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Abstract: Face age estimation has been a popular problem in computer vision for quite some
time, where the methods employed changed over time. Recognizing the distinction between ap-
parent age and real age, apparent age estimation was chosen as a task for our model to perform.
A recent development in machine learning is uncertainty disentanglement, crucial for further
advancements in various tasks. However, its applications to face age estimation, particularly ap-
parent age estimation, have yet to be explored. In order to study the performance of uncertainty
disentanglement in apparent age estimation, we have employed DenseNet121 for feature extrac-
tion and implemented three methods for uncertainty estimation: Monte Carlo Dropout, Monte
Carlo DropConnect, and Ensembles. Our results show that all three methods are capable of
estimating apparent age, but struggle with providing appropriate uncertainties. All three meth-
ods struggle the most with the aleatoric uncertainty. It is worth mentioning that the Ensembles
performed the best out of the three uncertainty disentanglement methods.

1 Introduction

Face age estimation represents a fascinating and
complex field within computer vision, where the
objective is to accurately determine a person’s age
based on their facial features. This field has quite
a few applications in human-computer interaction,
surveillance monitoring, and video content analy-
sis, such as preventing underage accessing alcohol.

The fact that even humans have a hard time
estimating real age, speaks of the challenge ma-
chines must overcome in automated age estima-
tion. The inherent complexities come from environ-
mental variabilities and significant intra-cohort age
variance(Albert et al., 2007). This is when a group
of people are born in the same generation, but age
differently based on environmental factors such as
smoking, drinking or stress.

Therefore, we have to clarify the difference be-
tween real and apparent age. Real age is the biolog-
ical age of the person, whereas ’apparent’ age is the
age perceived by other people solely based on ap-
pearance only. This difference in tasks also has dif-
ferent possible applications. For example, real age
estimation is used for age restriction(Angulu et al.,

2018). On the other hand apparent age estimation
can be used in applications where the human per-
spective is the crucial part, such as testing the ef-
fects of anti-ageing products or spotting faster rates
of ageing caused by poor lifestyle(Goodyear et al.,
2023).

One of the most significant problems in face age
estimation is the already mentioned intra-cohort
age variance. This complexity poses a formidable
challenge to developing accurate models. Genetics,
lifestyle choices, and health conditions contribute
to a wide range of ageing expressions on the human
face, making it difficult to standardize and model.
Moreover, environmental influences and personal
habits, such as exposure to sunlight and smoking,
can accelerate or decelerate the visible signs of age-
ing (Morita, 2007; Kennedy et al., 2003), introduc-
ing additional layers of complexity. This calls for
a sophisticated algorithm capable of capturing and
interpreting the variability.

Age estimation based on facial features has differ-
ent possible approaches. In the first part of the task,
it is necessary to extract features from the pictures.
These features can be either hand crafted, usually
representing biological factors with the most impor-
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tant factors including identity, gender and ethnic-
ity(Guo et al., 2009; Bekhouche et al., 2016). Or the
features can be automatically extracted from the
pixels using techniques like Convolutional neural
network (CNN)(Levi & Hassner, 2015; Han, 2020;
K.-H. Liu et al., 2019). CNN models have become
a more prevalent method because they lead to a
fully learned end-to-end system that can estimate
age from image pixels directly, without the need
for humans to indicate and label features for the
model.
The second part of the task is using the features

and turning them into output. This can be divided
into two categories: a classification task where a
face is assigned to one of several specific age cate-
gories(N. Liu et al., 2020; Kwon & da Vitoria Lobo,
1999; Lanitis et al., 2004), or a regression task to
predict a more precise age (N. Liu et al., 2020; Guo
et al., 2009). In definition, doing classification may
appear simpler, but results in an age range. This
is sufficient enough for demographics analysis, and
commercial user management. But even though re-
gression is a bit harder it will result in an exact
number, not just an age range. This is necessary
for more sensitive applications, such as early spot-
ting of environmental effects on health.

