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Abstract

The data analysis field nowadays is becoming commonly integrated in the film
industry to gain insight on the success of their projects. This bachelor project applies
survival analysis to the data of 905 wide released movies produced and screened in
the US from 2013 to 2018. The aim is to explore the effects of production level and
release stage film’s characteristics on its success, where we define success as the amount
of screening days. The methodology consisted of the Cox regression model with mixed
effects, where we proposed the shared frailty for film distributors. In addition, we include
the model validation and comparison with the standard Cox proportional hazards model.
The results suggest that variables such as a film’s rating, opening gross and opening
theatres amount compared to maximum theatres affect the films survival. The effect of
the running time is partly supported, while genres were not significant for the model.
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1 Introduction
The American movie industry nowadays is the largest film industry in the world. Commercially,
it is the most successful: the total gross (domestic USA box office) for January 2024 counts
more than 495 million dollars [IMDB, 2024].
Since the film industry has a high number of staff, actors, audience, the whole working
process was significantly influenced by the COVID pandemic and its restrictions: e.g. the
cinemas were mostly closed as it was impossible to follow the restrictions on social gatherings
in indoor spaces.

This had consequences, that is, popularity of the streaming platforms, changes in film trends
and the related post-COVID recovery. Streaming platforms such as Netflix, rely on data
analysis, which allows for analysing and identifying trends in the film industry as well as
viewer preferences in different movie characteristics.

Regarding post-pandemic period, the movie industry had experienced a decrease in box office
gross, which resulted in mass reduction of staff. The aftermath of the pandemic resulted in
one of the biggest writers strike interrupting film production for 5 months [Los Angeles Times,
2023]. The popularity of streaming platforms during the COVID-19 pandemic also raised a
question of whether theatres/cinemas have become unnecessary even when the restrictions
are lifted.

Currently, the trends show a decreasing amount of movies screened in cinemas. The reduction
of the number of release movies is also observed in our preliminary analysis: in our dataset
we calculated, that before the COVID pandemic the audience had a choice of 37 movies
on average per day, while upon checking a sample of biggest USA theatres, we found that
the ongoing releases allows for the viewer to choose 24 movies to see a day, and this is also
confirmed in some of film journals, e.g. [NoFilmSchool, 2022]. Therefore, our research aims
to analyse the factors which affect the length of the theatrical window of the films released in
a period of 2013-20181, i.e. right before the COVID pandemic. We believe, that the results
of this study are significant for performing further comparisons of the trends with the data
sets from mid-COVID and post-COVID periods.

Before we state our research question, it would be beneficial to present the overview of the
main literature, where the authors implemented survival analysis on the film industry data.
The purpose is to search for the relevance of our chosen topic, as well as to aim towards the
comprehensive research with the methodology and variables collected. Therefore below we
provide the brief literature review of the researches connected to our work.

[Kim, 2021] applied survival analysis, namely Kaplan-Meier curves and Cox regression model,
to examine factors that affect the number of screening days a movie stays in theatres, as
the measure of the success of the movie. The data is from the Korean film database of
746 movies released during 2010-2019. The results of this study state that the domestic
identity of the producer, positive, negative or neutral reviews have the significant effect on

12019 is not included, since the closing dates in theatres of the movies released in 2019 is affected with
COVID-19 theatre closures

6



the movie’s survival. The effects of supplementary factors, for the rating and genre, are
partially supported (the effect on the survival time differs slightly for different genres and
ratings).

[Legoux et al., 2015] also analysed the effect of critical reviews on the decision to keep or
withdraw a movie from the theatre, taking the screening weeks as the survival time. The
methodology is the implementation of basic discrete-time proportional odds (DTPO) survival
model with random effects that were used for the theatres (118 theatres), to account for the
heterogeneity. The variables tested are: Film gross and Screen numbers in prior week, Critical
reviews, Rating, Genre, Distributors, Runtime, Stars, Production budget, Weekly consumer
ratings, competitions and advertising. Their data consists of 788 films that were screened in
Quebec, Canada between 2002 and 2011. The main source for this database was CINEAC,
secondary are IMDb and Rotten Tomatoes. The results showed that covariates, which were
similar to the ones considered in this research, such as distributor and runtime were not
significant and did not affect the risk of the movie being withdrawn; the genre and rating
were observed to have affect on the movie survival.

[Chisholm and Norman, 2006] use the survivor function to analyse the weekly film programming
choices of three theatres in the Boston metropolitan market during the period of June 30
2000 - June 28 2001. The methodology involved the Kaplan-Meier product-limit estimator,
Cox proportional hazard model and the accelerated failure-time (AFT) model. The data was
obtained through Synergy Retail, IMDb and Hollywood Reporter. This paper considered
variables such as: film’s rank (based on gross relative to other films screened at the same
week), film’s first weekend revenue, the percentage of theatre gross, the number of opening
screens during the first week of release, the "star power" of the cast and theatre owners. The
results suggested that the covariate of the number opening screens do not affect the film’s
survival at the theatre level, while the first weekend revenue strongly affect the probability
of stay.

We point out that there is a sufficient amount of researches on film’s success, since the data
analysis field in the film industry is growing. For instance, while performing the literature
research we have observed other statistical methodologies such as linear regression models and
machine learning techniques applied to explore the factors contributing to a film’s success.
However, the survival analysis usage is rather limited in the amount of researches being
conducted on the movie data, where the screening in theatres is defined as the survival time.

This paper aims to answer the following research question: "To what extent do movie
production characteristics and release factors affect the success of movies?" by
using the survival analysis. Movie production characteristics refer to the predetermined
information about the movie: distributor, genre, rating, running time. First-day and post-release
factors then refer to the data such as the first day opening gross and the proportion of
open theatres compared to maximum amount of theatres which screened these movies. We
measure success of the movie in the amount of screening days in theatres, defining survival
time as the amount of screening days. Moreover, this paper attempts to improve the research
methodology of implementation of the survival analysis, specifically by using the extended
Cox model and the inclusion of frailty for the Distributor variable.
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Based on the definitions of ratings, we formulate the hypothesis as following: Hypothesis
1: The rating of a movie has an effect on its amount of screening days. We further
hypothesise that the PG & G ranking movies will have a higher probability of stay in theatres
as time passes and as we explain in the Data section, the main reasoning behind is that the
movies which have no age restriction attract bigger audience, thus, are more successful.

Regarding the genres of the movies, we have Hypothesis 2: Genre is an indicative
characteristic of the movie in terms of its success.

For the running time, it is widely discussed that there is a trend for an increase of overall
length of movies [Rosser, 2019]. Hence we investigate Hypothesis 3: The runtime of a
movies affects its longevity of stay in theatres. Here our prediction is that movies
of a longer runtime will have a higher probability of stay in theatres compared to those of
shorter or average runtime.

Since we investigate the success of the movies, the amount of money that the movie makes
during its first day (the opening gross) is an indicative characteristic of its future success.
Hence our Hypothesis 4: The movie’s opening gross amount has an effect on its
longevity of stay in theatres. Our prediction is that movies with higher opening gross
will have a higher probability of stay in theatres as time passes.

For the amount of opening theatres, we aim to explore whether the comparison with the
amount of maximum theatres, that is, the growth of the wider release (movie screened in
more theatres as time passes) contributes to the success of the movies in terms of the screening
days. Therefore, we explore Hypothesis 5: An increase of movie’s screening theatres
affects its longevity of stay in theatres.

Regarding the distributors, which are the studios producing the movies, we assume that
there is a within-cluster correlation for movies belonging to the same distributor. We further
explore whether the choice of the distributors as random effects is justified.

The structure of the work is divided into data section, the inference on the Extended Cox
model, the model assessment and conclusion&discussion. We finish the main paper body with
the model comparison to the Cox proportional hazards model and perform model assessment
and validation by backward elimination, cross-validation and assessment of normality assumption.
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2 Data
Within this section we present the data sources used in the paper and provide the details
about the data collection, cleaning and formatting processes, together with the background
and motivation for the categorization of variables. The collected data sample required
detailed and careful preparation for the analysis. The data set contains the films produced
and released domestically in the US, which is a commercial industry, thus we point out that
a lack of transparency and variety of open source information is present to some degree.
But we believe that our data sources are reliable given that they are widely used in other
researches.

2.1 Data manipulation

It is desirable to choose the movies that are accessible to a wide population, hence eliminating
limited and "exclusive" releases [OpusData, 2023]. Since we focus on a commercial side of the
film industry, investigating the success of the movies, we exclude "experimental" projects in
the limited release which are less motivated by commercial success. Moreover, the variables
in the limited release data can be difficult to categorize: i.e. the characteristics such as
runtime, genres and opening gross, since they differ from the "standard" (wide release) films.
That way we believe that a more comprehensive inference can be extracted with the wide
release movies, i.e. screened in larger than 600 theatres.

2.1.1 Data collection

The three main sources of data are IMDb Box Office Mojo [IMDB, 2024] and Nash Information
Services [Nash, 2023] as the prior data sources, The Numbers [Numbers, 2023] as a secondary
source.

Since the main methodology of this research is application of survival analysis, we first
collected data from IMDb Box Office Mojo2, which contains the number of screening days
(days of film’s stay in theatres), defined as survival time of this research. In addition to the
dates of release and closing in theatres, a few other variables were collected from IMDb as
summarized in Table (1).

In order to increase the amount of collected variables, we contacted several other movie
industry data organizations. Our request was addressed by Nash Information Services, who
provided access to a dataset intended for academic usage3. Upon merging the extract with
IMDb data set, we found out that approximately 1/3 of the number of movies were absent
from Nash. Unfortunately the data sent by Nash was the subset of the full data, therefore
some of the variables provided there (creative type of the movies, production method, etc)
could not be used for our type of the research, since that information was not found to be
available in other sources, to manually collect it for the unmerged movies.

2Information courtesy of IMDb (https://www.imdb.com). Used with permission.
3We hereby acknowledge the usage of the intellectual property of Nash Informational Services in this

publication.
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After we merged the data from IMDb and Nash, the unmerged subset of data was collected
manually from IMDb, for the variables present there, using different directory on the website
and The Numbers was used for the reliability of the data collected. For some of the variables
missing, we also collected the information using the same databases, but different directory
on the websites. To ensure the reliability of the collection, the sample of movies was rechecked
in The Numbers, so it served as the supporting database.

To summarize, the total amount of movies from IMDb Box Office Mojo before data cleaning
and further data inspection consists of 987 films. The total number of movies accessed from
Nash Information Services upon request - 1900 for years 2006-2018, as the production years
of the films4. Thus, we examined that from the production years 2006-2009 there is no
films that matched with ones in the IMDb dataset and the production years of films which
were included in this research started from 2010 onwards: starting with 1 match in 2010, 24
matches were found in 2011 etc. Below is the table summarizing each of the variable collected
data sources.

Variables Source

Distributors; Opening Gross; Amount
of screening day; Open Theatres;
Maximum theatres

IMDb’s Box Office Mojo

Genres; Rating; Running time Nash Information Services; IMDb’s Box
Office Mojo and The Numbers

Table 1: Data sources of variables

2.1.2 Data cleaning and formatting

In the data provided by Nash, the rows (corresponding to each film) were initially contained
in one cell each. Once this was resolved, the film names were split if the commas or other
special characters were present in the film titles. Thus the formatting issues were present
and had to be resolved.

Regarding the formatting for IMDb set, the Kutools extension was used, together with the
built-in Excel functions for solving the issues. For 11 movies in total, the closing day was
not available, hence for those movies we calculated the screening days by tracking the daily
gross information on IMDb (where the closing date of the movie in theatres should have
corresponded to the last information about the gross). We converted the information into
the date format, enabling calculation of the amount of screening days. When the function for
calculating the amount of screening days was used, it was observed that the count between
the dates did not include the release day itself, so +1 day was added to this function. The

4Production years differ from the release years, usually production took place a year before the release
dates. Production year corresponds to the movie-making period.

10



numbers/currencies also were converted to the correct types.

After solving the formatting issues for both data sources, we merged the sets, resulting in
merged 654 films. We also excluded the duplicates (in case the movie was released and
re-released in period 2013-2018) and formatting the names of the movies to match (if the
movie name contained symbols it was wrongly perceived by Excel). The next step was to
manually collect the remaining data for unmerged movies, ensuring that the collection is
accurate with our previous corrections. We also note, that here by "manual" collection we
mean the collection of variables not from the convenient table of movies of data on the IMDb
website, but mostly for every movie separately.

Since we need feasible data to work with, we continue with careful examination of the data
set. Some characteristics of the movies affected their inclusion in this thesis. Importantly,
in the IMDb dataset it was observed that some of the movies present are re-released. After
examining the distributors, it was noticed that Fathom Events is the distributor of re-released
movies, ones produced by other studios, and "event" movies, e.g. theatrical plays shown in
theatres, so the movies distributed by this studio are not relevant for the analysis. As
described in the Introduction, the point of our research is to analyse the films originally
released in 2013-2018. Thus, we explain the exclusion of re-released movies by the variables,
such as opening gross and opening theatres, be different from its original release, which
would bias the results. Similarly, we excluded all movies and distributors that belong to the
re-released and experimental category.

