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Abstract: Machine learning proves effective in constructing dynamics models from data, es-
pecially for underwater vehicles. Continuous refinement of these models using incoming data
streams, however, often requires storage of an overwhelming amount of redundant data. This
thesis investigates the use of uncertainty in the selection of data points to rehearse in online
learning when storage capacity is constrained. The models are learned using an ensemble of mul-
tilayer perceptrons as they perform well at predicting epistemic uncertainty. We present three
novel approaches: the Threshold method, which excludes samples with uncertainty below a spec-
ified threshold, the Greedy method, designed to maximize uncertainty among the stored points,
and Threshold-Greedy, which combines the previous two approaches. The methods are assessed
on data collected by an underwater vehicle Dagon. Comparison with baselines reveals that the
Threshold exhibits enhanced stability throughout the learning process and also yields a final
model with the lowest testing loss. We also conducted detailed analyses on the impact of model
parameters and storage size on the performance of the models.

1 Introduction

In recent years, machine learning techniques have
become popular for obtaining information from
streams of data, thereby replacing manual data ag-
gregation. In robotics, machine learning can be ap-
plied to learn a dynamics model of the controlled
vehicle. The dynamics model describes the behav-
ior of the vehicle over time, based on its states and
inputs. Instead of constructing the equations that
govern the model, the relation can be inferred from
the recorded states of the vehicle during its oper-
ation (Wehbe et al., 2019). This can be done by
direct modeling which aims to create a model that
predicts the next state given the current state of
the model (Thuruthel et al., 2017).

In underwater robotics, this allows us to di-
rectly learn complex models without sacrificing
performance due to any simplifying assumptions.
Moreover, we can avoid expensive computations of
Navier-Stokes equations that describe the motion

of fluids. Underwater dynamics present a highly
non-linear task, hence flexible modeling approaches
need to be used. Neural networks are found to per-
form the best in these settings (Wehbe, 2020). The
obtained model can later be applied in the control
of autonomous underwater vehicles (AUVs), for ex-
ample, in a technique called model predictive con-
trol, which uses the dynamics model to predict the
future states of the vehicle to find the most opti-
mal action at each time to achieve its goal (Henson,
1998).

What is more, the underwater environment is
very challenging. The density of the surrounding
liquid can change, and the robot’s body can wear
over time, or parts of sea fauna might get attached
to it (Wehbe, 2020). Furthermore, the vehicle might
perform new actions or its thrusters might break
down. To achieve optimal control in this chang-
ing environment, it is desirable to be able to con-
tinuously update the dynamics model of the vehi-
cle during its operation based on the newly col-
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lected data. At the same time, the model needs
to preserve its past knowledge. Simply retraining
the learner on new data incoming might lead to
loss of previous knowledge, commonly referred to
as catastrophic forgetting (French, 1999). We want
to achieve what is commonly referred to as incre-
mental online learning, the process of adapting the
model without losing previously learned informa-
tion (Part & Lemon, 2017).
One hypothetical solution for the stated problem

is to continuously store all collected data. To up-
date the model, we could retrain it from scratch
using all the stored data. This would preserve all
the acquired knowledge from previous data points.
However, in real-life scenarios, AUVs are deployed
underwater for long periods, and they collect mas-
sive amounts of data from their sensors. This makes
it virtually impossible to store all collected data
and train on it, assuming the finite resources of
AUVs.
What is more, many of the collected data points

inevitably hold a lot of redundancy, as the AUV
might be performing the same maneuver repeatedly
in a similar environment. This means, that updat-
ing the model with information from every collected
point may not be beneficial. What is more, the com-
putation costs associated with these steps could be
eliminated, thereby saving precious resources for
the AUV.
Given the imposed constraint on the amount of

data as well as the undesirability of training on ev-
ery collected data point, the aim is to obtain the
most informative subset of our dataset. By main-
taining this dataset, the model can on each train-
ing train also on the most informative samples that
were collected previously. This is usually referred
to as rehearsal, as the model learns on samples
it has already seen (Verwimp et al., 2021). This
subset has a limited size and has to be collected
online (i.e. during the operation of the vehicle. It
should contain points that allow us to train the
best-performing model. This naturally leads us to
ask two questions: “Which newly collected data
point should we add to our storage and train our
model on”? and “If we need to remove a data point,
which one should we remove?” For this, we need to
assess whether a point is valuable for the model.
If we can determine whether the information con-
tained in a point has already been learned, we can
decide to not store and process the incoming point.

 Fixed Size = 100
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Figure 1.1: Problem addressed in this work.
Gathered data contains redundancy. Restricting the
size of the storage forces us to investigate whether infor-
mation from collected data points was already learned
and for which stored point we should substitute it.

This idea is visualized in Figure 1.1.
For these purposes, one can use the concept of

uncertainty to assess the collected samples. We
can equip our learner with an uncertainty quan-
tification method to be able to quantify the uncer-
tainty of the predictions (Valdenegro-Toro & Mori,
2022). In literature, two types of uncertainty are
distinguished, aleatoric, which describes the inher-
ent uncertainty of the collected data due to noise,
and epistemic, which relates to the uncertainty of
the model’s prediction on the data (Hüllermeier &
Waegeman, 2021). In regression settings, the uncer-
tainty of a model can be interpreted as the variance
of a model around a certain prediction mean, or as
a confidence interval of the prediction.

In our task, knowledge of epistemic uncertainty
can be exploited, as we can use it as a determining
criterion for whether a point is informative for the
model. Intuitively, uncertainty gives us useful infor-
mation about the sample: the samples the learner
is the most uncertain carry the most information
for the learner to learn from. This is the key to
the concept of active learning : models can achieve
greater accuracy on smaller amounts of data if al-
lowed to choose which data to train on (Settles,
2009). Hence, we can decide whether the sample is
worth storing and training on. We can let that de-
pend on the quantified uncertainty of the prediction
on that point. Furthermore, by using uncertainty
prediction on the currently stored samples we can
decide which data to discard. We can choose to dis-
card the least uncertain samples.

What is more, equipping the model with uncer-
tainty quantification can be used for other pur-
poses. It can be used to give meaning to the predic-
tion of the output of the model in deployment. In
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control, for example, we can use the uncertainty on
prediction output as an indicator of the confidence
of the vehicle in the current manipulation scenario.
Based on this, we can let the vehicle slow down if
the model is uncertain, to approach less-know sce-
narios at lower speeds.
In this work, we would like to investigate the

above-motivated application of uncertainty quan-
tification in incremental online learning. In partic-
ular, we want to answer the question “Can uncer-
tainty estimation be used to increase efficiency and
stability in online incremental learning of regres-
sion tasks in settings with constrained resources?”
In this context, by resources we mean the number
of data points that the model has to hold in its
memory and the number of times the model has to
backpropagate gradients of those.
The contribution of this work lies in the inves-

tigation of the use of active learning in complex
regression settings. If the approach turns out to be
successful, the methods could potentially be used
in reducing the computational and storage load in
robotics applications where machine learning mod-
els are trained in an online fashion.
To answer our research question, we will com-

pare the performance of models in an online incre-
mental learning procedure. The models with uncer-
tainty quantification capabilities will be compared
to baseline models that select their training data
randomly.
In this paper, we will first discuss the background

Section 2. Then in Section 3, we will in detail in-
troduce the online learning methods, both baselines
and the approaches in which we will exploit uncer-
tainty. In Section 4, we discuss the implementation
details as well as the evaluation metrics of the mod-
els. The results are analyzed in Section 5, which are
further analyzed in Section 6, based on which con-
clusions are drawn in Section 7.

