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2 Integer Factorization via Order Problem

Abstract
Integer factorization is a challenge that forms the basis of many cryptography systems. These systems

rely on the difficulty of factorizing large composites rapidly. The problem of factoring an integer n is

closely related to the problem of computing the order of a residue in the ring of integers modulo n.
In this thesis, we consider an algorithm developed by Stange that computes the order of a residue. We

discuss approaches to increase the efficiency of Stange’s algorithm.

To show the relation between integer factorization and order finding, we present a polynomial time algo-

rithm due to Miller to compute the factorization of n from the order of residues modulo n.
Furthermore, we explore two algorithms that use the order of a residue modulo n to compute a factoriza-

tion of n, inspired by Shor and Ekerå. Similarly as before, we consider techniques to increase the efficiency

of the algorithms and compare their implementations.
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4 Integer Factorization via Order Problem

1. Introduction

The factorization problem is the task of decomposing an integer into a product of integers. The

security of many crypto systems relies on the hardness of the factorization problem. Examples

include the EMV, the standard adopted by Visa, Mastercard etc, to secure the chip-and-pin smartcard

transactions which is based on the RSA cryptosystem or the SSL/TLS standard commonly used to

secure many protocols online [Gau14, Section 1.1]. Multiple algorithms have been developed to

factorize integers such as Pollard’s rho algorithm, Shor’s quantum factoring algorithm, the Elliptic

Curve Method or the Number Field Sieve [Gre03, Section 3]

A problem strongly related to the factorization problem is the order problem.

Definition 1. Given an integer n and a residue gmod n, the order problem is the problem of computing
the smallest positive integer x such that

gx = 1mod n.

It is known that the order problem and the factorization problem are closely related. Indeed, either

problem can be reduced to solving the other [Mil76, Section "Relative Computational Complexity",

Theorem 4]. Moreover, new instances of both problems can be created with ease. Nonetheless, no

efficient algorithm has been found to solve these problems [Ste11, Section 11.7.4]. The difficulty in

solving these problems is considered large enough that cryptography and security systems are based

upon them.

In this thesis, we consider one instance of an algorithm that solves the order problem. This algorithm

is developed by Stange in [Sta23]. It is strongly inspired by the Index Calculus algorithm, one of the

best known algorithm for computing discrete logarithms [DM99, Section 1]. Stange’s algorithm uti-

lizes multiplicative relations modulo n to obtain the order of an element in (Z/nZ)× . While Stange’s

algorithm is not the most efficient, it is noteworthy due to its simplicity and connection to the Index

Calculus.

We consider improvements to be applied to Stange’s algorithm, following Stange’s suggestions. We

analyze the computational complexity and optimize the values of the parameters of the algorithm

accordingly. Furthermore, we consider methods that can decrease the time needed to compute the

multiplicative relations.

We then complete Stange’s work and formulate algorithms that can solve the factorization problem
by computing the order of residues using Stange’s order finding algorithm. To give a theoretical

basis to our work, we demonstrate that a reduction of the factorization problem to the order problem
can be done in an efficient way thanks to an algorithm by Miller [Mil76, Section "Tests For Primal-

ity", Definition of Af ].

While Miller’s work is of theoretical significance, it is not practical. Therefore, we consider other re-

ductions. Following Stange’s suggestion, we consider a famous reduction of the factorization problem
to the order problem popularized by Shor [Sho94, Section 6] which employs residues of even order.

This reduction is also notable for its simplicity. We consider a second reduction developed in [Eke21,

Section 3.2]. This reduction is notable due to its connection to Miller’s work. We then consider ap-

proaches that can reduce the number of computations needed to compute the factorization of an

integer. These approaches increase the probability of avoiding residues that do not output nontriv-

ial factors.

Throughout this thesis, we implement the algorithms described using the mathematics software

Sagemath. Our implementation can be found on https://github.com/Daviderug/Thesis.git.

https://github.com/Daviderug/Thesis.git
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1.1 Notation

Even integers and perfect powers can be efficiently tested and so are generally not considered within

factoring algorithms. To test perfect powers, Bernstein shows that it can be done essentially in

linear time [Ber98, Section 1, Theorem 1] Moreover, some may even rely on these assumptions for

correctness. For example, Shor’s quantum factoring algorithm [Sho94] would fail if the integer had

only one prime divisor. Therefore, we employ the following definition within this thesis.

Definition 2. The integer n is appropriately composite if it is a composite integer that is odd and is not
a perfect power.

Furthermore, within this thesis, we do not concern ourselves with prime factorization. Testing for

primality is not considered computationally difficult. Tests such as the Miller-Rabin test can deter-

mine primality of an integer efficiently. Therefore, it is sufficient to obtain algorithms that output a

nontrivial factorization n = n1 · n2. The factors n1, n2 can be tested for primality with ease and, if

found to be composite can be factored further.

Given n =

∏k
i=1 p

ei
i , we make use of the following functions in this thesis:

ϕ(n) =
k∏
i=1

pei–1i (pi – 1) (Euler’s totient function)

λ(n) = lcm1≤i≤k{p
ei–1
i (pi – 1)} (Carmichael function)

λ′(n) = lcm1≤i≤k{pi – 1}

and for odd n and any integer a ( a
n

)
=

k∏
i=1

(
a
pi

)ei
(Jacobi symbol)

We also use the following notation:

• Denote the length of the binary representation of n as d(n) = ⌊log
2
(n)⌋ + 1.

• Let h(n) = max{ordn(2), . . . , ordn(2 · d(n)2)}
• The cost of multiplying two numbers of length d(n) is denoted as M(n). Due to Harvey

and Van Der Hoeven [HH21, Theorem 1.1], M(n) has the upper bound O(d(n) ln(d(n)))
• To indicate the highest integer x such that 2

x
divides m, we use the standard notation

ν2(m) = max{x : 2
x
|m}.

• Denote the index of a residue as indp(a) = min{m : bm = amod p} for a primitive root b
of (Z/pZ)× where p is a prime

• Let Ln(α, c) = e(c+o(1))(ln n)
α
(ln ln n)1–α

be a function that expresses the asymptotic compu-

tational complexity of a subexponential algorithm
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2. Index Calculus and Stange’s algorithm

2.1 Description of Algorithms

Stange’s paper [Sta23] introduces a probabilistic algorithm inspired by the Index Calculus that solves

the order problem for any integer n. The Index Calculus is a classical algorithm for computing discrete

logarithms within (Z/nZ)× for primes n. This algorithm finds a value of x that satisfies the discrete

logarithm y = gx mod n where n is a prime integer and g is a primitive root modulo n. Instead,

Stange’s algorithm computes the order of a residue gmod n for any integer n.
Both algorithms attempt to collect N residues gai mod n that are B-smooth for some parameter B.

Definition 3. An integer is B-smooth if all of its prime factors p1, p2, . . . , pb are all less than or equal
to B.

Therefore, the algorithms search for N multiplicative relations of the form

gai =
b∏
j=1

pfi,jj mod n

for random ai ∈ Z>0 and a fixed prime factor base {p1, p2, . . . , pb = B}.
These relations are equivalent to the linear relations

ai =
b∑︁
j=1

fi,j logg(pj) modϕ(n).

While the individual discrete logarithm might not exist for each pj , assume temporarily that each

pj mod n is in the subgroup generated by gmod n for the exposition.

The linear relations form the linear system a = F · p where a = (ai)1≤i≤N , the relation matrix is

F = (fi,j)1≤i≤N ,1≤j≤b and the unknown is p = (logg pj)1≤j≤b.
Generally, we aim to obtain an overdetermined system. Hence, we pick N = b + c for some positive

integer c.
The classical Index Calculus algorithm, as described in [Gre03, Subsection 3.5.1], then solves the

system and uses the values of logg(pj) to solve the discrete logarithm y = gx mod n where n is a

prime integer and g generates the group (Z/nZ)× :
computing the multiplicative relation

y · gk = gx · gk =
b∏
j=1

pejj mod n

for some k ∈ Z≥0 gives rise to the equation

x + k =

b∑︁
j=1

ej logg(pj) modϕ(n)

which can be solved for x.
On the other hand, Stange’s algorithm [Sta23, Section 2, Algorithm 2.2] computes the order of

gmod n by considering the basis of the right kernel of FT ∈ Qb×(b+c)
. The basis is used to com-

pute multiples of the order of n.
To ensure the computations remain in Z and with the lowest pairwise greatest common divisors

possible, the basis has to be scaled to have integer entries with no common factor. We pick c distinct
vectors in the basis and denote them w1,w2, . . . ,wc ∈ Zb+c . We compute the dot product

αt = wt · a
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for t = 1, 2, . . . , c. These αt are multiples of ordn(g). Hence, taking the greatest common divisor of

these values gives the order of g with high probability.

Remark: Since the residue gmod n is not necessarily a primitive root of n within Stange’s algorithm,

it is likely that the discrete logarithms logg(pj) do not exist. For the purposes of the algorithm, this is

not relevant and does not affect the computation of the order. The discrete logarithms appear only

to clarify the connection between the relation matrix F and the vector a and the value of the discrete
logarithm is not computed in any step of the algorithm. Stange [Sta23, Section 1, Remark 1] states

that in the case that logg(pj) and logg(pi) do not exist but logg(pipj) does, the coefficient of logg(pi)
and logg(pj) in the relation matrix will be the same.

2.2 Correctness of Stange’s Algorithm and Example

Stange’s algorithm is a Monte Carlo algorithm, i.e it is an algorithm that has a probability (generally

small and bounded) of an incorrect output. In this case, given an appropriately composite n and a

residue gmod n, the algorithm outputs the order of gwith a small probability of outputting amultiple

of the order instead. Increasing c increases the probability that the output is exactly the order of g.
From the integer n and the residue gmod n, the relations

gai =
b∏
j=1

pfi,jj mod n

and the system a = F · p are obtained by trial division. This method corresponds to a naive imple-

mentation of the Index Calculus. Modern implementations of the algorithm employ more efficient

methods to obtain smooth residues. Examples of such methods are considered in Section 3. By the

Rank-Nullity Theorem

|basis of ker(FT )| = null(FT ) = b + c – rank(FT ).