After getting rid of re-releases, Fathom events movies and some experimental movies, we
have a final sample of 905 movies, with the complete information for each variable.

2.2 Variable Description

For this study, we think that the reader has to be familiar with some topics in the film
industry. Concepts such as the relationship between distributors and theatres, basics of the
genre theory and terminology for other variables in the film industry are referenced for better
understanding and correct interpretation of the variables.

The process of delivering a movie to the audience is divided into three main stages: production,
distribution and exhibition. We consider variables for each stage: genres, ratings, distributor
and running time for the production stage, opening theatres for distribution, and opening
gross and the amount of screening days for exhibition stage. Upon preliminary analysis
of data it was decided to categorize some variables, and we provided the corresponding
explanation to the categorization according to the film literature and magazines.

2.2.1 Distributors

Distributors are the film-making studios, which set the film’s release dates and negotiate
with theatres the theatrical windows [Pokorny et al., 2019]. The initial theatrical window
is agreed upon by both parties. In case a movie performs well commercially, the theatrical
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window can be extended.

In the film distributor industry in the US, some studios are leading: Walt Disney, Warner
Brothers, Universal, Sony Pictures and Paramount Pictures. For this research, we did not
group the Distributors into subcategories, however, it is possible to group them according
to the market shares. Hence, our analysis involved all 57 distributors as separate categories
[IMDB, 2024]. We assume that films which have the same distributor at the production stage
have common characteristics unobserved in our data such as financing, staff, shared facilities
etc.

2.2.2 Genres

When we collected the data, we decided to take the predominant genre of the movies, since
some movies had several genres in one data sources, and only one genre in the other. Thus,
we searched the definition of the genre, as a movie characteristic, and we note that the
classification of movies based on genre is complicated. According to [Altman, 1999]: "A
genre is not an average descriptive term, but a complex concept with multiple meanings,
which can be identified as following: as a formula, a formal network of films, a category and
its perception by the audience."

Due to the different definitions and interpretations, genre theory is a topic which complicates
the process of variable categorization in this study. For example, we can group Adventure
and Western genres because they have similar characteristics of storytelling and dynamics
of the plot, but grouping Drama and Comedy is not appropriate, since they are different by
characteristics.

For the Documentaries group, the Biographies and Documentaries can be grouped in a single
category due to the similar definition of the real-life oriented movies. Regarding the Comedy
genre, to this category we combine: Black comedies, Romantic comedies etc., they are all
grouped into a main genre since they all have a similar entertainment characteristic. Musical
and Concert/Performance genres are grouped into the same genre due to similarities in music
theme. Finally, the Thriller genre has similarities with Crime and Suspense genres in having
criminal topics and a suspense atmosphere.

To summarize, we categorized the genres into eight groups (in the bracelets we indicate
amount of movies and initial genres): Action (161), Adventure (adventure + western) (143),
Documentaries (documentaries + biography) (48), Comedy (black comedy + comedy +
romantic comedy) (192), Musical (musical + concert/performance) (12), Thriller (crime +
thriller + thriller/suspense) (92), Drama (194) and Horror (63).

2.2.3 Rating

A rating given to a movie, according to [MPA, 2020], refers to the audience which is allowed
to access the screening in cinemas. The age limit on a film can affect the size of a potential
audience, hence we suggest it affects the success of a movie in cinemas. Ratings for movies
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are assigned by Motion Picture Association of America (MPAA), which act as a guideline for
the parents to consider whether a movie is suitable for viewing by their children, including
the presence of mature themes (language, depiction of violence, nudity, sensuality, depictions
of sexual activity, and drug use). Below is given the description for each restriction.

• G - General Audiences. All Aged Admitted
Contains nothing of the mature themes, in the view of a Rating Board, would be
inappropriate for children of any age.

• PG - Parental Guidance Suggested. Some Material May Not Be Suitable For Children
The PG rating indicates, in the view of the Rating Board, a PG rated movie should
be investigated by parents before they let their younger children attend the screening.
Audiences of all ages are still allowed to attend the screenings, since no objective mature
themes are shown.

• PG-13 - Parents Strongly Cautioned. Some Material May Be Inappropriate For Children
Under 13.
A PG-13 motion picture may go beyond the PG rating in theme, but does not reach the
fully restricted category. There may be depictions of violence in a PG-13 movie, but
generally not realistic. Children under age 13 are not allowed to enter unaccompanied
by parents or guardians.

• R - Restricted. Children Under 17 Require Accompanying Parent or Adult Guardian.
An R rated movie may include adult themes, so that parents are counseled to take
this rating very seriously. Children under 17 are not allowed to attend R-rated motion
pictures unaccompanied by a parent or adult guardian.

We note that the restrictions and their definitions may be different in Europe. Moreover,
upon examining [MPA, 2020] we noticed that the ratings of movies can be changed if there
are two versions. As MPAA states: the original release rating, if it was in the restricted
categories, after the end of screening period, can be changed, that is, the adult content
from the movie can be edited/removed. The movie can then be re-released with different
age restriction. The current dataset involves only the ratings assigned for the original release.

According to the above definitions, we group PG&G ratings into one category as the parental
advisory recommended but not required. We categorized ratings as: R (367), PG-13 (390),
G&PG (148).

2.2.4 Opening Gross

For a more comprehensive study of the opening gross, we note, for further studies, that the
year, economical factors and the production budget could have improved the insight for this
variable. We believe that the opening gross is an important indicator of the film longevity
in theatres, since the gross itself is used as the measure of success of the movie.

The range for the Opening Gross in this data is significant: from $10,723 to $257,698,183.
Considering the above, in order to get more comprehensive insight for the influence of the
Opening gross values on the film’s duration in cinemas, we decided to categorize the opening
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gross into the equal-sized groups (divided into quantiles). That way, we believe the theatres
would have more insightful information in order to predict the success of the movie based on
which category (quantile) it belongs.

The financial success of a movie during its opening days can affect the decision of a theatre
to extend the film’s screening. The responsibility for a film’s stay in release belongs to the
distributor and the theatre. Without the production budget variable, our categorization is
mostly informative for the theatres, than for the distributors, who produced the movie. As
amount of screening days increase, the rights for closing a movie’s screening transfers to
the theatres, i.e. the theatres have the decision making power to withdraw or continue film
screenings depending on their profitability [Pokorny et al., 2019]. The dataset was divided
into quantiles as following:

Category Movies Corresponding Opening Gross

Very Low (< 20%) 181 $10,723 - $1,729,002

Low (20-40%) 181 $1,729,002 - $7,596,687

Below Average (40-60%) 181 $7,596,687 - $15,271,843

Above Average (60-80%) 181 $15,271,843 - $29,872,748

High (> 80%) 181 $29,872,748 - $257,698,183

Table 2: Movie Distribution by Opening Gross Categories

2.2.5 Running time

The running time of a movie, based on the data collected, ranges from 75 min to 201 min.
Below we divided the runtime into 10 min intervals to study the relationship between the
average screening days for the corresponding intervals, Figure (1)5.

We do observe the general tendency of the film’s length in relation to the greater average
amount of screening days, being longer, but the categorization into bigger runtime intervals
is needed. The categorization for the running time could be done in various approaches. For
the accurate investigation of our Hypothesis 3: The runtime of a movies affects its
longevity of stay in theatres, we propose two approaches to either confirm or reject the
hypothesis.

The first categorization we propose is based on the existing research, described in the
Introduction [Legoux et al., 2015]. Given the skewed distribution of runtime (1), we divide
the running time into bigger intervals, namely into 6 groups, based on the corresponding
movie amount. We note that the shorter intervals follow from the most movie length being
closer to the average runtime. We suggest, that the detailed examination could provide better

5visualization in Excel for preliminary analysis
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Figure 1: Running time preliminary analysis

model fit, since we could observe the corresponding tendency for the movie to be withdrawn
from theatres, as the runtime of the movie increase/decreases (or observing no tendency).

Category Movie Length Amount of Movies

Group 1 75-94 min 159

Group 2 95-101 min 157

Group 3 102-108 min 146

Group 4 109-116 min 150

Group 5 117-126 min 143

Group 6 127-201 min 150

Table 3: Categorization 1 of Movies by Length

The second approach we propose is the division into 3 categories: Short length, Average
Length and Long Length movies, Table (4). This categorization is appropriate for validation
of Hypothesis 3, also addressing the skewness (by having better average screening days
differences between categories) but there is a limitation on the better trend examination
of the relationship between the increase of movie length [Rosser, 2019] and corresponding
success.
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Category Movie Length Amount of Movies Average

Screening days

Short Movies 75-99 min 267 82

Average-length Movies 100-124 min 475 87

Long Movies 125-201 min 163 103

Table 4: Categorization 2 of Movies by Length

2.2.6 Open Theatres

When releasing a movie, distributors arrange a certain amount of theatres which will have
rights to display the movie. In this section we are interested in how the expansion of the
amount of cinemas screening a film affects the longevity of its stay in theatres. Since we do
not have detailed data on the progress of a movie’s theatre presence, we take a percentage of
opening theatres to maximum number of theatres. Similarly to the Opening gross description,
the theatres observe the success of the movies based on the progress of its gross. Thus, if
observing the success during some period, theatres can extend the theatrical window to
increase the gross from a movie. Hence, given that half of movies in our dataset are screened
in a maximum amount of theatres on its release day, we categorised them into groups with
respective amount of movies suitable for analysis.

Open Theatres to Max. Theatres Movies

< 25% 142

25% to 90% 40

90% to 100% 294

100% 429

Table 5: Grouping of Movies by Percentage of Open Theatres to Maximum Theatres

2.2.7 Amount of Screening Days

The dependent variable in this paper is the total amount of screening days of a film in
theaters, defined as the survival time. While some studies use total gross to measure success
of movies, [Kim, 2021] suggested for the number of screening days as the accurate measure
of success. [Legoux et al., 2015] also measures the success of the movies by its duration in
theatres, but in screening weeks. We proceeded with the days count, since we believe it can
better reflect the accuracy for the research. The count starts at the release date and finishes
at the last day of a film in theatres, the closing day.
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Below is the overview of the variables collected with the corresponding categorization.

Variable Categorization Explanation

Distributors 57 separate Distributors We leave the Distributors as
single separate categories

Opening Gross 5 Categories: Very Low ($10,723
- $1,729,002), Low ($1,729,002
- $7,596,687), Below Average
($7,596,687 - $15,271,843),
Above Average ($15,271,843 -
$29,872,748), High ($29,872,748 -
$257,698,183)

Data is divided in equal sized
parts based on the number of
movies. The motivation is the
lack of economical/production
budget information and a
huge range of the Opening
Gross values. The grouping is
somewhat subjective

Percentage of
Open Theatres
to Maximum
Theatres

4 Categories: below 25% ; 25% to
90%; 90% to 100%; 100%

We take a percentage of opening
theatres to maximum number of
theatres

Amount of
screening days

No need for categorization Dependent variable; Survival
time

Genres 8 Categories: Action, Adventure,
Documentaries, Comedy,
Musical, Thriller, Drama, Horror

The genres are grouped
according to their basic common
characteristics. The grouping is
somewhat subjective

Rating 3 Categories: R, PG-13, G&PG The covariates are grouped
according to the parental
advisory description provided by
MPAA

Running time Categorization 1: Group 1
(75-94 min), Group 2 (95-101
min), Group 3 (102-108 min),
Group 4 (109-116 min), Group 5
(117-126 min), Group 6 (127-201
min)
Categorization 2: 3 Groups:
Short movies (75-99 min),
Average-length movies (100-124
min), Long movies (125-201 min)

We propose two categorizations,
in order to address the skewed
distribution and to improve
the inference on the Runtime
influence. The grouping is
somewhat subjective

Table 6: The Overview of Categorization
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3 Statistical methods
This section covers the necessary mathematical preliminaries for the survival analysis, including
the Cox proportional hazards model, then introducing the extension of the model, Cox mixed
effects model with shared frailty, which includes the estimation procedure for the both, fixed
and random effects. This section builds the theoretical framework for the analysis performed
on the data gathered in the next section.

3.1 Survival analysis

3.1.1 Preliminaries

Survival analysis is the collection of statistical methods of time-to-event analyses, where the
outcome (or dependent) variable is the time-to-event. By this, we mean that the time until
the event occurs is measured and defined as the survival time. Referring to our research, we
measure in days the time from the release date of the film (exposure of an event), until the
end release date, thus "events" of interest are the amount of days the film exits the theatre
(amount of screening days).

Survival analysis is used in the broad fields, i.e. medical researches, where the event of interest
is defined as deaths of an individual and the survival time is the time until the deaths of
an individual. In the survival analysis it is also possible to account for the cases when some
individual survival time is unknown, referred to as the censored data. In our research, the
screening days are measured for each movie, therefore we do not have the censored data, we
have a complete data.
Next we introduce the basic terminology and notations in the survival analysis [Kleinbaum
and Klein, 2005].