2 Related Works

Learning models of dynamics and kinematics is
certainly not a new task. The fact that learning
a model from collected sensor data is more fea-
sible than explicitly defining the model has been
long recognized and heavily researched in many
different scenarios. There have been successes in
non-parametric learning, as well as semi-parametric

approaches, which use non-parametric models in-
formed by prior knowledge of the system Thuruthel
et al. (2017). For supervised learning, labeled data
is usually expensive, which motivated the investi-
gation of active learning in this context (Cohn et
al., 1996; Dasgupta, 2004).

Generally, there are two types of learning dynam-
ics models. First is a global approach, which tries to
approximate one function across the whole feature
space. The popular choices for this include gaussian
regression process (Williams & Rasmussen, 1995),
support vector machine regression (Schölkopf et al.,
2000), and variational Bayes for mixture models
(Ghahramani & Beal, 1999). Secondly, in an in-
cremental local approach, one can incrementally fit
the data locally by the multitude of functions (Vi-
jayakumar et al., 2005). In this work, we choose
to focus on the global methods. The reason we do
not use local approaches is that we cannot create
an uncertainty measurement on such a model. Fur-
thermore, global methods are state of the art in
other areas of research, therefore our findings can
be further applied to various other areas.

The paradigm of incremental online active learn-
ing has not yet been heavily explored in regression
settings. It has been widely explored in the realm
of classification, to tackle problems such as con-
cept drift (Rožanec et al., 2022; Lu et al., 2016;
Dasgupta et al., 2005; Sculley, 2007; Feng et al.,
2016; He et al., 2020). In regression settings, it has
been explored in a simple setting of linear regres-
sion (Chen et al., 2022). This work will expand this
approach to a more complex regression task. Iden-
tification of a dynamics model of AUV is highly
non-linear and many dimensional. This allows us to
explore the applicability of these methods in more
complex settings. Furthermore, the methods will be
tested on real-world collected data, which will show
how the methods perform with natural aleatoric
certainty generated by the noise in the sensors.

We also must note the existence of the problem of
updating the knowledge if the model gets outdated
is usually referred to as adaptive learning (Loeffel,
2017). In that case, our estimated model could have
low uncertainty about its prediction, yet it would
still need to change. We decide to ignore this issue,
as it is outside of the scope of this work.
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3 Proposed Method

To answer the research questions, we need to im-
plement uncertainty into the selection procedure
of data in online learning and compare the perfor-
mance of that model to a baseline model that does
not use such a technique. If the augmented model
proves to outperform the baseline model, then we
can positively answer our research question.
Before we do that, we will first describe the spec-

ification of the learning task that we are tackling.
Then we will in detail describe incremental online
learning approaches: both baseline approaches as
well as uncertainty-augmented methods.

3.1 Model Learning

The aim is to learn a dynamics model from col-
lected data. We will do this by directly relating the
inputs and the outputs, without explicitly estab-
lishing the equations, nor estimating the parame-
ters of any presumed model. This work is an exten-
sion of Wehbe & Krell (2017), hence in this part as
well as later, we will closely follow the derivations
given in section II. and III. of the paper.
The position and orientation of vehicles in three-

dimensional spaces can be described using 6 degrees
of freedom. The forward direction is referred to as
surge, the sideways direction is sway, and the up-
wards and downwards as heave. Additionally, to de-
scribe the rotation of the body in space, we denote
roll the side-to-side direction of rotation, pitch up-
down, and yaw the left-right direction of rotation.
For learning the dynamics model, we are interested
in the velocity in these degrees of freedom, and how
they change relative to the given input commands.
This means that we are interested in predicting the
acceleration in the directions. Once we have those,
we can later integrate the model to obtain the ac-
tual position in space based on the input sequence.
To summarize, the models that we are going to con-
sider in the upcoming sections learn to predict the
acceleration in the considered directions given the
velocities in those directions as well as the thruster
activations.

3.2 Online Learning Methods

In this section, we describe used techniques for
learning online incrementally from data. We will

Get a Data Point

Useless

UsefulQuantify
Uncertainty

Store Data Point &
Discard Some Point

RetrainMeasure
Performance

Figure 3.1: Diagram of applied methods. The
online learning process is augmented with uncertainty
quantification. Based on the estimation we can deter-
mine the usefulness of a point. If we consider it useful,
we can choose to store it and train on it. Otherwise, we
can skip it.

start by describing baseline approaches and then
we will follow with the techniques that exploit un-
certainty.

For each of the models, we assume it is used in
the same process. The model gets new data points
served one at a time and can learn from them and
store them, or it can reject them. This is visualized
in Figure 3.1.

All of the later described approaches are formally
described in pseudocode in Appendix B and visu-
alized in Appendix C.

3.2.1 Baseline Approaches

Offline: The best performance can be obtained by
assuming that all data was already collected in the
past and training on all at once. The performance
of this model can be assumed to be the optimal one.
We will use it to compare the absolute performance
of the online models, to see how close they come to
learning the optimal solution.
First-In-First-Out (FIFO): We will use the
most recent data obtained in the learning process
to estimate the model. In each iteration, the model
will forget the data point it has seen the latest
and add the newest collected point. We expect this
method to perform poorly due to catastrophic for-
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getting, the model will forget previously learned in-
formation and it will prefer just learning the data
captured in the current part of the dataset.
First-In-Random-Out (FIRO): To have the
model maintain a more evenly spread distribution
over the dataset, we consider instead discarding a
random point from the currently stored set. We ex-
pect this model to perform better than FIFO since
it will preserve some of its knowledge. However, it
will not be able to fit as tightly onto newly pre-
sented data.
Random-In-Random-Out (RIRO): The on-
line learning methods augmented with uncertainty
aim to reject some points, thereby avoiding (re-
)learning redundant information. To implement the
same idea in a statistical baseline, this next ap-
proach chooses to learn and store an incoming point
only with probability p (parameter to be tuned).
This model should be more robust, as it will not
overfit to locally present information as FIFO. Fur-
thermore, it should obtain a more even distribu-
tion over the dataset over a longer timeframe. The
lower the parameter p, the longer the model should
take to obtain this distribution, but the better it
should be in maintaining the distribution over a
longer time.