1.1 Uncertainty

Commonly, machine learning only gives output sig-
nifying the preferred answer of the model(Guo et
al., 2009; Lanitis et al., 2004). This is satisfactory
for a lot of applications, but with some other tasks,
for example, tasks that deal with the risk of hu-
man life or have legal consequences, the black box
output of the model is no longer satisfactory. Re-
cently a solution has emerged: uncertainty quantifi-
cation(Gal et al., 2016). With uncertainty quantifi-
cation, the model also gives confidence in its out-
put.
Two primary forms of uncertainties exist,

aleatoric (data-related) and epistemic (model-
related)(Gal et al., 2016). Although typically fused
into a singular predictive uncertainty, disentangling
these uncertainties provides clarity on their individ-
ual contributions. Specifically, aleatoric uncertainty
highlights the inherent unpredictability of the data,
suggesting that age prediction would be inherently
unpredictable. In contrast, epistemic uncertainty
underscores constraints of the model itself, suggest-

ing that the model can be improved, by better ar-
chitecture or with more learning opportunities.

There are quite a few uncertainty disentangle-
ment methods available, and it is unclear which one
is the best performing in which situation. We will
look at three uncertainty disentanglement meth-
ods: Monte Carlo Dropout, Monte Carlo Drop-
Connect, and Ensembles(Valdenegro-Toro & Mori,
2022). They will be explained in more detail in sec-
tion 2.

1.2 Scope of This Thesis

Against this backdrop, our research is seeking to
explore and expand the frontiers of age estimation
technology. The central inquiry of our investigation
is: ”Can a neural network learn to recognize appar-
ent human age and predict appropriate uncertain-
ties?”.

Secondly, to comprehensively assess the efficiency
of each uncertainty estimation method in perform-
ing our face age estimation task, we plan to imple-
ment all three approaches: Monte Carlo Dropout,
Monte Carlo DropConnect, and Ensembles. By an-
alyzing the precision of uncertainty estimates and
their impact on the overall performance and reli-
ability of age predictions, we aim to identify the
most effective method for capturing predictive un-
certainty in the context of face age estimation.

By focusing on apparent age, we acknowledge the
subjective nature of perceiving ageing. Moreover,
by aiming to predict uncertainties, we are commit-
ting to a level of transparency and reliability that
goes beyond traditional models.

This thesis contributes in three key ways. Firstly,
we propose a model capable of both estimating ap-
parent age and disentangling the aleatoric and epis-
temic uncertainties associated with the estimation.
Secondly, this approach leverages the availability of
standard deviation associated with apparent age to
estimate the epistemic uncertainty of the aleatoric
uncertainty prediction as well (details in section
2). Lastly, a comparison between DropOut, Drop-
Connect and Ensembles, about their disentangling
quality in the apparent age estimation task.
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Figure 2.1: This plot shows the distribution of
apparent age votes for face ”000001.jpg”. The
red line indicates real age.

2 Methods

2.1 Dataset

For our purpose, we will be utilizing the APPA-
REAL database(Agustsson et al., 2017), a pioneer-
ing dataset that offers both real and apparent age
annotations for each image. This dataset emerges
in response to the scarcity of publicly available
databases that include face images annotated with
apparent age labels contrary to the extensive avail-
ability of datasets with only ”real” age data.

The APPA-REAL database comprises 7,591 im-
ages(split into 4113 train, 1500 valid and 1978 test
images), enriched with nearly 300,000 votes on ap-
parent age, resulting in an average of approximately
38 votes per image(example of voting in the figure
2.1). This extensive collection of votes per image
ensures a high degree of reliability in the appar-
ent age data, evidenced by a standard error of the
mean of just 0.3. Each image in the database is
labelled with both the real age and apparent age,
the latter derived from the mean of the raw votes
post-outlier removal. The dataset spans a diverse
age range, making the dataset more representative
of the real world.

Analysis of the APPA-REAL database reveals
a strong correlation between real and apparent
ages(figure 2.2), though with individual variances
that can exceed up to 20 years. This variance is in-
dicative of the subjective nature of age perception,
influenced by factors such as lifestyle, genetics, and
environmental conditions. Recognizing such vari-
ance as natural in real-world scenarios, and since
we want our model to be able to reflect the uncer-

tainty of the real world, it justifies our choice of the
APPA-REAL dataset.
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Figure 2.2: Scatterplot showing the relationship
of Apparent and Real age.

Given the diverse applications of age estima-
tion, the APPA-REAL dataset encompasses a wide
range of image conditions without controlling for
background and lighting. This variability reflects
real-world scenarios, where facial images may be
captured in uncontrolled environments, thus pre-
senting both a challenge and an opportunity for en-
hancing the robustness of our age estimation model.