Definition 1.1. [Survival function]
The survival function given by

S(t) = P (T > t) (1)

is the nonincreasing function, representing the probability that the individual’s survival time,
denoted as random variable T , exceeds any specific value of time t. The key characteristics
are:

• 0 ≤ S(t) ≤ 1

• at time t = 0, S(0) = 1

• at time t = ∞, S(∞) = 0

Definition 1.2. [Hazard function]
The hazard function

h(t) = lim
∆t→0

P (t ≤ T < t+∆t | T ≥ t)

∆t
(2)

is defined as the instantaneous probability of the event of interest to occur in the time unit
between t and t+∆t, given the survival up to time t.
Since the hazard function returns the probability per unit time, we refer to h(t) as conditional
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failure rate, not as the conditional failure probability.

To summarize, we provide the relationship of S(t) and h(t):

h(t) = − d

dt
logS(t)

S(t) = exp

(
−
∫ t

0

h(u) du

) (3)

For more detailed preliminaries, the reader is advised to consult [Dobson and Barnett, 2018],
if needed.

3.1.2 Kaplan-Meier

Plotting the survival function S(t) over the time t, produces the survival curves, also known
as the Kaplan-Meier curves. Given the actual data, the survival curves have the shape of the
step functions, where occurrences of the events are represented as "steps". The Kaplan-Meier
curves allow to compare the survival probabilities at each time unit and the failure rates by
analyzing the slopes for different plotted groups.

3.1.3 Cox proportional Hazard model

Definition 1.3. [Cox Proportional Hazards Model]
The formula for the Cox Proportional Hazards Model is given by

h(t,X) = h0(t) exp

(
p∑

j=1

βjXj

)
(4)

with X being the collection of time-independent explanatory variables (covariates), βj are
the coefficients representing the effect of Xj on the hazard and p is the amount of covariates.

X =
(
X1 X2 · · · Xp

)
The Cox model (4) introduces the baseline hazard function h0(t). It is unspecified function,
which represents the hazard function h(t,X) without considering any of the explanatory
variables, that is, when X1 = X2 = · · · = Xp = 0. Since the baseline hazard function is not
specified, the Cox PH model is referred to as semi-parametric model, which also provides the
flexibility to the model by allowing for less restrictions of the model [Kleinbaum and Klein,
2005]. The key benefit of the Cox proportional hazards model is the assessment the effect of
several explanatory variables on the survival time.

We use the hazard ratio (HR), in order to compare the hazards h(t,X∗) and h(t,X) for
X∗ = (X∗

1X
∗
2 · · ·X∗

p ) being the collection of covariates for the second individual. In the HR,
the unspecified baseline hazard function is reduced, that is:

HR =
h0(t)e

∑p
j=1 βjX

∗
j

h0(t)e
∑p

j=1 βjXj

= e
∑p

j=1 βj(X
∗
j −Xj)

(5)
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Therefore the hazard ratio allows us to compare the effects of different groups of covariates
on the individuals hazard. The interpretation of HR is straightforward: if HR > 1, then the
risk of the event of interest occurring is higher for individual with X∗ set of covariates than
for the individual with X set of covariates; if HR < 1, then the hazard is higher for the
individual with X collection; if HR = 1, then the risks are the same. That is, if HR = 10,
then the risk of the event happening is 10 times higher for the individual with set X∗, than
for the other individual; if HR = 1/10, then 10 times lower.

3.1.4 Estimation of coefficients

In this subsection we briefly elaborate on how the regression coefficients βj are obtained for
the explanatory variables Xj in the Cox proportional hazards model [Kleinbaum and Klein,
2005].

Recall, that the likelihood function L(β) describes the joint probability of obtaining the
observed data X as the function of coefficients β.

Definition 1.4. [Likelihood function]
The (partial) likelihood function of Cox Proportional Hazards model is given by

L(β) = L1 × L2 × . . .× Ln

=
n∏

i=1

Li

(6)

where Li is the likelihood function at individual i = 1, . . . , n, given that the individual
survived up to the event times (failure times).

The individual likelihood Li at ti failure time is defined as

Li(β) =
exp(Xiβ)∑

l∈R(ti)
exp(Xlβ)

=
exp(

∑p
j=1 βjXij)∑

l∈R(ti)
exp(

∑p
j=1 βjXlj)

(7)

where the risk set R(ti) is the set of the individuals l = 1, . . . , n for which the event did not
yet happen at ti = 1, . . . , k failure times. We note that we adjust the definition given in
[Kleinbaum and Klein, 2005], for accounting for the individuals having the same failure time
and the definition of the set of covariates for the corresponding individual.

That is, Xi is the set/vector of p covariates for the individual i

Xi =
(
Xi1 Xi2 · · · Xip

)
Thus, in (7), Xij is the entry for the vector Xi for j = 1, . . . , p covariate. Similarly we define
Xlj for the individuals l in the risk set.
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For the Cox regression, L(β) is called a partial likelihood (PL) function, since L(β) does not
account for the baseline hazard function.

The estimates of coefficients βj are obtained through maximization of the log-likelihood
function l(β) = logL(β) and are called the maximum likelihood estimates (MLE), denoted
as β̂j. We maximize l(β) by solving the score equations, that is, taking the partial derivatives
of l(β) wrt βj and setting the equations to 0: ∂ℓ(β)

∂βj
= 0, j = 1 . . . p, where p is number of

covariates in X [Casella and Berger, 2002].

There are several extensions of the Cox proportional model, designed and developed to be
implemented for different data structures. In the next section we present such extension and
motivate our choice of the model.
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3.2 Model development

Previously we provided the description of our data collected, specifically elaborating on the
variables description and their further categorization. We recall, that the explanatory variable
Distributor is the categorical variable, consisting of 57 studios which produced the films,
being the "initial" stage of the filmmaking process. Thus, the movies are nested within the
Distributors, and the movies from the same distributor are likely to share unobserved in
our research common characteristics, thus not being independent of each other. Therefore
we introduce the multilevel structure for our data, placing the Distributors on the highest
(second) level of the hierarchy and the individual-specific covariates (Opening Gross, Genres,
Percentage of Open Theatres to Maximum Theatres, Rating, and Running Time) on the
lower (first) level6.

We therefore argue, that the (standard) Cox proportional hazards model might not fully
capture our hierarchical by structure data and due to the unobserved characteristics and
large amount of Distributors. In this section by introducing the extension to the ordinary
Cox PH model, namely the Two level Cox Regression Model with Mixed Effects, we can take
into account the variability across movies that belong to the different distributors.

3.2.1 Mixed effects

We call the model mixed, when it contains both, fixed effects and random effects. When we
refer to all of the regression coefficients of the model, we therefore use the term mixed effects.
Mixed models are beneficial over, for example, the standard Cox Proportional Hazards model,
if we have the nested data [Austin, 2017]. In such case, the random effects modify the baseline
hazards function (4) to account for the within-cluster correlation, while the fixed effects are
the same as for the Cox PH model. We further introduce the estimation of the fixed and
random effects coefficients.

3.2.2 Shared Frailty model

The frailty model denotes the survival model that includes the random effects and is the
special case of the mixed effects model7 [Austin, 2017]. For our extension of the Cox
proportional hazards model, we incorporate the frailty, which accounts for the variability in
the model due to the unobserved factors affecting the model’s outcome variable (the survival
time). There are two types of frailty model: Unshared frailty model and Shared frailty model
[Kleinbaum and Klein, 2005].

In the unshared frailty model the frailty is distributed independently among the individuals.
That is, each movie has the unique, unobserved in the collected data, factors which affect
their individual survival.

6In some literature for the multilevel survival analysis structure, the survival time is placed on the lowest
(zero) level of the hierarchy

7We have one random intercept for the Distributors. The "multiple random effects" models include 3-level
or higher structures
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In the shared frailty model, the groups (clusters) share the same frailty, that is, the shared
frailty accounts for the individuals from the same cluster sharing the unobserved factors
affecting their survival time. That is, within cluster correlation for all movies. In our research
we assume that the movies from the same distributors share the common unobserved in our
data factors affecting their survival time. Thus, we propose the shared frailty model in our
research, where the random effects measure the increase or decrease in hazard, depending on
the specific Distributor indicator for movies.

The Cox shared frailty model is of the general form:

hi(t | αk) = αkh0(t) exp(Xiβ) (8)

for i = 1, 2, . . . , nk, where nk is a total amount of individuals in the kth cluster; αk is the
frailty shared in group k, representing the frailty of a specific kth Distributor.

Thus, the model (8) introduces shared (cluster-specific) frailty, which has the multiplicative
effect on the baseline hazard function h0(t), modifying it for corresponding clusters for the
within-cluster correlation [Austin, 2017].

3.2.3 Two-Level Cox Regression Model with Mixed Effects

In order to develop the understanding of the general formula (8) by means of our data, we
introduce the following definition.

Definition 1.5. [Two-Level Cox Regression Mixed Effects Model]
The formula for the Two-Level Cox Regression Mixed Effects Model is given by

hi(t) = h0(t) exp (Xiβ +Zib) (9)

where i = 1, ..., n are the individuals/movies considered in the model. Note that exp(Zib) is
thus the frailty term in (9).

In the model (9), we have: The design (regression) matrix X of dimension n × p for fixed
effects, a matrix of values of explanatory variables, where n is the amount of movies, p is the
amount of covariates (see the categorization of variables), the row corresponds to a movies
and each column to the covariate indicator; β is the vector of the fixed effects coefficients,
representing the effect on hazard for different individual-level covariates; b is the vector of
random effects coefficients.

The design matrix Z of dimension n× k, where n is the amount of movies, k is the amount
of distributors, for random effects is defined as

Z =


z11 z12 . . . z1k

z21 z22 . . . z2k
...

... . . . ...

zn1 zn2 . . . znk


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Since each distributor is a cluster, we define the entries as binary variables, each entry zij for
j = 1, ..., k takes the binary value, that is, zij = 1 if the movie i belongs to the distributor j,
zij = 0 otherwise.

Given the structure of the design matrices, we observe the complexity which we would
have had if treating distributor’s coefficients as fixed effects, in addition to the unobserved
common characteristics. That is, recalling the categorization of other covariates in the Data
section, the amount of Distributors exceeds in size (57 distributor’s categories) any other
categorization of the variables, which increases the complexity of the estimation procedure
of the fixed effect coefficients, if treating Distributors as individual-level covariate.

In the model (9), the random effects vector b are assumed to follow some distribution,
which depends on the unknown parameter. We assume that the random effects follow the
Multivariate normal distribution:

b ∼ N (0,Σ(θ)) (10)

Where for the shared frailty, bj are independent and identically distributed (i.i.d), the
covariance matrix Σ(θ) reduces to Σ = θI, I is the identity matrix and θ is the variance of the
distribution of bj. This means that we assume that the random effects associated with each
Distributor follow the same distribution, while the effect on the hazard for every Distributor
differs, since the estimated random effects coefficients will differ. Thus, we introduce the
random effects for the within-cluster correlation of movies under the same distributor.

That is, for the cluster j = 1, . . . , k, bj has the Gaussian distribution with mean 0, variance
θ, and the probability density function (pdf) for bj is

f(bj) =
1√
2πθ

exp

(
−
b2j
2θ

)
(11)

For b, the vector of random effects, we recall the pdf of Multivariate normal distribution with
mean 0 and the positive definite covariance matrix Σ(θ):

f(b) =
1

(2π)k/2|Σ(θ)|1/2
exp

(
−1

2
b′Σ(θ)−1b

)
(12)

where k - is the number of random effects in b [Therneau, 2022].

Note, that the frailty (8) will thus have the log-normal distribution.

The choice of the distribution is done following [Therneau and Grambsch, 2000] theoretical
approach, and as in [Austin, 2017], the authors indicate that more research is needed in order
to validate the distribution choice.

3.3 Inference for mixed effects coefficients

In this section we describe the estimation of regression coefficients in the Two-level Cox
regression model with Mixed effects.
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3.3.1 Likelihood function of the Two-Level Cox Regression Mixed Effects Model

Definition 1.6. [Likelihood function]
The likelihood function for the Cox mixed effects model is defined as

L(h0(t),β, θ) =

∫
b

n∏
i=1

hi(t|b)δiSi(t|b) g(b;Σ(θ)) db (13)

where δi = ITi≤Ci
is the indicator function for event times Ti and censoring times Ci for

individuals i = 1, ..., n. δi = 1 indicates that the event is observed within the study period
(not censored), or the event time is censored, δi = 0 [Ripatti and Palmgren, 2000]. For our
project, the event happened for all individuals. Recalling the covered basics for the survival
analysis,

∏n
i=1[hi(t|b)δiSi(t|b)] is the joint likelihood for the individuals i at time t, given the

random effects.