3.2.2 Approaches with Uncertainty Quan-
tification

In this section, we will consider a model which is
augmented with uncertainty quantification capabil-
ity. For each point, the model can run to determine
the uncertainty of the model’s prediction. This will
be exploited to decide whether to include the point
in the dataset or not. The model will be retrained
each time that a new point is added to the dataset.
Greedy: This method greedily selects the most in-
teresting points to learn from, that is the points
that are the most uncertain. When the incoming
point is assessed for uncertainty, so will the points
stored in the currently preserved dataset. If the in-
coming point has higher uncertainty than any point
in the current set, it will be substituted for this
point, before the model is retrained.
Threshold: To avoid re-learning redundant infor-
mation, this model chooses to avoid points whose
uncertainty is low. If the model is certain on a
point, there is no need to include it in its data set.
The converse is also true if the new point has uncer-

tainty above a certain bound. In practice, we choose
a bound t (hyperparameter to be determined). If t
is chosen too high, the model will ignore data that
is uncertain; if it is too low it will learn on (al-
most) all points and will present no advantage over
FIFO. The point chosen to be discarded from the
currently held dataset is selected randomly.
Threshold-Greedy: This approach aims to com-
bine the two previously presented techniques. Each
point will be first compared against the uncertainty
threshold t (parameter to be tuned). Subsequently,
if it needs to be inserted into the dataset, the least
informative sample of the dataset will be discarded.
This should present a little advantage over the pre-
vious Threshold approach, since at each step, the
uncertainty in the training set is maximized.

3.3 Uncertainty in Learning

The motivation of this work is based on the pre-
sumption, that the most informative samples for
the model are those, which are uncertain. There-
fore, we expect that the methods that utilize un-
certainty to select the samples will outperform the
baseline methods. Furthermore, to train a good
model, it might be sufficient to sample the space
of data points evenly. However, some parts of the
feature space are more difficult to learn (are highly
non-linear). Those might benefit from having more
points sampled there. This could be even better
captured by the uncertainty, as the model will re-
main more uncertain in those regions.

4 Experimental Setup

In this section, we will first discuss the contents
of the data set. Then we will discuss the evalua-
tion criteria of proposed methods. We will look in
further detail at the machine learning techniques
that we will use, including uncertainty quantifica-
tion. Lastly, we will lay out the organization of the
experiment that we are going to perform.

4.1 Dataset

4.1.1 The Dagon Vehicle

The data that we will be using was collected by
the autonomous underwater vehicle Dagon, which
can be seen in Figure 4.1 and 4.2. Dagon is a vehicle
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Figure 4.1: The AUV Dagon in a stationary po-
sition. Photo from Bande & Wehbe (2021).

Figure 4.2: The AUV Dagon during operation.
Photo courtesy of Bilal Wehbe.

specifically designed for scientific testing and evalu-
ation of algorithms. Its dimensions are 70x60x30cm
and it weighs around 50kg. It is designed to with-
stand diving into depths of 150m. It has 5 thrusters,
which can be used to maneuver the vehicle, and can
be equipped with a multitude of sensors. Detailed
information can be found online in (Hildebrandt &
Hilljegerdes, 2010).

4.1.2 Collected Dataset

The dataset was kindly provided by DFKI ∗. The
Dagon AUV vehicle was driven in the salty water
basin of the research center of DFKI. The vehi-
cle was stabilized to drive in the horizontal plane.
Therefore, only 3 out of 5 of the thrusters were used
to manipulate the vehicle. This means that for our
purposes of learning, we will consider only the di-

∗Deutsches Forschungszentrum für Künstliche Intelligenz
– German Research Center for Artificial Intelligence, see
aknowledgements
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Figure 4.3: Input features of the Dagon dataset.
The model was fixed to the horizontal plane, therefore
inputs contain surge, sway, and yaw (u, v, r) and the
three relevant thrusters (n1, n2, n3). The thrusters were
activated with sinusoidal inputs of different frequencies.

rections of surge, sway, and yaw and only the data
of the relevant thrusters. To obtain all the interac-
tions of the model’s dynamics and the thrusters’ ac-
tivations, the thrusters were given sinusoidal input
with different periods. During the experiment, the
linear and angular velocities of the vehicle were cap-
tured. This data was numerically differentiated to
obtain acceleration. For further details on how the
data was captured refer to Wehbe & Krell (2017).

The final dataset contains 11566 data points in
total. The first 2000 input features, can be seen
in Figure 4.3, while the corresponding targets are
shown in Figure 4.4.
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Figure 4.4: Targets of the Dagon dataset. To cap-
ture the dynamics model of the vehicle, it is sufficient to
learn the acceleration in the desired directions, which
are surge, sway, and yaw (u, v, r).

4.1.3 Approximated Function

Following the notation from (Wehbe & Krell,
2017), we can denote the first derivatives of the
surge, sway, heave, roll, pitch, and yaw as ν =
[u v w p q r ] ∈ R6 and the inputs of the 5
thrusters as n = [n1 n2 n3 n4 n5 ] ∈ R5. There-
fore the dynamics of the robot are given by function
F :

ν̇ = F(ν, n) (4.1)

As noted before, the robot’s motion in the col-
lected dataset was restricted to a horizontal plane,
hence the only relevant directions of motion are
surge, sway, and yaw. Furthermore, as only 3
thrusters of the robot were actively used, we can
leave the other two out of the equation. This setup
is visualized in Figure 4.5. Hence, the function we
are learning is F ′:

(u̇, v̇, ṙ) = F ′(u, v, r, n1, n2, n3) (4.2)

4.1.4 Dataset Split

For tuning the parameters, a validation set was
withheld from the dataset. To test the performance
of the model a test set was also set apart. As the
data from the robot was collected over time, the
test set was sampled at evenly spaced intervals
throughout the set. The dataset split follows the

Figure 4.5: The Dagon AUV from the top view
and its degrees of freedom and related thrusters.
The vehicle was fixed in the horizontal plane. It was
controlled in surge, sway, and yaw (u, v, r) and steered
by 3 thrusters (n1, n2, n3). Figure adapted from Wehbe
& Krell (2017).

ratio 60/20/20% for training, validation, and test-
ing sets.

4.2 Metrics

In this section, we will discuss the evaluation crite-
ria of the learning process. We will propose metrics
to evaluate the performance of the model both at
the end of the learning process as well as quantify-
ing its performance over the learning process.

4.2.1 Instantaneous Model Performance

At each point of the learning process, we would
like the machine learning model to be as accurate
as possible in the testing set. We will use standard
approaches for this.

To precisely describe the two metrics, we will first
introduce the necessary notation. Denote (Xi, yi)
the pair of inputs and targets of the testing set of
size n. Then ŷi is the prediction of the model on
the input Xi. Furthermore, denote ȳ = 1

N

∑n
i=1 yi

the mean of the target variables.

