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Abstract
In this thesis, the acoustic transmitting behaviour of a waveguide sideloaded with resonators is anal-
ysed using the transfer matrix method, the cost function and COMSOL. Comparisons are made be-
tween homogeneous systems, filled with water or air, and an inhomogeneous system that includes a
volume of air in the resonator and water in the waveguide. Subsequently, the water-air ratio in the res-
onator and resonator separation distances are optimized to obtain maximum attenuation. This thesis
has found that the inhomogeneous resonators serve as an effective low-frequency sound attenuator.
Shifting the resonance frequencies to the lower frequency range (100-1000 Hz) and increasing its at-
tenuating bandwidth, therefore achieving an average transmission of ≈ 0.08% in this frequency range.
The optimum water-air ratio in the resonator was found to be 100% air and the optimum waveguide
lengths between resonators (L2→10) for a 10 resonator system were found to be 0.02235 m, 0.1248
m, 0.1432 m, 0.1405 m, 0.1437 m, 0.1405 m, 0.1467 m, 0.1472 m and 0.0645 m respectively. The
COMSOL model validated the analytical solution of the frequency responses but did show diminished
correlation when the water-air ratio was altered from the evenly distributed configuration. To further
investigate this, additional research is recommended.
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1 Introduction

1.1 Metamaterials
To mitigate the excessive exposure of sound, different solutions are being applied today. The solutions
which are especially interesting make use of specially designed materials that are able to manipulate
the waves in more efficient ways than traditional materials are capable of. This kind of a material is
called a metamaterial (MM). This term was firstly introduced by Roger Walser in 1999, deriving the
word from the Greek word ”Mετα”, which means beyond [1]. The origin of the MM comes from
research done by John Pendry and Victor Veselago who focused on the microwave range of electro-
magnetic waves. Later it was found that their techniques also seemed to be applicable on mechanical
waves despite the difference in the physical nature of the two types of waves. The reason why this is
possible originates from the similarities between the Maxwell and Helmholtz equations [1].

Figure 1: Classification diagram of metamaterials with the focus on acoustic metamaterials [1].

Utilizing these similarities, scientists found that the specially engineered materials for electromagnetic
waves would have a similar effect on acoustic waves. The first proof of these acoustic metamateri-
als (AMMs) dates back to 2004 when Li and Chan conducted their research about a double-negative
acoustic system [1]. Nowadays many different types of AMMs are used, categorized by their func-
tion, geometry and other features. Figure 1 presents a diagram visualising this classification.

An active AMM differs from a passive AMM through its possession of an external stimuli. This
enables the AMM to alter its properties and therefore also its functionality. The stimuli can be ac-
tivated through various control mechanisms. Passive AMM’s can be subdivided into transmission
line structures and those which contain resonating components. The transmission line AMMs uses
materials as a waveguide to either transmit or produce sound, depending on the desired objective [2].
Resonant AMMs are again divided into three different subcategories, based on their disparity in pa-
rameters. These parameters can take single negative, double negative or near zero values. Usually
the parameters of importance are the effective mass density and the effective bulk modulus. This can
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cause an AMM to have properties like negative refraction, sound absorption or other unique acoustic
behaviors [1].

1.2 Motivation

Nowadays many off-shore renewable energy sources are being constructed in Europe [3], with wind
farms making up the majority of these sources [4]. When installing these wind farms, impact pile-
driving procedures are used that generate very high intensity sound waves in the low frequency range.
The frequencies that have the highest intensity are usually in the frequencies range from 10 Hz to
1000 Hz which coincides with the hearing ranges from many marine mammals [5]. This sound has
the risk to induce lasting hearing damage or even total hearing loss while hearing is essential for many
marine mammal’s survival.

To mitigate this sound, various techniques are applied. One example currently uses an AMM in
the form of cylindrical resonators. The geometry of these resonators are designed to have a natural
frequency that matches the harmful frequencies encountered during pile driving, therefore attenuat-
ing the sound [6]. An image of a panel that consists out of these resonators can be found in Figure 2.
The panel is depicted upside-down. When the panel is slowly submerged underwater, the resonators
naturally encapsulate a volume of air. Therefore, an inhomogeneous acoustical system is created with
water as the surrounding fluid and a ratio of water and air inside the resonators.

Figure 2: Resonant AMM used at 20-30 meters depth during pile-driving.

Upon observation, several questions arise. What is the difference in sound attenuation when the
resonators are filled with water or air only (homogeneous)? And how does the air in the resonators
influence this attenuation? In addition to this, the resonators are positioned in a specifically designed
layout on the AMM panel. There could be various reasons for this, however, what would be the
optimum configuration to ensure maximum attenuation?
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1.2.1 Aim of the project

To answer the previously mentioned questions, the aim of this project is to analyse the acoustic be-
haviour of the resonators in a homogeneous and inhomogeneous case. This is done by using a sim-
plified, one dimensional model that consists out of a waveguide and a linear array of sideloaded res-
onators. Using this model, this project also aims to find the optimum distances between the resonators
for an inhomogeneous system. Both objectives are investigated through analytical calculations, uti-
lizing the transfer matrix method (TMM) and the cost function. The systems are analyzed in the
frequency range of 100-1000 Hz through the transmission coefficients and transmission loss. This
will be done for different amount of resonators, separation distances and water-air ratios. The water-
air ratio and resonators separation will be optimized utilising a maximum of three distinct methods.
The optimum resonator separations will be further investigated using models made through COM-
SOL using Pressure Acoustics, Frequency Domain (acpr) from the acoustic module. The frequency
response of both the analytical and COMSOL solutions will be compared.

For the homogeneous systems, it is expected to show high transmission up till its resonance fre-
quency where a short but high intensity dip in transmission will occur. The inhomogeneous system
is expected to show similar response, however, with a lower resonance frequency. Regarding the op-
timization, a non-periodic configuration is predicted to obtain better attenuation as in this way, the
configuration is more likely to be suitable for a broader variety of frequencies. Lastly, the volume of
air in the resonator in the inhomogeneous system is expected to lower the resonance frequency, as the
speed of sound in air is less than a quarter than the speed of sound in water.

This research aims to benefit the current use and development of resonant AMMs in underwater
environments and create a deeper understanding on inhomogeneously filled resonators.
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2 Background Literature

Several physical principles are applied in this thesis to develop and analyze the model. To offer some
theoretical perspective, the most significant principles that support the findings are discussed in this
section.

2.1 Sound propagation

When sound is traveling without obstruction through a medium it usually dissipates exponentially.
This decay is dependent on the characteristic properties of the medium. With an initial amplitude of
A0, this dependency will have the following form [7]

A(x) = A0e−µx. (1)

Here x denotes the distance travelled and µ represents the propagation constant. This consists out of
a real and imaginary part which can be denoted as µ = α+ jβ. The imaginary component is known
as the phase constant and the real part is known as the attenuation constant. In this context, the
symbol µ can be understood as the MMs effective wavenumber (k). Waves can travel in frequency
bands where µ is imaginary. Attenuation happens in band gaps or frequency values that give rise to a
real part of µ. This real component defines the degree of attenuation of waves that are transmitted. [8].