The likelihood function for mixed effects Cox model introduces the penalty function g(b;Σ(θ)).
The penalty function aligns with the distribution of the random effects discussed previously,
in (13) multiplication by penalty penalizes the extreme values of b [Ripatti and Palmgren,
2000]. The penalty function is defined as the pdf of random effects, b ∼ g(b;Σ(θ)), with
mean 0, that is:

g(b;Σ(θ)) =
1

(2π)k/2|Σ(θ)|1/2
exp

(
−1

2
b′Σ(θ)−1b

)
(14)

where k is the amount of random effects.

We note that (13) is the marginal likelihood function. The random effects are unknown,
therefore the idea is to integrate them out in order to average over the distribution of random
effects [Fitzmaurice et al., 2011] and to estimate θ.

Let ηi = Xiβ + Zib. Now, recalling the formulas (9) and (3), we can rewrite the marginal
likelihood function as:

L(h0(t),β, θ) =

∫
b

n∏
i=1

[h0(t) exp(ηi)]
δi exp

[
−
∫ t

0

h0(u) du exp(ηi)

]
g(b;Σ(θ)) db (15)

where for rewriting the survival function Si(t|b) we integrate out exp(Xiβ + Zib) since we
do not have time-dependent coefficients in our model.

We also note that in the term exp
[
−
∫ t

0
h0(u) du exp(Xiβ +Zib)

]
integrating over the

unspecified baseline hazard function h0(u) makes the model (15) the "full" likelihood function.

In the research of [Ripatti and Palmgren, 2000], the authors start with the full marginal
likelihood function (13), approximate the integral and reduce the terms in the resulting
approximation, presenting the (penalized) partial likelihood function to maximize, that is,
deriving the score functions for β and b. In our work we proceed with the different approach
for deriving the score functions, starting with the partial likelihood function, following and
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filling in the steps in the [Therneau and Grambsch, 2000] and [Therneau, 2022]8 literature,
written by the author of the "survival" R package Terry Therneau. Our motivation is in
better understanding of the derivations and presentation of the likelihood functions. We also
believe that starting from the partial likelihood function helps with better understanding of
the estimation procedure of the Cox models, allowing for the step-wise approach for defining
each intermediate equation. We note that the reader is also advised to consult the approach
of [Ripatti and Palmgren, 2000].

3.3.2 Partial Likelihood function

Definition 1.7. [Partial Likelihood function]
The formula for the partial likelihood (PL) function for Cox model with mixed effects is given
by

PL(β, b) =
n∏

i=1

∏
t≥0

{
Yi(t) exp(Xiβ +Zib)∑
j Yj(t) exp(Xjβ +Zjb)

}dNi(t)

(16)

We note that the form of (16) can be seen as the ordinary Cox partial likelihood, by letting
ηi = Xiβ +Zib.

For the partial likelihood function (16), instead of the risk set defined previously, we introduce
the functions as in [Therneau and Grambsch, 2000], where the definitions were generalized
to account for different events occurring and for the counting process:

Ni(t) = number of observed events for i in [0, t],

Yi(t) = I{Ti ≥ t}.

where Yi(t) is the risk set indicator function; Ni(t) indicates the event times.

Again, we recall that for our research we have no censored events and we do not have the
recurrent events for the individuals i in our data. However, we keep the definition (16), for
the potential use in further researches, where the censoring of the data is present, or the
events are recurring9.

That is, the indicator functions are be interpreted as:

dNi(t) =

{
1 if for an individual i the event happened at t,

0 otherwise.

Yi(t) =

{
1 if the individual i is at risk at time t,

0 otherwise.

That is, dNi is the indicator of the event times Ti.
8The documentation for the estimation of regression coefficients in R for the Cox Mixed Effects model
9In the case of the movie data, for example, censoring would occur for the movies still running in theatres at

the time of the research conducted; and recurrent events (multiple events) could happen for films re-released
during the timeframe of the data collected
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3.3.3 Log-likelihood function of the Two-Level Cox Regression Mixed effects
Model

Given the definitions of the indicator function above, we can derive the formula for the
Log-likelihood function of (16). By deriving the equation we can understand the indicator
functions better, and the log-form is needed in order to derive the score function.

logPL(β, b) = log

 n∏
i=1

∏
t≥0

{
Yi(t) exp(Xiβ +Zib)∑
j Yj(t) exp(Xjβ +Zjb)

}dNi(t)


=
n∑

i=1

∑
t≥0

dNi(t) · log

{
Yi(t) exp(Xiβ +Zib)∑
j Yj(t) exp(Xjβ +Zjb)

}

=
n∑

i=1
Yi(t)=1

∑
t≥0

dNi(t) ·

(
log exp(Xiβ +Zib)− log

∑
j

Yj(t) exp(Xjβ +Zjb)

)

=
n∑

i=1
Yi(t)=1

∑
t≥0

dNi(t) ·

(
Xiβ +Zib− log

∑
j

Yj(t) exp(Xjβ +Zjb)

)

=
n∑

i=1
Yi(t)=1

∫ ∞

0

(
Xiβ +Zib− log

∑
j

Yj(t) exp(Xjβ +Zjb)

)
dNi(t)

=
n∑

i=1

∫ ∞

0

(
Yi(t)(Xiβ +Zib)− log

∑
j

Yj(t) exp(Xjβ +Zjb)

)
dNi(t)

(17)
Finding the MLE estimate for the parameters would be done through maximizing the Partial
log-likelihood function, the solution for estimating β and b are the estimates β̂ and b̂, found
through setting score function equal to 0. However, since we additionally to fixed effects
have the random effects, we would need to maximize a different likelihood function, which
accounts for the clusters variations, in order to get the solution vector (β̂, b̂). Therefore, next
we introduce the Penalized Partial likelihood (PPL) function, which concept corresponds to
the approach of [Ripatti and Palmgren, 2000].

3.3.4 Penalized Partial (log-)Likelihood

We define The Penalized Partial likelihood (PPL)10 as:

PPL = PLe−
1
2
b′Σ(θ)−1b (18)

Remark: the penalty term in the (18) is not the "full" penalty function defined for the full
marginal likelihood. This is clear by following the approach of [Ripatti and Palmgren, 2000],
however, their derivation is not detailed, as we have already mentioned, the PPL function

10In our main literature used, the authors define the log PPL (LPPL) directly, in our work we provide the
intermediate steps for completeness
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was introduced by reducing some terms of the approximation to the full likelihood function.
However, the penalty term serves the same purpose, that is regularizing the random effects,
by penalizing the extreme values of the random effects coefficients as indicated in both,
[Therneau and Grambsch, 2000] and [Ripatti and Palmgren, 2000]. Based on the different
distribution choices, the penalty term differs, and in (18) the penalty for the multivariate
distribution is given.

That is, for the cluster j the PPL is defined as [Therneau and Grambsch, 2000]:

LPPL = LPL−
k∑

j=1

b2j
2θ

(19)

We can now provide the PPL in the vector-matrix form.

Definition 1.8. [Penalized Partial Log-Likelihood]
The Penalized Partial Log-Likelihood (LPPL) for the shared frailty is given by

LPPL = LPL−
k∑

j=1

b2j
2θ

= LPL− 1

2θ

k∑
j=1

b2j

= LPL− 1

2θ
b′Ib

= LPL− 1

2
b′
(
I

θ

)
b

= LPL− 1

2
b′Σ(θ)−1b

=
n∑

i=1
Yi(t)=1

∑
t≥0

dNi(t) ·

(
Xiβ +Zib− log

∑
j

Yj(t) exp(Xjβ +Zjb)

)
− 1

2
b′Σ(θ)−1b

(20)
where I is the identity matrix; −1

2
b′Σ(θ)−1b is the penalty term in the quadratic form; we

set Σ = θI for the shared frailty; θ is the variance of the random effect. In the last step we
plug in the (17) equation.

We also recognize that in [Ripatti and Palmgren, 2000] the authors derived the similar formula
for the LPPL following the full marginal likelihood approach.

3.3.5 Estimation equations for β̂ and b̂

For estimating the fixed effects β̂(θ) and random effects b̂(θ) we maximize the log Penalized
partial likelihood (20), [Therneau and Grambsch, 2000]. Thus, we differentiate the LPPL for
the expression for the score vector functions, [Ripatti and Palmgren, 2000] using the basic
differentiation rules.
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∂LPPL(β, b)

∂β
=

n∑
i=1

Yi(t)=1

∑
t≥0

dNi(t) ·

(
Xi −

Xi exp(Xiβ +Zib)∑
j Yj(t) exp(Xjβ +Zjb)

)
(21)

Now, setting the above score vector function of dimension p× 1 to 0, we get the estimating
equation for β̂(θ). Note that the penalty term vanishes.

For the estimating equation for b, we have the following k × 1 score vector function:

∂LPPL(β, b)

∂b
=

n∑
i=1

Yi(t)=1

∑
t≥0

dNi(t) ·

(
Zi −

Zi exp(Xiβ +Zib)∑
j Yj(t) exp(Xjβ +Zjb)

)
−Σ(θ)−1b (22)

Again, setting the above score function to 0, we can derive the estimator b̂(θ). For deriving
the estimating equations for (β̂(θ), b̂(θ)), we alternate between solving for the two score
functions [Ripatti and Palmgren, 2000], using the iterative Newton-Raphson [Therneau and
Grambsch, 2000].

That is, we iteratively compute

β̂(n+1) = β̂(n) + I−1(β̂(n))U(β̂(n)) (23)

where U(β) is the score function (21); I(β) is the information matrix, as described in
[Therneau and Grambsch, 2000], and we follow the same procedure for the random effects
estimating equation.

The alternative estimation procedures and their efficiency are described in [Zhang, 2006], in
the dissertation written under the supervision of Terry Therneau.

The difficulty with estimation arises with the unknown θ, since the estimating equations for
mixed effects coefficients depend on the variance of random effects, (β̂(θ), b̂(θ)). Therefore
we address the estimation for θ̂ in the next section and the general algorithm is described at
the end of the section.

3.3.6 Integrated Partial Likelihood

Since we are interested in the likelihood function depending on the parameters β, b, θ, the
idea is to present the Integrated Partial likelihood (IPL) where we integrate over the random
effects in the penalized partial likelihood model.

The IPL is the marginal likelihood, where we integrate out the random effect coefficients.
Now we see how the approach described at the beginning of the section, for the full likelihood
function, relates to ours. That is, due to the additional complexity of the model, the inclusion
of frailty, by integrating we get the likelihood function IPL(β, θ) which depends on the β, θ,
where we recall that θ is the variance for the distribution of bj. Therefore the idea of the
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integration is to estimate the covariance of b, θI [Fitzmaurice et al., 2011].

Definition 1.9. [Integrated Partial Likelihood
The Integrated Partial Likelihood (IPL) is defined as

IPL(β, θ) =

∫
PL(β, b, θ)g(b;Σ(θ))db (24)

Having the IPL likelihood function, we can now maximize it to get the ML estimate for
θ. However, since the integral is intractable, that is, difficult to compute directly, we
approximate the integral using the Laplace approximation.

For the reader, before proceeding with the approximation, we make the short note about the
similarity of the IPL with the marginal likelihood function (the denominator) in the Bayes
equation [Dobson and Barnett, 2018].

Recall the Bayes equation,

P (θ|y) = P (y|θ)P (θ)

P (y)
(25)

where y is the given data and θ is the unknown parameter; P (θ|y) is posterior probability
of θ; P (y|θ) is the likelihood function; P (θ) is prior; P (y) is the probability of the data y.

For the continuous parameter space, we can rewrite the probability of the data y through
the parameter θ:

P (y) =

∫
P (y|θ)P (θ)dθ (26)

where we integrate over the unknown θ.

Before the approximation, we provide the relationship of the model (24) with PPL (18):

IPL(β, θ) =

∫
PL(β, b, θ)g(b; θ)db

= (2π)−
k
2 |Σ(θ)|−

1
2

∫
PL(β, b)e−

1
2
b′Σ−1(θ)bdb

= (2π)−
k
2 |Σ(θ)|−

1
2

∫
eLPL− 1

2
b′Σ−1(θ)bdb

= (2π)−
k
2 |Σ(θ)|−

1
2

∫
eLPPLdb

= (2π)−
k
2 |Σ(θ)|−

1
2

∫
elogPPLdb

= (2π)−
k
2 |Σ(θ)|−

1
2

∫
PPL(β, b, θ)db

(27)

Now we can use Laplace approximation to the integral in (27). The general idea is described
in [Therneau, 2022], and in our project we present the stepwise approximation, in order to
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fill in the gaps and for the better understanding of the estimation procedure.

Following the explanation of the idea of Laplace approximation in [MacKay, 2003], we first
use Taylor expansion for log(PL(β, b)e−

1
2
b′Σ−1(θ)b) around the solution vectors (β̂(θ), b̂(θ)):

LPL(β, θ)−1

2
b′Σ−1(θ)b ≈ LPPL(β̂(θ), b̂(θ))−1

2
(β−β̂(θ), b−b̂(θ))′H(β−β̂(θ), b−b̂(θ))+. . .