The first used metric is Mean Squared Error nor-
malized by the number of samples. This metric
measures how far on average the prediction is from
the ground truth. Furthermore, introducing the sec-
ond power penalizes the model for being very wrong
on some samples. Hence the lower the MSE, the
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better.

MSE =
1

N

n∑
i=1

(yi − ŷi)
2 (4.3)

The second metric will be the Coefficient of De-
termination, also known as R2. It measures the
amount of variance in the output of the model re-
lated to the model by dividing it by the sum of dif-
ferences of the corrected variables from the mean
(non-normalized variance).

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(4.4)

The closer the R2 is to the value 1, the better. We
note that for multivariable regression, the R2 can-
not clearly be defined, as each yi becomes a vector.
Therefore we will consider the mean of R2 scores.

4.2.2 Performance Over Learning Process

The ideal model converges fast to a solution and re-
mains stable over the whole process of online learn-
ing. To capture this in a numerical metric, we use
inspiration from (Zinkevich, 2003) and look at the
cumulative loss of the model over the learning pro-
cess. The models that converge fast to a small loss,
and remain close to it over the learning process
should obtain low cumulative loss at the end of
the learning process as well. This can be applied
to MSE, however, not to R2 as negative and pos-
itive values would cancel out. It is important to
note, that summarizing the information contained
in MSE is not lossless. An unstable method might
produce the same cumulative MSE as a method
that converges slowly. Therefore, the conclusions
will have to be drawn by inspecting the develop-
ment of the MSE over time.
Moreover, a good model should be gradually less

uncertain about incoming points as it should learn
the whole model and new information should not
come in as a surprise. Therefore, we will collect the
predicted uncertainty of each incoming point, and
we can look at its development over the learning
process.

4.2.3 Saved Resources

The motivation for the whole concept of using
uncertainty in incremental online learning sparks
from the will to increase efficiency. As per usual

in machine learning models, forward passes are
less expensive than backpropagation. Therefore,
our uncertainty-equipped methods aim to save re-
sources by avoiding unnecessary backpropagation,
by avoiding training on some points. Therefore, one
of the metrics we will look at is the number of
skipped points in the training in the sense described
in Figure 3.1.

4.3 Machine Learning Techniques

4.3.1 Uncertainty Quantification

For our tasks, we need to estimate epistemic uncer-
tainty, which represents how uncertain the model is
on the input data. There are many different uncer-
tainty estimation techniques, however, to estimate
epistemic uncertainty, ensembles perform the best
(Valdenegro-Toro & Mori, 2022; Valdenegro-Toro,
2021). This method of estimation of uncertainty is
very stable. It is also very practical, as it is easy
to parallelize in practice (Lakshminarayanan et al.,
2017).

4.3.2 Simple Ensemble

The method of ensembles relies on the simple, yet
powerful idea of combining multiple models of the
same kind to obtain the uncertainty on the output.

Formally, we are aiming to create a regressor,
which will be represented by a neural network. We
define the dataset D = {(Xn, yn)}Nn=1, with fea-
tures vectors Xn and targets yn. The ensemble M
will be composed of models mi with learnable pa-
rameters which are summarized as Θi ∈ RK . Each
of these sets will be initialized independently, to en-
sure statistical independence of the ensemble. We
define a loss function L(x, y,Θi), in our case, using
the MSE loss. Hence L(x, y,Θi) = (fΘi

(x) − y)2,
which is be calculated independently for each of the
models mi. Let us denote all the sets Θi as Θ.

Now we define the desired parameters Θ̂, which
can be trained using gradient descent using the fol-
lowing rule, once again for each of the models in-
dependently.

Θ̂i ∈ argmin
Θi∈RK

E(x,y)∈D[L(x, y,Θi)] (4.5)

To obtain the predictive output of the model on
the data point x, denoted fΘ(x), we can look at
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the mean output of the models.

fΘ(x) =
1

N

N∑
i=1

fΘi(x) (4.6)

Furthermore, the standard deviation of the out-
puts of the ensemble on the point x, denoted as
uΘ(x) can be interpreted as uncertainty.

uΘ(x) =

√√√√ 1

N

N∑
i=1

(
fΘi(x)− fΘ(x)

)2
(4.7)

It is noteworthy, that basic ensembles are differ-
ent from the so-called deep ensemble. The deep en-
semble uses models that all have two heads, one
that predicts mean and one that predicts vari-
ance. This allows us to estimate both aleatoric and
epistemic uncertainty. The head that predicts the
mean, is supervised by the label of the data and the
variance with the negative-log-likelihood Lakshmi-
narayanan et al. (2017). However, as our goal is
to only estimate epistemic uncertainty, the simple
ensemble is sufficient.

4.3.3 Learning Process

To run the experiments, we used a simple ensemble
with 10 estimators. The storage size of the buffer
is set to 100. The model can learn for at most 100
epochs at each iteration. Each strategy can use its
tuned patience parameter for early stopping. The
Adam optimizer was used (Kingma & Ba, 2014).
The number of layers, the units in each layer, the
learning rate, batch size, and patience were tuned
independently for each method. For details in hy-
perparameter tuning refer to Appendix A.

4.4 Technical Implementation

The experiments were implemented in Python 3
(Van Rossum & Drake, 2009) in the machine learn-
ing framework Keras (Chollet et al., 2015) the
repository is available here. To estimate uncer-
tainty, the library Keras Uncertainty was used. It
provides all necessary utilities for estimating un-
certainty on multi-layer perceptron. To perform
the resource-demanding experiments, the high-
performance cluster Habrók of the University of
Groningen was used.

4.5 Experiment Plan

We decided to tune the machine-learning parame-
ters and method-specific parameters separately, as
we want to investigate the influence of the method-
specific parameters on the behavior of the network.
Firstly, we will fix the parameters p in RIRO and
t in Threshold and Threshold-Greedy to an exper-
imental value: p = 0.7 and t = 0.02. We will per-
form hyperparameter tuning of all machine learn-
ing parameters and we will look at the performance
of the models. Then we will separately investigate
the influence of t and p on the performance of the
model. Afterwards, we will pick the most optimal
parameters for each method and we will compare
the models once again, to reach a better conclu-
sion of the comparative performance. Lastly, whilst
keeping the optimal parameters discovered before,
we will investigate the influence of the storage size
of the models on their performance.

5 Results

To find whether uncertainty-based selection can
help us decrease the size of the dataset stored in
the buffer, we compared the performance of differ-
ent models on this task. In this section, we follow
the plan set out in Section 4.5. We will first in-
vestigate the performance of the different models,
with hyperparameters fitted according to the proce-
dure specified in Appendix A. Some of the param-
eters related to the processes in the online learning
models were fixed with arbitrary values. The influ-
ence of those will be investigated afterward. Subse-
quently, we will present a final comparison of results
with optimal parameters. Lastly, we will investigate
and discuss the role of the size of the buffer on the
performance of the models, assuming they all use
optimal parameters.