The acoustic pressure (p) and displacement vector (u) of plane waves in unbounded fluids moving in
the z direction are expressed as [9]

p(z, t) = Aexp jω(t − kz),

u =

(
0,0,

− jAk
ρω2 exp jω(t − kz)

)
.

(2)

Pressure and velocity are therefore related through

p(z, t) = Z · vz, (3)

where Z represents the acoustic impedance of the fluid. This serves as the resistance of a medium to
a longitudinal wave motion and describes the connection between the sound pressure that is acting
and the resulting particle velocity [10]. It is analogous to electrical impedance which is also known
as the electrical resistance. When waves are discussed that propagate through confined mediums, the
acoustic impedance is defined as

Z =
ρc
S
. (4)

Here ρ is the fluid density, S the cross sectional area of the confinement and c is the speed of sound in
the medium. When the propagating sound encounters a change in material or substance, the behaviour
of the wave is dependent on the similarity between the two impedance’s. Large impedance variations
result in a significant percentage of the wave being reflected. Accordingly, the transmission and
reflection coefficients are defined as follows [11] [12]:



Chapter 2 BACKGROUND LITERATURE 9

T =
2Z1

Z1 +Z2
,

R =
Z1 −Z2

Z1 +Z2
.

(5)

2.2 Sound Attenuation

Various methods can be used to attenuate sound. In order to mitigate sound waves, they can first be
scattered/reflected using for example the impedance mismatch. If, however, the scattering of waves
is undesired, the sound must be attenuated using absorption. Sound absorption happens through vari-
ous approaches; viscous losses, the use of resonators, vortex shedding, thermal elastic damping, and
direct mechanical damping from the material itself are some examples. [10]

To accomplish more effective sound attenuation as opposed to the regular dissipation, viscous ef-
fects are maximized. In regular absorption panels, this is done by using porous materials. Because of
their cellular and less dense structure, the surface area where viscothermal effects occur is optimized
[10].

2.3 Resonators

In resonators, viscous friction inside the resonator causes sound absorption. Resonators are geome-
tries designed to selectively amplify or attenuate specific frequencies of sound. When the frequency
of the sound wave matches the natural frequency of the resonator, resonance occurs. In addition
to the absorption through thermal viscous effects, resonators radiate sound waves from their open-
ing, causing it to serve as a sound source. This enhances the sound-attenuating qualities through
resonance-based destructive interference [13]. Although there exists a great variety of acoustical res-
onators, the two that are most widely used are the Helmholtz resonator and the quarter-wave tube.

The geometry of a Helmholtz resonator, named after the German physicist Hermann von Helmholtz
[14], consists of a neck and a cavity. During resonance, the fluid in the neck vibrates, being pushed
inwards by oncoming waves and outwards by the opposing pressure that the compressed fluid in the
cavity is providing. This resonator is therefore approximated as a mass-spring system, the mass con-
sisting out of the fluid volume occupying the neck and the spring consisting out of the compressed
fluid volume in the cavity. To calculate the natural-frequency of this resonator, the following equation
is used [15]

fr =
c

2π

√
S

LV
. (6)

S representing the cross-sectional area of the resonators opening, L the length of the neck and V the
volume of the cavity. The second type of a resonator is a quarter-wave tube. This can be seen as a
simple side branch, having a constant cross-sectional area. The resonator shows resonance at [15]

fr =
nc
4L

. (7)



10 Chapter 2 BACKGROUND LITERATURE

With n referring to the order of the resonance. Reflected waves that destructively interfere and vis-
cothermal effects cause absorption in this resonator as well.

2.4 Physical System
As previously mentioned, a basic model is developed in order to analyse the attenuating characteristics
of the resonators. This section will describe how this is approached.

2.4.1 The waveguide

To start off, a wave guide has to be correctly approximated. When a plane wave enters the waveguide,
the no-slip condition at the walls alters the flow profile. This effect can be seen in Figure 3 below.

Figure 3: Flow profile in a cylindrical tube. [16]

To model closer to the real scenario, the waves in the waveguide are considered as plane waves.
Viscous effects therefore need to be neglected. To allow for this approximation, the viscous boundary
layer thickness δ =

√
2η/ρω has to be much smaller than one (δ << 1). The allowed frequency

range therefore becomes

2η

πρd2 << f <
c

2d
, (8)

where η is the dynamic viscosity coefficient, ω the angular frequency and d the waveguide’s diameter
[7].

2.4.2 The resonators

The resonators are sideloaded to the waveguide as depicted in Figure 4. The focus on the low fre-
quency range allows for the simpler approximation of the resonators geometry that considers the
resonators to be perfect cylinders. At lower frequencies, the volume becomes the primary factor
influencing the resonance frequency. [8].

Figure 4: Schematic of the waveguide with sideloaded resonators.
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2.4.3 Wavenumber and impedance

To compare the analytical results with the results obtained through COMSOL, the viscous losses
need to be included for the waveguide. Therefore, the equations describing the wavenumber and
characteristic impedance are altered to include complex values and therefore attenuation.

ki =
ω

c
(1+

(1− j)δ
ri
√

2
(1+(γ−1)

√
Pr)),

Zi =
ρc
Si
(1+

(1− j)δ
ri
√

2
(1− (γ−1)

√
Pr)).

(9)

Where the subscript i denotes the geometry under consideration. i = w refers to the waveguide, i = rn
to the resonators neck and i = rc represents the resonators cavity. When the system is homogeneous,
Zrn = Zrc and krn = krc. However, when the resonator is partially filled with water and air, Zrn will
represent the water filled part and Zrc the part of the resonator that includes air. γ and Pr represent the
heat capacity ratio and Prandtl number respectively [17] [18] and will be taken as γ = 1.4 and Pr =
0.71 in air and γ = 1.330 and Pr = 7.0 in water.

2.5 Transfer Matrix Method

The aforementioned waveguide can be approximated as an one-dimensional system. Therefore, to
analyse the transmittance, the transfer matrix method (TMM) can be used. This method is also ap-
plied in the one-dimensional wave analysis of quantum particles, electromagnetic and elastic waves
[19].

The TMM’s core concept is the division of the system into pieces. There is a transfer matrix for
every fragment that describes its characteristic behaviour. Simple continuity conditions can be used
to regulate the transitions using transfer matrices. This makes it possible to utilise matrix multiplica-
tion to ascertain, from the wave’s initial conditions alone, its final properties. The transfer matrix in
a system of length L relates the initial sound pressure p and normal acoustic velocity v to its ultimate
values mathematically through [

p
v

]∣∣∣∣
x=0

= T

[
p
v

]∣∣∣∣
x=L

. (10)

T in this description stands for the transfer matrix and is derived using the following equation con-
taining N resonators:

T =

[
T11 T12

T21 T22

]
= ∏(TwnTr)

N−1Twn. (11)

Twn and Tr corresponding to the transfer matrices of the waveguide, having a length Ln, and resonator
respectively. n refers to the nth Twn. The formation of these matrices is as follows [17] [18] [20]:

Twn =

[
cos(kLn) jZwsin(kLn)
j

Zw
sin(kLn) cos(kLn)

]
, (12)
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Tr =

[
1 0
1
Zr

1

]
. (13)

