective transformations map collinear points to collinear points[1]. In this thesis
we will mostly concern ourselves with PG(2,Fq), or the projective plane over Fq. We will often simply write
PG(2, q). PG(2, q) has exactly q2 + q + 1 points and lines. Every two points are on exactly one line, and every
two lines intersect in exactly one point[5].

2.3 Graph theory

In this subsection we will briefly give the necessary definitions from graph theory needed to understand the rest
of thesis.

Definition 2.3.1. A graph G = (V,E) is a pair consisting of a set of points V , the vertices, and a set of
connections between these points, the edges.
An edge {x, y} is denoted by xy. The set of vertices of a graph G is written as V (G), the set of edges as E(G).

Definition 2.3.2. The graph G
′
= (V

′
, E

′
) is subgraph of the graph G = (V,E) if all of its vertices and edges

are also in G. It is called an induced subgraph if E
′
= {e ∈ E|e ⊆ V

′}.

Definition 2.3.3. A graph G = (V,E) is bipartite if V can be partitioned into sets U,W such that all e ∈ E
satisfy |e ∩ U | = |e ∩W | = 1.

Definition 2.3.4. A walk in a graph G = (V,E) is a sequence (v0, . . . , vn) of vertices such that, for i =
0, 1, . . . , n− 1, vivi+1 ∈ E. If vn = v0 the walk is called a cycle.

Definition 2.3.5. A graph is connected if there is a path between every pair of vertices.

Definition 2.3.6. A forest is a graph with no cycles, a tree is a connected forest.

Definition 2.3.7. A forest T spans a graph G if it is a subgraph of G, and adding any edge of G to T induces
a cycle.

2.4 Matrices and set theory

We will briefly go through the set theoretic conventions used in this thesis. The set of natural numbers N
contains 0. If X and Y are sets, X − Y := X\Y . If X and Y are sets, we define their symmetric difference as
X△Y := X − Y ∪ Y −X.

We will now describe the matrix notation used in this thesis. For ordered sets X and Y , an X × Y matrix
over a field F is a function A : X×Y → F. An Fn×m matrix would then be described as a {1, . . . , n}×{1, . . . ,m}
matrix over F.

If X
′ ⊆ X and Y

′ ⊆ Y , then we denote by A[X
′
, Y

′
] the submatrix of A obtained by deleting all rows and

columns in X − X
′
, Y − Y

′
. If Z is a subset of X ∪ Y then we define A[Z] := A[X ∩ Z, Y ∩ Z]. Let A1 be

an X × Y1 matrix over F and A2 an X × Y2 matrix over F, where Y1 ∩ Y2 = ∅. Then A := [A1A2] denotes the
X × (Y1 ∪ Y2) matrix with Axy = (Ai)xy for y ∈ Yi, i ∈ {1, 2}. If X is an ordered set, then IX is the X × X
identity matrix. If A is an X ×X matrix, we usually shorten [IXA] as [IA].
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3 Background

3.1 Cross ratios

We will start with the traditional definition of a cross ratio. In it, for example, AD refers to the signed distance
between two points. Under the ordering we give, if AC is positive, then DB would be negative.

Definition 3.1.1. [5, Def. 1.1.1] The cross ratio of an ordered quadruple of collinear points A,B,C,D ∈ Rn is

AC ·DB

CB ·AD
.

The value of the cross ratio does not change under various transformations. In fact, for λA, λB , λC , λD ∈ R∗,
the cross ratio of (λAA, λBB, λCC, λDD) equals the cross ratio of (A,B,C,D). The same holds true if we instead
multiply each of the points by a n × n matrix with a non-zero determinant. This means that cross ratios are
unchanged by projective transformations.

Defining the cross ratio for fields other than R will require some adaptation, since there is no clear notion of
distance. The following definition is meant to address this.

Definition 3.1.2. [5, Def. 1.1.7] Let A,B,C,D be four collinear points in PG(n,F). Let a, b, c, d be vectors in
the 1-dimensional subspaces A,B,C,D respectively, such that

c =a+ αb

d =a+ b

for some α ∈ F. Then α is the cross ratio of the ordered quadruple A,B,C,D.

The two definitions are equivalent when working over R. The invariance under scaling and projective trans-
formations is also preserved. What does still matter is the order of the points, as can be seen in the following
lemma.

Lemma 3.1.3. [5, Lemma 1.1.9] Let A,B,C,D be an ordered quadruple of points in PG(n,F) having cross
ratio α /∈ {0, 1}, and let σ ∈ S4 be a permutation. Then the cross ratio of the ordered quadruple Aσ, Bσ, Cσ, Dσ

is one of

{α, 1− α,
1

1− α
,

α

1− α
,
1− α

α
,
1

α
}.

Note that not all six need to be distinct. For instance, if α = −1 then this set has only three distinct values.
When working over R, the cross ratio is useful, as it assigns a numerical value to four points that is invariant

under projection. In this thesis we want to explore the combinatorial information encoded in a cross ratio. For
this purpose we will introduce matroids.

3.2 Matroids

Matroids were originally introduced by Whitney in 1935, see [10]. Their introduction was motivated by an
interest in finding some commonality between the concepts of dependence found in graph theory and linear
algebra. Matroids are therefore considered to be an abstraction of (linear) independence.

Definition 3.2.1. [5, Def. 1.2.1] A matroid is a pair (E,I ), where E is a finite set, and I a collection of
subsets of E such that

(i) ∅ ∈ I ;

(ii) If X ∈ I , and Y ⊆ X, then Y ∈ I ;

(iii) If X,Y ∈ I , and |X| > |Y |, then there is an element e ∈ X − Y such that Y ∪ e ∈ I .
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The set of elements of a matroid M is denoted by E(M), and is called the ground set of M . A subset
X ⊆ E(M) is independent if X ∈ I , and dependent otherwise.

The following example is given to highlight how linear independence might translate from vector spaces to
the more abstract world of matroids.