5.1 Basic Hyperparameter Tuning

The results of the performance of the difference
models on the testing set are visible in Figure 5.1.
For a graph of each metric in detail please refer
to Appendix D. On the shared x-axis, we can see
the iterations over the training set, and on the y-
axis, we can see the metric value, which is calcu-
lated over the testing test at each iteration. Each
model has its assigned color, which is the same on
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Model Name Points Used Dataset Usage %
RIRO 4786 70.0%
Greedy 6661 97.4%

Threshold 1357 19.8%
Threshold-Greedy 1172 17.1%

Table 5.1: Resources used by methods after ba-
sic hyperparameter tuning. The online learning
methods can skip storing and training on points, which
makes them save resources. This table shows for each
method how many of the points have been used over
the learning process over the whole training set of 6840
points.

all plots. The results of MSE and R2 were truncated
at the start of the graph to remove outliers at the
beginning of the learning process where the model
performs poorly. The bad performance skewed the
graphs and made them harder to interpret.

To assess the consumed resources, the number
of skipped points in the training set was recorded.
The training set consisted of 6840 points and the
final number of skipped points for each method that
was able to skip points are visible in Table 5.1. The
percentages are rounded to one decimal digit after
the dot.

5.2 RIRO p Study

Next, we investigated the effect of the parameter
p in RIRO. The parameter p represents the prob-
ability of accepting a point into the dataset. We
evenly sampled the space of possibilities, taking p
from the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
While noting that p = 1, makes the method RIRO
the same as method FIFO, and p = 0 would accept
no points at all. We performed the same experiment
as for all previous methods, with varying p.

As our decision metric for the selection of the
best parameters in Hyperparameter Tuning (see
Appendix A) was cumulative MSE, we will also use
this here to assess the parameters. The cumulative
MSE over the test set of all the models as a func-
tion of p can be seen in Figure 5.2. More detailed
results for the R2 and cumulative MSE are shown
in Figure D.2.

Percentile of Uncertainty Value of t
10% 0.0016
20% 0.0023
30% 0.0036
40% 0.0056
50% 0.0075
60% 0.0096
70% 0.0120
80% 0.0156
90% 0.0228

Table 5.2: Values of t considered for the thresh-
olding methods. The values of t we determined ac-
cording to the percentile division of uncertainty predic-
tion obtained by baseline methods FIFO and FIRO.

5.3 Threshold t Study

To sample the parameter t for the thresholding
methods, we divided uncertainty into percentiles.
This was done by using the methods that use all
points from the training set, which are FIFO and
FIRO. We recorded the uncertainty prediction of
each point of the set. Using that, we can divide up
the points in the training set into uncertainty level
percentile. We did this for both of the methods and
took the mean of the percentiles. The values we ob-
tain are visible in Table 5.2. For each of these values
of t we performed the experiments once again.

5.3.1 Threshold with Varying t Perfor-
mance

The cumulative MSE over the test set of all the
models depending on the parameter t can be seen
in Figure 5.3. More detailed results for the R2 and
cumulative MSE are shown in Figure D.3.

5.3.2 Threshold-Greedy with Varying t
Performance

The cumulative MSE over the test set of all the
models depending on the parameter t can be seen
in Figure 5.4. More detailed results for the R2 and
cumulative MSE are shown in Figure D.4.

5.4 Optimal Parameters

Finally, we can compare the performance of all the
models with optimal values of parameters. The se-
lected value of p for RIRO was 0.2, the value of t for
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Figure 5.1: Comparison of models after basic hyperparameter tuning. The x-axis denotes the iterations
over the training set, and the y-axis the performance of respective metrics on the testing set in each moment.
The baseline models are denoted by dotted lines and uncertainty models by full lines. The graphs of MSE, R2,
and predicted uncertainty were truncated to make the graphs more interpretable.

Threshold was 0.0156, and t for Threshold-Greedy
was 0.0228. The comparison of the performance
over the training set with the metrics recorded over
the testing set is shown in Figure 5.5. For a better
display of all metrics in detail, please consult Ap-
pendix D.
To assess the consumed resources, we once again

present the number of skipped points. The training
set consisted of 6840 points and the final number
of skipped points for each method that was able to
skip points are visible in Table 5.3. The percentages
are rounded to one decimal digit after the dot.

5.5 Buffer Saturation

Lastly, we look into the performance of the methods
with a varying size of a buffer. For all of the previ-
ous experiments, the buffer size was set to 100 for
all of the methods. To produce these results, both
optimal machine learning and method-specific pa-
rameters were used, that is the same set of param-
eters which was used to produce the results shown
in Figure 5.5.

Model Name Points Used Dataset Usage %
RIRO 1397 20.5%
Greedy 6661 97.4%

Threshold 1948 28.5%
Threshold-Greedy 636 9.3%

Table 5.3: Resources used by methods after
method-specific parameters have been tuned.
The online learning methods can skip storing and train-
ing on points, which makes them save resources. This
table shows for each method how many of the points
have been used over the learning process over the whole
training set of 6840 points.

The buffer size we choose to investigate is from
the set {10, 20, 50, 100, 200, 400}. We look at the
cumulative MSE achieved by each of the methods
over the learning process given the size of the buffer.
The results are presented in Figure 5.6. For a better
display of the results, see Appendix D.
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Figure 5.2: Final cumulative MSE of RIRO mod-
els with varying parameter p. The parameter p in
RIRO regulates the probability of accepting the point
into the training set. The graph shows the final cumu-
lative MSE after the learning process as a function of
the parameter p.

6 Discussion

The aim of this paper was to determine, whether
the amount of data can be retained in the online
learning process without a loss of performance us-
ing uncertainty. We will now discuss the results ob-
tained in Section 5.

6.1 Basic Hyperparameter Tuning

Firstly, we take a look at the results presented in
Figure 5.1. Looking at the MSE, we can see that the
statistical baselines (FIFO, FIRO, and RIRO) do
not obtain a stable model over the whole learning
process. The MSE oscillates, which indicates that
these methods locally overfit the current data and
do not manage to generalize over the whole learn-
ing process. What is more, the methods suffer from
catastrophic forgetting constantly over the whole
learning process. The same picture is sketched by
the R2 metric, where none of the three previously
mentioned techniques manage to remain stable over
the whole learning process. This projects into the
cumulative MSE metric, which tells us that over-
all FIFO performed the worst, with RIRO being a
close contestant. FIRO performs quite a bit better,
but still worse than the uncertainty-based methods.

The uncertainty-based methods all manage to
regularize for local overfitting on the current data.
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Figure 5.3: Final cumulative MSE of Threshold
models with varying parameter t. The parameter
t in Threshold determines the necessary level of uncer-
tainty that a point has to reach to be included in the
dataset. The graph shows the final cumulative MSE af-
ter the learning process as a function of parameter t.