2.2 Preprocessing Steps

To prepare the dataset for training, we used the fact
that the APPA-REAL dataset already provides im-
ages that are cropped, centered, and aligned, focus-
ing exclusively on the face. To further augment our
dataset and improve the model’s generalizability
to different facial orientations and lighting condi-
tions, we applied runtime data augmentation tech-
niques. These included rotations within +/- 10 de-
grees, horizontal and vertical shifts of up to 10% of
the image dimensions, shear transformations, zoom
adjustments ranging from 80% to 120%, horizontal
flips, brightness variations between 80% and 120%,
and normalizing of pixels (RGB values) from [0,255]
to [0,1].

2.3 Feature Extraction

For the task of extracting meaningful fea-
tures from the images, our model incorpo-
rates DenseNet121(Huang et al., 2017), a deep
CNN known for its efficiency and effectiveness
in handling complex image recognition tasks.
DenseNet121 stands out for its unique architecture
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that facilitates feature reuse, making it particularly
suitable for the nuanced task of face age estimation.
The architecture comprises of 121 layers, includ-

ing convolutional layers, pooling layers, and densely
connected blocks that collectively contribute to the
network’s deep learning capabilities. The model
employs concatenation of feature maps from all pre-
ceding layers at each layer, thereby enriching the
feature set with minimal increase in parameters,
making it both efficient and powerful.
We have decided to use DenseNet implemented

by Keras(Chollet et al., 2015), because of its con-
venience. In addition, the library we are using for
Uncertainty estimation(introduced in the next sub-
section) is based on Keras, which supports our de-
cision.

2.4 Uncertainty Methods

We implement three distinct methods for uncer-
tainty estimation: Monte Carlo Dropout, Monte
Carlo DropConnect, and Ensembles(Valdenegro-
Toro & Mori, 2022).
Monte Carlo Dropout involves applying dropout

not just during training but also during infer-
ence, creating multiple stochastic forward passes.
By treating dropout as a Bayesian approximation,
it provides a distribution of outputs from which un-
certainty can be quantified.
Monte Carlo DropConnect involves randomly

dropping weights in the network rather than ac-
tivations. This variation offers a different perspec-
tive on model uncertainty by assessing the impact
of altering the network’s connections.
Ensembles involve training several models inde-

pendently and then aggregating their predictions,
the variance among the outputs serves as a mea-
sure of uncertainty. Consequently, Ensembles differ
from the Monte Carlo methods by relying on di-
versity across multiple trained models rather than
stochasticity in a single model’s forward passes.
For all three methods, we are utilizing the Keras-

uncertainty library(Valdenegro, 2024).

2.5 Uncertainty Disentanglement

As mentioned before there are two types of un-
certainty, aleatoric and epistemic. These are de-
rived from the set of equations and are ultimately
defined as Ei[σ

2
i (x)] and Vari[µi(x)] respectively,

where µi(x) is mean output and σ2
i (x) is predictive

variance with i ∈ [1,M ] being an index for different
samples or ensembles.

In our case, the dataset we use also includes la-
bels for the Std of the apparent age, which can be
interpreted as aleatoric uncertainty. Therefore the
model will be two-headed with one head outputting
the mean apparent age and the other head out-
putting the aleatoic uncertainty of apparent age.
This way we can learn the aleatoric uncertainty
from the data instead of approximating it.

For the epistemic uncertainty we only need to
calculate the Variance of the output. Since we
have two outputs, we will have to calculate epis-
temic uncertainty for both: Epistemic uncertainty
of mean apparent age - Vari[µi(apparent age)]
and Epistemic uncertainty of std apparent age -
Vari[µi(STD of apparent age)]

2.6 Hyper-parameters and Model
Configuration

The model itself differs slightly based on the uncer-
tainty quantification method used. All three mod-
els start with DenseNet followed by 2 dense layers.
After that, we fork the model, making it into two-
headed. Each fork has 1 dense layer followed by
a softplus output layer. For Monte Carlo Dropout
and DropConnect, these dense layers are replaced
by dropout and dropconnect layers which allow for
the specific properties of the method.

For the ensemble approach, we trained five dis-
tinct models, 150 epochs each, capitalizing on di-
verse model initializations in order to enhance the
robustness and accuracy of our age estimation. In
contrast, for the Monte Carlo Dropout and Drop-
Connect, we opted for a longer training duration
of 200 epochs to ensure convergence, with dropout
and dropconnect rates set at 0.2 and 0.05, respec-
tively.