Example 3.2.2. [5, Ex. 1.2.2] Let E be a finite set of vectors in a vector space V , and let I be the set of all
linearly independent subsets of E. Then (E,I ) is a matroid. To see this, let X,Y ⊆ E be linearly independent
subsets of vectors. Since the vectors in X are linearly independent, the linear subspace U spanned by X has
dimension |X|. Likewise the linear subspace W spanned by Y has dimension |Y |. If |X| > |Y |, then not all
vectors in X are contained in W . Hence there exists a vector e ∈ X−Y such that Y ∪{e} is linearly independent.

While somewhat less relevant to this thesis, the following example shows how matroids are connected to
graph theory.

Example 3.2.3. [5, Ex. 1.2.3] Let G = (V,E) be a graph, and let I be the edge-set of all forests of G. Then
(E,I ) is a matroid. To see this, let X,Y ⊆ E be such that the graphs (V,X) and (V, Y ) are forests. The
number of components of (V,X) is |V | − |X|. Likewise the number of components of (V, Y ) is |V | − |Y |. If
|X| > |Y |, then some edge in X must connect two of the components of (V, Y ). Hence there exists an edge
e ∈ X − Y such that (V, Y ∪ e) is a forest.

The task of abstracting linear independence can approached in ways that are seemingly distinct from the one
we give in definition 3.2.1. However, as it turns out, trying to do so often leads to an equivalent construction.
These equivalences are called cryptomorphisms[11]. We will now give the two examples originally formulated by
Whitney[10].

A circuit is of a matroid M is an inclusionwise minimal dependent set. This definition is particularly useful
in graph theory, since the set of edge sets of cycles of a graph is the set of circuits of a matroid [8, prop. 1.1.7].
The following theorem allows us to uniquely characterize matroids by properties of the set of circuits:

Theorem 3.2.4. [5, Thrm. 1.2.4] Let E be a finite set, and C a collection of subsets of E. Then C is the set
of circuits of a matroid on E if and only if

(i) ∅ /∈ C ;

(ii) If C,C
′ ∈ C and C

′ ⊆ C, then C
′
= C;

(iii) If C,C
′ ∈ C and e ∈ C ∩ C

′
, then there is a set C

′′ ⊆ (C ∪ C
′
)− e such that C

′′ ∈ C .

A basis of a matroid M is an inclusionwise maximal independent set. As the name might suggest, this
cryptomorphism is inherited from linear algebra. This will be made more explicit in later sections. The following
property characterizes matroids using a set of bases:

Theorem 3.2.5. [5, Thrm 1.2.5] Let E be a finite set, and B a collection of subsets of E. Then B is the set
of basis of a a matroid if and only if

(i) B ̸= ∅;

(ii) If B,B
′ ∈ B, and e ∈ B −B

′
, then there exists an element f ∈ B

′ −B such that B△{e, f} ∈ B.

We also also define the rank of a matroid. The connection between the rank of a matrix and the rank of a
matroid will also be highlighted later on.

Definition 3.2.6. [5, Def. 1.2.6] Let M = (E,I ) be a matroid. The rank function of M , rkM : 2E → N, is
defined as

rkM (X) := max{|Y |
∣∣Y ⊆ X,Y ∈ I }.

If it is clear from context, the subscript M may be omitted. We use rk(M) for rkM (E).

The rank function can be used to define another cryptomorphism [8].
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3.2.1 Representability

As matroids inherit a lot of concepts from linear algebra, it would be useful to introduce some way of getting a
matroid from a matrix, or to go from a matroid to a matrix. This leads us to one of the core concepts of this
thesis, that being matroid representability.

Theorem 3.2.7. [5, Thrm. 1.2.8] Let A be an r × E matrix over F, and define

I := {X ⊆ E
∣∣rk(A[r,X]) = |X|}.

Then (E,I ) is a matroid.

The matroid of theorem 3.2.7 is denoted by M [A]. This is the same matroid described in example 3.2.2,
where the columns of A are the vectors. We say that a matroid M is representable over a field F if there exists
a matrix over F such that M = M [A].

Characterizing matroids based on which field they are representable over is very central to matroid theory.
We will provide one way of tackling this problem in the following sections. Before that, we still have to explore
matroids a bit more.

Example 3.2.8. The uniform matroid of rank two on four elements is

U2,4 := ({1, 2, 3, 4}, {X ⊆ {1, 2, 3, 4}
∣∣|X| ≤ 2}).

This matroid is sometimes called the four-point line. Over R the matroid can be represented by the matrix

A :=

[ ]
1 0 1 −1
0 1 1 1 .

In fact, U2,4 can be represented by A as a matrix over almost every field, the only exception being F2.

It is also possible to define a matroid using the points of PG(n,F), where F is a finite field. The base set
of this matroid consists of the points in PG(n,F), and the independent set consists of subsets X of points such
that the subspace spanned by them has dimension |X|. This matroid is denoted as PG(n,F). If A is the matrix
consisting of the basis vectors of each of the 1-dimensional subspaces, then M [A] = PG(n,F). If F = Fq we
can also replace PG(n,F) with PG(n, q). The matroid does not depend on the specific basis vectors. Choosing
different basis vectors is equivalent to scaling the columns of A. It is common to describe such a matroid using
diagrams. In such a diagram the elements of the matroid are indicated by points. If three elements are dependent
they are connected by a line (not necessarily straight), if four elements are dependent they lie on a common
plane.

Example 3.2.9. [5, Ex. 1.2.32] Consider the Fano matroid, F7 := PG(2, 2). It has seven elements. We have
F7 = M [A], where A is the following matrix over F2:

1 2 3 4 5 6 7[ ]
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

.

In figure 1 we give a geometric representation of the Fano matroid.

3.2.2 Duals and minors of matroids

We will now introduce the dual of a matroid.

Theorem 3.2.10. [5, Thrm. 1.2.13] Let B be the set of bases of a matroid M on ground set E. Define

B∗ := {E −B
∣∣B ∈ B}.

Then B∗ is the set of bases of a matroid.
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Figure 1: F7, the Fano matroid

The matroid of theorem 3.2.10 is called the dual of M , and is denoted by M∗. The following proposition is
related to the representability of the dual.

Proposition 3.2.11. [5, Prop. 1.2.14] Let X,Y be disjoint sets. Suppose M = M [A], where A is an X×(X∪Y )
matrix of the form A = [ID], with D an X ×Y matrix. Let A∗ be the Y × (X ∪Y ) matrix A∗ := [−DT I]. Then
M∗ = M [A∗].