(28)
Where Hessian H is the negative of second derivatives of LPPL evaluated at (β̂(θ), b̂(θ)),
that is:

H = − ∂2LPPL(β, b)

∂b∂b′

∣∣∣∣
(β,b)=(β̂(θ),b̂(θ))

(29)

Now we can approximate the integral as∫
PL(β, b)e−

1
2
b′Σ−1(θ)bdb ≈ PL(β̂(θ), b̂(θ))e−

1
2
b̂′Σ−1(θ)b̂ 1√

| 1
2π
H|

= PL(β̂(θ), b̂(θ))e−
1
2
b̂′Σ−1(θ)b̂(2π)

k
2 · |H|−

1
2

(30)

where k is the amount of random effects, that is, the dimension of k × 1 vector b.

Now, plugging the approximation to the IPL, we have

IPL = (2π)−
k
2 |Σ(θ)|−

1
2 PL(β̂(θ), b̂(θ))e−

1
2
b̂′Σ−1(θ)b̂(2π)

k
2 · |H|−

1
2

= |Σ(θ)|−
1
2 PL(β̂(θ), b̂(θ))e−

1
2
b̂′Σ−1(θ)b̂|H|−

1
2

(31)

The log form of the Integrated Partial Likelihood is given by:

log(IPL) = −1

2
log |Σ(θ)|+ LPL(β̂(θ), b̂(θ))− 1

2
b̂′Σ−1(θ)b̂− 1

2
log |H| (32)

Finally, the estimating equation for θ is derived and described in [Ripatti and Palmgren,
2000] and in [Therneau and Grambsch, 2000], therefore we do not replicate their derivation,
but provide the formula for the derived variance θ̂ for completeness. For the shared frailty,
we have

θ̂ =
b̂′b̂+ trace(H)−1

k
(33)

where k is the amount of random effects.

As the final note, later we use the coxme package developed by Terry Therneau, whom
statistical texts we followed throughout this section, that is, the general procedure of estimating
the mixed effects coefficients for the coxme function is the same, as we described, but
computationally optimized for the implementation in R. That is:

1. For each trial Σ(θ) calculate Σ−1(θ)
2. Solve estimating equations derived from PPL for (β̂, b̂) with iterative Newton-Raphson
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3. Compute log IPL

Repeating the algorithm will find the actual θ that maximizes log IPL. For further details
consult [Therneau, 2022].

3.4 Model Comparison and Validation

3.4.1 AIC and BIC

When it comes to the model selection, we consider AIC (Akaike information criterion) and
BIC (Bayesian information criterion) values of the models. The AIC and BIC are the
measures of the information loss by fitting the model of interest. Therefore the lower values
correspond to the better model fit. That is, the value of AIC illustrates the compromise
between the goodness of fit and the simplicity of the model [Huang, 2022]. For the AIC the
formula we use is

AIC = 2k − 2 ln(L̂) (34)

And for the BIC we have

BIC = ln(n)k − 2 ln(L̂) (35)

where n is the number of observations, k is the number of estimated parameters and ln(L̂)
is the log-likelihood of the model with the ML estimated parameters.

The BIC also penalizes the model for over-fitting, but with the larger penalty [Huang, 2022].
In (35), BIC depends on the number of observations, that is, the sample size, thus the penalty
of ln(n)k is larger for bigger11 sample size, than the penalty 2k in AIC definition (34).

We compare the models by considering the differences between the corresponding AIC values.
The model with the lower AIC is considered to be of better fit and is preferred over the model
with the higher AIC. Similarly for the BIC values comparison. Below is the summary of the
interpretation of the differences [Burnham and Anderson, 2004], [Berchtold, 2010].

AIC Difference (∆AIC) Interpretation

∆AIC ≤ 2 Insignificant: No model preference

4 ≤ ∆AIC ≤ 7 Significant: The model with lower AIC is considered

10 < ∆AIC Strong support of the lower AIC model

Table 7: Interpretation of Differences in AIC

11that is, more than 7 observations, since exp(2) ≈ 7.39
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BIC Difference (∆BIC) Interpretation

∆BIC ≤ 2 Insignificant: No model preference

2 < ∆BIC ≤ 5 Somewhat Significant: There is the preference

of the model with lower BIC

5 < ∆BIC ≤ 10 Significant: Strong choice of the lower BIC model

10 < ∆BIC Very strong support of the lower BIC model

Table 8: Interpretation of Differences in BIC

3.4.2 Assessing the Normality Assumption

Previously we mentioned that the normality assumption, that is, the normal distribution
choice of random effects (log-normal for frailty) can be considered as the preferable approach.
However, the limitation of the choice between the distributions, for example, between gamma
and log-normal is present [Therneau and Grambsch, 2000], [Austin, 2017]. The further
research is required, as the authors stated, while in our project the choice of the multivariate
distribution was made for the shared frailty model, following T. Therneau preference. As
[Austin, 2017] mentioned regarding the gamma distributed frailty, methods for comparison
with different than gamma distribution are limited, not allowing for comparison, but for
the assessment of gamma distribution. Therefore in our thesis we will assess the normality
assumption, rather than compare different distributions.

The normal distribution of random effects can be assessed using the Q-Q plot (quantile to
quantile plot) [Sun et al., 2023]. In the Q-Q plot we compare the empirical distribution,
that is, the sample distribution of the random effects coefficients, with the theoretical normal
distribution in the quantile-quantile coordinates. The construction of the plot can be described
as following [Dodge, 2008]:

We first arrange the random effect coefficient in the increasing order, that is:

b̂(1) ≤ b̂(2) ≤ ... ≤ b̂(57), where the subscript indicates the sorted position. Then we mark the
values of random effects b̂(i) on the y-axis on our plot. Next we find the positions measured
in the quantiles of the standard normal distribution. That is, for each b̂(i) the corresponding
quantile is qi = i

n+1
of the standard normal distribution12 and mark the values on the x-axis.

In the plot, if the points are on the x = y line, then this confirms the choice of the normal
distribution. Otherwise, if the random effects significantly deviate from the line of theoretical
normal distribution, the normality assumption is violated.

12In the documentation for R functions for q-q plot (qqPlot), we found that the formula for quantiles is
sometimes adjusted for better plot positions and the correspondence to the empirical cumulative distribution
function (empirical cdf) F(x(i)) = qi is described [Rteam, 2019].
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3.4.3 Harrell’s C-index

In order to validate our Cox mixed effects model, we perform the cross-validation on our data.
The k-fold cross-validation can be described as following [Hastie et al., 2009]: We divide our
dataset into k folds (k subsets of data), approximately equal sized. Then we use k-1 folds for
training, that is, fitting the model on the Train data and the kth fold (not used in training)
is the Test data (the validation kth fold). On the Test data we predict the estimates by using
the Train data model fit results. For the accurate prediction, we repeat the prediction by
changing the Test data for every i = 1, . . . , k fold. Then the assessment of the accuracy of
the prediction is done, as we describe next.

There are several cross-validation approaches for assessing the Cox proportional hazards
model. However, for the Cox mixed effects models, currently there is no method of validation,
which is considered to be standard for the model assessment. When we researched upon the
methods, only a few papers discussed the measures for cross-validation for the extended
Cox models. [Dai and Breheny, 2019] proposed a few possible adaptation of cross-validation
methods to the penalized Cox model. In this study, the Concordance index (C-index) was
used as one of the measures of the ability for the model to accurately predict the hazards
for different individuals. Upon further search, there are several adaptations to the C-index
definitions, accounting for different data structures and methods, and since our data has no
censoring, recurrent events, etc, we chose the Harrell’s Concordance index definition for the
assessment of the accuracy of predictions, since it would be easier to understand with regards
to our data and the use of random effects.

Let ηi be defined as in (16) and δi as in (13). The Harrell’s Concordance index (C-index)
[Schmid and Ziegler, 2016] is used as the measure of how well the model fits the data by the
comparison of the pairs of individuals (i, j) from the Test data. It compares the risks (ηi, ηj)
predicted on the individuals in the Test data based on the Train data and the actual event
times corresponding to the individuals (Ti, Tj) in the Test data. The equation for Harrell’s
C-index is given below.

C =

∑
i,j I(Ti > Tj) · I(ηj > ηi) · δj∑

i,j I(Ti > Tj) · δj
, (36)

where δj = 1, since we have no censored events.

When the event time for the individual i happened after the event for individual j, that is,
I(Ti > Tj) = 1, and the predicted risk for the individual j is higher than for the individual
i, that is, I(ηj > ηi) = 1, then the prediction is accurate for that pair of (i, j), thus, the pair
is concordant.

Therefore the Harrell’s C-index corresponds to the probability P (ηj > ηi|Ti > Tj) [Schmid
and Ziegler, 2016]. The interpretation of the C-index is straightforward, as its value is the
proportion of the concordant pairs over all pairs to compare, if 0 < C < 0.5, then the
prediction is not accurate; if C = 0.5, then the prediction is not informative; if 0.5 < C < 1,
then the model predicts the risks of events well.
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4 Results

4.1 Preliminary analysis

In this section we provide the survival (Kaplan-Meier) curves for each of our fixed-effect
variables, in order to provide visualization on the initial analysis and gain more intuition
before the analysis of the estimated coefficients in the next subsection13. The corresponding
R code is given in the Appendix C. The survival curves are informative in observing the
survival probability as time (screening in theatres) increases and serve as the firm starting
point for the comprehensive approach [Kim, 2021].

Figure 2: K-M curves for Rating. R (green); PG-13 (blue);
PG & G (red)

For the rating of the movie (2), we observe that the survival curves for R (green) and PG-13
(blue) ranking movies are of the similar shape, compared to the PG & G (red) movies. This
is connected to the similarity of movies with the age restrictions, compared to the movies
with no age restriction stay. We see that the longest screening time are of movies with R
rating, however, only for a few movies.
Within the first 60 days since the release, we notice that, regardless of the rating of the movie,
more movies are likely to be withdrawn from the theatres with close to equal probability.
After this period, the rating indicator for the movie seems to make the difference on the
withdrawal from theatres.
According to the rate at which the survival probability decreases, we do observe that for R
and PG-13 rating movies the rates are greater, however, more detailed analysis is required.

From the Kaplan-Meier curves for the genres (3), we observe that the Adventure/Western
(red) and Musical/Concert/Performance (black) genres differ noticeably from the rest, and
according to the plot, they have the longer screening days than the rest of the genres. We
notice, however, that for the Musical/Concert/Performance, the amount of movies is a lot

13The software used for coding is R version 4.3.2 (2023-10-31 ucrt); RStudio environment
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Figure 3: K-M curves for Genres. Adventure/Western
(red); Musical/Concert/Performance (black); Action (blue);
Drama (purple); Thriller/Crime (yellow); Comedy (green);
Horror (pink); Documentary/Biography (orange)

less than for the rest (12 movies in total). This genre is popular for the specific audience,
therefore due to the specific of this genre, it was also initially in question whether to include
it into the research. It is interesting to notice that in many sources the genres Action (blue)
and Adventure are grouped, however, we observe that Adventure is much more successful
than Action, but the Action genre has higher survival probability as screening days increase,
which is visible on the graph between 70 - 140 screening days, compared to the rest of genres.
The Action genre "competes" with the Drama (purple).
Also, as the time increases, we observe the similarity between Thriller/Crime (yellow) and
Comedy (green), being less successfully than the previous genres, but more successful than
the rest.
The last genres Horror (pink) and Documentary/Biography (orange) tend to be withdrawn
from theatres faster than the rest genres, however, the longest screening time within our time
frame was the Horror movie "Get out!" scoring $255.4 million running in theatres for 357
days (excl.re-releases) [IMDB, 2024].

Regarding the variable running time, for the Categorization 1, (4) the survival curves are
more difficult to analyze than for the Categorization 2 (5). For the 6 categories, although
we see the differences between the behaviour of movie withdrawal at the different screening
days range, the patterns seem to change. For example, the movies with longer run time,
116-126 min (pink) and 126-201 min (black), tend to have higher probability of survival than
the rest of categories. However, as the amount of screening days increase (closer to 140-150
days), the probability of movie withdrawal is roughly the same for all categories. For the rest
categories, 75 - 94 min (blue), 94-101 (red), 101-108 min (orange), 108-116 min (purple), the
probabilities of survival are more difficult to compare.
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Figure 4: K-M curves for Runtime Categorization 1. 116-126
min (pink); 126-201 min (black); 75 - 94 min (blue), 94-101
(red), 101-108 min (orange), 108-116 min (purple)

Figure 5: K-M curves for Runtime Categorization 2. Short
movies (blue); Average length movies (red); Long movies
(orange)

For the Categorization 2, we observe the clear differences between the withdrawal from
theatres for the 3 categories constructed, especially in the first 30 - 110 days. The Short
movies (blue), have the lowest probability of survival, followed by the Average length movies
(red) and the longest survival probability for the Long movies (orange).