Since rank(FT ) ≤ min(b, b + c) = b,

|basis of ker(FT )| ≥ b + c – b = c.

This guarantees that the basis contains at least c vectors w1,w2, . . . ,wc .

Note that the vector a is in the column space of F . In particular,

a =

b∑︁
j=1

Fjpj modϕ(n)

where Fj is the j-th column of the relation matrix F . Each vector wt ∈ ker(FT ) satisfies

Fj · wt =

b+c∑︁
i=1

fi,j(wt )i = 0

for each row j of FT , i.e. each column j of F . Therefore

a · wt = (

b∑︁
j=1

Fjpj) · wt =

b∑︁
j=1

(Fj · wt )pj = 0modϕ(n).

The formation of the matrix F and vector a is done within the group (Z/nZ)× while the computation

of ker(FT ) and of the dot product a · wt is done within the field of rational numbers Q rather than
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(Z/nZ)× . This ensures that the relationship a · wt = 0modϕ(n) holds but a · wt ≠ 0 in Q in most

occurrences.

Hence

ga·wt
mod n = g0 = 1mod n

Hence, by Lagrange’s Theorem ordn(g) must divide αt = wt · a for each t = 1, 2, . . . , c. The greatest
common divisor of all the αt outputs ordn(g) with high probability. In particular, Stange states that

the algorithm correctly identifies the order of a given residue with probability of at least 0.999 if

c ≥ 9 assuming Hypothesis 3.1 holds [Sta23, Section 3, Hypothesis 3.1, Theorem 3.2]. This reduces

the probability of the algorithm outputting a multiple of the order instead of the exact order to be

negligible. Within Stange’s implementations, c is taken to be constant 10. Consequently, we take

c = 10 for all implementations unless otherwise stated.

Stange’s algorithm can be summarized in Algorithm 1. To showcase the algorithm, we compute the

Algorithm 1: Stange’s order finding algorithm
Input : An appropriately composite n and a residue g; integer parameters b and c
Output: The multiplicative order of gmod n

1 Phase 1: Relation finding
2 i←− 0

3 while i < b + c do
4 Draw an integer ai randomly from the set {1, . . . , n} (ensuring that ai has not been drawn

previously)

5 Compute the smallest positive residue of gai mod n

6 if gai =
∏b

j=1 p
fi,j
j mod n then

7 Add [fi,1, . . . , fi,b] as the i-th row of FT

8 Add ai as the i-th entry of vector a
9 i←− i + 1

10 Phase 2: Linear algebra
11 Compute the basis vectors [w1,w2, . . . ,wc] of the kernel of FT

12 Phase 3: GCD computation
13 for 1 ≤ t ≤ c do
14 αt ←− a · wt

15 return gcd(α1,α2, . . . ,αc)

order of g = 2 with n = 9983.

Using b = 10 and c = 10, we obtain the factor base {2, 3, 5, 7, 11, 13, 17, 19, 23, 29} and we attempt to

find b + c = 20 relations. The algorithm finds the relations:

2
1225

= 2
2 · 3 · 172,

2
9335

= 3 · 72 · 19,
2
6288

= 2
2 · 5 · 7 · 29,

2
7762

= 2
3 · 3 · 17,

2
9075

= 2 · 32 · 192,

2
1558

= 2
4 · 5 · 7 · 17,

2
2408

= 2
4 · 52 · 17,

2
6626

= 2
4 · 32 · 19,

2
7507

= 3
2 · 11 · 29,

2
1580

= 17
2
,

2
9421

= 2
10 · 3,

2
9792

= 2
4 · 192,

2
4785

= 2 · 3 · 11,
2
3341

= 2
4 · 11 · 29,

2
3058

= 11 · 13 · 19,

2
8119

= 2
3 · 17,

2
2353

= 2 · 3 · 11 · 19,
2
4887

= 2
3
,

2
6537

= 2 · 34 · 29,
2
9395

= 3
3 · 132,
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The transpose of the relation matrix is

©«

2 0 2 3 1 4 4 4 0 0 10 4 1 4 0 3 1 3 1 0

1 1 0 1 2 0 0 2 2 0 1 0 1 0 0 0 1 0 4 3

0 0 1 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2

2 0 0 1 0 1 1 0 0 2 0 0 0 0 0 1 0 0 0 0

0 1 0 0 2 0 0 1 0 0 0 2 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

ª®®®®®®®®®®®®®®®¬
where the columns are the exponents of the primes.

Each row in the following matrix is a basis vector of the kernel.

©«

1 0 0 0 0 0 0 0 0 0 4 0 1 –1 4 –2 –4 –10 1 –2

0 1 0 0 0 –2 1 0 0 0 4 0 2 –1 4 1 –5 –11 1 –2

0 0 1 0 0 –1 0 0 0 0 4 0 1 –1 2 1 –2 –12 0 –1

0 0 0 1 0 0 0 0 0 0 4 0 2 –2 6 –1 –6 –10 2 –3

0 0 0 0 1 0 0 0 0 0 3 0 1 1 0 0 –2 –11 –1 0

0 0 0 0 0 0 0 1 0 0 3 0 0 1 0 0 –1 –12 –1 0

0 0 0 0 0 0 0 0 1 0 3 0 0 –1 2 0 –2 –8 0 –1

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 –2 0 2 0 0

0 0 0 0 0 0 0 0 0 0 5 0 0 0 2 0 –2 –16 0 –1

0 0 0 0 0 0 0 0 0 0 0 1 0 2 –4 0 2 –4 –2 2

ª®®®®®®®®®®®®®®®¬
The algorithm computes the following values of α:

–34188, –4884, –14652, –19536, –19536,

–29304, –14652, –4884, –39072, –4884

Their greatest common divisor is 4884. We check that 2
4884

= 1mod 9983. To determinewhether 4884

is the exact order or a multiple of it, further work needs to be done. By trial division of 4884, we can

find the factorization 4884 = 2 · 2442. Computing 2
2
= 4 ≠ 1mod 9983 and 2

2442
= 2681 ≠ 1mod 9983

shows that the order must be exactly 4884.
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3. Improving Stange’s Algorithm

Within this section we consider various ways to reduce the running time of Stange’s algorithm.

The algorithm has a complexity of Ln(1/2,β) [Sta23, Section 4] where Ln(α, c) is the function defined

in Subsection 1.1. The value of the constant β is not specified by Stange and can be optimized.

In [Sta23, Section 5], Stange offers several implementations to improve the run time. Stange’s sug-

gestions also include improving the relation finding phase by using alternative methods to obtain

smooth residues.

The computational complexity of obtaining a smooth residue modulo n via trial division is O(b)
where b is the number of primes in the factor base. The methods suggested by Stange include the

Elliptic Curve Method, the Linear Sieve Method and the Number Field Sieve which have complex-

ity Ln(1/2,
√
2 ) [Sut21, Section 10.4], Ln(1/2, 1) [COS86, Section 4] and Ln(1/3, 32/3) [Gor93, Section

4] respectively. These methods have lower complexities than trial division and are preferred when

computing smooth residues.

In particular, modern implementations of the Index Calculus employ the Gaussian Integers Sieve

and the Linear Sieve over large primes [Can+23], both having complexity Ln(1/2, 1) [LO91, Section
4]. Due to the similarities between the Index Calculus and Stange’s algorithm, these methods have

potential to yield similar improvements in the latter algorithm.

Within this section we consider some of these suggestions and attempt to implement them.

3.1 Time Complexity

Lemma 1. The time complexity of Stange’s algorithm is

O(b3 + b2 · uu)

where u = logB(n)

Proof. Sutherland [Sut21, Section 10.3] shows that the computational running time of the relation

finding phase, assuming smoothness testing is done via trial division, is

O((b + c) · uu · b)

where uu is the expected number of random residue gai drawn to obtain a B-smooth integer. As

previously mentioned, taking c = 10 guarantees a high probability of success of the algorithm. We

therefore regard c as a negligible constant in the runtime. Hence, given a fixed n and residue g, within
the order finding algorithm the relation finding phase is computed in O((b + c) · uu · b) = O(b2 · uu)
steps.

As for the linear algebra phase, the computational complexity is

O((b + c)3).

Indeed, a basis of the kernel of matrix FT ∈ Qb×(b+c)
can be computed via Gaussian Elimination.

Indeed, constructing the block matrix [
FT

I(b+c)

]
∈ Q(2b+c)×(b+c)

where I(b+c) is the identity matrix of size b + c and computing the column echelon form of FT leads

to a block matrix [
A
B

]
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where A is the column echelon form of FT . A zero column of A corresponds to a column of B that

form a basis vector of ker(FT ). Computing such form by Gaussian Elimination requires O((b + c)3)
steps. Hence, the linear algebra step has a time complexity of O((b + c)3) = O(b3).
Therefore, the total expected running time of the algorithm is

O(b3 + b2 · uu)

for u = logB(n) □

To improve the performance of Stange’s algorithm, we use the value of parameter b that minimizes

the expression b3 + b2 · uu. Saha [Sah12] approximates the minimum of the expression as

un ≈

√︄
2 ln(n)
ln ln(n)

.

Note that for this choice of u,

un
ln(n)

≈
√︄

2 ln(n)
ln

2
(n) ln ln(n)

= 2

√︂
1

2 ln(n) ln ln(n)
=: Cn

We approximate b asymptotically using the Prime Number Theorem as stated by Olsen [Ols23, Sec-

tion 1, Corollary 1.3]

Theorem 2. Let the number of prime numbers lower than B be π(B). Then

lim

x→∞
π(x) ln(x)/x = 1.

We can therefore approximate b as such

b ≈ B
ln(B)

.