Definition 3.2.12. [5, Def. 1.2.18] Let M1 = (E1,I1),M2 = (E2,I2) be matroids. If there is a bijection
σ : E1 → E2 such that X ∈ I1 if and only if σ(X) ∈ I2, then we say M1 and M2 are isomorphic. This is
denoted by M1

∼= M2.

We will also introduce some matroid operations.

Definition 3.2.13. [5, Def. 1.2.19] Let M = (E,I ) be a matroid, and X ⊆ E. The deletion of X from M is
the matroid

M\X := (E −X, {Z ∈ I
∣∣Z ∩X = ∅}).

Definition 3.2.14. [5, Def. 1.2.20] Let M be a matroid, and X ⊆ E(M). The contraction of X from M is the
matroid

M/X := (M∗\X)∗.

We can now talk about minors of matroids.

Definition 3.2.15. [5, Def. 1.2.22] If a matroidN can be obtained from a matroidM by deleting and contracting
elements then N is a minor of M .

Definition 3.2.16. [5, Def. 1.2.23] We write N ⪯ M if matroid N is isomorphic to a minor of matroid M .

Proposition 3.2.17. [5, Prop. 1.2.25] Let M be a matroid representable over a field F. If N ⪯ M then N is
representable over F.

3.2.3 Cross ratios in matroid representations

To explain how cross ratios and matroid representation are related, we will be returning to the matroid U2,4.
This is how it was done in van Zwam’s thesis [5]. We already gave an example of a matrix representation of
this matroid. As it turns out, any four distinct non-zero vectors in F2 are satisfactory. This is also the reason
why U2,4 is not representable over F2, since F2

2 only has three distinct non-zero vectors. What we would now
like to do is find the constellations of points in PG(2, q) that let us define this matroid. Applying projective
transformations to a representation matrix does not change the matroid, so we will assume that it has the form[ ]

1 0 1 α
0 1 1 1 ,

9



where α /∈ {0, 1}. If we permute the columns and rescale the matrix, we can obtain a matrix that has one of the
following forms: [ ]

1 0 1 α
0 1 1 1 ,

[ ]
1 0 1 1− α
0 1 1 1 ,

[ ]
1 0 1 α

α−1

0 1 1 1 ,

[ ]
1 0 1 1

α
0 1 1 1 ,

[ ]
1 0 1 1

1−α

0 1 1 1 ,

[ ]
1 0 1 α−1

α
0 1 1 1 .

Recalling the set given in lemma 3.1.3 suggests some connection between cross ratios and matroid rep-
resentability. What we meant to illustrate with this is that finding a representation of U2,4 is equivalent to
picking 4 collinear points in PG(2,F), then picking a cross ratio obtained by changing their order. Over F2

this is impossible, as there are no four-point lines. Over F3 there is one unique cross ratio, that being -1. Over
F4 = {0, 1, ω, ω2} there a two different cross ratios, those being ω and ω2. As a consequence, there is no unique
representation of U2,4 over F4 or any bigger field.

Finding a representation of a matroid is then the same as choosing a cross ratio for all four-point lines it has
as a minor. We will eventually give a possible way to explicitly find the cross ratios of a matroid.

3.3 Partial fields

Partial field is an algebraic structure that was first introduced by Semple and Whittle in 1996 [2]. It is possible to
classify certain matroids based on values of the subdeterminants of their representation matrices. For example, it
is well known result that a matroid is representable over F2 and another field of characteristic other than 2 if and
only if it can be represented over the rationals by a matrix whose subdeterminants are contained in {0, 1,−1}
[12]. Partial fields were originally defined in an axiomatic way, however, we will use a definition involving rings
and multiplicative groups, which was also utilized by Pendavingh and van Zwam[3].

Definition 3.3.1. [5, Def. 2.1.1] A partial field is a pair (R,G), where R is a commutative ring, and G is a
subgroup of R∗ such that −1 ∈ G.

If P = (R,G) is a partial field, and p ∈ R, then we say that p is an element of P (write p ∈ P) if p = 0 or
p ∈ G. We define P∗ := G. We will now look at how certain concepts from algebraic structures can be translated
into the language of partial fields.

Definition 3.3.2. [5, Def. 2.1.2] A partial field is trivial if 1 = 0.

Example 3.3.3. [5, Ex. 2.2.1] Perhaps the simplest example of a partial field is the pair (F,F∗), where F is a
field. Throughout the thesis the field F will be seen as this partial field.

Definition 3.3.4. [5, Def. 2.2.4] Let P1,P2 be partial fields. A function φ : P1 → P2 is a partial-field
homomorphism if

(i) φ(1) = 1;

(ii) For all p.q ∈ P1, φ(pq) = φ(p)φ(q);

(iii) For all p, q, r ∈ P1 such that p+ q = r, φ(p) + φ(q) = φ(r).

φ is a partial-field isomorphism [5, Def. 2.2.7] if

(i) φ is a bijection;

(ii) φ(p) + φ(q) ∈ P2 if and only if p+ q ∈ P1.

Definition 3.3.5. [5, Def. 2.2.13] A pair P′
= (R

′
, G

′
) is a sub-partial field of P = (R,G) if R

′
is a subring of

R and G
′
is a subgroup of G, such that G

′ ⊆ R
′
and −1 ∈ G

′
.
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Definition 3.3.6. [5, Def. 2.2.15] Let P = (R,G) be a partial field, and let S ⊆ P∗. Then the sub-partial field
generated by S is

P[S] := (R, ⟨S ∪ {−1}⟩).

Finally, we will introduce the concept of fundamental elements.

Definition 3.3.7. [5, Def. 2.2.9] Let P be a partial field. An element p ∈ P is fundamental if

1− p ∈ P.

We denote the set of fundamental elements of a partial field by F (P).

Proposition 3.3.8. [5, Prop. 2.2.10] Let P be a partial field, and p a fundamental element of P, with p /∈ {0, 1}.
Then

{p, 1− p,
1

1− p
,

p

1− p
,
p− 1

p
,
1

p
} ⊆ F (P).

A connection between cross ratios and fundamental elements should be starting to become more apparent,
and will be made explicit later on.