2.7 Model Outputs and Proposed
Evaluation

Our model has four outputs( shown in the ta-
ble 2.1), two of which are learned through la-
belled data: Mean Apparent age(µAppAge) and the
Aleatoric Uncertainty of Apparent age(σAppAge).
And two outputs which are calculated; these repre-
sent the epistemic uncertainties: Epistemic Uncer-
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tainty of Mean Apparent age(Eµ) and Epistemic
Uncertainty of Std of Apparent age(Eσ). These two
types of outputs need different evaluations.

For the labelled data, we have decided to use a
simple Root-mean-square-error(RMSE) as it pro-
vides a straightforward analysis of how the model
performed with that output. On the other hand,
RMSE might be insufficient, because it summarizes
the whole model performance in one number, while
it could be performing differently on different age
ranges. Therefore we will also look at the plot of
predictive output versus label, to see how the trend
of error looks throughout different age categories.

For the other two outputs representing the epis-
temic uncertainties, we will calculate the calibra-
tion curve and its corresponding error to see if the
model is overconfident, underconfident or balanced.
The calibration curve will also be used to look at
how the uncertainty evolves with accuracy. Further-
more, we will look at the Epistimic uncertainty ver-
sus absolute error plot, to again see how well the
model predicts the uncertainty and the trend of the
Epistimic uncertainty in regards to the errors the
model makes.

Lastly, we will look case by case at specific pic-
tures, representing the best and worst at the respec-
tive outputs and uncertainty estimation methods.
This way we can discuss why the model performs
better or worse on which types of data.

3 Results

3.1 Descriptive Results

For µAppAge, the ground truth average is 33.09
years, with predictions closely aligning: DopCon-
nect at 28.51 years, DopOut at 29.73 years, and
Ensembles at 32.25 years. Although all the meth-
ods are closely aligned, with the Ensembles method
yielding the closest average to the truth, the range
of predicted ages (min: 1.72 to 1.79 years, max:
75.00 to 89.95 years) across methods shows a
smaller range than the ground truth (min: 0.95,
max: 95.57 years), indicating a potential limitation
in capturing the full spectrum of ages accurately.

In terms of σAppAge, the ground truth’s aver-
age is 4.84. The methods’ predicted averages for
σAppAge are somewhat lower (DopConnect: 1.86,
DopOut: 1.92, Ensembles: 2.05), suggesting a con-

servative estimation of uncertainty compared to hu-
man judgment variability. The ranges of predicted
σAppAge (min: 0.08 to 0.72 years, max: 2.79 to 3.00
years) across methods show a smaller range than
the ground truth (min: 0.00, max: 13.59 years), in-
dicating that all three methods have limitations in
estimating the higher side of the spectrum of the
aleatoric uncertainty.

For Eµ Ensembles exhibit the broadest range
of epistemic uncertainty (min: 0.29, max: 21.20)
compared to DropOut (min: 0.90, max: 12.35)
and DropConnect (min: 0.22, max: 13.65). This
suggests that Ensembles potentially offer a more
nuanced understanding of prediction confidence
across age estimates. For Eσ it is the same, with En-
sembles exhibiting the broadest range (min: 0.03,
max: 0.44), compared to DopOut () and DopCon-
nect (min: 0.01, max: 0.42).

Based on just descriptive results, we can estimate
that Ensembles are our best method, because of
the higher ranges in all four outputs, Ensembles
are capable of a broader spectrum of values than
the other two methods. This is not a definitive an-
swer as the broader spectrum might be a negative
thing as well. Nevertheless, looking at the µAppAge

and σAppAge, Ensembles are closer to the range the
ground truth shows.

3.2 Mean Apparent Age and
Aleatoric Uncertainty of Ap-
parent Age

Ensembles exhibited superior performance with the
lowest RMSE of µAppAge (table 3.1), indicating
more accurate age predictions compared to Monte
Carlo Dropout and Monte Carlo DropConnect. The
baseline method had a significantly higher RMSE
than all the methods, suggesting that the model
was able to learn the apparent age, with Ensem-
bles performing the best.

The RMSE values of σAppAge were closely
matched across the three methods, with Ensembles
slightly outperforming both Monte Carlo Dropout
and Monte Carlo DropConnect. The baseline has
a significantly lower RMSE of σAppAge than any of
the methods, suggesting the model was not able to
learn the aleatoric uncertainty from the data.