This can be deduced from the stability of the learn-
ing process, as the curves of MSE for Threshold,
Greedy, and Threshold-Greedy all stay low dur-
ing the whole learning process. We can note that
Greedy converges the most quickly at the begin-
ning of the training. However, later it is less sta-
ble. The Threshold method converges a lot slower
at the beginning, with Threshold-Greedy perform-
ing somewhere in between the two previously men-
tioned. However, later in the process, the Thresh-
old method is the most stable and keeps to a good
model, while other methods oscillate a lot more.
The R2 once again sketches a similar picture of
this. All of these effects are captured in the cumula-
tive MSE, which sets the Threshold to be the best-
performing model overall, followed in close succes-
sion by Greedy and Threshold-Greedy.

It is also noteworthy to inspect the graph of pre-
diction uncertainty over the learning process. We
can see that the statistical baseline methods pre-
dict lower uncertainty most of the time, with high
peaks from time to time. This can be interpreted as
overfitting the local data, as when very novel data
appears, the uncertainty jumps up to be high be-
fore the model is fitted onto this new data. In con-
trast, the uncertainty-based models, predict some-
what higher uncertainty over most of the points,
however, they do not have such high peaks, which
indicates that they manage to generalize and novel
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Figure 5.4: Final cumulative MSE of Threshold-
Greedy models with varying parameter t. The
parameter t in Threshold determines the necessary level
of uncertainty that a point has to reach to be included
in the dataset. The graph shows the final cumulative
MSE after the learning process as a function of the
parameter t.

data is only a slightly bit uncertain when it comes
to the input.

Lastly, Table 5.1 displays proof that the
uncertainty-augmented methods manage to save re-
sources. Notably, the Threshold method has per-
formed the best overall on cumulative MSE, while
using only 17.1% of the dataset. From this, we can
conclude that uncertainty can be used as a valuable
predictor of whether or not a data point should be
selected into a dataset, especially in the scenario
when storage is scarce and data is expected to have
redundancy.

6.2 Additional Parameter Tuning

The performance of RIRO models with different
parameters p was compared based on the final cu-
mulative MSE in Figure 5.2. From the results, we
can conclude that lower p is more beneficial to fi-
nal cumulative loss, but as Figure D.2 hints, these
models take a lot more time to converge. This ex-
actly follows what we predicted in Section 3. Lower
p means that we need a longer time to establish an
even distribution of the data over the whole sam-
ple space, but archives an even distribution later
on. Overall, the value p = 0.2 gave us the best per-
formance, hence it was also used later on in other
experiments.

Similarly to this finding, Figure 5.3 and Figure
5.4 suggest that higher thresholds guide models to
higher performance on the final cumulative MSE.
Curiously, for Threshold methods, the difference at
the beginning of the learning process is not that
stark as shown in Figure D.3. We hypothesize, that
this is because, at the beginning of the learning
process, all the data has high uncertainty, as it
is not well known. Curiously, this is not true for
Threshold-Greedy, as shown in D.4, where all the
methods perform similarly over the whole learn-
ing process. In the end, however, a higher value of
t was indeed also beneficial. All in all, the value
t = 0.0228 brought the best results for Threshold-
Greedy and t = 0.0156 for the Threshold methods.
These were selected for use in the later experiments.

6.3 Optimal Parameters

The results with the optimally tuned p and t are
shown in Figure 5.5. All of the same observations
as previously discussed with the first results apply
to these results now. However, RIRO with tuned
p now achieves a lot lower final cumulative MSE,
which makes it perform better than FIRO and
brings it close to the performance of uncertainty-
based methods. The graph of cumulative MSE,
however, does not tell the full story in this case.
From the development of R2 and MSE, we can see
that by the end of the learning process, the RIRO
model has performed better than the Threshold
models, achieving lower MSE and higher R2. We
note that over a long period, taking just random
points introduces sufficient robustness against lo-
cal overfitting. However, RIRO was not as stable as
uncertainty-based methods during the whole learn-
ing process. It could not prevent a sharp decrease
in performance in the middle of the learning pro-
cess. From this we can conclude, that uncertainty
is a good selection metric for picking the points,
which can help us increase the robustness of the
model, however, over long horizons, it will perform
no better than random selection.

It is interesting to consider the performance of all
the models in comparison with the Offline baseline,
which has considered all the points at once. The
performance of the baseline has been plotted as a
line for MSE and R2 over the whole process so that
we can compare the optimal model we are striving
towards. We can conclude that no one of the models
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Figure 5.5: Final comparison of models. The x-axis denotes the iterations over the training set, and the
y-axis the performance of respective metrics on the testing set in each moment. The baseline models are denoted
by dotted lines and uncertainty models by full lines. The graphs of MSE, R2, and predicted uncertainty were
truncated to make the graphs more interpretable.

came close to achieving the same MSE and R2 as
the baseline. RIRO was closest at the end, achieving
MSE of 0.001236 and R2 of 0.859239, however, the
Offline baseline obtained MSE equal to 0.000237
and R2 of 0.971106. From this, we can conclude,
that the buffer of size 100 is simply not big enough
to contain sufficient data for learning models that
can achieve a low loss.
Another proof that uncertainty is a good indi-

cator of which points to skip is the analysis of
skipped points in Figure D.5e. As established in the
previous paragraph, RIRO with small p achieves
the best performance, and we can see that it has
been skipping a similar quantity of points, as the
uncertainty-based methods. This indicates, that
the uncertainty can help us select the quantity of
points to be skipped, to increase the robustness of
the learning approach.

6.4 Buffer Size Influence

As hypothesized, the performance in terms of cu-
mulative loss changes with the size of the buffer, as

shown in Figure 5.6. For all of the models, the big-
ger the buffer, the smaller the final cumulative loss.
However, the gain related to the increase in the size
of the buffer is not the same for all the methods.
All in all, the uncertainty-based methods perform
poorly with a small buffer size, while for the bigger
buffer sizes, the performance is getting better and
better. The baseline methods, on the other hand,
show a more stable performance regardless of the
size of the buffer. For all of the methods, the gain
in performance is indeed diminishing with the in-
creased buffer size.

7 Conclusion

The question that we tried to answer during this re-
search was: Can uncertainty estimation be used to
increase efficiency and stability in online incremen-
tal learning of regression tasks in settings with con-
strained resources? We can answer affirmatively: as
discussed above, the uncertainty-based methods ex-
hibit greater stability over the learning process and
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Figure 5.6: Cumulative MSE of each of the
methods depending on the size of the buffer.
The size of the buffer influences the maximum number
of points each of the methods can store at any point
during the online learning process. This has an influ-
ence on the quality of the model as the more points the
model can store, the better the stored points represent
the whole distribution of the data. The graph shows
the final cumulative MSE after the learning process as
a function of the size of the storage buffer.

consume fewer data points than statistical base-
lines.