3.3.1 P−matrices

Recalling the motivation for defining partial fields, it would be very useful to introduce some notion of a matroid
being represented over a partial field. As a first step, we will introduce weak P-matrices.

Definition 3.3.9. [5, Def. 2.1.3] Let P := (R,G) be a partial field, and let A be an r × E matrix with entries
in R. Then A is weak P−matrix if, for all X ⊆ E such that |X| = r, det(A[r,X]) ∈ P.

An r×E weak P−matrix A is nondegenerate if there exists an X ⊆ E such that |X| = r and det(A[r,X]) ̸= 0.

Proposition 3.3.10. [5, Prop. 2.1.4] Let P = (R,G) be a partial field, A a nondegenerate r×E weak P−matrix,
and define

B := {X ⊆ E
∣∣|X| = r, det(A[r,X]) ̸= 0}.

Then B is the set of basis of a matroid.

The matroid of proposition 3.3.10 is denoted by M [A].

Definition 3.3.11. [5, Def. 2.1.5] Let M be a matroid. We say M is representable by over a partial field P (or,
shorter, P−representable) if there exists a non-degenerate weak P−matrix such that M = M [A]. Moreover, we
refer to A as a representation matrix of M , and say M is represented by A.

Weak P-matrices are a good start for what we were trying to accomplish. As explained by van Zwam, “ring
homomorphisms map weak P-matrices to weak P−matrices, but it is not clear if partial-field homomorphisms
have this property” and “it is not obvious that being representable over P is a mirror-closed property”[5, p. 31].
What we will introduce now is a more restricted class of matrices over partial fields.

Definition 3.3.12. [5, Def. 2.3.2] Let P = (R,G) be a partial field, and let A be an X × Y matrix with entries
in R. Then A is a strong P−matrix if det(A[X

′
, Y

′
]) ∈ P, for all X ′ ⊆ X, Y

′ ⊆ Y such that |X ′ | = |Y ′ |.

We will use the term subdeterminant for the determinant of a square matrix of A.

Proposition 3.3.13. [5, Prop. 2.3.4] Let A be a strong P-matrix. Then AT and [IA] are also strong P-matrices.

Definition 3.3.14. [5, Def. 2.3.5] Let A be an X × Y strong P-matrix. The rank of A is

rk(A) := max{k ∈ N
∣∣there are X

′
⊆ X,Y

′
⊆ Y with |X

′
| = |Y

′
| = k, and det(A[X

′
, Y

′
]) ̸= 0}.
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From now on, a strong P−matrix will simply be referred to as a P−matrix.

We will now explain how to obtain minors of P-matrices as well as introduce some notion of equivalence
between two different P-matrices. We should be careful, since minors of P−matrices are not the same as minors
of matrices.

Definition 3.3.15. [5, Def. 2.3.14] Let A be an X ×Y matrix over a ring R, and let x ∈ X, y ∈ Y be such that
Axy ∈ R∗. Then we define Axy to be the (X − x) ∪ y × (Y − y) ∪ x matrix with entries

(Axy)uv =


(Axy)

−1 if uv = yx

(Axy)
−1Axv if u = y, v ̸= x

−Auy(Axy)
−1 if v = x, u ̸= y

Auv −Auy(Axy)
−1Axv otherwise.

We say that Axy is obtained from A by pivoting over xy.

Definition 3.3.16. [5, Def. 2.3.21] Let A be an X × Y P−matrix. We say that A
′
is a minor of A if A

′
can be

obtained from A by a sequence of the following operations:

(i) Permuting rows or columns (and permuting labels accordingly);

(ii) Multiplying the entries of a row or column by an element of P∗;

(iii) Deleting rows or columns;

(iv) Pivoting over a nonzero entry.

Proposition 3.3.17. [5, Prop. 2.3.22] If A
′
is a minor of A then A

′
is a P−matrix.

Definition 3.3.18. [5, Def. 2.3.23] Let A be an X × Y P−matrix, and let A
′
be an X

′ × Y
′ P− matrix. Then

A and A
′
are isomorphic if there exist bijections f : X → X

′
, g : Y → Y

′
such that for all x ∈ X, y ∈ Y,Axy =

A
′

f(x)g(y).

Definition 3.3.19. [5, Def. 2.3.24] We write A
′ ⪯ A if A

′
is isomorphic to a minor of A.

Definition 3.3.20. [5, Def. 2.3.25] Let A,A
′
be X × Y P−matrices. If A

′
can be obtained from A by scaling

rows and columns by elements from P∗, then we say that A and A
′
are scaling-equivalent, which we denote by

A ∼ A
′
.

We finally revisit cross ratios and give a new, appropriate definition.

Definition 3.3.21. [5, Def. 2.3.29] Let A be a P−matrix. We define the cross ratios of A as the set

Cr(A) :=

{
p
∣∣ [1 1

p 1

]
⪯ A

}
.

Example 3.3.22. We will now briefly return to our example of U2,4. It can be represented over a partial field
P by the following matrix

A =

[ ]
1 0 1 α
0 1 1 1 ,

where α /∈ {0, 1}, α ∈ F (P). Then {α, 1−α, 1
1−α ,

α
1−α ,

1−α
α , 1

α} ⊆ Cr(A), as we might expect based on our brief
discussion in subsection 3.2.3.

As promised, we will also now explain one way in which cross ratios and fundamental elements are related.

Lemma 3.3.23. [5, Lemma 2.3.30] Let A be an P-matrix. Then Cr(A) ⊆ F (P).
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Cross ratios are also useful when focusing on sub-partial fields.

Definition 3.3.24. [5, Def. 2.3.33] Let P,P′
be partial fields with P′ ⊆ P, and let A be a P-matrix. We say

that A is a scaled P′
-matrix if A ∼ A

′
for some P′

-matrix A
′
.

Theorem 3.3.25. [5, Thrm. 2.3.34] Let A be a P-matrix. Then A is a scaled P[Cr(A)]-matrix.

Before moving on to universal partial fields, we state one last result.

Proposition 3.3.26. [5, Prop. 2.4.6] If a matroid M is representable over a partial field P, then M is repre-
sentable over P[F (P)].

