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Abstract
In contemporary energy systems, accurate short-term energy load forecasting is crucial from both
economical and environmental standpoints, and Deep Learning has demonstrated its efficacy as a
powerful tool for this purpose. However, in order for Deep Learning models to achieve optimal per-
formance, it is typically necessary for them to undergo extensive training, using a substantial amount
of data. Nevertheless, this is not possible to achieve for newly constructed buildings due to their very
limited amount of historical data. The utilization of Transfer Learning (TL) is able to counteract this
issue by applying the data of the target domain onto the learning of a model which has already been
trained on external, more comprehensive data. While previous studies have demonstrated the high
performance of hybrid models such as the Convolutional Neural Network - Long Short-Term Mem-
ory (CNN-LSTM) for energy load forecasting, and the benefits of TL in enhancing the performance
of conventional LSTM models, this research work addresses the existing literature gap of the analysis
of TL being performed on a CNN-LSTM model. Focusing on energy load forecasting for schools
in New York, the findings of this study provide further evidence for the efficacy of TL on an LSTM
model. However, CNN-LSTM yields inconsistent outcomes under the effects of TL. Ultimately, this
latter model achieves its optimal performance in our setting not by means of TL, but rather through
improved data pre-processing; the omission of weather data during the training process played an im-
portant role in achieving the best performing CNN-LSTM model, contrary to the initial expectations
that a more complex training dataset would lead to better forecasting results.
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1 Introduction

The implementation of accurate forecasting techniques facilitates energy management practices, and
is hence holding significant importance environmentally and economically [1]. Machine Learning
(ML) models such as Long Short-Term Memory (LSTM) networks, Convolutional Neural Networks
(CNN), as well as combinations of ML models (forming a hybrid model) have recently become pop-
ular and promising approaches for energy load forecasting. These models have shown remarkable
effectiveness in handling complex time series data and achieving high levels of prediction accuracy
[2].

The application of ML and Deep Learning (DL) models is effective provided that significant training
data is available [3]. New buildings do not have historical data to feed a model to predict their en-
ergy consumption. To counteract the problem of limited historical data, the literature reports Transfer
Learning (TL) as a potential solution [4] [5] [6]. TL consists of training models on an existing source
domain (e.g. a series of buildings with an adequate amount of historical data), then the pre-trained
models are used on a target domain (i.e. new building, lacking historical data) [4].

This study is inspired by prior research that indicates the hybrid CNN-LSTM model is a very success-
ful method for time series energy load forecasting, when given access to at least energy consumption
and weather data [7]. Inspiration for this work also includes research which displays the capability of
LSTM in a TL scenario [8].

Buildings within the education sector are distinctive for their variation in energy usage. Generally, in
the span of 24 hours, most of the activity in a school (and implicit energy usage) takes place during
the day, whereas during the nighttime the energy demand significantly decreases as a result of limited
student activity. Vacations and weekends are also a defining factor in the energy load of this type of
building, implying entire weeks of significantly lower energy usage. However, these patterns occur
predictably throughout specific periods of the year and week.

The implemented and tested models in this study utilize a publicly available dataset consisting of 100
anonymous buildings located in the United States (out of which there are 25 schools) which displays
their energy usage for the entirety of the year 2012 [9]. For each building used in this project’s mod-
els, weather data for the year 2012 has been collected from the Meteostat API and included in the
training of the models [10]. The examination of excluding weather data has also been investigated;
further sections will showcase that this omission yielded different results depending on whether the
model utilized was hybrid or non-hybrid.

Section 2 will present the State of the Art, concluding with the reasoning behind choosing a con-
ventional LSTM model and a hybrid CNN-LSTM model. Section 3 will discuss the methodology
of our paper, providing general explanations and definitions on the concepts relevant to our research.
Section 4 will go in-depth into how these latter tools are integrated into a software framework of
multiple ML models and evaluations. In Section 5, this framework ultimately leads to the results and
implicit analysis of their values. Section 6 will discuss the insights derived from our research, as well
as potential further work to broaden this study.
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2 State of the Art

In the context of energy load forecasting, numerous instances of LSTM have demonstrated encourag-
ing outcomes [11] [12]. The papers utilize LSTM, a type of recurrent neural network (RNN) architec-
ture, for the purpose of modeling and forecasting power demand. LSTM networks are very suitable
for energy usage forecasting due to their ability to effectively capture long-term dependencies, a char-
acteristic frequently observed in time series data like energy load. Control gates and memory cells
allow LSTM to regulate the flow of what data it remembers or forgets [13].

A paper by Eunjeong Choi et al. [13] further supports the efficacy of LSTM, implementing an ef-
fective power demand forecasting system using this RNN technique. The research gathered power
demand data at a five-minute resolution from a variety of structures, such as public offices, residen-
tial areas, hospitals etc. This is relevant to our work, which will focus on 5-minute data, sampled to
hourly data. The study of Choi ran tests with an emphasis on various types of forecasting: seasonal,
long-term, and short-term. A comparison has been done between an LSTM model, a mixed data
sampling method (also known as MIDAS, a statistical framework that enables the incorporation of
variables sampled at varying frequencies), and the combination of the two. When compared to the
MIDAS model, LSTM showcased lower error scores for each type of building it analysed, with root
mean square error (RMSE) differences of at least 4.5 kWh, and as large as 23.3 kWh. This research
not only provided additional evidence for the effectiveness of a standard LSTM model when used in
energy forecasting for various building types, it also showed the power of the model when used in
tangence with a model of another type, forming a hybrid model. While the latter model sometimes
resulted in a RMSE slightly higher than the standard LSTM (0.3 kWh), it usually performed better,
with errors lower than the LSTM performance, with differences in RMSE as large as 10.7 kWh. Sim-
ilarly, our study will explore a hybrid model which combines LSTM, paired with a CNN.