All in all, the Threshold method has performed
the most stable and delivered the best model in
the end. As noted in Table 5.3, the method has
used 28.5% of the data. The method that required
the least data was the Threshold-Greedy method
(9.3%). Although this might seem like a great num-
ber of saved resources, in the process of estima-
tion uncertainty, 10 estimators were used and all of
them had to be trained independently. This effec-
tively multiplies the amount of used resources by
10. Therefore the going in saved resources is not
that big. All in all, we conclude that there is no
free lunch (Adam et al., 2019).

7.1 Potential Improvements

There are potential flaws in the study, which could
be improved upon. Firstly, one might point out that
the statistical baselines, such as FIFO, FIRO, and
RIRO, are only regularized by early stopping. It is
therefore unexpected, that they did not generalize.
In the end, the best-performing methods are the
ones that skip a lot of points, preventing (or at least

delaying) overfitting. Although the hyperparameter
tuning gave each of the methods the possibility of
using a smaller network, it could be useful to try
tuning L1 or L2 regularization, or other different
regularization techniques.

Moreover, one might argue that fitting the pa-
rameters separately in two rounds (firstly the basic
machine learning parameters, then the other pa-
rameters of the methods) is not fully fair. The pa-
rameter for the Threshold that was guessed for the
initial hyperparameter tuning was closer to the op-
timal one than the one chosen for RIRO. This could
have negatively influenced the final performance of
the RIRO method. It would be optimal, to tune all
the parameters at once, refine the search space, and
give the Bayesian Optimizer more iterations.

Next up, one could question the techniques used
for the estimation of uncertainty. Estimation of
epistemic uncertainty has its limits, there are many
techniques to do it, which have different accuracy
(Valdenegro-Toro & Mori, 2022). It would be best
to confirm the results with another uncertainty es-
timation technique.

7.2 Suggested Research Directions

Although we have performed an extensive compar-
ison of methods. It would be useful to compare
the results also with some spatial and temporal
heuristic approaches, similar to the ones presented
in Wehbe et al. (2017). Achieving equally-spaced
spatial distribution of points in the dataset might
incur smaller computational costs while inducing
the great performance of the model. It would be
useful to see, how the uncertainty-based methods
would compare against such approaches.

As hinted in the discussion of the results with
varying buffer sizes, the increase in buffer size
brings diminishing returns. One might consider in-
vestigating further, the effect of the buffer size and
see how the returns diminish till finding a buffer
size that performs indistinguishable from the Of-
fline baseline. We hypothesize that in the case of
our experiment, this might be around 1000 points.

Furthermore, more investigation should be done
into how information is retained in the network
throughout the learning process. From this work,
there is no direct insight into how much the net-
works suffer from catastrophic forgetting and how
much they can bring with them over the online
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learning process. Having a better insight into the
mechanics of this might help us leverage informa-
tion gathered from uncertainty estimation, or any
other heuristic for that matter, even better.
Although we have concluded that the threshold

method performed the best, the performance of the
methods is closely tied to the parameter t. This
means, that the parameter must be tuned up front,
which might not be very useful in practice. We pro-
pose to investigate an adaptive approach, for ex-
ample, developing the idea of the percentiles based
on uncertainty predicted on previously encountered
points. Let the model estimate the uncertainties
and only accept those in the 90% percentile of un-
certainty. Such a technique would remove indepen-
dence from the tuning procedure.
All in all, the ultimate proof of the usefulness

of the suggested methods will be the deployment
of the methods in the real environment on an au-
tonomous underwater vehicle. This is the next sug-
gested step towards seeing how the method could
be exploited in practice.
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A Hyperparameter Tuning

The hyperparameter tuning was performed using Bayesian optimization on a discrete set of parameters.
For ease of use, the Bayesian Optimization tuner from Keras was used. The tuner was run for 60 iterations
for each technique. Under the condition that the optimal parameters cover at least 5% of the search space,
random search gives us a 0.95 probability of finding optimal parameters. Bayesian Optimization uses
probability distribution to discover samples smartly, so the odds are good Bergstra & Bengio (2012).
The explored set of parameters is given in Table A.1.

Parameter Name Considered Values
Number of layers {1, 2, 3, 4}
Units per layer {4, 8, 16, 32, 64}
Learning rate {10−2, 10−3, 10−4, 10−5}
Batch size {1, 2, 4, 8, 16}

Early Stopping Patience {3, 5, 9}

Table A.1: Hyperparameters considered in the tuning process

The size of the network was constrained to a maximum 4 × 64 as the network learns on a limited
buffer size, therefore even if we want the number of parameters not to exceed the number of data points
too much, we keep it like this. Each of the other parameters (patience, batch size, learning rate) was
assessed for being relevant by fixing the rest of the parameters and trying to tune just one of them. This
is how this reduced set of parameters was chosen.
The tuning process was run for each of the networks, with a fixed-sized buffer to 100 data points, fixed

P in RIRO to 0.7, and fixed t of Threshold to 0.02. These were fixed without further thought and their
tuning will be discussed further in Appendix D. This is done to decrease load in the hyperparameter
running, as there were already many conditions to explore and these parameters are essential to the
performance of the models, so they deserve more attention.
The parameters were trained by the iterative process discussed in the algorithms on the training set

and were continually assessed using the with-held validation set based on the final cumulative MSE loss
over the training process. The Oflline baseline was assessed based on its MSE, as there is no cumulative
MSE metric for it, as it does not follow the online learning process. The final hyperparameters chosen
for each of the models can be found in Table A.2.

Parameter Name
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Number of layers 3 3 4 1 1 1 1
Units per layer 64 64 32 16 16 16 32
Learning rate 10−4 10−4 10−4 10−3 10−3 10−3 10−2

Batch size 1 2 1 4 8 1 16
Early Stopping Patience 9 5 5 5 5 9 5

Table A.2: Optimal hyperparameters
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B Formal Descriptions of Approaches

Define machine learning model M to be a learner, that can train on an assigned data set, and predict
by performing a forward pass. We define the prediction function of the model to be f : M ×X → (m, s)
where X is input, m represents the mean of the prediction, and s represents the standard deviation.
Furthermore, we denote the set of the stored data as D = {(X1, y1), . . . (Xn, yn)}, n > 0, the set of
incoming data that the online learner learns on as O = {(X1, y1), . . . (Xk, yk)}, k > 0, and finally the
testing set as T = {(X1, y1), . . . (Xl, yl)}, l > 0. Furthermore, we consider a testing metric E : M×T → R,
which we can apply in each iteration of the learning process.
The FIFO algorithm is described in Algorithm B.1. The FIRO algorithm is described in Algorithm B.2.

The RIRO algorithm is described in Algorithm B.3. The Threshold algorithm is described in Algorithm
B.4. The Greedy algorithm is described in Algorithm B.5. The Threshold-Greedy algorithm is described
in Algorithm B.6.