Hence, for u = un with Bn = n1/un we obtain

bn ≈ Bn/ ln(Bn) =
un
ln(n)

n1/un =
un
ln(n)

exp(ln(n)/un) ≈ Cne(1/Cn)

= Cne
√
2

2

√
ln(n) ln ln(n)

= Ln(1/2,
√
2 /2)

as the optimal value of the parameter for a fixed n.
Sutherland shows that

uunn = Ln(1/2,
√
2 /2)

for un as expressed above [Sut21, Subsection 10.5]. Therefore

b2nu
un
n = Ln(1/2,

√
2 /2)

2 · Ln(1/2,
√
2 /2) = Ln(1/2,

√
2 /2)

3
= Ln(1/2, 3

√
2 /2)

and

b3 = Ln(1/2,
√
2 /2)

3
= Ln(1/2, 3

√
2 /2).

Hence, the computational complexity is

Ln(1/2, 3
√
2 /2) + Ln(1/2, 3

√
2 /2) = Ln(1/2, 3

√
2 /2)
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This runtime agrees with Stange’s heuristic runtime of Ln(1/2,β) [Sta23, Section 4]. Within Stange’s

paper [Sta23, Section 4], the value of b is optimized to reduce the complexity of relation finding

phase, leading to a value of bn = Ln(1/2, 1/2) and overall computational complexity of the algorithm

Ln(1/2, 9). Our optimization takes into account the linear algebra phase as well and leads to a lower

computational complexity.

To experimentally confirm that bn minimizes the running time of Stange’s algorithm, we conduct

an investigation over the running time of Algorithm 1 as b varies. We consider 20 integers between

500 and 10
8
, ensuring that they are appropriately composite. Such integers are

I := {537, 765, 8585, 19053, 61453, 101371, 199989, 247251, 484957, 671015, 871933,

907423, 1744953, 1946725, 2177645, 2381625, 3632763, 5001635, 7865455, 22653803}.

We record and plot the average computing time in seconds of Algorithm 1 for various values of b1

and c = 10 and random residues gmod n. The plots can be seen in their entirety in the Appendix.

We report here a representative sample. For the integers 61453, 871933, 1946725 and 22653803, we

obtain the following plots:

Figure 1. Running time of Stange’s algorithm for various values of b for fixed n

Indeed, we see that the approximation gives a good indication of the exact value that minimizes the

computational running time.

3.2 The Linear Sieve Method

The implementation of Algorithm 1 uses trial division to check if a residue gmod n is B-smooth and

compute its factorization. Although this method is simple, it is among the least efficient in finding

smooth integers. It has a time complexity of O(b) where b is the number of primes in the factor base

[Stu02, Section 3.1.1]. Sieving methods such as the Linear Sieve and the Gaussian Integer Sieve allow

for the computation of residues effectively, introduced in [COS86, Section 4 and Section 7]. Within

1
We limit ourselves to specific intervals for b due to limits in computational power
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this thesis we explore the Linear Sieve Method (LSM) due to its simplicity relative to the Gaussian

Integer Sieve.

The LSM generates residues in the following way as described in [DM99, Section 2].

Let H = ⌈
√
n ⌉ and J = H 2

– n. Pick c1 and c2 to be small integers in [–M ,M]. Das et al [DM99,

Section 2] suggest forM to be such that 2M ≈ Ln(1/2, 1/2 + ε) for some small positive ε. We consider

the smoothness of the residues

(H + c1)(H + c2) = H 2
+ (c1 + c2)H + c1c2

= n + J + (c1 + c2)H + c1c2
= J + (c1 + c2)H + c1c2 mod n

(1)

for various pairs (c1, c2), c1 ≤ c2 over a factor base S.
Das et al [DM99, Section 2] suggest taking the factor base S to be primes smaller than Ln(1/2, 1/2)
and integers H + c for integers c in [–M ,M].

To efficiently test these pairs, we use a linear sieve. We fix c1 ∈ [–M ,M] and create an empty array

U of size |{c1, c1 + 1, . . . ,M}|. Each position of U represents a possible value of c2 while each entry of

the array is the value of the real logarithms of the small primes in S dividing the residue (1) [COS86,
Section 4].

For each prime power pr where p ∈ S and r is a small exponent, we attempt to solve the linear

equation

(H + c1)(H + c2) = (H + c1)c2 + (J + c1H ) = 0mod pr (2)

for c2.
Usual implementations of the LSM suggest using various values of r . Coppersmith et al [COS86,

Section 4] suggest taking r to be integers 1, 2, . . . , f such that pf < Ln(1/2, 1/2). However Das et al
[DM99, Section 4] recommend using r = 1 to decrease computation of a modular inverses which they

identify as the costliest operation. We follow this implementation as it allows for a more efficient

algorithm. However, this implementation also requires a modification at some later stage which we

address subsequently.

If gcd(H + c1, p) = 1 then H + c1 has an inverse modulo p. Therefore

d = –(H + c1)–1(J + c1H ) mod p

is a solution to (2). Then for each integer c2 ∈ [c1,M], check whether c2 = dmod p. Every c2 that
satisfies the equality represents a possible pair (c1, c2) such that the residue (H +c1)(H +c2) is divisible
by p. Therefore, we add the real value of log

2
(p) to the entry of U that corresponds to c2.

Otherwise, gcd(H + c1, p) ≠ 1 means that gcd(H + c1, p) = p since p is a prime. Therefore, we compute

the exponent h1 > 0 such that

ph1 |(H + c1), ph1+1 ∤ (H + c1).

Similarly, we compute the exponent h2 ≥ 0 such that

ph2 |(J + c1H ), ph2+1 ∤ (J + c1H ).

Then for h = min{h1, h2},

ph|((H + c1)c2 + (J + c1H )), ph+1 ∤ ((H + c1)c2 + (J + c1H ))
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for any value of c2. Hence, any c2 ∈ [c1,M] gives a pair (c1, c2) that solves Equation (2). Therefore,

we add the value of h log
2
(p) to all entries of U .

After computing the steps described above for all primes in the factor base, we check which entry

of U is "sufficiently close" to the value of real log
2
(J + (c1 + c2)H + c1c2). The entries that are "suffi-

ciently close" represent the values of c2 that, along with the fixed c2, result in residues of the form as

Equation (2) that are smooth over the factor base S. We expect to find Ln(1/2, 1/2 + 3ε) such residues

[DM99, Section 2].

For U to be "sufficiently close" to the value of log
2
(J + (c1 + c2)H + c1c2), Das et al [DM99, Section 2]

propose to check the absolute value of their difference is smaller than an upper bound 1. Moreover,

the choice to only consider r = 1 requires an increase of the upper bound. Das et al [DM99, Section

4] ensure that for primes p of less than 200 bits, a bound 2.5 is sufficient. Therefore, in our imple-

mentation we use such a bound.

Having found smooth residues , trial division is used to compute the exponents and obtain

(H + c1)(H + c2) =
|S|∏
j=1

pejj mod n.

Das et al [DM99, Section 4] remark that due to the choice of using r = 1 and the increased upper

bound, the method may output some non smooth residues. Nonetheless, these residues can be fil-

tered out during the trial division phase.

The multiplicative relation for a smooth residue is equivalent to the relation

1 = (H + c1)–1(H + c2)–1
|S|∏
j=1

pei,jj =

∏
s∈S

ses mod n

where we express 1mod n as a product of elements in the factor base S.
By collecting |S| + c relations of this form, we obtain the matrix B ∈ Z(|S|+c)×|S| where the entries of
the i-th row correspond the exponents of each s ∈ S in the i-th relation.

To compute the order of an element s ∈ S, we consider the relation matrix Bs ∈ Z(|S|+c)×(|S|–1) obtained
by removing from B the column as corresponding to the element s. We obtain the linear system

–as = Bsps modϕ(n).

This system is analogous to the one described in Section 2 and leads to a multiple of the order of

s. Similarly as before, the probability of obtaining the exact order depends on the number of basis

vectors obtained.

Given the matrix B, suppose the column corresponding to element s ∈ S is linearly dependent on

other columns of B over the rationals. It follows that

rank(BT ) = rank(Bs
T
)

since the column does not contribute to the column space. Therefore, by the Rank-Nullity Theorem,

null(Bs
T
) = |S| + c – rank(Bs

T
) = |S| + c – rank(BT ) = null(BT ).

Since ker(BT ) ⊆ ker(Bs
T
), it must be that ker(BT ) = ker(Bs

T
). Therefore, as outlined by Stange [Sta23,

Section 3, Hypothesis 3.1], the algorithm outputs αi = 0 for all i. Hence, the algorithm cannot com-

pute the order of s and instead outputs 0.
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This occurrence is uncommonwhen computingmultiplicative relations via trial division as discussed

by Stange [Sta23, Section 3, Hypothesis 3.1] and confirmed experimentally in our implementations.

However, when using the LSM, these occurrences are more common. The residues (H + c1)(H + c2)
generated by the LSM are more likely to lead to a matrix B that satisfies the condition delineated

above for every s ∈ S.
For example, in our implementation, using the LSM for the integer n = 10001 = 73 · 137 and ε = 0.7,

we obtain a BT of dimensions (96× 110) and null(BT ) = 44. Checking every matrix Bs , we obtain that

only residues s = ±1mod n have columns that are linearly independent of the other columns of B.
Those residues however are trivial cases when computing orders in (Z/nZ)× .
In comparison, Stange’s algorithm as described in Algorithm 1, given n = 10001, g = 11,b = 10 and

c = 10 obtains a relation matrix F of dimensions (20 × 10). Using the basis vectors of ker(FT ), the
algorithm computes ordn(g) = 1224. The algorithm necessitates less relations and is able to compute

the order while the LSM cannot with our choices in the implementation.