A paper by Kim et al. [8] showcases the efficacy of using TL in an LSTM for forecasting energy usage
in a building, which was a better tool for this task than the standalone LSTM. Transfer Learning is an
ML approach involving the refinement of a pre-trained model on a similar, new problem; instead of
using only the target domain for the purpose of optimizing a model, using additional data beforehand
for this purpose can provide a better result, despite the possibility that this latter data has differences
[14] [15]. Kim’s study successfully showcased that the LSTM model performed better at hourly en-
ergy usage prediction when pre-trained on a source domain before training on the target domain, as
opposed to not applying Transfer Learning. The RMSE differences between the TL-LSTM and the
stand-alone LSTM were as high as 20% [8].

Chung and Jang [7] show the performance of LSTM in tandem with a CNN, forming a hybrid model.
The CNN is able to iterate through the data input while performing convolution (which comes down
to multiplication and summation of certain parts of the input) and pooling (which generally means
averaging clusters of the convoluted data into more concise data), in such way that it is able to filter
important features [16] [17]. [7] shows that a hybrid model consisting of a CNN and an LSTM is
a very good approach when it comes to predicting energy usage, markedly outperforming a MLP
model, a standard RNN model, and a stand-alone LSTM model.

The research paper [18] presents a model for the purpose of energy load forecasting, for an energy
system that simultaneously operates multiple types of energy resources, resourced from a real-world
dataset. The model performs Federated Learning as its training approach, which is a concept cre-
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ated by Google in 2017, referring to a decentralized methodology to overcoming data privacy related
issues by aggregating model updates computed locally [19]. The model in question integrates the
advantageous aspects of CNN and LSTM together, akin to the other hybrid models mentioned in this
section, and additionally incorporates to it an attention mechanism. The layers of the proposed model
fulfill distinct roles: the CNN is responsible for extracting overall features from the time series data,
the attention mechanism assigns varying weights to distinct features according to their significance,
and the LSTM captures data dependencies in the longer term. The findings indicated that the hybrid
models exhibited superior precision compared to individual models, providing additional support for
the efficacy of multiple models in synergy.

Nicolai Bo Vanting et al. [17] have run a comprehensive scoping review of the best-performing DL
models in the subject of energy load forecasting. The paper discusses various applications in the en-
ergy domain, with contexts including single or multiple households, public or office buildings, larger
districts such as countries or states. The study shows the absence of a universally flawless model, and
the implicit need of the exploration of non-hybrid models before delving into more complex mod-
els. Nevertheless, the research report demonstrates that the CNN-LSTM model is generally a very
promising candidate for energy load forecasting.

The existing body of literature on energy load forecasting has demonstrated the potential of LSTM
and other DL techniques, especially the hybrid CNN-LSTM model. TL has demonstrated promising
results as well. However, it is worth noting that there is a significant gap in the literature on the uti-
lization of this hybrid model in a TL context. This aspect has particular significance for time series
energy load forecasting in buildings with limited historical data. Consequently, the focus of this study
will be the investigation of the following question: “To what extent can Transfer Learning increase the
prediction performance of a Convolutional Neural Network Long Short-Term Memory model, when
forecasting energy load for a school with limited historical data?”.

The subsequent sections will integrate some of the most effective methodologies explored in the field,
resulting in a TL-CNN-LSTM model, which will be assessed in relation to the challenge of lim-
ited historical data availability. The architecture of this hybrid model will be inspired by the model
created in [7]. In order to facilitate a comprehensive comparison, a TL-LSTM model will also be
incorporated, for multiple reasons. Firstly, as also suggested by [17] it is important to first analyse a
non-hybrid approach before relying on hybrid models. Secondly, the effectiveness of TL on a non-
hybrid LSTM model has been demonstrated in Kim’s research [8]. Therefore, their architecture will
be the inspiration for the development of our LSTM model. In order to assess whether the imple-
mentation of complex ML models is worth their implicit computation power in this scenario, our
evaluations will also include a naive baseline model.

3 Methodology

3.1 Machine Learning and Deep Learning

The domain of energy load forecasting has witnessed a growing significance of ML and its more
sophisticated variant, DL. ML is a subfield of Artificial Intelligence (AI) that facilitates the acquisition
of knowledge by computer systems through the analysis of data. DL is a subset of ML which implies
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the utilization of neural networks to acquire representations of unprocessed input data. Using these
techniques, distinct features can be derived from input data with high performance, without the need
for explicit programming. These methods are well-suited for use with intricate, non-linear data, being
able to accurately predict it, even if it contains possible seasonality or variability [20] [21].

3.2 Convolutional Neural Networks

CNN’s are a family of DL algorithms that are typically employed for image classification tasks, work-
ing with two-dimensional data [22]. Nevertheless, they can also process a single dimension, which
also makes them suitable for time series data, and hence able to perform energy load forecasting [23].