Algorithm B.1 First-In-First-Out: FIFO

Require: Model M with prediction function f , data set D of size n and training data O of size k, empty
sequence of results R.
while n > 0 do
(Xc, yc)← (X1, y1)
O ← {(X2, y2), . . . (Xn, yn)}, (Xi, yi) ∈ O
n← n− 1
D ← {(X2, y2), . . . (Xk, yk), (Xc, yc)}, (Xi, yi) ∈ D
Retrain M on D
R← [R,E(M,T )]

end while

Algorithm B.2 First-In-Random-Out: FIRO

Require: Model M with prediction function f , data set D of size n and training data O of size k, empty
sequence of results R.
while n > 0 do
(Xc, yc)← (X1, y1)
O ← {(X2, y2), . . . (Xn, yn)}, (Xi, yi) ∈ O
n← n− 1
Pick random i ∈ {1, . . . k}
D ← {(X1, y1), . . . (Xi−1, yi−1), (Xi+1, yi+1), . . . (Xk, yk), (Xc, yc)}, (Xi, yi) ∈ D
Retrain M on D
R← [R,E(M,T )]

end while
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Algorithm B.3 Random-In-Random-Out: RIRO

Require: Model M with prediction function f , data set D of size n and training data O of size k, empty
sequence of results R. Probability of acceptance parameter p.
while n > 0 do
(Xc, yc)← (X1, y1)
O ← {(X2, y2), . . . (Xn, yn)}, (Xi, yi) ∈ O
n← n− 1
Sample a from X ∼ Unif(0, 1)
if a < p then
Pick random i ∈ {1, . . . k}
D ← {(X1, y1), . . . (Xi−1, yi−1), (Xi+1, yi+1), . . . (Xk, yk), (Xc, yc)}, (Xi, yi) ∈ D
Retrain M on D

end if
R← [R,E(M,T )]

end while

Algorithm B.4 Threshold

Require: Model M with prediction function f , data set D of size n and training data O of size k, empty
sequence of results R. Threshold t for acceptance of a point.
while n > 0 do
(Xc, yc)← (X1, y1)
O ← {(X2, y2), . . . (Xn, yn)}, (Xi, yi) ∈ O
n← n− 1
(m, s)← f(Xc)
if s > t then

Pick random i ∈ {1, . . . k}
D ← {(X1, y1), . . . (Xi−1, yi−1), (Xi+1, yi+1), . . . (Xk, yk), (Xc, yc)}, (Xi, yi) ∈ D
Retrain M on D

end if
R← [R,E(M,T )]

end while

Algorithm B.5 Greedy

Require: Model M with prediction function f , data set D of size n and training data O of size k, empty
sequence of results R.
while n > 0 do
(Xc, yc)← (X1, y1)
O ← {(X2, y2), . . . (Xn, yn)}, (Xi, yi) ∈ O
n← n− 1
(m, s)← f(Xc)
(Xi, yi)← argmin(Xj ,yj)∈D s where (m, s) = f(Xj)
(m′, s′)← f(Xi)
if s > s′ then
D ← {(X1, y1), . . . (Xi−1, yi−1), (Xi+1, yi+1), . . . (Xk, yk), (Xc, yc)}, (Xi, yi) ∈ D
Retrain M on D

end if
R← [R,E(M,T )]

end while
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Algorithm B.6 Threshold-Greedy

Require: Model M with prediction function f , data set D of size n and training data O of size k, empty
sequence of results R.
while n > 0 do
(Xc, yc)← (X1, y1)
O ← {(X2, y2), . . . (Xn, yn)}, (Xi, yi) ∈ O
n← n− 1
(m, s)← f(Xc)
(Xi, yi)← argmin(Xj ,yj)∈D s where (m, s) = f(Xj)
(m′, s′)← f(Xi)
if s > s′ ∧ s > t then
D ← {(X1, y1), . . . (Xi−1, yi−1), (Xi+1, yi+1), . . . (Xk, yk), (Xc, yc)}, (Xi, yi) ∈ D
Retrain M on D

end if
R← [R,E(M,T )]

end while
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C Visualization of Applied Methods

The following figures visualize the methods used during the experiments using an example of a simple
toy task. The dataset is composed of the values of the functions sin over a short range. During the
incremental learning task, they are served to the model in order with increasing x.

The following figures are gifs that can be viewed using pdf reader with a Javascript extension, for
example, Okular or Adobe Reader. Furthermore, for the gifs to be activated, the current page has to be
selected. This can be ensured by viewing the document in 1-page mode and viewing this single page at
once.

(a) FIFO (b) FIRO

(c) RIRO (d) Greedy

(e) Threshold (f) Threshold-Greedy

Figure C.1: Animated figures of the approaches taken in incremental online learning in this work.
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D Extended Results

D.1 Basic Hyperparameter Tuning Results in More Detail
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Figure D.1: Basic hyperparameter tuning results
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D.2 Tuning of RIRO in More Detail
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Figure D.2: Comparison of R2 and Cumulative MSE for RIRO with varying p

D.3 Tuning of Threshold in More Detail
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Figure D.3: Comparison of R2 and Cumulative MSE for Threshold with varying t

D.4 Tuning of Threshold-Greedy in More Detail

0 1000 2000 3000 4000 5000 6000 7000
Iterations

1.5

1.0

0.5

0.0

0.5

R2

Threshold Greedy 0.0016 
Threshold Greedy 0.0023 
Threshold Greedy 0.0036 
Threshold Greedy 0.0056 
Threshold Greedy 0.0075 
Threshold Greedy 0.0096 
Threshold Greedy 0.012 
Threshold Greedy 0.0156 
Threshold Greedy 0.0228 

0 1000 2000 3000 4000 5000 6000 7000
Iterations

0

5

10

15

20

25

30

35

Cu
m

ul
at

iv
e 

M
SE

Threshold Greedy 0.0016 
Threshold Greedy 0.0023 
Threshold Greedy 0.0036 
Threshold Greedy 0.0056 
Threshold Greedy 0.0075 
Threshold Greedy 0.0096 
Threshold Greedy 0.012 
Threshold Greedy 0.0156 
Threshold Greedy 0.0228 

Figure D.4: Comparison of R2 and Cumulative MSE for Threshold with varying t
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D.5 Final Comparison in More Detail
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Figure D.5: Final comparison plots
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D.6 Analysis of Buffer in More Detail
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Figure D.6: Comparison of R2 and Cumulative MSE for FIFO with varying buffer size

D.6.2 FIRO
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Figure D.7: Comparison of R2 and Cumulative MSE for FIRO with varying buffer size

D.6.3 RIRO
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Figure D.8: Comparison of R2 and Cumulative MSE for RIRO with varying buffer size
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D.6.4 Threshold
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Figure D.9: Comparison of R2 and Cumulative MSE for Threshold with varying buffer size

D.6.5 Greedy
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Figure D.10: Comparison of R2 and Cumulative MSE for Greedy with varying buffer size

D.6.6 Threshold Greedy
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Figure D.11: Comparison of R2 and Cumulative MSE for Threshold-Greedy with varying buffer
size
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