The impedance of the resonant element Zr is also obtained using the TMM. This can be derived using
equation 12, with Ln now representing the length of the neck and cavity (lrn or lrc respectively) of
the resonator. Next to this, an additional transfer matrix is used to captivate the length correction of
the resonator due to the discontinuity from the neck to the waveguide. This matrix is formulated as
follows [20]:

T∆l =

[
1 jZrnkrn∆l
0 1

]
. (14)

with ∆l representing the length correction as [20]

∆l = 0.82(1−0.235
rrn

rw
−1.32(

rrn

rw
)2 +1.54(

rrn

rw
)3 −0.86(

rrn

rw
)4)rrn (15)

Combining these matrices through T = TrnT∆lTrc, the resonators impedance (Zr) can be derived as the
following [20]:

Zr =− j
cos(krnlrn)cos(krclrc)− (Zrn

Zrc
)krn∆l cos(krnlrn)sin(krclrc)− (Zrn

Zrc
)sin(krnlrn)sin(krclrc)

sin(krnlrn)cos(krclrc)/Zrn − krn∆l sin(krnlrn)sin(krclrc)/Zrc + cos(krnlrn)sin(krclrc)/Zrc
.

(16)
Now using the transfer matrices from equations 12 and 13, complemented by the impedances and
wavenumbers from equations 9 and 16 the transfer matrix T can be computed. Consequently, the
complex transmission, reflection and absorption coefficients are obtained using the formula below
[18]

t =
2

T11 +T12/Zw +T21Zw +T22
,

r =
T11 +T12/Zw −T21Zw −T22

T11 +T12/Zw +T21Zw +T22
,

α = 1−|t|2 −|r|2.

(17)

Based on this, the transmittance of sound waves can be estimated for different frequencies. Conse-
quently, the transmission loss (TL) can be computed as

T L = 20log10(t−1) [dB]. (18)

2.6 Optimization
For optimization, a cost function is formulated. This function, which calculates the average difference
between the desired and actual result, appears as follows

J =
1
m

m

∑
i=1

|t0 − t|= 1
m

m

∑
i=1

t. (19)
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Where m denotes the number of frequencies that are being evaluated, t0 the desired transmission
coefficient which is in this case 0% and t the obtained transmission coefficient.
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3 Simulation/Modeling
The theory previously discussed is implemented through various models. This section will cover the
techniques applied in these models.

3.1 Assumptions
To simplify the real life scenario multiple assumptions had to be made. The main reasons for this
being the complexity of the system and time constraints.

Firstly, the sound waves are defined as ideal plane waves. The waves that encounter the resonators in
the real scenario are however not perfect planes. Secondly, the system is defined to have sound hard
boundaries, meaning that no energy can leave the system. The resonators in question are constructed
out of a plastic material that does in fact allow for transmission. Next to this, the system is assumed
to be perfectly stationary, therefore making internal vibrations of the structure impossible which is
not the case in real life as well. Lastly, no higher pressures and densities are used for the fluids. This
deviates from the real physical system that is lowered into water. Causing especially the density of
air to increase.

The resonant AMM depicted in Figure 2 comes in different shapes and sizes to account for the de-
creased volume of air at greater depths. The models in this report will however only analyses the
frequency responses of the smallest resonator used in the shallowest waters ranging up to 20 meters
in depth to minimize the impact of the increased density of air. The radius and length of this resonator
are 11.176 cm and 43.7 cm respectively. Larger resonators however are expected to show similar
responses, with the difference in geometry causing a shift in the resonance frequency.

During all modeling, a density of 1.293 kg/m3 for air and 998 kg/m3 for water was used. The speed
of sound was taken to be 343 m/s and 1461 m/s for air and water respectively.

3.2 Python
Using python, the TMM is implemented over frequency range of 100 - 2000 Hz. The frequencies
below 100 Hz are not included in the analysis as these frequencies are too low for the formulas to por-
tray accurate results. Additionally, the effect of the waveguides radius and L1 and Ln is investigated.
If this effect appears to not be significant, they are set as constants. Afterwards, the code is firstly
checked for the homogeneous case with N = 0,1 and compared to its theoretical frequency response
characterized by

t0 =
1

eikwL , (20)

t1 =
2

2 jsin(kwL)cos(kwL)(Zw
Zr

+2)+(cos2(kwL)− sin2(kwL))(Zw
Zr

+2)
. (21)

As can be seen from equation 21, the transmittance becomes highly dependent on the impedance ratio
Zw/Zr when resonators are added. After the theoretical result matches the results obtained through
python, more resonators are added to the system. For the inhomogeneous system, a neck and cavity
length have to be determined to represent the water-air ratio. This ratio was firstly set to a 50/50 ratio,
to be optimized later on in the process. The resulting transmission coefficient and transmission loss
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can then be compared to literature. If the results obtained are similar, the code is operating correctly.
Consequently, the optimizing can begin.

3.2.1 Optimizing lrn/lrc

This step will consist out of optimizing the water-air ratio for N = 1. The cost function in combination
with t will be used to analyse the transmitting behaviour in the chosen frequency range for every
water-air ratio. The ratio will range from 0-100% air, starting at 0% and increasing in steps of 1%.
The ratio that corresponds to the lowest value of J will be used as the fixed water-air ratio in further
simulations. After this is found this value will be compared with systems that include more resonators.
If this appears to be similar the ratio will be set constant.

3.2.2 First optimization method for Ln

If the first and last transfer matrix of the waveguide do not have an considerable effect on the wave-
field, they do not have to be optimized. Therefore, the first optimization method starts with a two
resonator system. The same approach will be used as when optimizing lrn/lrc. The value of L2 that
causes the minimum cost function will be obtained and afterwards set fixed in the next configuration.
This next configuration will now include three resonators. L3 will now be determined in the same way
and set constant. This continues until all intermediate distances are optimized. The range for which
Ln is optimized will lay between 2rn and 1 m. Greater distances are not taken into consideration since
these lay out of the focus of this thesis.

3.2.3 Second optimization method for Ln

After the first optimization is done, the total optimized configuration is again analysed. Now each
resonator is moved from its position, confined by the other resonators in their previously determined
positions. The total length of the waveguide will therefore be kept constant. The optimization will be
done once systematically, starting with L2 and ending with L(n−1), and once in reverse order.

3.2.4 Third optimization method for Ln

To assess the quality of the previously mentioned optimization methods, a third method will be
applied. This method will generate random lengths for all waveguides under consideration and
calculate the corresponding value for J of the system. Certain constraints will be used to make
sure the resonators do not overlap each other. The configuration that obtains the lowest value for
J will be optimized using the second optimization method. Consequently, the lowest value ob-
tained in that step will optimized again. However, this time it will be done dynamically using the
scipy.optimize.minimize module from python, using the previously obtained configuration as
the initial guess.