It is of note that the integers that form the relations modulo n generated by the LSM are likely to be

smaller than n. By construction, the LSM generates residues of order O(
√
n ) [DM99, Section 2]. For

integers smaller than n, the multiplicative relations

1 =

∏
s∈S

ses

hold over Q rather than exclusively modulo n and so the system

–as = Bsps

is likely to hold over Q rather than exclusively modulo ϕ(n). In Algorithm 1, the values of ai are
taken randomly in the set {1, 2, . . . , n} and so the multiplicative relations are likely to hold modulo

ϕ(n) but not over the rationals. As more relations hold overQ, it becomes more likely that the vector

as is linearly dependent on the rows of Bs over the rationals rather than modulo ϕ(n). Thus

αs
t = –as · ws

t = (

|S|–1∑︁
j=1

Bsjp
s
j ) · ws

t =

|S|–1∑︁
j=1

(Bsj · ws
t )p

s
j = 0,

where ws
t is a vector in the basis of ker(Bs

T
) and Bsj is the j-th column of Bs , is likely to hold over Q.

As this is more common in the LSM than in the trial division method, this might be the cause of the

failure to compute nontrivial orders.

Stange suggests obtaining more multiplicative relations in the case αi = 0 for all i [Sta23, Section
4]. With the LSM this can be done by increasing the value of ε. This allows for nontrivial orders of
residues to be computed if a sufficient value of ε is found. However the sufficient value of ε is not

proportional to n. Indeed, using LSM for integers n = 231 = 3 × 7 × 11 and n = 235 = 5 × 47 and

ε = 1, we obtain matrices BT of dimensions (37 × 29) with null(BT ) = 3 and dimensions (74 × 87)

with null(BT ) = 15 respectively. While the first matrix considered is not able to compute nontrivial

orders, the second one computes the order of multiple residues e.g. ord235(2) = 92.

This is likely due to the number of prime divisors of n. Residues obtained by the LSM are not guar-

anteed to be in (Z/nZ)× and residues that do not belong is the group must be discarded. Hence, the

LSM used for an integer with few prime divisors computes more multiplicative relations than an

integer with more prime divisors. Factorization is highly nontrivial and also constitutes the purpose

of algorithms developed in Section 5. As such, we cannot account for the number of prime divisors
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of n in picking a value of ε as a parameter.

Due to these properties of the LSM that occur when applied to Algorithm 1, the LSM seems to not

improve the running time of the algorithm in our implementations despite its lower computational

complexity. Because of the similarities between the LSM and the Gaussian Integer Sieve, we expect

a similar result when applying the latter to Algorithm 1.
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4. Polynomial Time Reduction

It is possible to reduce the factorization problem to the order problem in polynomial time. To define

this relationship more formally we introduce the notion of a Turing machine.

Definition 4. A Turing machine is an abstract mathematical model that performs operations by read-
ing and writing information from an infinite tape.

We express the relationship within the following framework.

Definition 5. Given algorithms f and g we say that f is polynomial time reducible to g, denoted
f ≤p g, if there exists a Turing machine which on inputs n and g(n) computes f (n) in O(d(n)K ) steps for
some constant K where d(n) is as defined in Subsection 1.1.
Given algorithms f and g we say that f is polynomial time Turing reducible to g, denoted f ≤Tp g, if
there exists a Turing machine with the following properties:

1. the machine has a distinguished tape on which it calls for values of g, where the cost of
calling for g(m) is d(m) + d(g(m)) steps

2. the machine computes f (n) in O(d(n)K ) steps for some constant K

The relations ≤p and ≤Tp are transitive ones and f ≤p g implies that f ≤Tp g.
We therefore express the initial claim as such:

Theorem 3. Suppose the Extended Riemann’s Hypothesis holds. Then, there exists a factorization
algorithm F that is polynomial time Turing reducible to a order-finding algorithm 𝒪, i.e. F ≤Tp 𝒪.

This theorem is taken from [Mil76, Section "Relative Computational Complexity", Theorem 4]. This

section concerns itself with showing a proof of this claim.

4.1 Notation and Useful Theorems

The proof follows Miller’s proof in [Mil76, Section "Relative Computational Complexity", Theorem

4]. Miller’s proof makes use of the Extended Riemann’s Hypothesis:

Conjecture 1. Extended Riemann’s Hypothesis (ERH) as stated by [Mil76, Appendix]:
The zeros of a Dirichlet’s L function

L(S,χp) =
∞∑︁
n=1

χp(n)/nS

in the critical strip 0 ≤ Re(S) ≤ 1 all lie on the line Re(S) = 1/2, where χp is a Dirichlet character modulo
p.

A Dirichlet character modulo p is a function χp : Z→ C such that for any n,m ∈ Z:

1. χp(n + p) = χp(n)
2. χp(nm) = χp(n)χp(m)

3. χp(n) ≠ 0 if gcd(n, p) = 1 and χp(n) = 0 otherwise

In particular, we consider the Dirichlet character known as the Jacobi symbol

χp(n) =
(
n
p

)
.

The ERH is necessary for the following result proven by [Ank52].
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Theorem 4. Suppose the ERH holds. Then, given primes p and q, if a is the smallest residue modulo p
that is not a quadratic residue and b is the smallest residue modulo pq that is not a quadratic residue,
then there is a fixed c ≥ 1 that does not depend on p and q such that a ≤ c · d(p)2 and b ≤ c · d(pq)2.

Remark: In [Ank52], the author does not prove an explicit value of c and hence Miller does not

indicate what such value would be in his proof. Explicit results have been found since, also relying

on the ERH: Lamzouri et al showed that if p ≥ 5 is a prime, the smallest non quadratic residue

modulo p can be bounded by d(p)2 i.e taking c = 1 [LLS15, Section 1, Corollary 1.1]. Bach proved

that the least non-quadratic residue modulo m for any integer m can be bounded by 2d(m)
2
[Bac84,

Section 6, Theorem 2]. Hence, we assume that c = 2.

The following lemma, seen in [Mil76, Appendix]), is also helpful in proving the claim.

Lemma 5. If q and p are primes and q|(p – 1) then a is a q-th residue modulo p, i.e. a = bq mod p for
some b, if and only if q| indp(a)

Proof. The lemma is proved using properties of the index.

Suppose a = cx and b = cy where c is a primitive root of p and x = indp(a) and y = indp(b).
( =⇒ ) If a = bq mod p, then

cx = a = bq = cy ·q

Therefore, x = y · qmodϕ(p). Hence, q|(x + ϕ(p)). Since q|(p – 1) = ϕ(p), we must have that

q|(x + ϕ(p) – ϕ(p)) = x.
(⇐= ) If q|x, then

indp(a) = q · Q for some Q ∈ Z

Hence, a = cx = cq·Q = (cQ)q and so a is a q-th residue modulo p. □

We also distinguish two types of integers for the purpose of the proof of the claim. Note that if

n =

∏k
i=1 p

ei
i , from the definition of λ′, we see that ν2(λ

′
(n)) = max1≤i≤k{ν2(pi – 1)}.

Definition 6. An integer n is of type A if ν2(λ
′
(n)) > ν2(pi – 1) for at least one pi and otherwise n is of

type B

We now have all the elements necessary to proceed.

4.2 Proof of Theorem 3

We first discuss a deterministic algorithm F that obtains a prime factorization of n from the order of

sufficiently many elements modulo n obtained by some order-finding algorithm 𝒪. Then we show

that it satisfies the definition of polynomial time Turing reducible. The algorithm F , inspired by

[Mil76, Section "Tests For Primality", Definition of Af ] is so:

1. Compute h(n) = max{ordn(2), . . . , ordn(2d(n)2)} using𝒪 for d(n) as defined in Subsection

1.1

2. For each a ≤ 2d(n)2 check whether

(a) gcd(a, n) ≠ 1

(b) gcd(ah(n)/2
k
mod n – 1, n) ≠ 1 for a ≤ k ≤ ν2(h(n))

The algorithm iterates through various values of a. If the condition in step (a) or (b) is true for any
a, then the algorithm has found a factor a in the case of step (a) or a factor gcd(ah(n)/2

k
mod n – 1, n)

in the case of step (b). Otherwise, if the conditions in both steps do not hold for all a ≤ 2d(n)2, then
the algorithm determines that n is prime.

Assuming the condition in step (a) fails for all a ≤ 2d(n)2, we prove the existence of an integer
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a ≤ 2d(n)2 that satisfies the condition in step (b) by considering composite integers of type A and

type B separately as done in [Mil76, Section "Tests For Primality", Lemma 2A].

Suppose n is of type A. Then for some primes p and q that divide n, we have ν2(λ
′
(n)) =

ν2(p–1) > ν2(q–1). Take amod n such that a is the smallest residue that is not a quadratic

residue modulo p. Since (q – 1)|λ′(n) and ν2(λ
′
(n)) > ν2(q – 1), we have (q – 1)|λ′(n)/2.

Therefore

aλ
′
(n)/2

= 1mod q

We also have that (p – 1)|λ′(n) and so

aλ
′
(n)

= (aλ
′
(n)/2

)
2
= 1mod p.

Therefore, aλ
′
(n)/2

= ±1mod p.
However, consider the index indp(a) of amod p:

aλ
′
(n)/2

= (bindp(a))λ
′
(n)/2

= 1mod p ⇐⇒ ordp(b) = (p – 1)|(λ′(n)/2)(indp(a)) (3)

where b is a primitive root modulo p. Since ν2(λ
′
(n)) = ν2(p – 1) =: t,

λ′(n) = 2
tw1, p – 1 = 2

tw2

for some odd integers w1 and w2. Then

(2
tw2)|(2

tw1/2)(indp(a)) =⇒ w2|w1(indp(a))/2.

Since w2 is odd, indp(a)/2 must be an integer and so indp(a) is even. By Lemma 5, this

cannot hold when a is not a quadratic residue modulo p.
Hence, aλ

′
(n)/2

= –1mod p. Note that by Theorem 4, a ≤ 2d(p)2 ≤ 2d(n)2.