3.4 Universal partial field of a matroid

The universal partial field was introduced by R. A. Pendavingh and S. H. M. van Zwam in [3], see also [4]. In
this section we will explain the motivation behind defining this universal partial field and give two methods for
computing it for some specific matroid.
The universal partial field of a matroid has the following property1 :

Theorem 3.4.1. [5, Thrm 3.A] Let M be a matroid, let X be a basis of M , and let Y := E(M) − X. If PM

is the universal partial field of M , there exists an X × Y PM−matrix A, such that there is a homomorphism
φ : PM → P′

with φ(A) ∼ A
′
for every partial field P′

and for every X × Y P−matrix A
′
with M = M [IA′].

What this means is that every representation of M , over every partial field, can be obtained from A. The
universal partial field is hence the most general partial field over which a single matroid is representable. Before
showing how to formally compute universal partial field of a matroid we will jump a little bit forward and state
the following lemma:

Lemma 3.4.2. [5, Lemma 3.3.18] Let P be the universal partial field for some matroid, and let M be the class
of P−representable matroids. Then all M ∈ M are P′

-representable if and only if there exists a homomorphism
φ : P → P′

.

This result is very simple to write down, while also providing some motivation behind why the universal
partial field is worth studying.

3.4.1 The bracket ring

Below is given one of the ways of constructing the universal partial field of a matroid. This construction is taken
from [5, section 3.3.1]. It was based on the bracket ring as introduced by White in [13].

Let M be a rank-r matroid with ground set E and set of bases B. For every r−tuple Z ∈ Er we introduce
a symbol [Z], the ”bracket” of Z, and symbol [Z]. Suppose Z = (x1, . . . , xr). Define {Z} := {x1, . . . , xr}, and
Z/x → y as the r−tuple obtained from Z by replacing each occurrence of x by y. We define

ZM := {[Z]
∣∣Z ∈ Er} ∪ {[Z]

∣∣{Z} ∈ B}.

Definition 3.4.3. [5, Def. 3.3.2] IM is the ideal in Z[ZM ] generated by the following polynomials:

(i) [Z], for all Z such that {Z} /∈ B;

(ii) [Z] - sgn(σ)[Zσ], for all Z and permutations σ : {1, . . . , r} → {1, . . . , r};

(iii) [x1, x2, U ][y1, y2, U ]− [y1, x2, U ][y1, x1, U ], for all x1, y1, x2, y2 ∈ E and U ∈ Er−2;

(iv) [Z][Z]− 1, for all Z ∈ Er such that {Z} ∈ B.

Definition 3.4.4. [5, Def. 3.3.3] BM := Z[ZM ]/IM .

1The original theorem simply guaranteed the existence of some partial field PM such that this property holds. This property
does not characterize the universal partial field.
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Definition 3.4.5. Let M be a rank-r matroid. Let B ∈ Er be such that {B} is a basis of M . AM,B is the
B × (E −B) matrix with entries in BM given by

(AM,B)u,v := [B/u → v]/[B].

Definition 3.4.6. [5, Def. 3.3.12] If M is a matroid, then the set of cross ratios of M is

Cr(M) := Cr(AM,B).

Note that Cr(M) does not depend on choice of B. We introduce the following subring of BM :

RM := Z[Cr(M)]/IM .

Definition 3.4.7. [5, Def 3.3.13] The universal partial field of M is

PM := (RM , ⟨Cr(M) ∪ {−1}⟩).

3.4.2 An alternative construction

We give another way of constructing the partial field of a matroid, taken from [5, section 3.3.2]. This is the
definition we will use later on to calculate the universal partial field of the relevant matroids.

Let M be a rank-r matroid with ground set E and set of bases B, let B ∈ B, and let G(M,B) be the
bipartite graph with vertices V (G) = B ∪ (E − B) and edges {xy ∈ B × (E − B)

∣∣B△{x, y} ∈ B}. Finally, let

T be a spanning forest for G(M,B). For every x ∈ B, y ∈ E −B we introduce a symbol axy. For every B
′ ∈ B

we introduce a symbol iB′ . We define

YM := {axy
∣∣x ∈ B, y ∈ E −B} ∪ {iB′

∣∣B′
∈ B}.

Let ÂM,B be the B × (E −B) matrix with entries axy.

Definition 3.4.8. [5, Def. 3.3.14] IM,B,T is the ideal in Z[YM ] generated by the following polynomials:

(i) det(ÂM,B [B△Z]) if |Z| = |B|, Z /∈ B;

(ii) det(ÂM,B [B△Z])iZ − 1 if |Z| = |B|, Z ∈ B;

(iii) axy − 1 if xy ∈ T

for all Z ∈ {Z ′ ⊆
∣∣|Z| = r}.

Now we define

BM,B,T := Z[YM ]/IM,B,T

and

PM,B,T := (BM,B,T , ⟨{iB′
∣∣B′

∈ B} ∪ {−1}⟩).

Finally, ÂM,B,T is the matrix ÂM,B , viewed as a matrix over PM,B,T .

Theorem 3.4.9. [5, Thrm. 3.3.16] BM,B,T
∼= RM and PM,B,T

∼= PM .

Note that PM,B,T does not depend on choice of basis or spanning tree. We will now give some example
computations of the universal partial fields of some select matroids.

Example 3.4.10. PU2,4
∼= (Z[α, 1

α ,
1

α−1 ], ⟨{α, (α− 1),−1}⟩).
Let B := {1, 2}, and T be the spanning forest of G(U2,4, B) with edges 13, 14, 23. Then

ÂU2,4,B,T =

3 4[ ]
1 1 1
2 1 α

where α is some indeterminate element. Next we notice that {3, 4} ∈ B, so det(ÂU2,4,B,T [{1, 2}△{3, 4}]) = α−1,

which implies i3,4 = (α − 1)−1. Similarly, {1, 4} ∈ B and det(ÂU2,4,B,T [{1, 2}△{1, 4}]) = α, which implies
i1,4 = α−1. All of the other iZs are equal to 1. The result then follows.
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Example 3.4.11. Recall the Fano matroid, F7, the matroid defined over PG(2, 2). Then PF7
∼= F2.