3.3 COMSOL
The next step was to analyse the configuration obtained through the third optimization method using
the Finite Element Method (FEM). For this the Pressure Acoustics, Frequency Domain was used out
of the Acoustic module to solve for the acoustic problem. Due to my inexperience with COMSOL,
the model ”Helmholtz Resonator with Porous Layer” [21] appeared to be of great help for the foun-
dation of this model.
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The pressure acoustics in the waveguide, resonator neck and resonator cavity are defined using the
effective wavenumber and characteristic impedance from Equation 9, each containing the character-
istics of its operating medium. For visualisation of the model, Figure 5 shows the cavity in green
and the neck coloured in blue. The lengths of these parameters are altered during the optimization
process. To ensure that the wave field at the inlet and outlet is not directly influenced by the resonator,
an extra 0.3 m is added.

Figure 5: Schematic of the periodic configuration with the resonator neck and cavity coloured in blue
and green respectively.

After the geometry and acoustic pressure is set-up, a plane wave is defined to enter the waveguide.
For this, the Port boundary condition is applied. This boundary condition is specially designed to
excite and absorb sound waves as they enter or exit a waveguide of various shapes. One port therefore
has to be defined at the inlet with an amplitude which in this model will be set to 1, and one port at
the outlet without initial excitement. The azimuthal and radial mode numbers both have to be set to 0
at both ports to define the plane wave. Utilizing both ports, the total acoustic field can be denoted as

pt = ∑
i∈bnd

Aineiφ(Si j +δi j)pi, (22)

where pt represents the total pressure, i the summation at the given boundary over all ports, Ain the
initial amplitude at port j, φ the phase of the incident field, Si j the scattering parameter, pi the shape
of the mode at port i. From the scattering parameters, the transmission (S11), reflection (S21) and
absorption coefficient can be immediately calculated [22].
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4 Results

In this section, the findings of the analytical and FEM model will be displayed and critically analysed.

4.1 Analytical results

To start off, the waveguide’s diameter had to be determined. Using equation 8, this value was known
to be in the range of 0.8 mm << d < 375 mm. In this range, various diameters were tested in a system
using only 1 resonator. The results can be found below.

Figure 6: 1 resonator system with increasing rw (m) for an air filled system that includes losses.

As can be seen, with every centimeter the radius is decreased, the intensity of the peak decreases as
well. The same occurred when using water as the homogeneous medium or when using the inhomo-
geneous system. To still obtain clear and visible results, the chosen diameter was therefore chosen to
be 0.10 m.

Afterwards, the effect of the first and last transfer matrix were analysed in all three cases. The analy-
ses all showed similar results. For air, the results are shown in Figure 7. From this it can be concluded
that next to viscous losses, these lengths does not have an effect on the results. Therefore, the first
and last transfer matrices (Tw1 and Twn) do not need to be included in the optimization method and are
assigned the fixed length of 0.2 m.
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(a) (b)

Figure 7: 1 resonator system in air with increasing L1 and Ln (m) for (a) the lossless case and (b) the
case that includes losses.

The last dimension that needs to be determined is the water-air ratio in the resonator for the inhomo-
geneous case. When the resonators are submerged underwater, parts of the air escapes the encapsu-
lation. Furthermore the air gets compressed. Therefore, the neck and cavity length will first be set
equal, meaning that the resonator is filled with water for 50% and with air for the other 50%. The
effect of this ratio on the transmission coefficient will later be analysed and optimized.

4.1.1 Frequency responses

With rw, L1, Ln and lrn/lrc now having fixed values, the only dimension that is missing is the value
for Ln. Because no optimization can be done yet, this value will first take the constant value of 0.2
m. Later on this will be changed to its optimum values. Evidently, the frequency responses for the
homogeneous and inhomogeneous cases could be obtained. The results that only consider losses in
the resonators can be found below. The expected resonance frequency of the resonator was found at
1962 Hz and 8358 Hz in air and water using Equation 2.3.

Figure 8: Frequency response for an air filled system with different number of resonators.

Firstly we will compare Figure 8 and 9. These responses look very alike, with each peak also occur-
ring around the expected resonance frequency. Next to this, a small peak occurs before the resonance
frequency. In water, this peak is a greater distance apart from the expected resonance frequency.

When comparing the inhomogeneous case depicted in Figure 10 to the homogeneous cases, an in-
teresting difference can be observed. The water-air filled resonators cause the resonance frequencies
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Figure 9: Frequency response for a water filled system with different number of resonators.

Figure 10: Frequency response for a water-air (lrn = lrc) filled system with different number of res-
onators.

to shift towards the lower frequency range. In addition, the resonance bandwidth increases signifi-
cantly. Consequently, near zero transmission is seen in the frequency range of approximately 100 -
600 Hz. After this frequency range, the transmission coefficient increases quickly. This response is
similar to the inhomogeneous response found in research done by Boyun Liu and Liang Yang [8].

What is important to notice is that in all cases, adding resonators seems to have a positive effect
on the intensity of the peak. Alongside this, a slight increase in the attenuation bandwidth can be
observed as well.

4.1.2 The effect of adding resonators

Using the cost function from Equation 19, the effect of adding multiple resonators was analysed. The
frequency range used for the different systems was 100-1000 Hz, as this is the range that needs to be
attenuated. Given previous observation, the homogeneous cases do not show attenuation in this range
as their resonance frequency falls outside of this range. Therefore, only the inhomogeneous case will
show considerable decrease in transmission as can be seen in Figure 11.The cost function for this
system converges to around 0.3 transmission.

4.1.3 Optimizing lrn/lrc

To find the effect and optimum ratio for the resonator’s neck and cavity, the cost function and the
transmission coefficient were compared for N = 1, 2, 3, 5, 10 and 15. In Figure 31, the cost function
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Figure 11: 1 resonator system with increasing rw (m) for the inhomogeneous system.

and transmission coefficient for N = 5 can be seen. Because all figures showed the same optimal ratio,
the other results can be found in Figure 28 in the Appendix.

Figure 12: Cost function with increasing lrc and the transmission coefficient for different water-air
ratio’s while N = 5.

From this figure, it is evident that in the inhomogeneous instance, the resonators perform most effi-
ciently when their volume is filled solely with air as the operating medium. Considering it is extremely
difficult, if not impossible, to acquire and maintain this ratio throughout operation, a more realistic
figure of 90% is utilised in the remaining models.

4.1.4 Optimizing Ln

It can be seen from Figure 11 that the effect of adding more resonators has diminished considerably
around 10 resonators. Therefore, modelling and optimisation was done for a 10 resonator system.

Using the three optimization methods, various configurations have been found. All these configu-
rations were again assessed using the cost function. The results of these optimization methods can
be found below in Table 1, where the subscripts f and b describe the forwards and backwards opti-
mization methods. The most efficient configuration (3b) was then dynamically solved again using the
scipy.optimize.minimize module which resulted in the lowest average transmission (3sb).
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L2(m) L3(m) L4(m) L5(m) L6(m) L7(m) L8(m) L9(m) L10(m) J
0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.01733794511
1 0.0223 0.1790 0.0223 0.1007 0.0399 0.0732 0.0223 0.0223 0.0380 0.01485543612
2 f 0.0223 0.1790 0.1007 0.1183 1 0.2496 0.1575 0.1457 0.4416 0.01692701720
2b 0.0223 0.1452 0.138 0.1733 0.0949 0.0773 0.0264 0.0264 0.0264 0.01649387237
3 f 0.0223 0.1790 0.1007 0.1183 1 0.2496 0.1575 0.1457 0.4416 0.01692701720
3b 0.0223 0.1420 0.0768 0.0920 0.2885 0.1431 0.1455 0.1469 0.0645 0.00987555465
3sb 0.02235 0.1248 0.1432 0.1405 0.1437 0.1405 0.1467 0.1472 0.0645 0.00799516348

Table 1: The periodic and all optimized configurations with 90% air in the resonator and their corre-
sponding value for the cost function.