Furthermore, we can analyse scatter plots for
σAppAge predictions versus the ground truth(figures
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Name Aleatoric
Uncer-
tainty

Epistemic
Uncer-
tainty

Ground truth Notation

Mean Apparent age No No Apparent age
label

µAppAge

Aleatoric Uncertainty
of Apparent age

Yes No Std of Apparent
age label

σAppAge

Epistemic Uncertainty
of Mean Apparent age

No Yes NA Eµ

Epistemic Uncertainty
of Std of Apparent age

No Yes NA Eσ

Table 2.1: Caption
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Figure 3.1: Scatter plot illustrating the apparent age versus absolute error of σAppAge, using the
DropOut(a), DropConnect(b) and Ensembles(c). The data points suggest a trend where the error
increases with the apparent age of the individuals.

RMSE: µAppAge σAppAge

dropout 12.272 3.471
dropconnect 12.968 3.499
ensembles 11.101 3.389
baseline 17.674 2.096

Table 3.1: Root-mean-square error for both la-
belled outputs(mean age and σAppAge), compar-
ing the three uncertainty estimation methods
and baseline

3.1a, 3.1b and 3.1c). We can deduce interesting
information about the performance of our three
methods: with increasing apparent age, the error in
predicting aleatoric uncertainty increases. We have
done a Pearson correlation test, yielding high pos-
itive correlations of 0.673 up to 0.685 This might
suggest that the model has an easier time estimat-
ing younger faces.

3.3 Epistemic Uncertainty of Mean
Apparent Age

Looking at the regressor calibration curve for Eµ

(figure 3.2) we can see the balance between accu-
racy and confidence of the model with the three
different methods. All three methods are overconfi-
dent, meaning they give low uncertainty values for
how inaccurate they are. Ensembles are the best of
the three options with a calibration error of 0.157.
DropConnect is second best with the calibration
error of 0.237. DropOut comes third with the cal-
ibration error of 0.298, almost double the value of
Ensembles.

Looking at scatter plots of Eµ over the absolute
error of predictive µAppAge and ground truth, we
would want to see an increase in Epistemic Uncer-
tainty as the absolute error increases. Ensembles,
as indicated in the figure 3.2, did best, this is also
supported by the figure 3.3c where we can see an
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Figure 3.2: RCC of the Eµ for the three un-
certainty estimation methods.The green line
represents DropOut, the blue line represents
DropConnect and the red line is Ensembles.
The black line represents a perfectly calibrated
model.

increasing trend for the Epistemic Uncertainty with
the increasing absolute error. On the other hand,
we have DropOut which did worse on RCC(figure
3.2), and we can also see that in figure 3.3a the
Epistemic Uncertainty is not increasing nearly as
fast enough as in Ensembles. Looking at the Drop-
connect in figure 3.3c, we see a middle ground be-
tween Ensembles and Dropout, just like in figure
3.2. We also calculated the Pearson correlation co-
efficients, and we got a medium positive correlation
for Ensembles (0.304), and low or negligible correla-
tions for DropOut(0.133) and DropConnect(0.025).
The Pearson correlation coefficients suggest only
Enseblems is able to estimate somewhat appropri-
ate Eµ.

3.4 Epistemic Uncertainty of Std of
Apparent Age

We can do the same analysis for Eσ as for Eµ. Start-
ing with RCC in figure 3.4 we can see that all three
methods are not calibrated well, they are all over-
confident. Both DropConnect and DropOut have
an almost vertical line and calibration error of 0.471
and 0.4767 respectively. This suggests that both
methods give low values for Eσ for when they are
correct and when they are not, no-discriminatively.
On the other hand, Ensembles does a bit better
than the other two, with the calibration error of
0.388. We can also look at the corresponding scat-
ter plots of Eσ over the absolute error of predic-
tive σAppAge and ground truth. We can see that

both figures 3.5a and 3.5b give very low uncer-
tainty values, even with increasing absolute error.
We can see the same behaviour from Ensembles
in figure 3.5c, with the difference that on average
the uncertainty values are higher. Calculating the
Pearson correlation coefficients we get negative cor-
relations for DropOut(-0.276) and DropConnect(-
0.331), suggesting that both methods are not es-
timating the Eσ correctly. For Ensembles, we get
no correlation( -0.021), which again suggests the
inability of Ensembles to estimate Eσ. Also, it is
worth mentioning that no correlation is better than
a negative correlation, making the Ennsebles best
method.