Let B := {1, 2, 3} and T be the spanning forest of G(F7, B) with edges 17, 27, 37, 14, 15, 26. Then

ÂF7,B,T =

4 5 6 7[ ]
1 1 1 0 1
2 a 0 1 1
3 0 b c 1

.

Notice that det(A[3, {3, 4, 7}]) = 0, so det(ÂF7,B,T [{1, 2, 3}△{3, 4, 7}]) = 1−a and therefore a = 1. Similarly, by
using Z = {2, 5, 7} and Z = {1, 6, 7}, we can show that b = 1 and c = 1, respectively. All iB′ s are also equal to

1. Finally, noticing that det(A[3, {4, 5, 6}]) = 0 and det(ÂF7,B,T [{1, 2, 3}△{4, 5, 6}]) = −2 is enough to conclude
that in the universal partial field 2 = 0 and that it is isomorphic to F2.

Example 3.4.12. For each prime power q we will describe a rank-three matroid on 3q+1 elements with partial
field Fq. Let Qq be the rank-three matroid consisting of three distinct q + 1−point lines L1, L2, L3 ⊂ PG(2, q)
such that L1 ∩L2 ∩L3 = ∅. Then Q+

q is the matroid obtained by adding a point e ∈ PG(2, q)−L1 ∪L2 ∪L3 to
Qq. Then PQ+

q

∼= Fq. Additionally, Q+
q can be represented by the following matrix:

e1 e2 e3 e a0 a1 aq−2 b0 bq−2 c0 cq−2[ ]1 0 0 1 0 0 . . . 0 1 . . . 1 1 . . . 1
0 1 0 1 1 1 1 0 0 1 αq−2

0 0 1 1 1 α . . . αq−2 1 . . . αq−2 0 . . . 0

,

where α is a generator of F∗
q . For proof and additional details, see [5, Thrm. 3.3.25].

4 Results

The main goal of this thesis was to find a (potentially minimal) matroid represented by PG(2,Fq) such that the
universal partial field of this matroid is Fq. In example 3.4.12 we show that there exists a rank-3 matroid with
3q + 1 elements such that this holds. This, with the exception of F7, is not the minimal such matroid. The
matroid represented by [ ]

1 0 0 1 0 1 0 0 1 ω2

0 1 0 1 1 ω 1 1 0 0
0 0 1 1 ω 0 1 ω 1 1

over F4 = {0, 1, ω, ω2} has this property and the matrix has only 10 elements. The universal partial field of the
matroid represented by the following matrix over F5[ ]1 0 0 1 1 1 1 0 0 1 2

0 1 0 1 1 2 3 1 1 0 0
0 0 1 1 0 0 0 1 2 1 1

is equal to F5, while the matrix has only 11 elements. More details can be found in [14]. It is also noteworthy
that these matrices are isomorphic to minors of the ones given in example 3.4.12.

4.1 A matroid over PG(2,Fp)

The structure of the following matrix is taken from [6], a paper referenced in van Zwam’s PhD thesis [5]. That
paper is concerned with characteristic sets of matroids represented by a projective plane. The characteristic
set of a configuration of points and lines is the the set of prime numbers such that this configuration can be
represented only over fields with this characteristic. The matrix we will investigate in the rest of this thesis was
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shown to have characteristic set {p}. This result is at least somewhat analogous to what we want to obtain by
calculating the universal partial field. The rest of this section consists of my attempts to translate and expand
the proof given in [6] into the language of universal partial fields.

Let p be an odd prime greater than 3, and let l = ⌊log2(p + 1)⌋. For i = 0, 1, 2, . . . , l, set bi equal to
⌊(p+ 1)/2l−i+1⌋. Then b0 = 0, b1 = 1, bl =

p+1
2 . Also notice that bi+1 = 2bi or bi+1 = 2bi + 1. For a fixed prime

p, let A be the following matrix over Fp with i = 1, 2, . . . , l − 1:

A =

e1 e2 e3 e4 e5 e6 e7 e8 e2i+7 e2i+8 e2l+5 e2l+6[ ]1 0 0 1 1 1 0 1 . . . 1 0 . . . 1 0
0 1 0 1 1 0 1 2 . . . 2 1 . . . 2 1
0 0 1 1 0 1 1 1 . . . bi+1 bi+1 . . . bl bl

.

Theorem 4.1.1. Let M = M [A] be the matroid represented by A. If the universal partial field of M is
PM = (RM , G), where RM is a ring and G is a subgroup of R∗

M , then RM
∼= Fp and G is a subgroup of F∗

p.

Proof: Let B := {e1, e2, e3}, which is then a basis of M . Let T be a spanning tree of G(M,B) with edges
e1e4, e2e4, e3e4, e1e5, e1e6, e1e8, e1e2i+7, e2e7, e2e2i+8 for i = 1, 2, . . . , l − 1. Then

ÂM,B,T =

e4 e5 e6 e7 e8 e2i+7 e2i+8 e2l+5 e2l+6[ ]
e1 1 1 1 0 1 . . . 1 0 . . . 1 0
e2 1 1 0 1 d1 . . . di+1 1 . . . dl 1
e3 1 0 1 a1 c1 . . . ai+1 ci+1 . . . al cl

Claim 4.1.1.1. a1 = c1 = 1.

Proof: det(A[{1, 2, 3}, {e1, e4, e7}]) = 0, so we have det(ÂM,B,T [B− e1, {e4, e7}]) = a1 − 1 = 0, and therefore

a1 = 1. Similarly det(A[{1, 2, 3}, {e2, e6, e8}]) = 0, so det(ÂM,B,T [B − e2, {e6, e8}] = ci − 1 = 0, showing that
ci = 1.

Claim 4.1.1.2. di = 2 for i = 1, 2, . . . , l.

Proof: For i = 1, 2, . . . , l − 1, det(A[{1, 2, 3}, e3, e8, e2i+7]) = 0, so det(ÂM,B,T [B − e3, {e8, e2i+7}] =
di+1 − d1 = 0, which shows the pairwise equality of the di’s. But det(A[{1, 2, 3}, {e5, e7, e8}]) = 0, so
det(ÂM,B,T [B, {e5, e7, e8}]) = 2− d1 = 0, and d1 = 2.