The CNN is able to iterate through the data input while performing convolution (which comes down
to multiplication and summation of certain parts of the input) and pooling (which generally means
averaging clusters of the convoluted data into more concise data), in such way that it is able to filter
important features [17] [16].

3.3 Long Short Term Memory

LSTM is a particular kind of temporal cyclic neural network created to solve the long term depen-
dency issue that affects most recurrent neural networks. LSTM employs memory units, which have
a structure of an input gate, an output gate, and a forgetting gate, in place of the hidden layers of a
conventional RNN. At each time step, these gates regulate the flow of what data keep or to remove.
Filtering out less important information even over an extended period of time, LSTM has a great abil-
ity to “remember” pertinent long-term information of the dataset it works with, being able to perform
well even in data exhibiting seasonality [24] [13].

3.4 Hybrid Machine Learning Models

Combining functionalities of multiple ML models, hybrid ML models have the potential effectively
forecast energy load data, regardless of whether the data exhibits linear or nonlinear characteris-
tics [25]. The utilization of various models allows for the exploitation of each of their respective
strengths. In the context of a CNN-LSTM, the convolutional layers have the capability to filter impor-
tant high-level features of the model’s input data, while the incorporation of LSTM allows the model
to effectively retain longer-term details of this data [16] [17].

3.5 Transfer Learning

TL enables ML models to achieve better forecasting or classifying results on limited data. This is
done by incorporating knowledge gained from pre-training on external, potentially less relevant data
than the target domain. Following this, the model will not need as much processing of the target
domain to understand its low-level, universal information. Despite the latter dataset being possibly
very scarce, or very different from the initial training dataset of the model, the model is now capable
of forecasting or classifying this data better by applying the knowledge of relevant similarities from
the training dataset. [4] [5] [8] [14]



10 Chapter 4 IMPLEMENTATION

4 Implementation
All of the steps of the implementation of these models have been done on the Google Colab plat-
form. This includes the data loading, pre-processing including joining the energy usage data with the
weather data of the building’s anonymised location, data filtering, merging of multiple buildings data,
normalizing. Training, testing, and plotting will also be done using this tool.

4.1 Dataset
The dataset provided by EnerNOC is a publicly accessible repository consisting of energy usage
statistics for several commercial buildings in the U.S. The dataset covers this data for a total of 100
buildings of various types, for the year of 2012, in intervals of 5 minutes. The dataset also contains the
location of the buildings, their size, type (Commercial properties, Education, Food Sales & Storage,
Light Industrials), and subtype (Shopping Center, Bank, Primary/Secondary School etc.). Buildings
are identified by integer id’s of two or three digits.

For the usage of our ML models, we will exclusively consider buildings classified under the Educa-
tion category. In this dataset, there are 25 such schools. The amount of schools initially given by the
EnerNOC dataset is presented in Table 1. The amount of schools that will be used for our purposes is
10 New York schools, as described in the Data-Processing section of this paper.

Weather data may have a positive effect on the accuracy of our models. Therefore, this will be re-
trieved from the Meteostat API [10]. Meteostat is an openly available platform offering free access
to historical meteorological and climate data, including the year 2012, which corresponds to the data
available in the EnerNOC dataset. It indicates hourly weather data given a longitude and latitude,
which are columns available for each building in the EnerNOC dataset.

The EnerNOC dataset, even when filtering out every building type except Education, presents diverse
data variability per school. This variability can be seen in Figures 1 and 2. This may be attributed
to noise in the data due to meter error, or it may actually indicate the genuine nature of the data for
the specific school, where its energy load fluctuates more than other buildings. In this study, we will
proceed on the assumption that the data provided is legitimate, and will therefore not attempt to alter
the value of apparent outliers.

Table 1: Summary of the EnerNOC Dataset

US State Amount of EnerNOC schools
New York 15
Chicago 7
Denver 3

4.2 Data Pre-processing
In raw form, the time series data per school in the EnerNOC dataset consists of the entire year 2012,
in steps of 5 minutes, for which there are columns for timestamps, energy usage, and the timestamp
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Figure 1: KWh values of school 92 throughout year 2012, presenting high data variability.

Figure 2: KWh values of school 136 throughout year 2012, presenting low data variability.

in UNIX format. The data also contains two almost consistently empty columns (named “estimated”
and “anomaly”), which can be regarded as redundant, or even damaging to use in the training of the
models, hence they were removed. Metadata is also present in a separate file, consisting of building
size, latitude, longitude, state, building type (Commercial properties, Education, Food Sales & Stor-
age, Light Industrials), and subtype (Shopping Center, Bank, Primary/Secondary School etc.) For
every building in this project, its size has been concatenated to the dataset so that every row includes
the metadata.



12 Chapter 4 IMPLEMENTATION

Considering data from multiple states, therefore possibly considering schools from very different re-
gions, introduces an additional variable that may not be significant for addressing the research subject
at hand. As this paper will mainly focus on the performance of certain models in a TL setting, we
have restricted our analysis to schools in New York, as this state has the highest number of schools in
the EnerNOC dataset that meet our aforementioned data filtering criteria.