The frequency response that corresponds to the optimized system can be found below in Figure 13.
The transmission in the frequency range has now decreased to a maximum of ≈ 4%. Therefore it
can be said that the optimization of the water-air ratio and resonator placement resulted in lower
transmission compared to Figure 11, which is in line with the desired outcome. The other frequency
responses of the optimized systems can be found in the Appendix.

Figure 13: Transmission coefficient and TL for the best configuration obtained through optimization
method 3 with 90% air in the resonator.

4.2 COMSOL results

To verify the analytical solutions, the periodic and final optimized arrangement were analysed using
the FEM. The geometries and their corresponding mesh are presented in the figure below. It is es-
sential to highlight that in the pressure distribution plots given in the following sections, the absolute
value of the pressure is taken. This is done to more clearly illustrate what happens in and around the
resonators.
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(a)

(b)

Figure 14: Geometry and mesh for the (a) periodic and (b) optimized configuration.

4.2.1 Waveguide

To clearly depict the effect of the sideloaded resonators, firstly the waveguide is analysed. The pres-
sure distribution in the homogeneous air and water case can be found in Figure 20.

(a)

(b)

Figure 15: Pressure distribution for the (a) air and (b) water filled system.

As can be seen, most of the wave is transmitted with 17.3% and 3.5% of the pressure being absorbed
through viscus effects in the air and water case respectively. This difference in attenuation can be
attributed to the larger δ in air than in water.
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4.3 Homogeneous
In this section, again the pressure distribution is given for the homogeneous air and water cases. This
time however, all resonators are side loaded to the system. The following plots show the distribution
during and out of resonance.

(a)

(b)

Figure 16: Pressure distribution for air (a) out of resonance (400 Hz) and (b) during resonance (1875
Hz).

(a)

(b)

Figure 17: Pressure distribution for water (a) out of resonance (1000 Hz) and (b) during resonance
(7950 Hz).

The plots in resonance show a much higher pressure in the resonators than the plots that are out of
resonance. Also, the minimum pressure found in the geometry is more than four orders of magnitude
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smaller. To see more clearly what happens at a single resonator during resonance, an isosurface plot
can be seen below in Figure 18. This figure more clearly depicts the radiating and point like acoustic
impact of the resonator. The transmission, reflection and absorption of both systems is presented in
Figure 19.

Figure 18: Isosurface pressure distribution plot for a homogeneous water system during resonance at
7950 Hz.

(a) (b)

Figure 19: The frequency response of the transmission, reflection and absorption coefficients in the
homogeneous (a) air and (b) water system.

4.3.1 Inhomogeneous

For the inhomogeneous system, the pressure distribution plots are given for the periodic and optimized
configuration.
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(a)

(b)

Figure 20: Pressure distribution for the (a) periodic and (b) optimized inhomogeneous system with
90% of the resonator filled with air at a frequency of 200 Hz.

From these plots, the difference in attenuation is less visible. It can however be noted that the min-
imum value is lower for the optimized configuration while its wave guide length is slightly shorter
which allows for less viscous losses. To give more insight on what happens with different volumes of
air in the resonator, another isosurface plot of the first resonator is given below.

(a) (b)

Figure 21: Pressure distribution using isosurfaces for the first resonator which is (a) 50% and (b) 90%
filled with air at a frequency of 200 Hz.

These isosurfaces more clearly visualise the increased attenuation at the resonators opening. The
transmission, reflection and absorption coefficients of both the periodic and optimized configuration
are shown in Figure 22. These plots also show the difference between having 50% or 90% air volume
in the resonator, causing an increase in the attenuation bandwidth in both the analytical and FEM
solutions.
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(a) (b)

(c) (d)

Figure 22: The transmission, reflection and absorption coefficients in the inhomogeneous system.
(a) and (b) showcase the periodic geometry, while (c) and (d) demonstrate the optimized system.
Additionally, (a) and (c) depict the results using a resonator that is for 50% filled with air, whereas (b)
and (d) uses a 90% air-filled resonator.

The COMSOL and analytical results show very similar responses in the 50% air-filled resonator
system. This similarity however weakens when the water-air ratio in the resonator is altered. To
investigate the cause of this, various variables in the analytical solutions were altered one by one. In
the figure below, the length correction (∆l) was manually tuned to comes as close to the COMSOL
solution as possible. This newly found length correction is depicted as ∆lt .

(a) (b)

Figure 23: The transmission, reflection and absorption coefficient for the (a) periodic (∆lt = 0.42∆l)
and (b) optimized system (∆lt = 0.1∆l).
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To investigate the behaviour of ∆lt , multiple water-air mixtures were plotted using the periodic config-
uration. These plots can be found in the Appendix. Plotting ∆lt in terms of ∆l against the percentage
of air in the resonator resulted in a plot having a close to linear relation. This result is depicted in the
figure below.

Figure 24: Air volume (%) versus ∆lt given in terms of ∆l. x represents the volume of air in the
resonator in percentage.

This technique could not be applied to the optimized configuration as changing the length correction
alone did still leave a considerable difference between the two results.
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5 Discussion

This thesis aimed to investigate the transmitting behaviour of a waveguide sideloaded with identical
cylinderical resonators for a homogeneous and inhomogeneous system. Consequently, determining
the optimum separation distances between the resonators and their optimum water-air ratio in the
inhomogeneous case. Using analytical models that utilizes the TMM, cost function and a second
model constructed through COMSOL, various results have been obtained. The quality and accuracy
of these results will be discussed in this section.

5.1 Homogeneous vs. Inhomogeneous Systems

To better understand the effect of filling the resonators with air, two homogeneous cases were mod-
elled next to the inhomogeneous case. The first homogeneous system was filled with air and the
second system was filled with water. The frequency responses of these systems were as expected,
with both resonance frequencies positioned around their theoretical value, causing a short decrease in
transmission. When resonators were added, the response became increasingly irregular and another
decrease in transmission occurred before the resonance frequency. These irregularities can be asso-
ciated with the increasing complexity of the final transfer matrix T when more resonators are added
to the TMM, therefore causing additional attenuation before the resonant peak. To ensure that these
irregularities were not mathematical errors, they were investigated using the FEM. In Figure 19, it
is observed that both results show similar behaviour. The fluctuations can therefore be attributed to
additional scattering caused by the resonators. The biggest difference between the two solutions can
be seen for air. In this instance, the FEM yielded higher attenuation through viscous effects and lower
attenuation during resonance.