Claim 4.1.1.3. ai = ci for i = 2, . . . , l.

Proof: For i = 2, . . . , l, det(A[{1, 2, 3}, {e5, e2i+5, e2i+6}]) = 0, so det(ÂM,B,T [B, {e5, e2i+5, e2i+6}]) =
ci − ai = 0, hence ci = ai.

Claim 4.1.1.4. ai = bi for i = 2, . . . , l.

Proof: Recall that for i = 1, . . . , l − 1, bi+1 = 2bi or bi+1 = 2bi + 1. If bi+1 = 2bi, then
det(A[{1, 2, 3}, {e1, e2i+6, e2i+7}) = 2bi − bi+1 = 0. Then det(ÂM,B,T [B − e1, {e2i+6, e2i+7}]) = ai+1 − 2ai = 0.
Likewise, if bi+1 = 2bi + 1, then det(A[{1, 2, 3}, {e6, e2i+6, e2i+7}]) = bi+1 − 2bi − 1 = 0, so
det(ÂM,B,T [B, {e6, e2i+6, e2i+7}]) = ai+1 − 2ai − 1 = 0. To conclude the proof, it is enough to recall claim
4.1.1.1.

Claim 4.1.1.5. IM,B,T contains (p).

Proof: Since bl =
p+1
2 , det(A[{1, 2, 3}, {e1, e8, e2l+6}) = p ≡ 0, so det(ÂM,B,T [B − e1, {e8, e2l+6}]) = p =

0.
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4.2 Computation of the multiplicative group

We begin by recalling that the multiplicative group of the universal partial field is generated by {iB′
∣∣B′ ∈

B}∪{−1}. The iB′ s themselves can be calculated by using the polynomial det(ÂM,B.T [B△Z])iZ−1 for Z ∈ B.
Below we will highlight certain relations related to the multiplicative group G of our matroid. For i = 1, . . . l−1:

det(A[{1, 2, 3}, {e1, e2, e2i+7}]) = bi+1 =⇒ bi+1 ∈ G; (1)

det(A[{1, 2, 3}, {e5, e6, e2i+7}]) = −bi+1 − 1 =⇒ bi+1 + 1 ∈ G; (2)

det(A[{1, 2, 3}, {e2, e4, e2i+7}]) = −bi+1 + 1 =⇒ bi+1 − 1 ∈ G. (3)

And for i = 2, . . . l − 1:

det(A[{1, 2, 3}, {e1, e4, e2i+7}]) = bi+1 − 2 =⇒ bi+1 − 2 ∈ G; (4)

det(A[{1, 2, 3}, {e1, e7, e2i+7}]) = bi+1 − 3 =⇒ bi+1 − 3 ∈ G. (5)

Notice that these relations always generate a unique element in G for i = 2, . . . , l−1. The same is not guaranteed
for the following ones. For i = 1, . . . l − 3, j = i+ 2, . . . l − 1:

det(A[{1, 2, 3}, {e6, e2i+8, e2j+7}]) = bj+1 − 2bi+1 − 1 =⇒ bj+1 − 2bi+1 − 1 ∈ G; (6)

det(A[{1, 2, 3}, {e5, e2i+8, e2j+7}]) = bj+1 − bi+1 =⇒ bj+1 − bi+1 ∈ G; (7)

det(A[{1, 2, 3}, {e4, e2i+8, e2j+7}]) = bj+1 − bi+1 − 1 =⇒ bj+1 − bi+1 − 1 ∈ G. (8)

Proposition 4.2.1. [15, Corollary 1] At least one of 2, 3, or 5 is a primitive root modulo infinitely many primes
p.

This lets us state the following proposition:

Proposition 4.2.2. PM
∼= Fp for infinitely many primes p.

Proof: By proposition 4.2.1 it is sufficient to show that 2, 3, 5 ∈ G. To do this we will go through all possible
values of b2, b3.

1. b2 = 2, b3 = 4.
3 ∈ G by (3), 5 ∈ G by (2).

2. b2 = 2, b3 = 5
3 ∈ G by (4).

3. b2 = 3, b3 = 6
2 ∈ G by (3), 5 ∈ G by (2).

4. b2 = 3, b3 = 7
2 ∈ G by (3), 5 ∈ G by (4).

In general, we would like to show that G always contains a primitive root, since then we could claim that
the universal partial field of our matroid is always equal to Fp. Unfortunately, I was unable to show that this is
the case. In lieu of that I checked whether or not this is true for all primes smaller than 1000. First, I consulted
the sequence A046145 in the OEIS [16] of smallest primitive roots. It quickly became apparent that for most of
these primes their smallest primitive root was one of 2, 3, or 5. For the remaining primes, I wrote a computer
program (see appendix A) to calculate the value of the bis and used https://www.wolframalpha.com/ to obtain
a list of their primitive roots. By using the relations I established earlier, I then showed that at least one of
their primitive roots is in G. See appendix B and table 1 for full details.

17

https://www.wolframalpha.com/


5 Conclusion

In this thesis we gave an introduction of representability theory of matroids, mainly through the lens of cross
ratios. To properly talk about matroid representations, we introduced matroid cryptomorphisms, duals, and
minors. After establishing some methods of interacting with matroids, we could finally talk about geometric
representations of matroids and how they are related to cross ratios.

Our main focus was on matroids representable over finite fields. This motivated the introduction of the
partial field. This algebraic structure was originally introduced to study matroids representable by a matrix, all
of whose non-zero subdeterminants are constrained to some unit group. We could then talk about matrices and
matroid being representable over a partial field. Progressing further required us to introduce minors, scaling
equivalence, and cross ratios of P−matrices. We could finally start discussing the relation between cross ratios
and matroid representability.

The background section was closed out by the introduction of the universal partial field. Knowing the
universal partial field of some matroid can let us state some results regarding its representability over other
partial fields. We gave two ways of computing the universal partial field of a matroid.

In the result’s section we introduced a matroid representable over Fp by a rank-three matrix with 2⌊log2(p+
1)⌋+6 elements. Next, we computed the universal partial field of this matroid and concluded that it is always a
sub-partial field of Fp. While we did not show that if PM = (Fp, G), then G is isomorphic to F∗

p, we did manage
to show that there are infinitely many primes for which this is true. Additionally, we showed that this holds for
all primes smaller than 1000.