The opening gross (6) survival curves are more indicative and straightforward, compared
to other variables. Despite the very low opening gross (blue) category, we observe that the
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Figure 6: K-M curves for Opening Gross; Very low
opening gross (blue); Low opening gross (red); Below
average opening gross (orange); Above average opening gross
(purple); High opening gross (pink)

survival probability of the movies is higher, as the opening gross increases. We highlight that
the high opening gross (pink) is screened longer, followed by the above average opening gross
(purple), then the below average opening gross (orange), and we have the low opening gross
(red), with the lowest probability of survival as screening days increase.

Figure 7: K-M curves for Open theatres. < 25% (blue), 25
% to 90 % (red) , 90 % to 100 % (orange), 100 % (purple)

Finally, for the amount of open theatres compared to the maximum theatres (7),
we notice that the movies with the 100% open theatres (purple) tend to have much lower
survival probability than the rest of the categories. For more detailed examination we will
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require the regression results, since the survival plots are difficult to interpret for some of the
covariates.

Thus, we can already construct some conclusions based on our analysis of the survival curves.
However, in order to explore our hypotheses in a more comprehensive way, we proceed to the
regression analysis.

4.2 Coxme

4.2.1 Regression results

Before reporting the fixed and random effect coefficients, we fit two versions of CoxME (Cox
mixed effects model), one with Running time Category 1, the second with Running time
Category 2. The AIC and BIC are reported below. The R code for this and further section
is given in the Appendix B.

Category 1 Category 2 Difference

AIC 9851.763 9846.291 ∆AIC ≈ 5

BIC 10129.26 10109.88 ∆BIC ≈ 19

Table 9: Comparison of Runtime Categories

From the table, we can see that the difference in BIC strongly suggests choosing Category 2
over Category 1. Therefore further in the paper we will proceed with the variable Running
time Category 2. However, as described in the Data section, some of the information could be
lost, therefore we also present the short discussion of the Category 1 fixed effects coefficients
in the Appendix E.

The important observation upon fitting the CoxME in R is that what is called AIC and BIC
in the regression output of the "coxme" is not the AIC and BIC of the model, calculated
on the standard formulas. The values correspond to the tested models (inside the "coxme"
algorithm). Thus, the reported AIC and BIC we discuss are the values in (9) which are
calculated based on the standard formula and extracted using AIC(coxmedatame) and
BIC(coxmedatame) functions in R.

On the next page is the CoxME regression results for the fixed effects coefficients (10). Based
on the hazard ratios in exp(coef), having the comparison category for each covariate, we can
better see the differences in the hazards. Regarding the interpretation of hazard rates for
the Opening gross, we can clearly see that given the comparison category Very low opening
gross, the hazards significantly decrease as the Opening gross values increase.

For the genres, given the comparison group Action, the hazard rates for genres are close
to the value 1. In general, the analysis of the hazards correspond to the survival curves
inspection. That suggest that the hazards across the genres are similar, however, we see the
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coef exp(coef) se(coef) p

Opening Gross Low -1.4811 0.2274 0.2025 2.6e-13

Opening Gross Below Average -2.5243 0.08011 0.2186 0.0e+00

Opening Gross Above Average -2.9523 0.0522 0.2282 0.0e+00

Opening Gross High -3.8204 0.0220 0.2413 0.0e+00

genre Adventure/Western -0.3042 0.7377 0.1515 4.5e-02

genre Comedy -0.1967 0.8215 0.1198 1.0e-01

genre Documentary/Biography 0.1618 1.1756 0.1979 4.1e-01

genre Drama -0.1931 0.8244 0.1287 1.3e-01

genre Horror 0.1279 1.1365 0.1736 4.6e-01

genre Musical/Concert/Performance -0.2048 0.8149 0.3319 5.4e-01

genre Thriller/Crime -0.0885 0.9154 0.1414 5.3e-01

% Open Theatres to Max 25-90% 2.0882 8.0700 0.2721 1.7e-14

% Open Theatres to Max 90-100% 3.0135 20.3586 0.2323 0.0e+00

% Open Theatres to Max 100% 3.3850 29.5187 0.2287 0.0e+00

rating PG&G -0.6351 0.5299 0.1474 1.6e-05

rating R 0.2472 1.2805 0.0821 2.6e-03

running time Average -0.1505 0.8603 0.0891 9.1e-02

running time Long -0.4130 0.6617 0.1244 9.0e-04

Table 10: Fixed Effects Coefficients

lowest hazard for Adventure/Western and the highest for Documentary/Biography.

For the Open theatres, the hazard rate is huge for all categories, compared to the reference
category of movies shown in less than 25% of theatres from their maximum on the opening
day. Movies which were shown in their maximum amount of theatres on the release day have
29.5 times higher hazard. Movies which had 90% to 100% of screened theatres on release
day have a 20.3 times higher hazard, followed by ones with 25% to 90% on release day with
8 times higher hazard.

Given the comparison category PG-13 rated movies, the PG&G rating is ( 1
0.5299

= 1.89
times) more successful than the restrictive category PG-13. For the R rating, the movies
have slightly shorter screening duration, compared to the PG-13.
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Regarding the running time, a category long length of film has the lowest hazard, followed
by the average length movies, but the differences of hazards might be insignificant due to the
p-value of 9.1e-02 for the Average runtime. We will inspect this further.

For the Distributor, the summary for CoxME provides the estimated θ̂ = 0.6648, which
confirms that the Distributor can be treated as random effect, since the variation between
movies under different Distributors is present. We note, that for the random effects coefficients,
we do not have the reference/comparison group [Therneau, 2022]. Instead the comparison
value is 0, so the comparison to 0 effect. The random effects coefficients are reported in the
Appendix D.

Next, we compare the model fit between Mixed Effects Cox model and the standard Cox
Proportional Hazard model (11). In the Cox PH we treat Distributors as fixed effects variable.
We note, that when we implemented the Cox PH in R, we had to increase the number of
iterations for the regression to estimate coefficients.

CoxME CoxPH Difference

AIC 9846.291 9854.725 ∆AIC ≈ 8

BIC 10109.88 10210.51 ∆BIC ≈ 101

Table 11: Comparison with Standard Cox PH model

The difference in BIC suggest very strong preference of the mixed effects Cox regression
model over the Cox Proportional Hazard model, hereby confirming our choice of Distributors
as random effects over the standard approach.

4.2.2 Backward Elimination

Next we aim to identify which variables are significant for the model. We do this by
performing the Backward elimination procedure, where the idea is to identify the subset of
the variables which is most optimal for the model. In the general framework of the backward
elimination, we first consider the model fitted with all of the X variables (10) and look at the
variable with the highest p-value, usually above the threshold p > 0.05. The corresponding
variable is removed from the model. The procedure is then repeated on the X - 1 variable
model, and stops when no variables need to be removed [Kutner et al., 2005].

As indicated in [McQuire, 2024], the alternative measures to use are AIC and BIC values.
Similarly, for the backward elimination, we drop the variables, one at a time, from the full
model and compare the AIC and BIC values of the reduced models to the AIC and BIC of
the full model. If the values of the AIC and BIC in the reduced model are higher, than in
the full, the corresponding variable is significant to the model. If the values of AIC and BIC
are lower, then the variable is removed from the model, and the model without this variable
is fitted, repeating the AIC and BIC values comparison. The process stops when no variable
removal contribute to the better model fit.
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As described in [McQuire, 2024], using the AIC criterion for the backward elimination
procedure, the first step of the algorithm14 removes the variable for which the p-value is above
the threshold and if the model without the corresponding variable induces the smallest AIC,
then we remove this variable and proceed as described above.

The p-values above the threshold (p > 0.05) in the model (10) correspond to the Genre
variable and the Running time. We first compare the full model with the reduced model
without Genre (12).

CoxME CoxME excl. Genre Difference

AIC 9846.291 9843.5 ∆AIC ≈ 3

BIC 10109.88 10074.47 ∆BIC ≈ 35

Table 12: Model comparison without genre

As we can see based on the thresholds for the difference in BIC values, the model without
the genre is strongly preferred. Next, we compare the reduced model without the Runtime
with the full model (13).

CoxME CoxME excl. Runtime Difference

AIC 9846.291 9854.639 ∆AIC ≈ 8

BIC 10109.88 10106.98 ∆BIC ≈ 3

Table 13: Model comparison without runtime

Based on the AIC difference, the exclusion of the variable Runtime results in the worse model
fit. However, we note that the difference in BIC suggests that removal of Runtime results
in the somewhat better model, therefore the significance of the Runtime is partly cofirmed
with AIC and BIC values. For the rest of the variables, we provide the table below.

CoxME excl. Open.gross excl. Open.theaters excl Rating

AIC 9846.291 10154.07 10069.54 9873.057

BIC 10109.88 10351.04 10277.58 10131.95

Table 14: Eliminating Opening gross, Percentage of Open theatres and Rating from the full
model

14description of the algorithm in the book, which corresponds to the stepAIC function in R; We compute
the AIC and BIC manually
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Thus, we see, that ∆AIC and ∆BIC propose very strong support of the model with the inclusion
of the remaining variables. Lastly, we remove the Distributor variable from the CoxPH model
(since we cannot remove the random effect term in CoxME) to test the variable significance
in the influence on the survival time. We report the following: AIC = 10035.54; BIC =
10122.09. Comparing to the AIC and BIC values of the full model we have strong support
for the CoxME model with the Distributor, therefore the Distributor is a significant variable
for our model.

For the next step of backward elimination, based on the difference in BIC values, the model
without the Genre is chosen (12).

Thus, we now repeat the procedure, with the reduced model without the Genre, to test the
significance of other variables. We start with the Runtime results summary, due to the partly
supported effects in the previous step (15).

CoxME without Genre CoxME excl. Genre&Runtime Difference

AIC 9843.5 9855.829 ∆AIC ≈ 12

BIC 10074.47 10075.85 ∆BIC ≈ 1

Table 15: Model comparison without Genre and Runtime

Based on the difference in AIC values, we have strong support of the model with the variable
Runtime. Next, we assess the significance of the remaining variables.

CoxME without Genre excl. Open.gross excl. Open.theaters excl. Rating

AIC 9843.5 10181.3 10071.32 9906.799

BIC 10074.47 10342.3 10247.17 10140.57

Table 16: Eliminating Opening gross, Percentage of Open theatres and Rating from reduced
model

The removal of every remaining variable resulted in the significantly worse fit. Further,
testing the model without Distributor and genre, we have AIC = 10034.84;
BIC = 10087.73. Thus, the Distributor is significant to the model, together with the Opening
gross, Percentage of Open theatres, Runtime and Rating, based on the second step of the
backward elimination.
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4.2.3 Cross-Validation

In the coxme package, the predict.coxme function does not yet support prediction on the test
data [Therneau, 2024]. Therefore we installed the coxme helper function predict_coxme from
the junkka/ehahelper package [Junkka, 2021]. Regarding the computation of the c-index, we
searched for the functions which correspond to the Harrell’s c-index [Gerds, 2023].

The results for the Harrell’s C-indexes for different Test data subsets are given below.

Test data 1 Test data 2 Test data 3 Test data 4 Test data 5

C-index 0.7627749 0.7792426 0.7193666 0.7693363 0.7647787

Table 17: 5-folds Cross-Validation

The Harrell’s indexes suggest that CoxME model predicts the risks of the movies to be
withdrawn well, which indicates the accuracy of the regression results.

Moreover, we decided to manually check the computation of the c-index in order to better
understand the function cIndex in R and Harrell’s c-index. The corresponding code is given
in the Appendix B. We used 5-folds cross-validation, so the size of the Test data is 181, and
manually we checked the outputs for the iteration when Test data is the 5th fold.

That is, the total number of pairs to compare is (using binomial coefficient): 181!
2!·179! = 16290.

We noticed that the c-index output gives the number of "comparable" pairs 15749, where
the comparable means the pairs considered in the computation of the c-index. Such disparity
between the number of pairs to compare and the actual comparable pairs followed from the
exclusion of the pairs of the equal amount of screening days, when Ti = Tj. We checked this
by identifying the movies with the same amount of screening days, calculating the amount of
the respective combination of pairs for the same amount of screening days and summed over
the amount of pairs (see Appendix B). The combination of pairs to compare with the same
amount of screening days is 541, which corresponds to the difference between the number of
pairs to compare and the actual comparable pairs with cIndex function. Thus, the pairs with
the same amount of screening days are indeed not considered when computing the Harrell’s
index (36).

4.2.4 Validation of Normality Assumption

After extracting the random coefficients of Distributors from the estimated CoxME model,
we assess the normal distribution of random effects coefficients. Below is the Q-Q plot,
implemented in R, using qqPlot function, which compares estimated random effect coefficients
to the standard normal distribution.

From the plot we can see that the distribution of random effects, in total 57 for every
Distributor, is close to the normal distribution for most of the Distributors. However, the
tails of the distribution deviate from the theoretical normal distribution line and the presence
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Figure 8: The Q-Q plot for the Distributor’s Random Effects compared to the
theoretical Normal distribution (red line)

of outliers suggest for further advanced tests in order to validate the normality assumption.