Since there can be missing values in the data, the datasets have been chosen to be part of the training,
validation, or testing sets only if they miss less than 10 rows in the EnerNOC dataset, or if they miss
less than 1% of rows in the Meteostat dataset. For the schools that miss some data but have still been
accepted due to respecting the aforementioned conditions, missing data has been linearly interpolated.
Continuing the discussion on data imperfections, two duplicate datasets have been found and subse-
quently removed.

Out of the various information given by the library, the specific weather data that will be taken into
consideration for this paper’s training of models has been chosen based on the general findings on
high correlation with the energy usage column of the EnerNOC schools. Two examples of Pearson
correlation evaluations are shown in Figures 3 and 4. Based on which columns are never null for
any school and generally have a high correlation with the energy usage of a building, the following
columns given by the dataset have been included in our work: temp (temperature), dwpt (dewpoint),
and rhum (humidity). As Meteostat’s lowest interval of data is hourly, our data of 5 minute intervals
collected from EnerNOC will be resampled to showcase hourly data.

Due to the nature of schools to be drastically less active during weekends, these periods have been
dropped for every school. This decision was made because the increased data variability brought by
the inclusion of weekends could potentially have a negative impact on the performance of the models.
Therefore, only business days are taken into consideration.

Energy values during the night are also consistently low, and therefore possibly less important to keep
track of than energy usage during the day, just like weekends. However, these nightly values have
been kept, because of the possibility of the schools to have different amounts of active hours than
other schools. For instance, one school may technically have 45 active hours per week, while another
one may have more or less, making it difficult to choose a specific nightly period to exclude from the
dataset.

The dataset includes time data in the form of timestamps and Unix values. This data has been mod-
ified into sinusoidal values, for the models to understand the cyclability of time. If the models work
with time columns that are not properly engineered, they may not fully understand that the seventh
day of the week is followed by the first one, or that in a day, the hour 23:00 is followed by 00:00. By
modifying the time data into sinusoidal values for days, weeks, and months, cyclical time steps such
as hours in a day, the day of the week, or the day of the month, are consistently far apart from each
other.

The paper will also examine the validity of the argument presented in [17], stating that weather data
is very important to include in training, for a successful model in energy load forecasting. Therefore,
data processing will result in two different datasets, each analysed separately: one dataset will include
hourly data for temperature, dewpoint, and humidity, while the other one will not.
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Figure 3: Pearson Correlation table for school 197. The column ‘value’ represents the kWh usage,
the columns ‘temp’, ‘dwpt’, ‘rhum’, ‘prcp’, ‘wdir’, ‘wspd’, ‘pres’ are collected from Meteostat, while
the columns ‘day sin’, ‘day cos’, ‘month sin’, ‘month cos’, ‘year sin’, ‘year cos’ are the cyclical
sinusoidal values appended to each row based on timestamp.

The composition of the dataset, post-processing, is represented in Table 2, which enumerates the
columns included in each data entry.

4.3 Simulating Transfer Learning Periods
Out of the list of schools chosen in the aforementioned data preprocessing step, one school identi-
fication number is randomly selected, then dropped from the list of schools used for the training or
validation sets, and shall be used instead for TL. Our paper focuses on the efficacy of pre-trained
models with TL on schools that lack historical data. Acknowledging that the EnerNOC dataset shows
data for a whole year (with the exception of any missing data resulting from errors), we can simulate
a novel school by choosing a very limited period of a year for the training and testing of TL. Hence,
for the TL training set, we opt for a random 30 day period from the randomly chosen school, while for
the TL test set we choose the 30 days directly following the train set period, thus simulating a school
with only about 2 months of historical data. A representation of this process is shown in Figure 5.

4.4 Training and validation sets
After choosing the TL school and excluding it from the rest of the schools, two other school datasets
are randomly chosen to be the validation dataset for each model of the paper. The remaining school
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Figure 4: Pearson Correlation table for school 217. The column ‘value’ represents the kWh usage,
the columns ‘temp’, ‘dwpt’, ‘rhum’, ‘prcp’, ‘wdir’, ‘wspd’, ‘pres’ are collected from Meteostat, while
the columns ‘day sin’, ‘day cos’, ‘month sin’, ‘month cos’, ‘year sin’, ‘year cos’ are the cyclical
sinusoidal values appended to each row based on timestamp.

Figure 5: Representation of a school dataset being used for simulating a TL school. An index is
randomly chosen, then a month following it is used for TL training, then the following month is used
for TL testing. Note that the random index is not necessarily placed at the start of a month.

datasets will be used for the purpose of model training. It is important to note that the train set and
validation set are based on the same one-year period: our separation into training and validating sets
is only made by building identification number. It has been considered that the added data diversity
in the validation set inferred by this approach may be beneficial for model performance, as the hyper-
parameter tuning will focus on reducing the error of the models on the validation set.

Once the Train set and Validation set have been established, both for before and during TL, the data is
subjected to normalization, being scaled down into a range from 0.0 to 1.0 using the MinMaxScaler
feature of the scikit-learn Python library [26].
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Table 2: Input Data Columns. Columns ‘temp’, ‘dwpt’, ‘rhum’ are not included in the datasets
without weather.