3.5 Example Analysis

In this section, we will go over a few examples from
the test split, and show the results of the three un-
certainty disentanglement methods. The examples
that were selected show 2 images with higher ap-
parent age( figures 3.6b and 3.6c) and 2 images with
lower apparent age( figures 3.6a and 3.7a). Also fig-
ures 3.6a and 3.6b are examples of when the meth-
ods estimate µAppAge correctly and incorrectly, in
that order. Furthermore, figures 3.6c and 3.7a are
examples of well-estimated and poorly estimated
Epistemic uncertainties, in that order.

Comparing the examples against each other we
can notice the previously mentioned problem with
higher errors in aleatoric uncertainty as the appar-
ent age increases. Namely figures 3.6a and 3.7a have
much closer prediction of σAppAge than figures 3.6b
and 3.6c.

Figure 3.6a shows an example where all three
of the methods perform well. We can see that
DropOut and Ensembles both have predicted the
µAppAge almost perfectly. DropConect is a bit off
on the µAppAge, but not too far, as the Eµ makes
up for the difference. The Eµ DropOut and Ensem-
bles are too high for how precisely it got the answer.
Next looking at the σAppAge, we see that all three
methods give a lower value than the ground truth.
When we take into consideration Eσ, the σAppAge

prediction does not get any better as the Eσ values
are too low. Here Ensembles perform best, giving
the highest Eσ, whereas DropOut and DropCon-
nect give negligible values.

Figure 3.6b shows an example where all three of
the methods perform poorly. What we can notice
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Figure 3.3: Scatter plot showing Eµ versus absolute error of the σAppAge and the corresponding
ground truth, for the DropOut, DropConnect and Ensembles.
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Figure 3.4: RCC of the Eσ for the three un-
certainty estimation methods. The green line
represents DropOut, the blue line represents
DropConnect and the red line is Ensembles.
The black line represents a perfectly calibrated
model.

right away is that all three methods have an error of
20+ years in µAppAge. Secondly, all three methods
give the wrong value for the σAppAge. This example
seems to be one of the hardest for humans to esti-
mate, indicated by the large Std of Apparent age
ground truth, but all three methods have failed to
give appropriate uncertainties. The already men-
tioned σAppAge and both of the Epistemic uncer-
tainties are undervalued. On the other hand, it is
necessary to mention that even though the values
are low for the uncertainties, Ensembles gives the
highest ones compared to the other two.

Looking at figure 3.6c, all three of our methods
have failed to estimate µAppAge and σAppAge cor-
rectly. But what seems to be interesting in this ex-
ample is the Epistemic uncertainties. For both Eµ

and Eσ the Ensembles perform well. We can see

that for both µAppAge and the σAppAge, the ground
truth is within the corresponding Epistemic Uncer-
tainty error bars. This is only the case for the En-
sembles, both DropOut and DropConnect estimate
low values of Epistemic Uncertainties. This exam-
ple suggests that even in case of a bad prediction,
Ensembles can provide higher values of uncertainty,
compared to the other two methods. The example
provided in figure 3.7a, is somewhat of the oppo-
site of figure 3.6c. Firstly, all three methods per-
form well on predicting µAppAge and the σAppAge,
except for Ensembles, which perform slightly worse
on the µAppAge estimation. What is interesting, is
how the methods perform on the Epistemic Uncer-
tainty part. We can see that both DropOut and
DropConncet give the usual small values of Epis-
temic Uncertainties, which seems to be alright in
this case, as they got the µAppAge and σAppAge es-
timation correctly. On the other hand, Ensembles
give their usual higher values of Epistemic Uncer-
tainties, which is counterproductive. Since Ensem-
bles did make a decent µAppAge and σAppAge esti-
mation, the high values of Epistemic Uncertainties
are uncalled for. This example suggests that the
tendencies of the methods(low versus high Epis-
temic Uncertainty for DropOut, DropConncet ver-
sus Ensembles) are sometimes making the methods
look like they perform better(DropOut, DropCon-
ncet) or worse than they usually do(Ensembles).

Looking at figure 3.7b, we can see that all three
of our methods perform badly on all aspects of the
task. Predicted µAppAge is off by 10 up to 30 years,
and σAppAge is also predicted with too low values.
Looking at the Epistemic uncertainties, we see the
methods do not reflect the fact that the model is
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Figure 3.5: Scatter plot showing Eσ versus absolute error of the σAppAge and the corresponding
ground truth, for the DropOut, DropConnect and Ensembles.
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(a) Facial image 006450, is an example of input the model does well on.
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(b) Facial image 006416, is an example of input the model struggles with.
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(c) Facial image 007185.