Suppose n is of type B and consider two primes p and q that divide n. Take amod n such
that a is the smallest residue that is not a quadratic residue modulo pq and, without loss
of generality, assume that a is a quadratic residue modulo q but not p.
Following similar steps as for integers of type A, we obtain Equation (3) modulo p and

modulo q. Lemma 5 can be used for both moduli to show that aλ
′
(n)/2

= –1mod p and

aλ
′
(n)/2

= 1mod q. Note that by Theorem 4, a ≤ 2d(pq)2 ≤ 2d(n)2.

In both cases, we obtain

aλ
′
(n)/2

= –1mod p aλ
′
(n)/2

= 1mod q

for some a ≤ 2d(n)2.
We now use the following Lemma as done in [Mil76, Section "Relative Computational Complexity,

Theorem 4]

Lemma 6. Suppose n is an integer and the functions λ′(n) and h(n) are as defined in Subsection 1.1. If
gcd(a, n) = 1 for all a < 2d(n)2, then

λ′(n)|h(n)

holds.

Proof. Let λ′(n) =

∏v
j=1 q

mj
j be the prime factorization of λ′(n). Then for a fixed j, qmj

j |(p – 1) for

some p|n. For such qj and corresponding p, take amod p to be the smallest integer that is not a qj-th
residue modulo p. By Theorem 4, a ≤ 2d(p)2 and so a ≤ 2d(n)2.
We have that

1 = aorderp(a) = bindp(a)·orderp(a) mod p
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for some primitive root b of (Z/pZ)× with ordp(b) = (p – 1). Hence, qmj
j | ordp(b)| indp(a) · orderp(a).

Since qmj
j |(p – 1), we have that qj |(p – 1). Hence, by Lemma 5 qj ∤ indp(a). Therefore, q

mj
j |orderp(a).

Since a < 2d(n)2, we have gcd(a, n) = 1 and so qmj
j | ordn(a)|h(n).

Since this holds for any prime power factor λ′(n), it also holds that λ′(n)|h(n). □

By Lemma 6, h(n)/λ′(n) is an integer. As done in [Mil76, Section "Tests For Primality", Lemma 3],

consider k = ν2(h(n)/λ′(n)) + 1:

2
k–1

|(h(n)/λ′(n))

=⇒ 2
k–1 · s = (h(n)/λ′(n)) for some integer s

=⇒ 2
k · s · λ′(n)/2 = h(n)

=⇒ (λ′(n)/2)|(h(n)/2k)

and so aλ
′
(n)/2

= ah(n)/2
k
= 1mod q.

We also have that

ah(n)/2
k
= a

λ′ (n)
2

h(n)
λ′ (n)2k–1 = (–1)

h(n)
λ′ (n)2k–1 = –1mod p

since
h(n)

λ′(n)2k–1 is odd.

Therefore, we have that q|(ah(n)/2
k
– 1)mod n and p ∤ (ah(n)/2

k
– 1mod n). Therefore, gcd(ah(n)/2

k
–

1mod n, n) ∉ {1, n} and so it produces a nontrivial factor of n as seen in [Mil76, Section "Tests For

Primality", Proof of Correctness of Af Case 3].

Hence, if n is composite, algorithm F finds a residue a ≤ 2d(n)2 that outputs a factor as outlined in

steps (a) or (b).

Now we proceed with an analysis of the runtime following [Mil76, Section "Relative Computational

Complexity, Lemma 5].

Computing h(n) = max{ordn(2), . . . , ordn(2d(n)2)} can be Turing reduced to computing algorithm 𝒪

in polynomial time, i.e. h(n) ≤Tp 𝒪. Indeed, as stated in [Mil76, Section "Relative Computational

Complexity", Theorem 4] we can define a Turing machine which calls for ordn(2), . . . , ordn(2d(n)2)
and computes their maximum, therefore giving h(n) with 2d(n)2 = O(d(n)2) calls to the tape.

We now show that F ≤p h(n).
Since ordn(i)|λ(n) for all 2 ≤ i ≤ 2d(n)2, then h(n)|λ(n) and so h(n) ≤ λ(n). Since d(λ(n)) = O(d(n)k)
by [Mil76, Section "Relative Computational Complexity, Theorem 3], d(h(n)) ≤ d(λ(n)) = O(d(n)k).
Step 3 of the algorithm runs inO(d(n)k+3M(n)) steps as shown in [Mil76, Section "Tests For Primality",

Analysis of Running Time]:

• computing the greatest common divisor of two integers can be done in O(d(n)2) steps
where n is the largest of the two as shown in [Knu97, Section 4.5.2.]

• computing am mod n can be done inO(|m|M(n)) steps as shown in [Knu97, Section 4.3.2.]

Hence, step (a) can be done inO(d(n)2) steps. The function h(n) = max{ordn(2), . . . , ordn(2d(n)2)}
can be bounded by n from above so computing ah(n)/2

k
mod n can be bounded byO(d(n)M(n)

steps.

Therefore, one iteration of step (b) can be computed in O(d(n)M(n) + d(n)2) steps.

Note that if an integer is represented in binary form, the number of consecu-

tive zeros to the right of the first non-zero term is the value of ν2(n). Indeed,
if n = (nb . . . n2n1n0)2 in binary, then

n = n0 + n1 · 21 + n2 · 22 + · · · + nb · 2b.



University of Groningen 21

The first non-zero ni then reveals the highest power of two that can be fac-

tored out. Hence, we obtain the bound ν2(h(n)) ≤ d(h(n)).

Therefore, we iterate step (b) over integers k ∈ [a,ν2(h(n))] ⊂ [1, d(h(n))]. Hence, step
(b) is computed in O((d(n)M(n) + d(n)2)d(h(n))).
Multiplication takes at least O(d(n)) steps so M(n) is computationally more heavy than

d(n). Hence, step (b) is O(d(n)M(n)d(h(n))) steps. Since d(h(n)) = O(d(n)k), the step can

be computed in O(d(n)k+1M(n)) steps.
Overall, since step 3 is iterated over a ≤, it is computed in O(d(n)2d(n)k+1M(n)) =

O(d(n)k+3M(n)) steps.

Hence, in O(d(n)k+3M(n)) steps the algorithm can either determine a factor n′ of n or determine that

n is prime. We have that n′|n =⇒ λ′(n′)|λ′(n) and so then λ′(n′)|h(n).
We repeat the algorithm above replacing n with n′. Therefore, in O(d(n′)k+3M(n′)) steps we either
know n′ is prime or that there is a nontrivial factor n′′ of n′.

The number of prime factors of n can be bounded by log
2
(n):

if n =

∏k
i=1 p

ei
i is the prime factorization of n, then

log
2
n =

k∑︁
i=1

ei log2 pi ≥
k∑︁
i=1

log
2
pi ≥

k∑︁
i=1

1 = k

since ei ≥ 1 and pi ≥ 2.

Therefore, iterating the algorithm at most d(n) times gives all prime factors of n. Thus, we get a

prime factorization of n in O(d(n)k+4M(n)) steps.
Therefore, F ≤p h(n). By transitive properties, we then have that F is Turing reducible to 𝒪 in

polynomial time. This finishes the proof of Theorem 3
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5. Factorization Algorithms

While Miller’s deterministic algorithm shows a strong relation between the order problem and the

factorization problem, implementation of the algorithm is not practical as it requires computing

2d(n)2 orders of residues. We look at other reductions that are more efficient. The first reduction is a

known reduction of the factorization problem to the order problem. The second reduction is notable

due to the relation to Miller’s algorithm described in the previous section.

5.1 Shor’s Reduction

Stange’s algorithm can be made into a factorization algorithm through the following proposition,

inspired by Shor’s work on factorization from a quantum order finding algorithm:

Proposition 7. Given an appropriately composite n, if x2 = 1mod n , and x ≠ ±1mod n for x ∈
(Z/nZ)× , then gcd(x – 1, n) and gcd(x + 1, n) are nontrivial factors of n.

Proof. Since x2 – 1 = 0mod n, it follows that n divides (x – 1)(x + 1). However x ≠ ±1mod n so n
cannot divide either factor. Hence, gcd(x – 1, n) and gcd(x + 1, n) give nontrivial factors. □

With the inputs n and g, Stange’s Algorithm computes the order r of a gmod n if successful. If

r is even and gr/2 ≠ –1mod n, then Proposition 7 can be applied to x = gr/2 to obtain nontrivial

factor gcd(gr/2 – 1, n). If the algorithm finds an odd order, then it must restart the computations with

a different residue g until if finds an even order. Shor proved that the existence of a residue that

satisfies both criteria has probability larger than 1 – 1/2
k
where k is the number of prime factors of

n [Sho94, Section 6].

A summary of this approach is given in Algorithm 2

Algorithm 2: Shor’s Reduction
Input : An appropriately composite n; integer parameters b and c
Output: A factorization of n

1 for 2 ≤ g ≤ n – 1 do
2 if gcd(g, n) ≠ 1 then
3 return gcd(g, n), n/ gcd(g, n)

4 Otherwise, g is a unit modulo n
5 Use Stange’s algorithm to compute the order r of gmod n with parameters b and c
6 if r mod 2 = 0 and gr/2 ≠ –1mod n then
7 return gcd(gr/2 – 1, n), n/ gcd(gr/2 – 1, n)

To showcase the algorithm, we apply it to n = 9983 and consider the residue g = 2. As seen before,

Stange’s algorithm outputs order 4884 which is even. Furthermore

2
4884/2

mod 9983 = 2
2442

= 2681 ≠ 1mod 9983.