For the inhomogeneous system, the greatest difference in the analytical calculations lays in the trans-
fer matrix of the resonant element. In this segment of the computations, the neck and cavity are as-
signed different material properties, hence, each having a different wavenumber and impedance. This
causes terms that would otherwise be cancelled out in Equation 16, to be taken into account. This term
is dependent on the impedance match of the two fluids, causing the result to highly differ. To give a
clearer insight to the different behaviour of the ratio Zrn/Zrc in the homogeneous and inhomogeneous
case, its frequency response is included in Figure 25 in the Appendix. This response consequently
influences Equation 21, where the impedance ratio between the resonator and the waveguide is cru-
cial in determining the transmission. When Zw >> Zr, minimum transmission occurs. Although a
different response was expected for the inhomogeneous system, the results were still surprising. It
was expected that the addition of air in the resonator would lower the resonance frequency. However,
the fact that it would accomplish this so effectively and for such a greater bandwidth than the homo-
geneous cases was not anticipated. The FEM solutions validated this response.

Although many differences in the frequency responses of the homogeneous and inhomogenous sys-
tems were observed, an important similarity was apparent. The similarity being the increase in TL for
every added resonator, proving the increase of resonators to be essential for higher attenuation. This
result was highlighted in Section 4.1.1. Considering that the optimization was specifically focused
on the frequency range from 100-1000 Hz, the inhomogeneous system appeared to be a highly more
efficient approach for sound mitigation. Therefore, answering the question governing the efficiency
of homogeneously filled resonators during low-frequency attenuation.
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5.2 Optimization inhomogeneous system

Firstly, the optimum water-air ratio was obtained so it could be applied in the next optimization pro-
cesses. This was done using the cost function. The effect of the water-air ratio was analysed for
systems with 1, 2, 3, 5, 10 and 15 resonators, all showing similar results. It could therefore be
concluded using the analytical model, that increasing the volume of air in the resonator positively
influences attenuation. This result was also confirmed using FEM and displayed in Figure 22. The
reasoning behind this improved attenuation can be traced back to Equation 16 as well. Now it is not
the impedance ratio Zrn/Zrc and wavenumbers that plays an important role as this is not dependent
on the volume, but the lengths lrn and lrc. The effect of increasing lrc was also investigated using
the FEM. Using isosurfaces, the increased acoustic impact was clearly visualised and in Figure 22, an
even greater increase in the attenuation bandwidth for greater air volumes than the analytical solutions
could be observed. The difference between these results was investigated and concluded to be in the
length correction (∆l) of the resonator. The relation between the tuned length correction ∆lt and the
air volume percentage (x) was found to be ∆lt = (-1.245x + 1.5725)∆l. However, because the tuning
parameter was determined visually and only five different ratios were tested, this result is deficient in
its accuracy.

Regarding the optimization of Ln, three different approaches were applied. All of these approaches
utilizing the cost function. Initially, the cost function of the first optimisation technique was lower
than that of the identical configurations found using optimisation methods 2 and 3 f , which was not
as expected. Optimization method 3b did, nonetheless, present an enhanced arrangement. This was
again optimized to result in the most efficient configuration 3sb with an average transmission of ≈
0.8%. From Table 1, it can be seen that this value is less than half of the periodic arrangement. There-
fore, the optimized arrangement proves to be a more effective approach.

If more iterations were done using the third optimization method, it is likely that a lower transmission
could have been obtained. Nonetheless, the average transmission is sufficiently low to produce the
necessary level of attenuation in sound. It can therefore be said that this optimization process was
successful. With the optimum values for L2→10 found to be 0.02235 m, 0.1248 m, 0.1432 m, 0.1405
m, 0.1437 m, 0.1405 m, 0.1467 m, 0.1472 m and 0.0645 m respectively. Using the model in COM-
SOL, this configuration was also found to have an increased attenuation. The analytical and FEM
solutions for the optimized configuration did however show a lower correlation in their responses.
This dissimilarity increased when the air volume in the resonator was set to increased. The analytical
and FEM solutions do however show increased attenuation in the optimized configuration.

Lastly, because in all optimization the cost function was applied, its quality needs to be assessed.
Although this function is efficient in calculating the average transmission, it does not include clear
insight to any dips or peaks in the frequency response. As a result, high intensities could possible still
pass through some of the systems that were analysed. Examples of this are the optimized configu-
rations 2 f and 3 f found in the Appendix. This issue fortunately, disappears when the corresponding
TL or transmission coefficient are plotted and examined visually. Therefore, this is not regarded as
problematic and the quality of the optimization technique is validated.
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5.3 Future research
To return to the motivation for this research, the findings can be translated back to the resonant AMM
shown in the Introduction. Where the distances Ln are the distances between the resonators on the
AMM panel and rw the vertical separation of the system. Furthermore, the differences between ho-
mogeneous and inhomogeneous resonators together with the findings on the optimum water-air ratio
can be used to determine if the resonators should be refilled during operation.

If this model was to be further investigated, the transmitting behaviour could be tested with a plane
wave entering the waveguide at an oblique angle. Additionally, the radius of the cavity could be in-
creased to observe the dissimilarity between utilizing a quarter-wave tube or a Helmholtz resonator.
Furthermore, to improve the understanding of inhomogeneously filled resonators, further research
could be conducted on the accurate representation of the length correction (∆l), as problems arose
between the FEM and analytical solution in this research. Lastly, the differences in the FEM and
analytical solutions for the optimized arrangement require further clarification.
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6 Conclusion
This thesis researched the acoustic transmitting behaviour of a waveguide sideloaded with cylindrical
resonators. This was done for two homogeneous cases using air or water and one inhomogeneous
case where the waveguide was filled with water and the resonator with water and air. It was found
that increasing the amount of resonators in all systems positively influenced the total attenuation. In
addition, the inhomogeneous system resulted in having a lower and wider frequency bandwidth where
attenuation could take place. Therefore, the inhomogeneous system displayed greater efficiency than
expected. The water-air ratio in the resonator was determined to show maximum attenuation when
only air occupied the resonators volume. Altering this ratio did however cause diminished similarity
in the analytical and FEM results. This difference was attributed to an inaccurate representation of
the length correction in the periodic configuration. The outcome of the resonator separation length
optimization was successful, with the cost function having a value of approximately 0.08% which was
less than half the value of the periodic configuration. The optimized distances (L2→10) were found to
be 0.02235 m, 0.1248 m, 0.1432 m, 0.1405 m, 0.1437 m, 0.1405 m, 0.1467 m, 0.1472 m and 0.0645
m respectively.

To improve the understanding of inhomogeneously filled resonators, additional research can be con-
ducted researching a correct representation of the length correction. Furthermore, the differences
between the FEM and analytical solutions in the optimized configuration could be researched.
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Appendices

A Analytical solutions

A.1 Zrn/Zrc frequency response.

Figure 25: The frequency response of Zrn/Zrc for the inhogeneous case (lc = 0.9, lc = 0.5) and the
homogeneous air case.

A.2 Waveguide radius determination

(a) (b)

Figure 26: 1 resonator system with increasing rw (m) for an (a) water and (b) water-air filled system.
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A.3 Optimizing lrn/lrc

(a)

(b)

(c)

Figure 27: Water-air ratio optimization for (a) N = 1, (b) N = 2, (c) N = 3, (d) N = 10 and (e) N = 15.
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(a)

(b)

Figure 28: Water-air ratio optimization for (a) N = 10 and (b) N = 15.