5.1 Further research

It is clear that the matroid M = M [A] could be studied a lot more. We did not prove that the multiplicative
group G of the universal partial field PM is always equal to F∗

p. The most straightforward course of action is
to simply keep doing computations for bigger and bigger primes. If there is a somewhat small counterexample,
this might be very fruitful. There are other avenues of research, even if a counterexample is found. We could
investigate the asymptotic behaviour of PM and how it relates to the behaviour of prime generators, which is a
deep area of research. It might also be interesting to see what happens when the prime has a specific form, for
example Mersenne primes (which actually were somewhat addressed in [6]).

Part of my motivation for finding a smaller matrix, for which PM [A]
∼= Fq is to help with the computation of

another invariant - the foundation. While it has not been addressed in this theses, the foundation is also related
to matroid representability and cross ratios. Some more information and research of foundations can be found
in [17] [14]. From my brief experience with them, I got the impression that computing them is practically more
difficult. For this reason, computing the foundation of M [A] might be another avenue for further research.

A Code used to calculate bis

import math
def f indb (p ) :

l = math . f l o o r (math . log2 (p+1))
for j in range (2 , l + 1 ) :

print (math . f l o o r ( ( p+1)/math .pow(2 , l − j + 1 ) ) )
return t rue
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B Primitive roots of Fp in G for select primes

Table 1 consists of all primes smaller than 1000 whose smallest primitive root is not one of 2, 3, or 5. We denote
such primes by p, then ap denotes the primitive root we do show to be in G. We also indicate the relation used
to show that it is in G, as well as the relevant equation with the bis plugged in.

Table 1: Primes whose smallest primitive root is bigger than 5.

p ap relation equation
41 6 (2) b3 + 1
71 7 (4) b4 − 2
109 6 (1) b3 = 6
151 6 (5) b4 − 3
191 22 (4) b5 − 2
229 6 (3) b3 − 1
239 7 (1) b3 = 7
241 7 (1) b3 = 7
251 6 (3) b3 − 1
271 6 (4) b4 − 2
311 17 (4) b5 − 2
313 10 (2) b4 + 1
337 10 (1) b4 = 10
359 21 (3) b5 − 1
367 6 (3) b3 + 1
409 26 (2) b5 + 1
431 7 (2) b3 + 1
439 23 (8) b5− b2− 1 = 27− 3− 1
457 13 (3) b4 − 1
479 13 (4) b4 − 2
499 7 (1) b3 = 7
599 7 (4) b4 − 2
601 7 (4) b4 − 2
643 11 (2) b4 + 1
719 11 (1) b4 = 11
733 6 (2) b3 = 6
761 6 (2) b3 + 1
769 11 (3) b4 − 1
839 11 (4) b4 − 2
911 29 (2) b5 + 1
919 7 (1) b3 = 7
971 6 (3) b3 − 1
991 6 (3) b3 − 1
997 7 (1) b3 = 7

19



References

[1] J. Richter-Gebert, Perspectives on Projective Geometry. Springer Berlin, Heidelberg, 2011.

[2] C. Semple and G. Whittle, “Partial fields and matroid representation.,” Advances in Applied Mathematics,
17, pp. 184 – 208, 1996.

[3] R. A. Pendavingh and S. H. M. van Zwam, “Confinement of matroid representations to subsets of partial
fields,” Journal of Combinatorial Theory, Series B, vol. 100, p. 510–545, Nov. 2010.

[4] R. A. Pendavingh and S. H. M. van Zwam, “Representing some non-representable matroids,” Communica-
tions of The ACM - CACM, June 2011.

[5] S. H. M. van Zwam, Partial fields in matroid theory. PhD thesis, Technische Universiteit Eindhoven, 2009.

[6] T. Brylawski, “Finite prime-field characteristic sets for planar configurations,” Linear Algebra and its ap-
plications 46, pp. 155 – 176, 1982.

[7] R. A. Pendavingh and S. H. M. van Zwam, “Lifts of matroid representations over partial fields,” Journal
of Combinatorial Theory, Series B, vol. 100, p. 36–67, Jan. 2010.

[8] J. Oxley, Matroid theory. Oxford university press, 2011.

[9] R. van der Veen, “Geometry.” https://www.rolandvdv.nl/#teaching, 2022.

[10] H. Whitney, “On the abstract properties of linear dependence,” American Journal of Mathematics, 57(3),
pp. 509 – 533, 1935.

[11] G. Birkhoff, Lattice theory, Third edition. American Mathematical Society Colloquium Publications, Vol.
XXV, American Mathematical Society, Providence, R.I., 1967.

[12] W. T. Tutte, “A homotopy theorem for matroid i, ii,” Transactions of the American Mathematical Society
88, pp. 144 – 174, 1958.

[13] N. L. White, “The bracket ring of a combinatorial geometry. i,” Transactions of the American Mathematical
Society, pp. 79 – 95, 1975.

[14] M. Baker, O. Lorscheid, and T. Zhang, “Foundations of matroids – part 2: Further theory, examples, and
computational methods,” 2023.

[15] D. R. Heath-Brown, “Artin’s conjecture for primitive roots,” The Quarterly Journal of Mathematics. 37,
pp. 27 – 38, 1986.

[16] E. W. Weisstein, “Smallest primitive root modulo n, or 0 if no root exists.” https://oeis.org/A046145,
2005.

[17] M. Baker and O. Lorscheid, “Foundations of matroids i: Matroids without large uniform minors,” 2020.

20

https://www.rolandvdv.nl/#teaching
https://oeis.org/A046145

	Introduction
	Preliminaries
	Finite fields
	The projective plane
	Graph theory
	Matrices and set theory

	Background
	Cross ratios
	Matroids
	Representability
	Duals and minors of matroids
	Cross ratios in matroid representations

	Partial fields
	P-matrices

	Universal partial field of a matroid
	The bracket ring
	An alternative construction


	Results
	A matroid over PG(2, Fp)
	Computation of the multiplicative group

	Conclusion
	Further research

	Code used to calculate bis
	Primitive roots of Fp in G for select primes