Our plot is also similar to [Sun et al., 2023] (the plots in the Supplementary material) in
the presence of outliers, where the authors indicate that their plots are satisfactory, thus the
normality assumption is not rejected.
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5 Conclusion and discussion

5.1 Conclusion

Given the results in the previous subsection, we can now provide the comprehensive answer for
our research question, namely: "To what extent do movie production characteristics
and release factors affect the success of movies?". By means of survival analysis,
we explored our topic, specifically we used the extended Cox Regression Model with the
inclusion of random effects to account for the clustered data structure, that is, by treating
Distributors as the clusters. The Cox model with Mixed effects was shown to be preferred
over the ordinary Cox regression model, by comparison of the AIC and BIC values. The
assumption of normally distributed random effects for Distributors is assessed using q-q plot.
The plot suggested that the distribution of random effects does not significantly deviate from
the normal distribution. The Cox Mixed effects model is assessed with the cross-validation,
using the Harrell’s C-index as the measure for the accuracy of the model predictions on
the Test data subset. The values of C-indexes suggest that the Cox Mixed effects model’s
predictions on the risks of the movies to be withdrawn from theatres are accurate. Below we
answer our research question and the corresponding hypotheses on each of our variables, by
using the results from the regression table (10), analysis of the survival curves and backward
elimination for testing the significance of the variables.

The movie production characteristics such that rating and distributor affect the survival
time of the movie in theatres. The inclusion of frailty for the Distributor is justified compared
to the standard Cox proportional hazards model and the assessment of normality assumption.
Regarding the rating, the movies with no age restriction (PG&G) have lower risk of withdrawal
from theatres. This is indicative for some of the studios, to consider the exclusion of the
mature content, if it suggests the higher movie success. For the theatres it is also informative
in arranging the theatrical windows for movies with the less restrictive ratings.

Next, for the remaining production characteristic running time, the effect on the longevity
of screening is partly supported, due to the more strict categorization of short/average/long
movies, instead of analyzing the smaller intervals in film’s length. The tendency of longer
runtime being the most successful is observed with our results. For the genres, it being the
indicative characteristics is not confirmed. Genres appear to have insignificant effect on the
movie’s screening duration, according to the regression results, survival curves plot and the
backward elimination procedure.

Regarding the release factors, the opening gross and the amount of open theatres
compared to maximum theatres appear to have a significant effect on the film’s survival.
The opening gross category is informative for the theatres, as for the studio analysis we
would require the corresponding production budget. Thus, identifying in which opening
gross category the film is, can influence the theatre’s decision to extend the theatrical release.
The higher opening gross does result in the lower risk of the movie withdrawal from theatres.
Regarding the increase of the amount of theatres screening the movie as the release is ongoing,
the studios can observe the success of the films, based on the wider release theatre amount,
and adjust correspondingly the current and further movie projects or to arrange more theatre
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owners to screen the movie, as it appear to increase the film success. It was thus observed,
that based on the regression results, the larger the increase in the theatres releasing the movie
is, the longer the movie stays in theatres.

Based on the results of the above analyses, we can conclude that the film’s characteristics
such as rating, opening gross and the growth of the amount of theatres affect movies survival
in theatres, and given that their exclusion from the model results in significantly worse fit,
we have enough evidence to support Hypotheses 1 & 4 & 5. For the genres, we reject
Hypothesis 2. Lastly, the runtime Hypothesis 3 is partly supported (see Appendix E).
As indicated at the beginning of the paper, our results can be used in further comparison to
the mid-COVID and post-COVID industry periods, to analyze the change of film’s trends.

5.2 Discussion

We note that variable categorization used in this project can be subjective, since the categorization
can be done in different ways. Regarding the partly supported hypothesis for the runtime,
we highlighted the importance of the appropriate categorization choice for the covariates,
as discussed with two proposed categorizations. In our work we attempted to refer to the
accessible and easily interpreted sources for the categorization/grouping for some variables,
however, the resulting categorization is not optimal, which is a note for further improvement.

The approach for examining genres could have been improved. We believe that it is possible
to get a more comprehensive inference for the genres, i.e. considering multiple genres of
the film instead of only the predominant. Another potential improvement of the objectivity
of the categorization is to reference film theory in-depth. We note that in the referenced
research papers the effect of genre on the survival was observed, in opposite to our paper.

The rating variable is based on MPAA classifications [MPA, 2020], which can be considered
objective. However, some criticism can be applied regarding the subjectivity of the MPAA
ratings definitions. For instance the terms such as "adult themes" and "disturbing imagery"
are vague and the meaning of these terms might differ per country. For example, according to
[IMDB, 2024], the domestic (US) rating for "Harry Potter and the Deathly Hallows: Part 2" is
PG-13, while for the Ukrainian theatrical release the rating 16+ is assigned [Multiplex, 2024].

The categorization of the theatres variable aims to explore the effect of the increase of
screening theatres on a film’s survival. However, the obtained data did not have specific
enough information on daily/weekly increase, thus, we took the number of opening theatres
to the maximum number of theatres (in percentage of the opening theatres compared to
maximum). The tracking of the growth of the amount of theatres could have improved the
inference for this variable.

Regarding the cross-validation, the exclusion of the pairs with the same amount of screening
days, we suggest that the there are more suitable measures of the model prediction than
the Harrell’s c-index. Based on the study which proposes several model predictive measures
[Dai and Breheny, 2019], in addition to the Harrell’s c-indexes, the authors suggest the mean
squared error of the coefficients (MSE); Brier score and the Kullback-Leibler score. Thus, in
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the further research, one of these measures can be tested for suitability for coxme prediction.
Moreover, regarding the R function coxme_predict, since the function is from the helper
package (not official), ones the official function releases, its usage is more appropriate.

Concerning the model suitability, we note, that when comparing the models CoxME and
CoxPH we noticed that the degrees of freedom for the coxme model is 54.82. For the CoxPH
model, the degrees of freedom are 74 (18 + 56 excl. the comparison categories also for
Distributors). We note, that according to the documentation of Therneau coxme package,
the coxme degrees of freedom are the effective degrees of freedom, which "lie somewhere
between" the total number of coefficients (75 (fixed effects excl comparison categories +
57 distributors)) and the degrees of freedom for the integrated partial likelihood (18 + 1
for the random effects intercept (variance)) [Therneau, 2022]. So the effective degrees of
freedom differs from the degrees of freedom, and due to the effective degrees of freedom, the
Coxme was preferred over the ordinary Coxph by comparing AIC and BIC. [Therneau and
Grambsch, 2000] indicates that the estimated variance θ̂ is used in the calculation of the
degrees of freedom. We indicate that further explanations and discussion for this procedure
is needed, as this might be the important discussion, which goes beyond our scope. To
summarize, as the algorithm for estimating coefficients and variance goes as the outer loop
with maximizing the PPL and IPL, the effective degrees of freedom lie between their degrees
of freedom.

We note that for the general description of the Cox mixed effects estimation we took as the
starting point the documentation for coxme [Therneau, 2022], but in the main body of the
work we explain mathematical concepts referencing the book by Therneau [Therneau and
Grambsch, 2000] and the article by Ripatti [Ripatti and Palmgren, 2000], in order not to
confuse the accuracy of the definitions of the likelihood functions. Since the documentation
is not the official reference literature (no doi nor ISBN), the definitions there complicated the
initial understanding, possibly due to the optimizations for the construction of the coxme
function, stated/mentioned in the documentation, but without the in-depth description.

Throughout this project we tried to expand the applications of survival analysis in the
film industry. As the data driven approaches are integrated in the entertainment industry,
this leads to the further possibilities to analyze the film’s data by using other statistical
methodologies or improving the existing researches with the new variables and data.
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A Appendix

B R code for fitting Cox mixed effects and Cox PH
Additionally, below we provide code for variable categorization, backward elimination and
Q-Q plot and cross-validation

1 install.packages("survival")
2 install.packages("readxl")
3 install.packages("devtools")
4 devtools :: install_github(’junkka/ehahelper ’)
5 install.packages("coxme")
6 install.packages("intsurv")
7

8 library(ehahelper)
9 library(coxme)

10 library(survival)
11 library(readxl)
12 library(intsurv)
13

14 datame <- read_excel("C:/Users/Maria/Desktop/thesis/DATA/Final/final.xlsx")
15

16 #We note that we split code over multiple lines in order for better
17 #readability in the thesis
18

19 #G and PG ratings
20 datame$rating <- as.character(datame$rating)
21 datame$rating <- ifelse(datame$rating %in% c("PG", "G"), "PG&G", datame$rating)
22 table(datame$rating)
23

24 #Grouping genres
25 datame$genre <- as.character(datame$genre)
26 datame$genre <- ifelse(datame$genre %in% c("Adventure", "Western"),
27 "Adventure/Western",
28 ifelse(datame$genre %in% c("Documentary", "Biography"),
29 "Documentary/Biography",
30 ifelse(datame$genre %in% c("Comedy",
31 "Romantic Comedy",
32 "Black Comedy"),
33 "Comedy",
34 ifelse(datame$genre %in%
35 c("Musical", "Concert/Performance"),
36 "Musical/Concert/Performance",
37 ifelse(datame$genre %in%
38 c("Thriller/Suspense",
39 "Crime"),
40 "Thriller/Crime",
41 datame$genre))
42 )
43 )
44 )
45 table(datame$genre)
46

47 #categorizing Running time (Categorization 2)
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48 datame$running_time <- as.numeric(datame$running_time)
49 datame$running_time <- cut(datame$running_time , breaks =
50 c(75, 99, 124, 201),
51 labels = c("Short Runtime", "Average Runtime",
52 "Long Runtime"),
53 include.lowest = TRUE)
54

55 table(datame$running_time)
56

57 quantiles <- quantile(datame$Opening_Gross , probs = c(0, 0.2, 0.4, 0.6, 0.8, 1))
58 print(quantiles)
59

60 #categorizing Opening Gross
61 datame$Opening_Gross <- as.numeric(datame$Opening_Gross)
62 datame$Opening_Gross <- cut(datame$Opening_Gross , breaks =
63 quantile(datame$Opening_Gross ,
64 probs = c(0, 0.2, 0.4, 0.6, 0.8, 1)),
65 labels = c("Very Low Opening Gross",
66 "Low Opening Gross",
67 "Below Average Opening Gross",
68 "Above Average Opening Gross",
69 "High Opening Gross"),
70 include.lowest = TRUE)
71 table(datame$Opening_Gross)
72

73 # categorizing percentage of Open Theatres
74 datame$Percentage_of_Open_theatres_to_Max <-
75 as.numeric(datame$Percentage_of_Open_theatres_to_Max)
76

77 datame$Percentage_of_Open_theatres_to_Max <-
78 cut(datame$Percentage_of_Open_theatres_to_Max ,
79 breaks = c(0, 25, 90, 100, 100.0001) ,
80 labels = c("< 25%", "25% to 90%",
81 "90% to 100%", "100%"),
82 right = FALSE)
83 table(datame$Percentage_of_Open_theatres_to_Max)
84

85 datame$Distributor <- as.factor(datame$Distributor)
86 datame$Distributor
87

88 datame$Amount_of_screening_days <- as.numeric(datame$Amount_of_screening_days)
89

90 #Cox model with mixed effects.
91 #since the event happened for all observations , censoring = 1
92 coxmedatame <- coxme(Surv(time = Amount_of_screening_days ,
93 event = rep(1, nrow(datame)))
94 ~ Opening_Gross + genre +
95 Percentage_of_Open_theatres_to_Max +
96 rating + running_time + (1| Distributor), data = datame)
97 coxmedatame
98 AIC(coxmedatame)
99 BIC(coxmedatame)

100 logLik(coxmedatame)
101

102 #random effects coefficients from coxme for each Distributor
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103 redistributors <- ranef(coxmedatame)
104 redistributors
105

106 #unsuccessful coxph
107 coxphunsuc <- coxph(Surv(time = Amount_of_screening_days ,
108 event = rep(1, nrow(datame)))
109 ~ Opening_Gross + genre + Percentage_of_Open_theatres_to_Max
110 + rating + running_time + Distributor , data = datame)
111

112 #coxph increasing itearations
113 coxphmodel <- coxph(formula = Surv(time = Amount_of_screening_days ,
114 event = rep(1, nrow(datame))) ~ Opening_Gross
115 + genre + Percentage_of_Open_theatres_to_Max +
116 rating + running_time + Distributor , data = datame ,
117 control = coxph.control(iter.max = 50))
118 AIC(coxphmodel)
119 BIC(coxphmodel)
120 logLik(coxphmodel)
121 coxphmodel
122

123 #backward elimination; step 1
124 coxmedatamegenre <- coxme(Surv(time = Amount_of_screening_days ,
125 event = rep(1, nrow(datame)))
126 ~ Opening_Gross + Percentage_of_Open_theatres_to_Max +
127 rating + running_time + (1| Distributor),
128 data = datame)
129 AIC(coxmedatamegenre)
130 BIC(coxmedatamegenre)
131