Column Name Description
value Energy value
sq ft School size in square feet
state label State label, as a number
day sin Sinusoidal value for day, as sinus
day cos Sinusoidal value for day, as cosinus
month sin Sinusoidal value for month, as sinus
month cos Sinusoidal value for month, as cosinus
year sin Sinusoidal value for year, as sinus
year cos Sinusoidal value for year, as cosinus
temp Temperature
dwpt Dewpoint
rhum Humidity

4.5 Windows of Features and Labels

The sizes that have been chosen for the input and output of each model are the following: the input
represents 120 rows, each indicating data for one hour. Consequently, the data spans 5 days, contain-
ing all the columns determined in the data processing stage, which may or may not include weather
data. Regardless of the inclusion of weather data in the dataset and the specific model employed, the
output of one prediction will always be the same: 1 row by 1 column, representing the energy value
directly following the 120 rows of the input. Ultimately, iterating through the windows of features
and labels of one set will be done as follows: the model traverses through all the windows of a school
in a chronological order, then proceeds to the next school in the set, until all schools of the set have
been processed.

4.6 Machine Learning Models

Before delving into TL, this paper will first focus on the efficacy of two models on the EnerNOC
dataset, with or without including weather data from the Meteostat library. We will also include a
baseline model, to evaluate whether the added complexity and implicit needed computation power of
a deep learning model [27] is worth it in comparison with implementing a much more naive model.
Specifically, our baseline model receives the same input as the CNN-LSTM or LSTM models, but only
outputs the same energy value as the latest energy value in the input, without any further calculations.
While this is a naive approach, it creates a very fast and efficient model. Additionally, as it does not
take any other column or row into consideration, this will make it result in the same values for RMSE
and resepectively MAE, for the data with or without weather included.
Tables 3, 4, 5 summarise the models, while Tables 6, 7 go in more detail on the hyperparameter tuning
of the layers of the LSTM and CNN-LSTM models. The number of columns in the input layer will
always either be 9 or 12, depending on whether we choose the weather data (temperature, dewpoint,
and humidity) to be included. All of these columns can be seen in Table 2.
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Table 3: Base Model Layer Overview

Layer Details Optional?

Input Layer
120x9 if excl. weather

No
120x12 if incl. weather

Output Layer 1x1, energy value of the last input row No

Table 4: CNN-LSTM Model Layer Overview

Layer Details Optional?

Input Layer
120 x 9 if excl. weather

No
120 x 12 if incl. weather

Conv1D (1st layer) Size determined during hyperparam. tuning No
Conv1D (2nd layer) Size determined during hyperparam. tuning No
Conv1D (3rd layer) Size determined during hyperparam. tuning Yes
Dropout (1st layer) Size determined during hyperparam. tuning No
Conv1D (4th layer) Size determined during hyperparam. tuning Yes
Pooling Type determined during hyperparam. tuning No
LSTM (1st layer) Size determined during hyperparam. tuning Yes
Dropout (2nd layer) Size determined during hyperparam. tuning No, if LSTM Layer above exists
LSTM (2nd layer) Size determined during hyperparam. tuning No
Dropout (3rd layer) Size determined during hyperparam. tuning No
Dense 1x1, the expected next energy value No

Table 5: LSTM Model Layer Overview

Layer Details Optional?

Input Layer
120 x 9 if excl. weather

No
120 x 12 if incl. weather

LSTM (1st layer) Size determined during hyperparam. tuning No
Dropout (1st layer) Size determined during hyperparam. tuning No
LSTM (2nd layer) Size determined during hyperparam. tuning No
Dropout (2nd layer) Size determined during hyperparam. tuning No
LSTM (3rd layer) Size determined during hyperparam. tuning Yes
Dropout (3rd layer) Size determined during hyperparam. tuning No, if LSTM Layer above exists
LSTM (4th layer) Size determined during hyperparam. tuning Yes
Dropout (4th layer) Size determined during hyperparam. tuning No, if LSTM Layer above exists
LSTM (5th layer) Size determined during hyperparam. tuning No
Dropout (5th layer) Size determined during hyperparam. tuning No
Dense 1x1, the expected next energy value No
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4.7 Hyperparameter Tuning
To reach optimal model performance, Keras Tuner has been used for performing hyperparameter tun-
ing. This allowed us to vary parameters such as the learning rate of a model, as well as the amount of
layers, and the parameters used in of each of the layers.

Whether or not weather is included in a model’s training, the model’s possible hyperparameter ranges
look the same, the only difference being the amount of columns that it receives in the input layer: 9 or
12. Individual hyperparameter tuning is still performed for each model, with or without weather data;
for instance, the best CNN-LSTM without weather may include a single convolutional layer, while
including the data may need the model to have an additional convolutional layer.

The CNN-LSTM model was inspired by the architecture mentioned in [7]. Our model therefore starts
off with two layers with filter sizes as large as 128. There is an added possibility for more than
two convolutional layers. Similarly to Chung’s approach, dropout is being done, and after all the
convolutional layers, pooling is performed, followed by an LSTM layer with units up to 128. The
hyperparameter ranges for the CNN-LSTM model can be seen in Table 6.