Figure 3.6: The three graphs show results from the three uncertainty disentanglement methods.
The first graph compares the apparent age and Std of Apparent age ground truths to the predicted
µAppAge and σAppAge. The second graph compares the apparent age ground truth to µAppAge + Eµ.
The third graph compares the Std of apparent age ground truth to σAppAge + Eσ.

struggling with the µAppAge and σAppAge. This ex-
ample once again shows the weakness of the model
in estimating well faces of higher apparent age.

Lastly, figure 3.7c, shows a good example of En-
sembles able to give higher values of Epistemic un-
certainty in some of the cases when its predictions

9



DropOut DropConnect Ensembles

4

6

8

10

12

Ag
e

DropOut DropConnect Ensembles

0

5

10

15

20

25

DropOut DropConnect Ensembles

1

0

1

2

3

4

Real Age
Apparent Age ground truth

Std of Apparent Age ground truth
AppAge and AppAge

AppAge and E Std of Apparent Age ground truth AppAge and E

(a) Facial image 007483.
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(b) Facial image 007088.
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(c) Facial image 006555.

Figure 3.7: The three graphs show results from the three uncertainty disentanglement methods.
The first graph compares the apparent age and Std of Apparent age ground truths to the predicted
µAppAge and σAppAge. The second graph compares the apparent age ground truth to µAppAge + Eµ.
The third graph compares the Std of apparent age ground truth to σAppAge + Eσ.

of µAppAge and σAppAge are off. On the other hand,
DropOut and DropConnect do both well on the
µAppAge and Eµ prediction but once again fail the
σAppAge and Eσ.

4 Discussion

In this thesis, we have defined two questions.
Firstly, can neural networks learn to recognize ap-
parent human age and predict appropriate uncer-
tainties? We have looked into the apparent age
estimation and uncertainty disentanglement with
three methods: Monte Carlo Dropout, Monte Carlo
DropConnect and Ensembles. This leads us to the
second question, which of these three methods
would perform the best? The results showed that
all of the methods are capable of estimating appar-

ent human age, but they all struggle with giving
appropriate uncertainties. Namely, all three meth-
ods we not able to predict aleatoric uncertainty,
and also the corresponding epistemic uncertainty.
On the other hand, all three methods did estimate
the epistemic uncertainty of the mean apparent age
a bit better, but they were still unsatisfactory. Fi-
nally, the results also clearly showed Ensembles per-
forming the best across all the evaluations, suggest-
ing a potential pathway for future research to refine
and build upon.

4.1 Limitations

The main limitation of our research is the model
itself. The research was mostly focused on uncer-
tainty disentanglement, and hence the basic age es-
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timation has not been built to reach its full po-
tential. The architecture of the model is relatively
simple, compared to the newest competitive face
age estimation models. Using a more sophisticated
model would likely lead to better results, at least
in the apparent age estimation part. However, it is
unclear if this would also boost the performance of
the uncertainty estimation parts.
Furthermore, we assume that the data is follow-

ing Gaussian distribution, meaning the votes on
each data point come together to make a normal
distribution. And since all three of our methods’
outputs follow the normal distribution, it might fail
if not all of the data points follow the Gaussian dis-
tribution, which we did not control for.
That leads us to the third limitation, estimating

aleatoric uncertainty is a difficult task, and there is
more than one way of estimating it. We are using
direct supervision as we hoped that would make it
easier. This might not be the best way to estimate
it.

4.2 Future Research

Given the limitations identified in our study, future
research should focus on those first. Firstly, build-
ing a more sophisticated up-to-date model and then
integrating the uncertainty disentanglement meth-
ods on top of it. Secondly, other distributions that
might model the dataset better, could be explored,
such as the Gaussian mixture model. In case the
dataset has a different distribution, we would have
to tweak the three methods to take this into con-
sideration, and also follow the specific distribution.
Lastly, trying other ways of estimating aleatoric un-
certainty, to try to enhance the performance.
Furthermore, in our thesis, we only look at es-

timating apparent age. This could be expanded to
real age as well. Although real age and apparent
age are correlated with each other, making a mul-
titask model estimating apparent age and real age
as well, could lead to better overall performance.
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