Therefore, we apply Proposition 7:

gcd(2681 – 1, 9983) = gcd(2680, 9983) = 67, 9983/67 = 149

We obtain n = 149 · 67 as a factorization of n.
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5.2 Ekerå’s Reduction

In [Eke21], Ekerå proposes a Monte Carlo polynomial-time reduction of the factorization problem

to the order problem inspired by Miller’s deterministic algorithm seen in Section 4. While Miller’s

algorithm requires the exact order of multiple residues to compute h(n), Ekerå’s algorithm approx-

imates h(n) as defined in Subsection 1.1 with the order of a single residue. Using this intuition we

are able to factorize n.
Indeed, Erekå states that the order r of a residue g is likely to be such that λ(n)/r is a moderate size

product of small prime powers where λ(n) is defined in Subsection 1.1. Therefore, it is possible to

approximate the value of λ(n) or the value of some multiple of λ′(n) by multiplying r by small prime

powers where λ′(n) is defined in Subsection 1.1. Ekerå takes c · d(n) as an upper bound for the prime

powers for some integer c ≥ 1 that can be chosen [Eke21, Section 3.2]. For simplicity, we choose

c = 2. In approximating a multiple of λ′(n), we are approximating h(n). In doing so, the algorithm

factorizes n in a single run of the order-finding algorithm.

The algorithm is summarized in Algorithm 3.

Algorithm 3: Ekerå’s Reduction
Input : An appropriately composite n; integer parameters b and c
Output: A factorization of n

1 Phase 1: Order finding
2 Choose a random residue gmod n
3 if gcd(g, n) ≠ 1 then
4 return gcd(g, n), n/ gcd(g, n)

5 Otherwise, g is a unit modulo n and so the order r can be computed using Stange’s algorithm

with parameters b and c
6 Phase 2: Multiple of the order computation
7 Let S be the set of all primes smaller or equal to 2d(n) and let η(q) = max{x ∈ Z : qx ≤ 2d(n)}
8 R←− r

∏
q∈S qη(q)

9 Phase 3: GCD computation
10 z ←− R/2ν2(R)

11 for 2 ≤ x ≤ n – 1 do
12 if gcd(x, n) ≠ 1 then
13 return gcd(x, n), n/ gcd(x, n)

14 Otherwise, x is a unit modulo n
15 i←− 0

16 while i ≤ ν2(R) and x2
iz ≠ 1 do

17 if gcd(x2
iz
– 1, n) ≠ 1 then

18 return gcd(x2
iz
– 1, n), n/ gcd(x2

iz
– 1, n)

19 i←− i + 1

The critical difference between this algorithm and Miller’s resides in Phase 2. In computing R, we
aim to obtain a multiple of p – 1 for every prime p|n. Ekerå proves in [Eke21, Section 3.3.2, Theorem

1] that the probability of success of this algorithm is bounded from below by

1 –

(
C(k, 2)
2
n–1 +

1

8 log
2

2
(2d(n)2)

)
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where l is defined as in Algorithm 3 and the integer to be factored is n =

∏k
i=1 p

ei
i .

To demonstrate the algorithm, we apply it to n = 9983 and for simplicity assume that the randomly

drawn residue is g = 2. As seen before, the output from Algorithm 1 is 4884. The value of 2d(n) is
28. The set S is [2, 3, 5, 7, 11, 13, 17, 19, 23].
The values of η28 obtained are

η28(2) = 4

η28(3) = 3

η28(5) = 2

η28(7) = 1

η28(11) = 1

η28(13) = 1

η28(17) = 1

η28(19) = 1

η28(23) = 1

The value of

∏
q∈S q

η(qi)
i is therefore 80313433200 and so r is 392250807748800. We decompose r into

r = z · 2ν2(r)
where z = 6128918871075 and 2

ν2(r)
= 64 = 2

6
.

We assume that the randomly drawn residue x is 3, which is a unit. The value of xz mod 9883 is

7704. This then gives the trivial factor gcd(7704 – 1, 9883) = 1. In the following iteration the value

of xz·2 mod 9883 is 2681. This then gives gcd(2681 – 1, 9883) = 67. This leads to the non-trivial

factorization 9883 = 67 × 149.

5.3 Comparison of the Reductions

There are advantages and disadvantages to both reductions. Shor’s Reduction is simple and straight-

forward but requires the order to have a specific form. It may necessitate multiple calls to an order

finding algorithm. On the other hand, Ekerå’s Reduction computes a single order of a residue. How-

ever, in obtaining a multiple of the order, the computations of η(q) for each q ∈ S and of the product
r
∏

q∈S qη(q) requires much computational time. In our implementations, we use Stange’s algorithm

to compute the order of residues modulo n.
Furthermore, the probabilities of success of each reduction differ as the number of prime divisors

increases. While the first reduction has increasing probabilities of successfully factoring n =

∏k
i=1 p

ei
i

as the number of prime divisors increases, the opposite is true for the second reduction.

To experimentally compare the efficiency of the reductions, we implement the two reductions and

record their respective running times when applied to a set of integers. We look at integers n ∈ I .
We plot the average computing time in seconds needed for each reduction to factor each integer

n ∈ I in Figure 2 taking parameters b = bn for bn defined as in Subsection 3.1 and c = 10.

Figure 2. Running times of Shor’s Reduction and Ekerå’s Reduction

Figure 2 shows that despite differences, the two reductions have comparable runtime. In this com-

parison we see a heuristic confirmation of Ekerå’s intuition that approximating h(n) as a multiple of

the order is sufficient to obtain a factorization, therefore making Miller’s algorithm practical.
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In the coming improvements applied to the algorithms, we refer to the reductions as outlined within

this section as the standard form. We use the standard form to compare the improvement obtained.
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6. Improving Factorization Reductions

Having established the two reductions we implement to compute a factorization of n, we consider
ways to reduce the number of computations needed. Stange suggests computing a multiple of the or-

der rather than the exact order [Sta23, Section 5]. This can be done by computing a single nontrivial

αi rather than several values. This is accomplished by testing for a nontrivial kernel as more rela-

tions are found. This can decrease the number of relations needed. Both reductions can be adapted

to utilize a multiple of the order to compute a factorization and so this modification may prove to

be beneficial.

Another way to improve the runtime is to consider using residues of odd orders. Indeed, Johnston

[Joh17, Section 3] proves that Shor’s Reduction, as seen in Algorithm 2, can be extended to compute

a factorization with residues that do not have even order. While this is only applicable to Shor’s

Reduction, it is nonetheless of interest.

Furthermore, inspired by Leander’s work [Lea22, Theorem 4], we use the Jacobi symbol to avoid

residues that do not output nontrivial factors.

6.1 Single Kernel Algorithm

Within Algorithm 1, a great deal of the computational runtime is devoted to the relation finding

phase. Attempting to find multiple B-smooth powers of g requires a great number of iterations.

While computing the exact order of a residue requires b + c relations, computing a multiple of the

order requires less multiplicative relations. In fact, it only requires a single kernel basis vector. To

compute such a vector, the algorithm requires less than b relations.
As we see in Algorithm 5 and Algorithm 6 later in this section, both reductions can be adapted to

compute a nontrivial factorization using a multiple of the order rather than the exact order, this

implementation can decrease the overall running time of the factorization algorithms.

We modify Algorithm 1 to check that the matrix FT has a non-trivial kernel at every successful

relation found. Once it has found one, it returns α = w · a where w is the basis vector of the kernel.

The algorithm is summarized in Algorithm 4.

Algorithm 4: Single Kernel Algorithm (SK)

Input : An appropriately composite n and a residue g; integer parameter b
Output: A multiple of the multiplicative order of gmod n

1 Phase 1: Relation finding
2 i←− 0

3 L←− 0

4 while L = 0 do
5 Draw an integer ai in the range {1, . . . , n} (ensuring that ai has not been drawn previously)

6 Compute the smallest positive residue of gai mod n

7 if gai =
∏b

j=1 p
fi,j
j then

8 Add [fi,1, . . . , fi,b] as the i-th row of FT

9 Add ai as the i-th entry of vector a
10 i←− i + 1

11 L = nullity(FT )

12 Phase 2: Linear algebra
13 Compute a nontrivial basis vector w in the kernel of FT

14 α←− a · w
15 return α
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While less multiplicative relations are computed, the algorithm computes the nullity of FT for every

relation found, increasing the running time. Nonetheless, the decreased number of relations needed

gives an improved running time compared to the original algorithm as seen in Figure 3, obtained by

plotting the average running time needed to compute the order of a random residue g modulo the

integers n ∈ I with parameters b = bn for bn defined as in Subsection 3.1.

Figure 3. Running times of Algorithm 1 and Algorithm 4

Both reductions presented in Section 5 can be modified to utilize a multiple of the order of gmod n
to correctly output factorization. We consider the first reduction. We adapt it using the following

proposition.

Proposition 8. Given a residue g, some integer m and even order r = ordn(g),

gr/2 ≠ ±1mod n ⇐⇒ gm·r/2
ν
2
(m)+1

≠ ±1mod n

Proof. Consider the order r of a residue g and any integer m = z · 2ν2(m)
.

First note that for any 1 ≤ i ≤ ν2(m),

gr ·m/2
i
= (gr )z·2

ν
2
(m)–i

= (1)
z·2ν2

(m)–i
= 1mod n

and for i = ν2(m) + 1,

gr ·m/2
ν
2
(m)+1

= (gr/2)z mod n.

(⇐= ) If gr/2 = ±1mod n, then (gr/2)z = (±1)z = ±1mod n. Hence, by contraposition

(gr/2)z ≠ ±1mod n =⇒ gr/2 ≠ ±1mod n.

( =⇒ ) If gr/2 = ymod n, then (gr/2)z = yz mod n.

Claim: If y ≠ ±1mod n then yz ≠ ±1mod n
In the case z = 1, y1 = ±1mod n directly gives a contradiction.

For z ≠ 1, note that

ordn(y) = ordn(gr/2) =
ordn(g)

gcd(ordn(g), r/2)
=

r
gcd(r , r/2)

=

r
r/2

= 2

and so

(–y)2 = y2 = 1mod n =⇒ ordn(–y)|2 =⇒ ordn(–y) ∈ {1, 2}
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However, ordn(–y) = 1 gives y = –1 which is a contradiction.

Therefore, ordn(–y) = 2 and ordn(y) = 2.

Hence

yz = 1mod n =⇒ ordn(y)|z =⇒ 2|z

and similarly

yz = –1mod n =⇒ (–y)z = –yz = 1mod n =⇒ ordn(–y)|z =⇒ 2|z.