Table 6: CNN-LSTM Hyperparameter Ranges

Hyperparameter Range Step Size Notes
Learning Rate [0.00001, 0.01] logarithmic
Batch Size 64 Fixed Value
Filters for CNN Layer 1 [32, 128] 32
Kernel size for CNN Layer 1 [1, 3] 1
Filters for CNN Layer 2 [32, 128] 32
Kernel size for CNN Layer 2 [1, 3] 1
Include CNN Layer 3? [0, 1] 1 0=No, 1=Yes
Filters for CNN Layer 3 [32, 128] 32
Kernel size for CNN Layer 3 [1, 3] 1
Dropout Layer 1 Rate [0.0, 0.5] 0.25
Include CNN Layer 4? [0, 1] 1 0=No, 1=Yes
Filters for CNN Layer 4 [32, 128] 32
Kernel size for CNN Layer 4 [1, 3] 1
Pooling Type [Avg, Max] Categorical Choice
Include LSTM Layer 1 and Dropout 2? [0, 1] 1 0=No, 1=Yes
Units for LSTM Layer 1 [16, 48] 16
Dropout Layer 2 Rate [0.0, 0.5] 0.5
Units for LSTM Layer 2 [32, 128] 32
Dropout Layer 3 Rate [0.0, 0.5] 0.25

The primary source of inspiration for our LSTM model’s architecture was detailed in [8]. Similarly
to their architecture, the amount of layers included in the model was up to 5, and the amount of units
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of each layer increased the higher in the model the layer was. Hence, the possible unit amounts are as
low as 4 units in the lower levels of the architecture, and as high as 96 in higher levels. The hyperpa-
rameter ranges for the LSTM model can be seen in Table 7.

Table 7: LSTM Hyperparameter Ranges

Hyperparameter Range Step Size Notes
Learning Rate [0.00001, 0.01] logarithmic
Batch Size 64 Fixed Value
Units for LSTM Layer 1 [4, 12] 4
Dropout Layer 1 Rate [0.0, 0.5] 0.25
Units for LSTM Layer 2 [8, 24] 8
Dropout Layer 2 Rate [0.0, 0.5] 0.5
Include LSTM Layer 3 and Dropout 3? [0, 1] 1 0=No, 1=Yes
Units for LSTM Layer 3 [16, 48] 16
Dropout Layer 3 Rate [0.0, 0.5] 0.5
Include LSTM Layer 4 and Dropout 4? [0, 1] 1 0=No, 1=Yes
Units for LSTM Layer 4 [32, 96] 16
Dropout Layer 4 Rate [0.0, 0.5] 0.25
Units for LSTM Layer 5 [32, 96] 16
Dropout Layer 5 Rate [0.0, 0.5] 0.5

Each model has had 3 different hypertuning trials, and there have been two executions done per trial.
At each model’s compiling, the chosen optimizer was Adam [28], the loss was mean squared error,
and the metric was mean absolute error. At the running of the tuning, the objective was the validation
loss, meaning the mean squared error of the validation set. Additionally, each model’s fitting has
been done with 100 epochs, with an early stopping possibility at the passing of 20 epochs without an
increase of performance on the validation loss.

The baseline model does not need hypertuning, as it is has the exact value of the latest energy value
given by its input, while not having a correlation with any other row or column.

4.8 Best Hyperparameter Architectures

After performing hyperparameter tuning, we will have obtained 5 different models to evaluate: the
baseline model, the CNN-LSTM’s with and without weather data, and the LSTM’s, likewise with and
without weather data. The final architectures of each of these models are shown in Tables 8 and 10
for the dataset that includes weather, and respectively Tables 9 and 11 for the dataset that does not
include weather.
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Table 8: Best Hyperparameters of CNN-LSTM with Weather

Hyperparameter Value
Learning Rate 0.000287
Filters for CNN Layer 1 96
Kernel Size for CNN Layer 1 3
Filters for CNN Layer 2 32
Kernel Size for CNN Layer 2 3
Include CNN Layer 3? 0 (No)
Dropout Layer 1 Rate 0.5
Include CNN Layer 4? 0 (No)
Pooling Type “avg”
Include LSTM Layer 1 and Dropout 2? 0 (No)
Units for LSTM Layer 2 64
Dropout Layer 3 Rate 0.0

Table 9: Best Hyperparameters of CNN-LSTM without Weather

Hyperparameter Value
Learning Rate 0.000645
Filters for CNN Layer 1 32
Kernel Size for CNN Layer 1 1
Filters for CNN Layer 2 64
Kernel Size for CNN Layer 2 3
Include CNN Layer 3? 1 (Yes)
Dropout Layer 1 Rate 0.25
Include CNN Layer 4? 0 (No)
Pooling Type “max”
Include LSTM Layer 1 and Dropout 2? 0 (No)
Units for LSTM Layer 2 128
Dropout Layer 3 Rate 0.0
Units for LSTM Layer 1 48
Dropout Layer 2 Rate 0.0
Filters for CNN Layer 3 32
Kernel Size for CNN Layer 3 1

4.9 Hyperparameter Tuning Performance
After performing hyperparameter tuning, the train set and the validation set have been concatenated,
and all the models have been retrained on this concatenated set, to develop knowledge that comprises
more schools. Finally, each of the models with the best architecture trains on this concatenated set,
and is evaluated in terms of RMSE and MAE. These error values can be seen in Table 12.
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Table 10: Best Hyperparameters of LSTM with Weather