A.4 Optimization methods for Ln

Figure 29: Optimization method 1 frequency response
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Figure 30: Optimization method 2 f and 3 f frequency response

Figure 31: Optimization method 2b frequency response.

Figure 32: Random Ln configurations their cost functions for N = 5.

Figure 33: Optimization 3b method frequency response.
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B Code for the analytical solutions

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 #Transmission function used
5 def transmittance(f, resonators , distance1andN , distance2 , distance3 , distance4 ,

distance5 , distance6=0, distance7=0, distance8=0, distance9=0, distance10=0,
Radius_tube=0.05, medium=2):

6

7 #frequency dependent formulas and constants
8 d = distance1andN
9 w = distance2

10 x = distance3
11 y = distance4
12 q = distance5
13 a = distance6
14 b = distance7
15 m = distance8
16 g = distance9
17 h = distance10
18

19 #frequency dependent formulas and constants
20 omega = 2 * np.pi * f
21

22 R = Radius_tube
23 r = 0.011176
24 Area = np.pi * R**2
25 area = np.pi * r**2
26

27 rat = r/R
28 #Length correction
29 l_cor = 0.82*(1 - 0.235*rat - 1.32*rat**2 + 1.54*rat**3 - 0.86*rat**4)*r
30

31 #Material properties
32 #AIR
33 c = 343 #sound speed
34 Pr = 0.71 #pradntl
35 gamma = 1.4 #heat capacity
36 rho = 1.293 #density
37 mu = 1.839 * 10**-5 #Viscocity
38 delta = np.sqrt((2*mu)/(rho*omega)) #Viscous boundary layer thickness
39 delta_r = np.sqrt((2*mu)/(rho*omega))
40

41 #water
42 c_w = 1461
43 Pr_w = 7
44 gamma_w = 1.330
45 rho_w = 998
46 mu_w = 1.0016 * 10**-3
47 delta_w = np.sqrt((2*mu_w)/(rho_w*omega))
48 delta_wr = np.sqrt((2*mu_w)/(rho_w*omega))
49

50

51 #Constants for the impedance and wavenumber
52 beta = (1 - 1j) / np.sqrt(2)
53 chi = np.sqrt(Pr)
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54 chi_w = np.sqrt(Pr_w)
55

56 #Air
57 if medium == 0:
58 #Waveguide
59 k_v = (omega / c) * (1 + ((beta * delta) / R) * (1 + (gamma - 1) * chi))
60 Z_v = ((rho * c)/Area) * (1 + ((beta * delta) / R) * (1 - (gamma - 1) *

chi))
61

62 #Resonator
63 k = (omega / c) * (1 + ((beta * delta_r) / r) * (1 + (gamma - 1) * chi))
64 Z = ((rho * c)/area) * (1 + ((beta * delta_r) / r) * (1 - (gamma - 1) *

chi))
65

66 numerator = np.cos(k*l_n)*np.cos(k*l_c) - (Z / Z)*k*l_cor*np.cos(k*l_n)*np
.sin(k*l_c) - (Z / Z)*np.sin(k*l_n)*np.sin(k*l_c)

67 denominator = (1 / Z)*np.cos(k*l_c)*np.sin(k*l_n) - (1 / Z)*l_cor*k*np.sin
(k*l_n)*np.sin(k*l_c) + (1 / Z)*np.cos(k*l_n)*np.sin(k*l_c)

68

69 #Resonator impedance
70 Z_q = -1j * (numerator / denominator)
71

72 #Water
73 elif medium == 1:
74

75 #Waveguide
76 k_v = (omega / c_w) * (1 + ((beta * delta_w) / R) * (1 + (gamma_w - 1) *

chi_w))
77 Z_v = ((rho_w * c_w)/Area) * (1 + ((beta * delta_w) / R) * (1 - (gamma_w

- 1) * chi_w))
78

79 #Resonator
80 k = (omega / c_w) * (1 + ((beta * delta_wr) / r) * (1 + (gamma_w - 1) *

chi_w))
81 Z = ((rho_w * c_w)/area)* (1 + ((beta * delta_wr) / r) * (1 - (gamma_w -

1) * chi_w))
82

83 numerator = np.cos(k*l_n)*np.cos(k*l_c) - (Z / Z)*k*l_cor*np.cos(k*l_n)*np
.sin(k*l_c) - (Z / Z)*np.sin(k*l_n)*np.sin(k*l_c)

84 denominator = (1 / Z)*np.cos(k*l_c)*np.sin(k*l_n) - (1 / Z)*l_cor*k*np.sin
(k*l_n)*np.sin(k*l_c) + (1 / Z)*np.cos(k*l_n)*np.sin(k*l_c)

85

86 Z_q = -1j * (numerator / denominator)
87

88 #Inhomogeneous
89 else:
90

91 #Waveguide
92 k_v = (omega / c_w) * (1 + ((beta * delta_w) / R) * (1 + (gamma_w - 1) *

chi_w))
93 Z_v = ((rho_w * c_w)/Area) * (1 + ((beta * delta_w) / R) * (1 - (gamma_w

- 1) * chi_w))
94

95 #Resonator
96 #Water/air
97 Z_n = ((rho_w * c_w)/area) * (1 + ((beta * delta_wr) / r) * (1 - (gamma_w

- 1) * chi_w))
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98 k_n = (omega / c_w) * (1 + ((beta * delta_wr) / r) * (1 + (gamma_w - 1) *
chi_w))

99 Z_c = ((rho * c)/area) * (1 + ((beta * delta_r) / r) * (1 - (gamma - 1) *
chi))

100 k_c = (omega / c) * (1 + ((beta * delta_r) / r) * (1 + (gamma - 1) * chi))
101

102 numerator = np.cos(k_n*l_n)*np.cos(k_c*l_c) - (Z_n / Z_c)*k_n*l_cor*np.cos
(k_n*l_n)*np.sin(k_c*l_c) - (Z_n / Z_c)*np.sin(k_n*l_n)*np.sin(k_c*l_c)

103 denominator = (1 / Z_n)*np.sin(k_n*l_n)*np.cos(k_c*l_c) - (1 / Z_c)*k_n*
l_cor*np.sin(k_n*l_n)*np.sin(k_c*l_c) + (1 / Z_c)*np.cos(k_n*l_n)*np.sin(k_c*
l_c)

104

105 #Resonator impedance
106 Z_q = -1j * (numerator / denominator)
107

108 #Possible extra length for the first and last L_n
109 Lextra = 0
110

111 din = d + Lextra
112 dout = d + Lextra
113 Tin = np.array([[np.cos(k_v * din), 1j * Z_v * np.sin(k_v * din)], [(1j / Z_v)

* np.sin(k_v * din), np.cos(k_v * din)]]) #T1
114 Tout = np.array([[np.cos(k_v * dout), 1j * Z_v * np.sin(k_v * dout)], [(1j /