The integer z is the odd part of m so we have a contradiction in both cases.

Therefore, (gr/2)z ≠ ±1mod n.
Hence

gr/2 = y ≠ ±1mod n =⇒ (gr/2)z ≠ ±1mod n

which concludes the proof. □

We therefore modify Shor’s Reduction, as described in Algorithm 2, to be able to use a multiple of

the order to compute a nontrivial factorization. This is done by computing gm·r/2
i
for i = 0, 1, 2, . . .

until gm·r/2
i
≠ ±1 is reached, revealing that i = ν2(m) + 1, assuming r is even. Proposition 7 is then

applied to obtain a nontrivial factor gcd(gm·r/2
i
– 1, n). This is summarized in Algorithm 5.

Algorithm 5: Shor’s Reduction using Algorithm 4

Input : An appropriately composite n; integer parameter b
Output: A factorization of n

1 for 2 ≤ g ≤ n – 1 do
2 if gcd(g, n) ≠ 1 then
3 return gcd(g, n), n/ gcd(g, n)

4 Otherwise, g is a unit modulo n
5 Use Algorithm 4 to compute a nontrivial multiple R of the order r of gmod n with

parameter b
6 if Rmod 2 = 0 then
7 while gR = 1mod n do
8 R←− R/2

9 if gR ≠ ±1mod n then
10 return gcd(gR – 1, n), n/ gcd(gR – 1, n)

If we consider Ekerå’s Reduction, Algorithm 3 approximates h(n) as defined in Subsection 1.1 as

multiple of the order of g and produces one by multiplying the order by small prime powers. By

computing a multiple of the order, we skip Phase 2 of Algorithm 3 altogether as seen in Algorithm

6.

Figure 4 is obtained by plotting the average running time needed to compute the a nontrivial factor-

ization of integers n ∈ I with parameters b = bn for bn defined as in Subsection 3.1. We see in Figure

4 that this modification does not affect both reductions equally. In fact, it is only an improvement

for Ekerå’s Reduction. Indeed, within Algorithm 4, while the computation of the multiple of the

order requires less time, it is offset by the iterations needed to reach i = ν2(m) + 1. As for Ekerå’s

Reduction, computing a multiple of the order removes the need to compute η(q) for each q ∈ S. This
reduction in computations is beneficial for the running time.
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Algorithm 6: Ekerå’s Reduction using Algorithm 4

Input : An appropriately composite n; integer parameter b
Output: A factorization of n

1 Phase 1: Order finding
2 Choose a random residue gmod n
3 if gcd(g, n) ≠ 1 then
4 return gcd(g, n), n/ gcd(g, n)

5 Otherwise, g is a unit modulo n and so the multiple R of the order r is be computed using

Algorithm 4 with parameter b.
6 z ←− R/2ν2(R)

7 Phase 2: GCD computation
8 for 2 ≤ x ≤ n – 1 do
9 if gcd(x, n) ≠ 1 then
10 return gcd(x, n), n/ gcd(x, n)

11 Otherwise, x is a unit modulo n
12 i←− 0

13 while i ≤ ν2(R) and x2
iz ≠ 1 do

14 if gcd(x2
iz
– 1, n) ≠ 1 then

15 return gcd(x2
iz
– 1, n), n/ gcd(x2

iz
– 1, n)

16 i←− i + 1

(a) Alg. 4 applied to Shor’s Reduction (b) Alg. 4 applied to Ekerå’s Reduction

Figure 4. Running times of Shor’s Reduction and Ekerå’s Reduction once Alg. 4 has been applied

To quantify such decrease, we consider the computational complexity of Phase 2 of Algorithm 3.

Proposition 9. Phase 2 of Algorithm 3 has computational complexity O(d(n)).

Proof. Within Phase 2, the algorithm computes the maximal power px such that px < 2d(n) for all
primes in the set S where S is the set of all primes smaller or equal to 2d(n). The algorithm then

computes the product r
∏

p∈S px .
Assume that px is computed naively by multiplying the prime p repeatedly until px+1 > 2d(n) is
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obtained
2
. Doing so requires computing

O(⌈logp(2d(n))⌉)

multiplications. Since this is done for each p ∈ S, we must repeat these multiplications |S| times. As

this step depends on p, we consider ⌈log
2
(2d(n))⌉ with p = 2 as an upper bound for the number of

computations.

The size of S is the number of primes that are smaller or equal to 2d(n). Using Theorem 2, we

approximate the size of S as
2d(n)

ln(2d(n))
.

Hence, Phase 2 is computed in at most

O(
2d(n)

ln(2d(n))
log

2
(2d(n)))

multiplications. Using properties of logarithms we obtain that

2d(n)
ln(2d(n))

log
2
(2d(n)) = 2d(n)

log
2
(e) ln(2d(n))
ln(2d(n))

= 2d(n) log
2
(e) =

2d(n)
ln(2)

Hence, Phase 2 has computational complexity O( 2

ln(2)
d(n)) = O(d(n)). □

Therefore, Algorithm 6 has lower computational complexity than Algorithm 3 by O(d(n)).
Due to these results, Algorithm 4 should not be applied to Shor’s Reduction as it does not improve

the run time while it should be applied to Ekerå’s Reduction.

6.2 Using Odd Orders

Proposition 7 relies on finding an even order. This means that residues with odd order must be

discarded in Shor’s Reduction. However, it is also possible to use residues that have odd orders.

Indeed, the proposition can be extended to odd orders as suggested in [Joh17, Section 3]. The results

are summarized in Proposition 10.

Proposition 10. Given an appropriately composite n =

∏k
i=1 p

ei
i , suppose x ≠ 1mod n and xd =

1mod n for an odd prime d that does not divide n. Then gcd(x – 1, n) is a nontrivial factor of n with
probability 1 – 1/dk .

Proof. This proof follows [Joh17, Section 3] and [Joh17, Section 4]. Since xd = 1mod n, we can obtain
the equality xd = 1mod pe for any prime power pe that divides n. Hence, ordpe (x)|d which implies

that ordpe (x) is either d or 1 since d is prime.

Let A be the product of the prime powers for which ordpe (x) = 1, i.e. x = 1mod pe , and B be the

product of the prime powers ql for which ordql (x) = d, i.e. x = m ≠ 1mod ql . We then have that

n = A · B for A and B coprime with x = 1modA and x = m ≠ 1modB.
The Chinese Remainder Theorem ensures that the map φ : Z/nZ→ (Z/AZ) × (Z/BZ) where

φ(xmod n) = [xmodA, xmodB]

2
Other methods, such as square-and-multiply algorithms compute exponentiation more efficiently. For simplicity we do

not consider those in our complexity analysis.
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is an isomorphism and so

xmod n ↦→ [1modA,mmodB] =⇒ x – 1mod n ↦→ [0modA,m – 1modB].

Hence, A|(x – 1) and B ∤ (x – 1). Therefore

gcd(x – 1, n) = gcd(x – 1,A) · gcd(x – 1,B) = A · gcd(x – 1,B).

Suppose ql is a prime power such that ql |(x–1) and ql |B. Since ql |(x–1), x = 1mod ql holds. However
by construction of B, it cannot be that x = 1mod ql . Hence, gcd(x – 1mod n,B) cannot be divisible
by any prime power and so x – 1mod n and B must be coprime. Hence

gcd(x – 1, n) = A.

We now consider the probability that the algorithm outputs a trivial factorization, i.e. A = n orA = 1.

If A = n, then that means that x = 1mod peii for each i. By the Chinese Remainder

Theorem, this has the solution x = 1mod n up to congruence. However, x ≠ 1mod n
and so A = n does not occur.

If A = 1, we then have B = n and so xmod peii has order d for all i = 1, 2, . . . , k. Hence,
d|ϕ(peii ) = pei–1i (p – 1) for each i. The integer d is prime so d|pei–1i or d|(p – 1). If d|pei–1i
then d = pi |n which is a contradiction.

Then it must be that d|(pi – 1) for all i. For d > 2, d|(pi – 1) has probability 1/d for each i.
Since the events d|(pi –1) for each i are mutually independent, the probability that A = 1

is given by the product of the probability that d|(pi – 1) for each i = 1, 2, . . . , k. Hence,
A = 1 occurs with probability 1/dk .

Hence, gcd(x – 1, n) has probability 1/dk of being a trivial factor of n =

∏k
i=1 p

ei
i . □

Proposition 10 can be used to reduce the factorization problem to the order problem. Indeed, if we find

an odd order ordn(g) = r and a prime factor d of the order r , then x = gr/d satisfies the requirements

of Proposition 10 as long as d ∤ n. If that were the case, however, we would have a factor of n.
Otherwise we use the prime divisors d of r to compute the factor gcd(gr/d – 1, n) with a probability

that tends to one as d or the number of prime divisors of n increase.

Implementing this proposition for all prime divisors of the orders requires computing these primes.

This is however impractical. Grosshans et al suggest in [Gro+17, Section IV.B.] to check by trial

division whether the order is divisible by small primes p ∈ {2, 3, 5}. We therefore modify Shor’s

Reduction as described in Algorithm 7.

We compare the performance of Shor’s Reduction once this variant has been applied in Figure 5

over the integers I with parameters b = bn for bn defined as in Subsection 3.1 and c = 10. We indeed

see that there is a great decrease in the running time. In particular, integers that are divisible by

the primes p ∈ {2, 3, 5} have a near zero runtime due to the construction of the algorithm. Since

Proposition 10 can only be applied if p ∤ n, we must factor out such integers before attempting to

compute the order of residues modulo n. As such, integers that have p ∈ {2, 3, 5} as prime divisors are

factorized immediately. A more fair comparison of the two reductions is done by only considering

integers that are not divisible by such values of p.
Therefore, we compare the efficiency of this variant over integers

I1 := {86129, 112157, 187493, 802879, 1438051, 1553143, 2444393, 6044779, 33713471, 49010591}

that do not have 2, 3 and 5 as divisors as done in Figure 6 with the same parameter values as before.