Hyperparameter Value
Learning Rate 0.004902
Units for LSTM Layer 1 4
Dropout Layer 1 Rate 0.0
Units for LSTM Layer 2 24
Dropout Layer 2 Rate 0.0
Include LSTM Layer 3 1 (Yes)
Units for LSTM Layer 3 16
Dropout Layer 3 Rate 0.0
Include LSTM Layer 4 1 (Yes)
Units for LSTM Layer 4 80
Dropout Layer 4 Rate 0.5
Units for LSTM Layer 5 64
Dropout Layer 5 Rate 0.5

Table 11: Best Hyperparameters of LSTM without Weather

Hyperparameter Value
Learning Rate 0.000427
Units for LSTM Layer 1 4
Dropout Layer 1 Rate 0.0
Units for LSTM Layer 2 8
Dropout Layer 2 Rate 0.5
Include LSTM Layer 3 1 (Yes)
Units for LSTM Layer 3 48
Dropout Layer 3 Rate 0.0
Include LSTM Layer 4 0 (No)
Units for LSTM Layer 4 48
Dropout Layer 4 Rate 0.0
Units for LSTM Layer 5 80
Dropout Layer 5 Rate 0.0

4.10 Transfer Learning Methods
We can perform many types of TL for a Neural Network, but the general approach is to train only
some layers of the network (generally layers at a higher level), while retaining the original weights
and biases of the rest (generally called “freezing” the layers) [29] [30].
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Table 12: Performance Comparison of Models on data with weather and without weather

Error Dataset
Metrics

Baseline CNN-LSTM LSTM

RMSE
With weather 1.59 1.32 1.07

Without weather 1.59 1.04 4.08

MAE
With weather 0.98 0.97 0.74

Without weather 0.98 0.77 3.06

For the purpose of this paper, we have decided to analyse multiple TL approaches, including two in
which freezing layers is not performed. These methods are defined in Table 13. We will see, in later
sections of this research, that not freezing layers is actually the best TL approach for our setting.

Table 13: Transfer Learning Methods Analysed

Transfer Learning Method Description

Maximum Freezing
Only the last dense layer of the model is trainable.

The LR used is the best LR found during hyperparameter tuning

Minimum Freezing 1
All layers of the model are trainable.

The LR is 0.00001

Minimum Freezing 2
All layers of the model are trainable.

The LR is the best LR found during hyperparameter tuning

4.11 Transfer Learning Experiment Results

The results of performing TL on the CNN-LSTM model and the best LSTM model can be seen in the
Tables 14 and 15 and will be discussed in the following section. Note that TL, like the tuning of the
hyperparameters, has no effect on the baseline model, and therefore the performance of TL will not
be evaluated for it. Therefore, for the baseline model, the RMSE and MAE will remain the same as
in Table 12.

Table 14: Performance Metrics for TL on the CNN-LSTM Model

CNN-LSTM
With weather Without weather

RMSE MAE RMSE MAE
Before TL 1.32 0.97 1.04 0.77
After TL with Minimum Freezing 1.54 1.19 1.94 1.46
After TL with Maximum Freezing 1 1.15 0.86 1.05 0.79
After TL with Maximum Freezing 2 1.76 1.31 1.46 1.13
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Table 15: Performance Metrics for TL on the LSTM Model

LSTM
With weather Without weather

RMSE MAE RMSE MAE
Before TL 1.07 0.74 4.08 3.06
After TL with Maximum Freezing 1.04 0.77 3.98 2.98
After TL with Minimum Freezing 1 0.96 0.68 4.24 3.26
After TL with Minimum Freezing 2 1.58 1.04 4.08 3.16

5 Discussion
Compared with a baseline model, the best-performing CNN-LSTM and LSTM have always exhibited
lower values for both the MAE and RMSE. This indicates that in terms of results, utilizing DL is a
superior alternative over employing a naive forecasting model. If taking computational power into
consideration for choosing the right model, the conclusion is more subjective, as will be explained
later in this section.

Tuning the hyperparameters for the hybrid CNN-LSTM model concluded to provide results which
were better than those of the tuned LSTM model, despite the fact that for the latter, hyperparameter
tuning has been performed as well, and both models having a decent complexity. This further adds to
the credibility of [17].

The paper aforementioned also suggested that weather data is part of the bare minimum data to in-
clude for a successful model. However, in the case of analysing the EnerNOC dataset, merged with
weather data from Meteostat, weather data seems to be not only useless, but damages the performance
of the model, in the case of the CNN-LSTM model. This could mean that for this model, the time of
the year/day itself is enough to understand the energy usage of the school.

While the best CNN-LSTM model needed no weather to perform best, The LSTM model clearly
demonstrated its best performance when incorporating weather data, as opposed to excluding it. This
resulted in a very close resemblance of error rates for both of the models.

The premise of our paper was evaluating the performance of TL on an energy load forecasting model,
given a school which has a very limited amount of historical data. Using the data inferred by the
CNN-LSTM, the results in terms of TL seem to be inconclusive. Looking at the best performing
CNN-LSTM (without weather data), TL has always decreased the performance of the model in the
end, for every kind of TL, for both RMSE and MAE metrics. The only case in which TL helped
was when weather data was included in the CNN-LSTM training, decreasing both the RMSE and the
MAE, when performing TL with minimal freezing (maintaining the trainability of each layer), with
a learning rate of 1e-5. However, this added performance is still worse than the CNN-LSTM trained
on data without weather, before TL. An additional point against TL in this case is the fact that these
differences after performing it are fairly small: the error metrics values before and after this TL were
1.32 and 1.15 for the RMSE, and respectively 0.97 and 0.86 for the MAE value. Since TL can be
expensive computationally [27], it is arguable that the marginal performance improvement achieved
by employing this approach may not justify the incurred cost. However, this increased performance
does show that it may still be worthwhile to do TL in certain scenarios: if the error rates before learn-
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ing are less optimal than this paper’s, or when the selection of variables included in the TL process is
more meticulous.