Z_v) * np.sin(k_v * dout), np.cos(k_v * dout)]]) #T11
115

116 #Allowing for different lengths of T1
117 T1_1 = np.array([[np.cos(k_v * w), 1j * Z_v * np.sin(k_v * w)], [(1j / Z_v) *

np.sin(k_v * w), np.cos(k_v * w)]]) #T2
118 T1_2 = np.array([[np.cos(k_v * x), 1j * Z_v * np.sin(k_v * x)], [(1j / Z_v) *

np.sin(k_v * x), np.cos(k_v * x)]]) #T3
119 T1_3 = np.array([[np.cos(k_v * y), 1j * Z_v * np.sin(k_v * y)], [(1j / Z_v) *

np.sin(k_v * y), np.cos(k_v * y)]]) #T4
120 T1_4 = np.array([[np.cos(k_v * q), 1j * Z_v * np.sin(k_v * q)], [(1j / Z_v) *

np.sin(k_v * q), np.cos(k_v * q)]]) #T5
121 T1_5 = np.array([[np.cos(k_v * a), 1j * Z_v * np.sin(k_v * a)], [(1j / Z_v) *

np.sin(k_v * a), np.cos(k_v * a)]]) #T6
122 T1_6 = np.array([[np.cos(k_v * b), 1j * Z_v * np.sin(k_v * b)], [(1j / Z_v) *

np.sin(k_v * b), np.cos(k_v * b)]]) #T7
123 T1_7 = np.array([[np.cos(k_v * m), 1j * Z_v * np.sin(k_v * m)], [(1j / Z_v) *

np.sin(k_v * m), np.cos(k_v * m)]]) #T8
124 T1_8 = np.array([[np.cos(k_v * g), 1j * Z_v * np.sin(k_v * g)], [(1j / Z_v) *

np.sin(k_v * g), np.cos(k_v * g)]]) #T9
125 T1_9 = np.array([[np.cos(k_v * h), 1j * Z_v * np.sin(k_v * h)], [(1j / Z_v) *

np.sin(k_v * h), np.cos(k_v * h)]]) #T10
126

127 T2 = np.array([[1, 0], [(1 / Z_q), 1]]) #Resonator
128

129 #Resonators 0 - 10:
130 if resonators == 0:
131 T_resonators = Tin
132

133 elif resonators == 1:
134 T_resonators = Tin @ T2 @ Tout
135

136 elif resonators == 2:
137 T_resonators = Tin @ T2 @ T1_1 @ T2 @ Tout
138
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139 elif resonators == 3:
140 T_resonators = Tin @ T2 @ T1_1 @ T2 @ T1_2 @ T2 @ Tout
141

142 elif resonators == 4:
143 T_resonators = Tin @ T2 @ T1_1 @ T2 @ T1_2 @ T2 @ T1_3 @ T2 @ Tout
144

145 elif resonators == 5:
146 T_resonators = Tin @ T2 @ T1_1 @ T2 @ T1_2 @ T2 @ T1_3 @ T2 @ T1_4 @ T2 @

Tout
147

148 elif resonators == 6:
149 T_resonators = Tin @ T2 @ T1_1 @ T2 @ T1_2 @ T2 @ T1_3 @ T2 @ T1_4 @ T2 @

T1_5 @ Tout
150

151 elif resonators == 7:
152 T_resonators = Tin @ T2 @ T1_1 @ T2 @ T1_2 @ T2 @ T1_3 @ T2 @ T1_4 @ T2 @

T1_5 @ T2 @ T1_6 @ Tout
153

154 elif resonators == 8:
155 T_resonators = Tin @ T2 @ T1_1 @ T2 @ T1_2 @ T2 @ T1_3 @ T2 @ T1_4 @ T2 @

T1_5 @ T2 @ T1_6 @ T2 @ T1_7 @ Tout
156

157 elif resonators == 9:
158 T_resonators = Tin @ T2 @ T1_1 @ T2 @ T1_2 @ T2 @ T1_3 @ T2 @ T1_4 @ T2 @

T1_5 @ T2 @ T1_6 @ T2 @ T1_7 @ T2 @ T1_8 @ Tout
159

160 elif resonators == 10:
161 T_resonators = Tin @ T2 @ T1_1 @ T2 @ T1_2 @ T2 @ T1_3 @ T2 @ T1_4 @ T2 @

T1_5 @ T2 @ T1_6 @ T2 @ T1_7 @ T2 @ T1_8 @ T2 @ T1_9 @ Tout
162

163

164 #If more resonators are used this error will be displayed.
165 else:
166 raise ValueError("Invalid number of resonators. Must be between 0 and 10."

)
167

168

169 #Flattening out T to comute the coefficients
170 T11, T12, T21, T22 = T_resonators.flatten()
171 #Transmission coefficient
172 T_coeff = abs((2) / ((T11 + (T12 / Z_v) + T21 * Z_v + T22)))
173 #Reflection coefficient
174 R_coeff = abs( (T11 + (T12 / Z_v) - T21 * Z_v - T22) / (T11 + (T12 / Z_v) +

T21 * Z_v + T22) )
175 #Transmission loss
176 TL = 20*np.log10(T_coeff**-1)
177 #Absorption coefficient
178 absor = 1 - abs(T_coeff)**2 - abs(R_coeff)**2
179

180 return T_coeff , R_coeff , TL, absor
181

182

183 #Cost function
184 def cf(i, freq , cost_arrays):
185 cost_value = (1 / len(freq)) * sum(cost_arrays[i])
186 return cost_value
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C COMSOL

C.1 Parameters

Name Value Description
R 0.05 [m] Radius waveguide
r 0.011176 [m] Radius resonator
l 0.0437 [m] Length resonator
l c 0.9*l Length resonator cavity
l n l - l c Length resonator neck
area pi*r2 Cross-sectional resonator surface area
Area pi*R2 Cross-sectional waveguide surface area
T1 0.2 [m] Length T w1
T2 0.2 [m] Length T w2
T3 0.2 [m] Length T w3
T4 0.2[m] Length T w4
T5 0.2 [m] Length T w5
T6 0.2 [m] Length T w6
T7 0.2 [m] Length T w7
T8 0.2 [m] Length T w8
T9 0.2 [m] Length T w9
T10 0.2[m] Length T w10
T11 0.2 [m] Length T w11
Lextra 0.3 [m] Extra length between inlet/outlet and resonator system
ca 343 [m/s] Speed of sound in air
rho0 1.293 [kg/m3] Density of air
Cp 700 [J/kg*K] Specific heat air
eta 1.81 × 10-5 [kg/(m*s)] dynamic viscosity air
vis eta/rho0 kinematic viscosity air
kt 25.87 [mW/m*K] Thermal conductivity air
Pr Cp*eta/kt Prandtl number air
gamma 1.4 Heat capacity ratio
cw 1461 [m/s] Speed of sound in water
rho0w 998 [kg/m2] Density of water
Cpw 4184 [J/kg*K] specific heat water
etaw 1.0016 [mPa*s] dynamic viscosity water
visw etaw/rho0w kinematic viscosity water
ktw 0.598 [W/m*K] Thermal conductivity water
Prw Cpw ∗ etaw/ktw Prandtl number water
gammaw 1.330 heat capacity ratio

Table 2: Model parameters
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C.2 Tuning ∆l

(a) (b)

(c)

Figure 34: Transmission, reflection and absorption for the periodic inhomogeneous system with (a)
lc = 0.1 (∆lt = ∆l), (b) lc = 0.3 (∆lt = ∆l) and (c) lc = 0.7 (∆lt = ∆l).
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