Nonetheless, we see an improvement as allowing for odd order to be used for factoring reduces the

number of calls to the order finding algorithm needed as expected.
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Figure 5. Alg. 7 applied to Shor’s Reduction over Integers I

Figure 6. Alg. 7 applied to Shor’s Reduction over integers I1
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Algorithm 7: Shor’s Reduction using Proposition 7

Input : An appropriately composite n; integer parameters b and c
Output: A factorization of n

1 for p ∈ {2, 3, 5} do
2 if p|n then
3 return p, n/p

4 for 2 ≤ g ≤ n – 1 do
5 if gcd(g, n) ≠ 1 then
6 return gcd(g, n), n/ gcd(g, n)

7 Otherwise, g is a unit modulo n
8 Use Stange’s algorithm to compute the order r of gmod n with parameter b and c
9 if r mod 2 = 0 and gr/2 ≠ –1mod n then
10 return gcd(gr/2 – 1, n), n/ gcd(gr/2 – 1, n)
11 else if r mod 3 = 0 and gr/3 ≠ –1mod n then
12 return gcd(gr/3 – 1, n), n/ gcd(gr/3 – 1, n)
13 else if r mod 5 = 0 and gr/5 ≠ –1mod n then
14 return gcd(gr/5 – 1, n), n/ gcd(gr/5 – 1, n)

6.3 Employing the Jacobi symbol
The Jacobi symbol is an extension of the Legendre symbol to composite odd integers. Leander’s

work [Lea22, Theorem 4] shows that for an integer n = pq with p and q primes and for gmod n with
negative Jacobi symbol, i.e.

( g
n

)
= –1, the probability that the order of g is even and

gordb(g)/2 ≠ –1mod n

is at least
3

4
.

While the integers we consider are not of the form required, we can nonetheless use the Jacobi

symbol to decrease the running time of both reductions. Indeed, due to [Coh93, Section 4, Chapter

1, Algorithm 1.4.12], computing the Jacobi symbol can be done without computing prime factors,

with complexity analogous to Euclid’s algorithm. This can be done using various properties of the

Jacobi symbol such as the law of quadratic reciprocity. Therefore, using the Jacobi symbol to avoid

computations can be advantageous.

Indeed, it can be used in Shor’s Reduction to decrease the calls to the order computing function. To

avoid computing the order of a residue that is revealed to be odd and therefore not suitable, we use

the following proposition:

Proposition 11. If n is appropriately composite and a ∈ (Z/nZ)× ,( a
n

)
= –1 =⇒ ordn(a) is even

Proof. Let r = ordn(a) and suppose r is odd. Then

1 =

(
1

n

)
=

(
ar

n

)
=

( a
n

) r
.

Since r is odd we must have

1 =

( a
n

) r
=

( a
n

)
and so

( a
n

)
= 1. By contraposition, the proposition holds. □
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Therefore, by computing the Jacobi symbol

( a
n

)
, we ensure that the order is even without the need

to compute it. To implement this idea in Shor’s Reduction, after we draw a residue gmod n, we com-

pute the Jacobi symbol. If we find that

( g
n

)
= 1, we draw another residue. Otherwise, we proceed

with computing the order and follow the rest of the algorithm as usual.

As for Ekerå’s Reduction, as described in Algorithm 3, the proof of Theorem 3 shows that the al-

gorithm searches for the smallest quadratic nonresidue modulo some prime p|n. To guarantee only

such residues are considered, we filter out quadratic residues modulo n. Indeed, for n =

∏k
i=1 p

ei
i ,( a

n

)
=

k∏
i=1

(
a
pi

)ei
= –1 =⇒

(
a
pi

)
= –1 for at least one p|n.

By doing so we guarantee that the residues considered are quadratic nonresidues for at least one

prime divisor of n. To implement this idea in Ekerå’s Reduction, we compute the Jacobi symbol of

each residue xmod n drawn in "GCD computation" phase.

(a) Alg. 4 applied to Shor’s Reduction (b) Alg. 4 applied to Ekerå’s Reduction

Figure 7. Running times of Reductions 1 and Ekerå’s Reduction once Alg. 4 has been applied

We apply this approach to both reductions over the integers I and compare the run times to each of

the standard reductions in Figure 7 with parameters b = bn for bn defined as in Subsection 3.1 and

c = 10. Within Shor’s Reduction in Figure 7a, we observe that for some integers the algorithm has a

runtime very close to zero.

Indeed, by avoiding negative Jacobi symbol residues the algorithm is more likely to draw residues

g that are not in (Z/nZ)× and so computes factors gcd(g, n), n/ gcd(g, n). This is done without com-

puting the order of a residue. Since this factorization relies on finding small factors of n essentially

at random, it does not apply for all integers. For integers that do not obtain a factorization this way,

we see that using the Jacobi symbol allows to decrease the run time occasionally.

On the other hand, Figure 7b shows that, while not drastically changing the behaviour of the run-

times, avoiding positive Jacobi symbol residues allows for consistent small decreases in the runtime.
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7. Conclusion

In this thesis, we consider Stange’s algorithm [Sta23, Section 2, Algorithm 2.2] to solve the order
problem. This algorithm, strongly inspired by the Index Calculus algorithm, searches for residues

that are B-smooth to form multiplicative relations modulo n over a factor base. These relations are

then used to obtain a relation matrix and compute the order of a residue in (Z/nZ)× .
To reduce the running time of Stange’s algorithm, we consider values of the parameter b which rep-

resents the number of primes in the factor base. The computational complexity of the algorithm is

given by O(b3 + b2uu) where u = logB(n). We find that b = Ln(1/2,
√
2 /2) minimizes the expression.

Therefore, we find that the minimal complexity of the algorithm is Ln(1/2, 3
√
2 /2).

Following Stange’s suggestion [Sta23, Section 5], we also consider using a linear sieve to efficiently

compute smooth residues. As the LSM is commonly used in the Index Calculus, it has potential to be

useful within Stange’s algorithm [Can+23]. However, they are likely to form a relation matrix that

cannot output a nontrivial order. Due to this characteristic of the LSM, it is not recommended to

combine it with Stange’s algorithm. Further research is needed to determine the theoretical reason

of this behaviour and whether the Gaussian Integer Sieve, an additional sieving method commonly

used in the Index Calculus, leads to similar results.

Miller’s algorithm [Mil76, Section "Tests For Primality", Definition of Af ] demonstrates that the fac-
torization problem is polynomial time Turing reducible to the order problem. Despite its relevance

for the purpose of proving theoretical reduction, Miller’s algorithm is not implemented as it requires

computing the order of many residues.

More efficient reductions are considered. Shor’s Reduction utilizes a proposition inspired by Shor.

To obtain nontrivial factors of an integer n, it requires the order of a residue to be even. As a conse-
quence, it may require multiple calls to Stange’s order finding algorithm. On the other hand, Ekerå’s

Reduction [Eke21], strongly inspired by Miller’s algorithm, only requires a single call to Stange’s or-

der finding algorithm. However the subsequent computations to obtain nontrivial factors are more

involved than those in Shor’s Reduction. Nonetheless, the two reductions result in comparable run-

ning times in our implementations.

To reduce the number of multiplicative relations needed, we considered utilizing a multiple of the

order rather than the exact order as suggested by Stange [Sta23, Section 5]. This method decreases

the number of relations computed as it only requires a nontrivial kernel of FT . While this method

decreases the running time of Stange’s algorithm, it does not affect both factorization reductions

equally. As the reductions are modified to compute a factorization from a multiple of the order,

Shor’s Reduction increases in computational complexity while Ekerå’s Reduction decreases.

We examine an extension of Shor’s Reduction that allows for residues with odd orders to also output

a factorization suggested by [Joh17, Section 3]. In particular we consider orders that are divisible by

p ∈ {2, 3, 5}. This allows for a factorization to be found with a reduced number of calls to the order

finding algorithm. This extension decreases the running time as expected, especially for integers

that are divisible by such small primes.

Finally, inspired by [Lea22, Theorem 4], we employ the Jacobi symbol. By computing the Jacobi

symbol of a residue, which can be done efficiently, it is possible to determine whether the residue

can produce a factorization within both Shor’s Reduction and Ekerå’s Reduction. Indeed, both re-

ductions can be improved upon if we only consider residues with negative Jacobi symbol value.

A possible avenue for further research to improve on these algorithms is to consider other methods

to obtain smooth relations. Methods such as the Elliptic Curve Method, the Number Field Sieve and

Gaussian Integers Sieve are briefly discussed in this thesis but not fully explored. They may lead to

more efficient implementation of Stange’s order finding algorithm.
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8. Appendix

For the integers

[537, 765, 8585, 19053, 61453, 101371, 199989, 247251, 484957, 671015, 871933,

907423, 1744953, 1946725, 2177645, 2381625, 3632763, 5001635, 7865455, 22653803].

the following graphs are plotted.

8.1 Subsection 3.1
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Figure 10. Running time of Stange’s algorithm for various values of b for fixed n

8.2 Subsection 5.3

Figure 11. Running times of Shor’s Reduction and Ekerå’s Reduction

8.3 Subsection 6.1

Figure 12. Running times of Algorithm 1 and Algorithm 4
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(a) Alg. 4 applied to Shor’s Reduction (b) Alg. 4 applied to Ekerå’s Reduction

Figure 13. Running times of Shor’s Reduction and Ekerå’s Reduction once Alg. 4 has been applied

8.4 Subsection 6.2

Figure 14. Alg. 7 applied to Shor’s Reduction over integers I

Figure 15. Alg. 7 applied to Shor’s Reduction over integers I1



42 Integer Factorization via Order Problem

8.5 Subsection 6.3

(a) Alg. 4 applied to Shor’s Reduction (b) Alg. 4 applied to Ekerå’s Reduction

Figure 16. Running times of Shor’s Reduction and Ekerå’s Reduction once Alg. 4 has been applied
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