The lack of definitive findings can also be attributed to the restricted scope of our TL testing, which
was limited to a single month from a single school. Our experiments can be replicated and assessed
across several educational buildings. By determining the average outcome of these trials, a more cer-
tain conclusion can be drawn on the most effective technique.

In agreement with the findings presented in [8], TL increased the performance of our LSTM model.
The TL type responsible for this result was TL with no freezing, with a learning rate of 0.00001,
on school data which incorporates weather information. This approach yielded the only instance in
which TL set new best results in our research, not only compared to the performance of LSTM prior
to TL, but also surpassing the results of the highest-performing CNN-LSTM model. It is worth re-
membering that the aforementioned type of TL is also the only one that provided any positive results
for the CNN-LSTM. While it is arguable whether these small increases in performance are worth the
computational costs of TL, these results consistently showcase the potential of this type of TL.

The foundational, low-level layers of the ML models, were expected to not need changes during
TL. However, it is noticeable that the trainability of all layers was necessary for TL to be successful
at all. This suggests that the information captured in the first layers of the models has represented
higher-level features than expected, or that the TL school differed significantly from the training data,
requiring the model to change some fundamental expectations before being able to perform better. We
suspect that the latter case has a lower chance of being true than the former, because the TL building,
as well as all the other buildings used in our work, were of the same type, showing similar energy
usage trends throughout days and nights.

When it comes to performing TL, sources generally provide variations of tlmax as the general prac-
tice [31] [32]. The findings of our study suggest not to underestimate the approach of keeping the
trainability of the majority of the model’s layers.

It’s also worth noting one significant difference between the best-performing CNN-LSTM model and
LSTM model, which is the necessity of weather data. The best results of the CNN-LSTM show when
not including weather data, but the LSTM model exhibits noticeable deficiencies under the same
conditions, while performing similarly to the hybrid model when it is able to process weather data as
well. This demonstrates significant promise for utilizing the CNN-LSTM model in situations when
meteorological data is unavailable.

6 Conclusion

As seen in the results above, the analysis of our paper’s premise shows interesting, varied results.
Based on the literature on which we primarily focused, certain ideas mentioned in these papers showed
contrasting outcomes in relation to expectations within our specific setting. There was even a situation
in which two different stances of one paper were analysed, where one was confirmed to be correct,
and the other showed the contrary outcome compared to the original paper’s conclusions, in the con-
text of our paper.
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As mentioned in the previous section, the final results of performing TL show that, to perform the
best forecasting on a school with limited data, we can choose between a CNN-LSTM trained on data
without weather, without performing TL, or an LSTM trained on data with weather, after performing
TL with all the layers trainable, with a very low learning rate. This choice would ultimately boil down
to the user’s preferences, available data, and available computation power.

As also seen in the previous section, the best performing TL method was different from what’s gen-
erally suggested in the literature as a prime example of TL.

6.1 Future Work
Further tuning the hyperparameters of the models can prove to be an effective approach to increasing
their accuracy. While a model’s architecture can prove to be the best for a specific dataset, the impact
of its parameters can be very different for another dataset.

As an ML model’s efficacy is dependent on the quality of its training data, there can also be done a
revision on the preprocessing of the dataset, implying the removal of more outliers, even if this means
removing entire months or seasons from certain schools in the dataset.

Certain schools showcase unpredictable data, not following the normal energy usage change in a
building. Force majeure is a very powerful factor in the energy usage of schools, and may have been
the cause for irregularities in some parts of the data. The chance of such events happening on a spe-
cific day, as well as how the administration of a particular school chooses to react to the event, are
variables vastly different and more volatile than the data used in this paper. They surpass the models’
prediction capabilities, and if data affected by these events is part of the model’s learning process, it
could be as damaging to the accuracy as noisy data. Particularly to New York, the state containing the
schools analysed in this paper, the following events may have affected the data in an unforeseeable
way: Hurricane Sandy [33], heatwaves in multiple areas of the U.S.A [34] etc. Researching such
events further and their implications could help create better models.

Additional forms of TL can be experimented with. Initially, our research has limited the trainability
of layers during TL to either a minimal or maximal extent. Additional experiments can be conducted
to explore a wider range of frozen layer amounts. One additional aspect to consider while doing TL
experiments is the learning rate of the model. In the aforementioned trials, it would be best to ad-
ditionally apply a variety of learning rates: taking into account the findings obtained in our specific
scenario, one may achieve improved outcomes by utilizing lower ends of possible learning rates.

The partitioning of the data into a training set and a validation set based on school id’s yielded ac-
ceptable results. However, for future investigations, an alternative approach could involve temporal
splitting of the data rather than school-based splitting. This would entail selecting a specific time-
frame from all non-TL schools to be included in the training set, and a period directly following the
training set to be used for validation purposes.
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