132

133 coxmedatameruntime <- coxme(Surv(time = Amount_of_screening_days ,
134 event = rep(1, nrow(datame)))
135 ~ Opening_Gross + genre +
136 Percentage_of_Open_theatres_to_Max +
137 rating + (1| Distributor), data = datame)
138 AIC(coxmedatameruntime)
139 BIC(coxmedatameruntime)
140

141

142 coxmedatameopeninggross <- coxme(Surv(time = Amount_of_screening_days ,
143 event = rep(1, nrow(datame)))
144 ~ genre + Percentage_of_Open_theatres_to_Max +
145 rating + running_time + (1| Distributor),
146 data = datame)
147 AIC(coxmedatameopeninggross)
148 BIC(coxmedatameopeninggross)
149

150 coxmedatameopenth <- coxme(Surv(time = Amount_of_screening_days ,
151 event = rep(1, nrow(datame)))
152 ~ Opening_Gross + genre +
153 rating + running_time + (1| Distributor),
154 data = datame)
155 AIC(coxmedatameopenth)
156 BIC(coxmedatameopenth)
157
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158 coxmedatamerating <- coxme(Surv(time = Amount_of_screening_days ,
159 event = rep(1, nrow(datame)))
160 ~ Opening_Gross + genre +
161 Percentage_of_Open_theatres_to_Max
162 + running_time + (1| Distributor), data = datame)
163 AIC(coxmedatamerating)
164 BIC(coxmedatamerating)
165

166

167 #without distributor coxph
168 coxphmodeldistrib <- coxph(formula = Surv(time = Amount_of_screening_days ,
169 event = rep(1, nrow(datame))) ~
170 Opening_Gross
171 + genre + Percentage_of_Open_theatres_to_Max +
172 rating + running_time , data = datame ,
173 control = coxph.control(iter.max = 50))
174 AIC(coxphmodeldistrib)
175 BIC(coxphmodeldistrib)
176

177

178 #backward elimination step 2
179 coxmedatameruntimegenre <- coxme(Surv(time = Amount_of_screening_days ,
180 event = rep(1, nrow(datame)))
181 ~ Opening_Gross +
182 Percentage_of_Open_theatres_to_Max +
183 rating + (1| Distributor), data = datame)
184 AIC(coxmedatameruntimegenre)
185 BIC(coxmedatameruntimegenre)
186

187

188 coxmedatamegenreopengross <- coxme(Surv(time = Amount_of_screening_days ,
189 event = rep(1, nrow(datame)))
190 ~ Percentage_of_Open_theatres_to_Max +
191 rating + running_time + (1| Distributor),
192 data = datame)
193

194 AIC(coxmedatamegenreopengross)
195 BIC(coxmedatamegenreopengross)
196

197

198 coxmedatamegenreopenth <- coxme(Surv(time = Amount_of_screening_days ,
199 event = rep(1, nrow(datame)))
200 ~ Opening_Gross +
201 rating + running_time + (1| Distributor), data = datame)
202 AIC(coxmedatamegenreopenth)
203 BIC(coxmedatamegenreopenth)
204

205 coxmedatamegenrerating <- coxme(Surv(time = Amount_of_screening_days ,
206 event = rep(1, nrow(datame)))
207 ~ Opening_Gross +
208 Percentage_of_Open_theatres_to_Max
209 + running_time + (1| Distributor), data = datame)
210 AIC(coxmedatamegenrerating)
211 BIC(coxmedatamegenrerating)
212
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213 coxphmodelgenredistrib <- coxph(formula = Surv(time = Amount_of_screening_days ,
214 event = rep(1, nrow(datame))) ~
215 Opening_Gross
216 + Percentage_of_Open_theatres_to_Max +
217 rating + running_time , data = datame ,
218 control = coxph.control(iter.max = 50))
219 AIC(coxphmodelgenredistrib)
220 BIC(coxphmodelgenredistrib)
221

222 #Q-Q plot; assessing the normality assumption
223 typeof(redistributors)
224 revector <- unlist(redistributors)
225

226 library(EnvStats)
227 qqPlot(revector , main = "Q-Q Plot for Random Effects",
228 xlab = "Theoretical Normal Distribution Quantiles", ylab =
229 "Random Effects for Distributors Quantiles")
230 qqline(revector , col = "red")
231

232

233 #cross -validation
234 #prepare fold number to assign for movies in data (as 1,2,3,4,5,1,2,3,4,...)
235 folds <- rep(1:5, length.out = nrow(datame))
236

237 cindexes <- numeric (5)
238

239 for (i in 1:5) {
240 traindata <- datame[folds != i, ]
241 testdata <- datame[folds == i, ]
242

243 coxmetrain <- coxme(Surv(time = Amount_of_screening_days ,
244 event = rep(1, nrow(traindata)))
245 ~ Opening_Gross + genre +
246 Percentage_of_Open_theatres_to_Max +
247 rating + running_time + (1| Distributor),
248 data = traindata)
249

250 predictme <- predict_coxme(coxmetrain , newdata = testdata)
251

252 cindexes[i] <- cIndex(testdata$Amount_of_screening_days ,
253 rep(1, nrow(testdata)), predictme)
254

255 }
256 cindexes
257

258 #manually checking number of concordant pairs
259 folds1 <- rep(1:5, length.out = nrow(datame))
260 traindata1 <- datame[folds1 != 5, ]
261 testdata1 <- datame[folds1 == 5, ]
262

263 coxmetrain1 <- coxme(Surv(time = Amount_of_screening_days ,
264 event = rep(1, nrow(traindata1)))
265 ~ Opening_Gross + genre +
266 Percentage_of_Open_theatres_to_Max +
267 rating + running_time + (1| Distributor),
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268 data = traindata1)
269

270 predictme1 <- predict_coxme(coxmetrain1 , newdata = testdata1)
271

272 cindex1 <- cIndex(testdata1$Amount_of_screening_days ,
273 rep(1, nrow(testdata1)), predictme1)
274 cindex1
275

276 #check for pairs with the same # of screening days
277 sameamountcheck <- table(testdata1$Amount_of_screening_days)
278 sameamountcheck
279

280 #note , if 1 movie for the amount of screen days , then pairssameamount =0
281 pairssameamount <- (sameamountcheck*(sameamountcheck - 1))/2
282 pairssameamount
283

284 totalpairssameamount <- sum(pairssameamount)
285 totalpairssameamount
286

287 #running time (Categorization 1)
288 #datame$running_time <- as.numeric(datame$running_time)
289 #datame$running_time <- cut(datame$running_time , breaks =
290 #c(75, 94, 101, 108, 116, 126, 201),
291 #labels = c("Group 1", "Group 2",
292 # "Group 3", "Group 4",
293 # "Group 5", "Group 6"),
294 #include.lowest = TRUE)
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C R code for survival curves

1 #note: we also group the variables as in coxme before plotting survival curves
2 #note 2: for running time for different categories we re -categorize
3 #before plotting Category 2
4

5 #survival curves for ratings
6 kmrating <- survfit(Surv(time = Amount_of_screening_days ,
7 event = rep(1, nrow(datame))) ~ rating , data = datame)
8 plot(kmrating , col = c("blue", "red", "green"), xlab = "Screening Days",
9 ylab = "Survival Probability")

10 table(datame$rating)
11

12 #survival curves for genres
13 kmgenre <- survfit(Surv(time = Amount_of_screening_days , event =
14 rep(1, nrow(datame))) ~ genre , data = datame)
15 plot(kmgenre , col = c("blue", "red", "green", "orange", "purple",
16 "pink", "black", "yellow", "brown"), xlab =
17 "Screening Days", ylab = "Survival Probability")
18 table(datame$genre)
19

20 #survival curves for Running time (Categorization 1)
21 kmruntime <- survfit(Surv(time = Amount_of_screening_days ,
22 event = rep(1, nrow(datame))) ~ running_time ,
23 data = datame)
24 plot(kmruntime , col = c("blue", "red", "orange", "purple", "pink", "black"),
25 xlab = "Screening Days", ylab = "Survival Probability")
26 levels(datame$running_time)
27

28 #survival curves Running time (Categorization 2)
29 kmruntime <- survfit(Surv(time = Amount_of_screening_days , event =
30 rep(1, nrow(datame))) ~ running_time , data = datame)
31 plot(kmruntime , col = c("blue", "red", "orange"), xlab = "Screening Days",
32 ylab = "Survival Probability")
33 levels(datame$running_time)
34

35 #survival curves for Opening Gross
36 kmopeninggross <- survfit(Surv(time = Amount_of_screening_days , event =
37 rep(1, nrow(datame))) ~ Opening_Gross ,
38 data = datame)
39 plot(kmopeninggross , col = c("blue", "red", "orange", "purple", "pink"),
40 xlab = "Screening Days", ylab = "Survival Probability")
41 levels(datame$Opening_Gross)
42

43 #survival curves for Open theatres (compared to maximum theatres)
44 kmopenthtomax <- survfit(Surv(time = Amount_of_screening_days , event =
45 rep(1, nrow(datame))) ~
46 Percentage_of_Open_theatres_to_Max ,
47 data = datame)
48 plot(kmopenthtomax , col = c("blue", "red", "orange", "purple"),
49 xlab = "Screening Days", ylab = "Survival Probability")
50 levels(datame$Percentage_of_Open_theatres_to_Max)
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D Distributors random effects
Below is the table of the estimated random effects for each of the 57 Distributors.

Table 18: Random Effects Coefficients for Distributors

Distributor Coefficients

Affirm Films -0.1482

Amazon Studios 0.6119

Annapurna Pictures 0.1169

ArtAffects Entertainment -0.9246

Atlas Distribution Company -0.1973

Aviron Pictures -0.0953

BH Tilt 0.5576

Bleecker Street Media 0.0034

Briarcliff Entertainment 0.3949

Broad Green Pictures -0.4541

CBS Films 0.7774

Cinelou Films 0.0794

Clarius Entertainment 0.4146

Dimension Films -0.2887

Electric Entertainment -0.0491

Entertainment Studios Motion Pictures -1.0993

EuropaCorp -0.0518

FilmDistrict 0.3593

Freestyle Releasing 0.0047

Fun Academy Motion Pictures -3.2061

GKIDS 0.4503

Global Road Entertainment -0.7394

IFC Films -0.8476

LD Entertainment 0.4522

Metro-Goldwyn-Mayer (MGM) -0.2709

Millennium Entertainment 0.3466

Mirror/LD Entertainment -0.1846

Neon 0.5255

59



Ocean Avenue Entertainment 0.3907

Pantelion Films 0.9770

Pinnacle Peak -0.3653

Purdie Distribution -0.5521

Pure Flix Entertainment -0.9312

Quality Flix -0.0400

RADiUS-TWC 0.1028

RCR Distribution 0.5556

Roadside Attractions -0.3103

Screen Gems 0.5982

Sony Pictures Classics -0.4405

Studio 8 0.1475

The Samuel Goldwyn Company 0.3930

TriStar Pictures 0.1882

Viva Pictures 0.6317

A24 -0.2609

Focus Features 0.2578

Fox Searchlight -0.6824

Lions Gate Films 0.6948

Open Road Films (II) 0.3092

Paramount Pictures 1.0129

Relativity Media -0.4369

Sony Pictures Entertainment (SPE) 0.0347

STX Entertainment 1.0050

The Weinstein Company -0.5448

Twentieth Century Fox -0.1329

Universal Pictures 0.6182

Walt Disney Studios Motion Pictures -0.1792

Warner Bros. 0.4214
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E Fixed effects for Runtime Category 1
Even though we have chosen Runtime Category 2 over Runtime Category 1, here we report
the fixed effects coefficients for the Running time Category 1.

coef exp(coef) se(coef) p

running time Group 2 -0.1428 0.8668 0.1260 2.6e-01

running time Group 3 -0.1018 0.9031 0.1302 4.3e-01

running time Group 4 -0.1818 0.8337 0.1338 1.7e-01

running time Group 5 -0.1833 0.8324 0.1400 1.9e-01

running time Group 6 -0.4652 0.6279 0.1471 1.6e-03

Table 19: Regression results for Running time Category 1

Compared to Group 1 (the smallest runtime), we observe that all other groups have the
longer screening time. We see that there is indeed the tendency for the decrease in hazard
rate as the running time increases, but the differences in hazard rates are small. That is,
only for the longest run time, Group 6, we observe more significant decrease in hazard rate.
Moreover, Group 3 hazard is higher than for Group 2, despite Group 3 having longer running
time, therefore this confirms, that the choice of Categorization 2 is preferred.

With the Categorization 2, it was observed that, according to AIC value, the model with
the Runtime is preferred. With the Categorization 1, we observe that the model without the
Runtime and Genre is preferred, based on the BIC values, as shown below.

CoxME CoxME without Genre CoxME without Genre&Runtime

AIC 9851.763 9848.453 9855.829

BIC 10129.26 10093.44 10075.85

Table 20: Model comparison for Categorization 1

These results underline the importance of accurate categorization of variables.
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