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1 Abstract

1 Abstract
The deregulation of electricity markets has led to an increased demand for optimizing market
bidding strategies. Consequently, this research focuses on the optimization of bidding strategies for
an agent owning a Battery Energy Storage System (BESS), participating in the day-ahead Local
Electricity Market (LEM). It investigates both stochastic and robust optimization domains to
navigate the uncertainty inherent in LEM day-ahead prices. Consequently, this research develops
two stochastic optimization (SO) models and one robust optimization (RO) model aimed at
maximizing the agent’s bidding schedule’s profitability.

Scenario-based modeling is employed within the framework of stochastic optimization to generate a
set of scenarios forecasting the day-ahead LEM prices. On the other hand, the robust optimization
model uses a polyhedral box interval uncertainty set to represent the stochastic day-ahead LEM
prices. In this research, SO model 1 serves as a benchmark, allowing for the submission of a single
price-quantity point per time step, while the RO model also permits a single price-quantity point
submission per time step. Conversely, SO model 2 enables the submission of multiple price-quantity
points per time step, resulting in the construction of a monotonic bidding curve for both demand
and supply bids. Furthermore, risk management is integrated into all models. Robust optimization
adjusts the size of the uncertainty set using the budget of uncertainty, thereby adapting the risk
attitude of the agent. In the stochastic optimization models, risk management is implemented
through the utilization of the Conditional Value at Risk (CVaR) risk measure.

Evaluation of the developed models is conducted through a series of case studies, evaluating the
pre-clearance and post-clearance performance metrics. SO model 2 outperforms SO model 1 and
the RO model in terms of expected profit, for all risk attitudes of the agent. However, for all
models, a tradeoff arises between expected profit and risk aversion. Moreover, SO model 2 exhibits
superior post-clearance performance metrics, particularly in terms of bid clearance percentages,
indicating its effectiveness in the LEM day-ahead market. Overall, this research contributes to
the existing knowledge base of developing optimal bidding strategies for an agent in the (local)
day-ahead market, while incorporating the risk attitude of the agent. Moreover, the incorporation
of post-clearance performance evaluation in addition to pre-clearance performance assessment
represents a novel approach utilized in this research.
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3 Introduction

3 Introduction
The energy market is changing rapidly, due to the increase in distributed renewable energy
generation [14, 61, 101]. The aforementioned energy consumers in the energy network have become
prosumer agents, due to their increasing participation in supplying renewable energy to the grid
[14, 67]. Hence, decentralized agents enter the energy market, requiring large adaptations in current
electricity market designs [14, 38]. Local Electricity Markets (LEMs) are distributed electricity
markets on a communal level, intending to maximize the community’s self-sufficiency and reduce
the interaction with the wholesale market [101]. The design of LEMs enables managing production
uncertainty on a local scale [38]. Due to the unpredictable behavior of wind- and solar power
generation, uncertainty arises in the operation and planning of power systems [89]. As a result,
Battery Energy Storage Systems (BESS) have been proposed as a sustainable solution in LEMs, to
counteract the uncertainty in distributed power generation [89] and to be independent of the main
grid [67].

This research focuses on maximizing the profit of an agent owning a BESS asset, participating
and bidding in the LEM day-ahead market [61]. Nonetheless, it should be noted that the bidding
models developed in this research are generally applicable to other energy markets, besides the
LEM day-ahead market. Other markets such as the real-time market [23] are out of the scope of
this research. In a day-ahead market, energy is traded on an hourly basis, for the next day (next
24 hours) [101, 92]. Similar to [59, 80], the agent owning the BESS asset acts as a price-taker in
the LEM day-ahead market, since the capacity of a battery in the current market cannot dominate
the price by itself [80]. Similar to other market designs, the LEM day-ahead market participants
exchange energy according to a market clearing mechanism [101], specified in Appendix A.

The BESS asset has the function to both supply and consume electricity, but not at the same time
[72]. The goal of the agent is formulated as maximizing the revenue from discharging the battery,
meaning that the agent becomes a supplier in the LEM. At the same time, the agent’s goal is to
minimize the cost attached to charging the battery, meaning that the battery acts as a consumer
in the LEM [72]. The agent can exploit the energy arbitrage of the LEM, by charging the battery
when the LEM price is low, and discharging the battery when the LEM price is high [59]. Hence,
the bidding models developed in this research aim to create the most profitable schedule for supply
(discharging) and demand (charging) bids of the BESS asset bidding in the LEM. Throughout this
research, supply and discharging bids are used interchangeably, similar to demand and charging
bids.

Due to the presence of uncertainty in electricity markets [23], amongst others focused on market
prices and power production [66], constructing a profitable bidding schedule for an agent partici-
pating in the day-ahead market is challenging. As mentioned above, the agent needs to submit
its bids for the entire day-ahead horizon. In this research, the high volatility of (local) electricity
market prices [54] is considered the only factor that contributes to the uncertainty in the bidding
optimization. The other uncertainties present in the LEM day-ahead market are out of the scope
of this research. According to [75, 42, 106], acquiring a good forecast of day-ahead LEM prices
contributes to developing a bidding strategy. In addition, incorporating risk management enables
the agent to cope with profit volatility caused by (price) uncertainty [25, 20, 86, 23]. Hence, due to
the uncertainty present in bidding optimization models, risk management is incorporated in this
research [108].

Robust optimization (RO) and stochastic optimization (SO) are two widely used modeling domains
to cope with stochasticity in prices [111, 99, 109, 15, 62, 108]. In the application of maximizing the
profit of an agent owning a BESS, participating in a day-ahead market, [59, 105] use stochastic
programming to maximize the profit of a BESS asset in the day-ahead and real-time market.
However, both papers exclude risk management. In [72], SO is used to create a battery arbitrage
model that maximizes profit. However, the paper excludes energy price forecasting and risk
management. [110] focuses on stochastic optimization of a BESS incorporating risk-aversiveness
of the agent. In [25], an optimal bidding strategy is developed for a wind power producer,
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3 Introduction

incorporating risk management and multiple uncertainties. [102] develops both stochastic and
robust optimization models to maximize the revenue of wind-storage systems while minimizing
the penalty costs caused by power imbalance. The uncertainty is caused by stochastic wind
power production. All papers above focus on single price-quantity point submission per time
step. When targeting literature that focuses on allowing the submission of multiple price-quantity
points per time step, [50] constructs the bidding schedule of an agent owning multiple assets,
amongst others a BESS. However, [50] excludes risk management. Literature is limited in the
application of allowing multiple price-quantity points per time steps, in the application of a
BESS asset participating in the day-ahead market. For robust optimization, [5] considers a robust
self-scheduling optimization model to incorporate price and production stochasticity for a wind
power producer owning energy storage. In [54], robust optimization is considered to cope with
stochastic prices in multiple markets. The goal of [54] is to maximize the performance of a BESS
asset, incorporating risk management.

3.1 Contribution and research organization
The contribution of this research flows out of the state-of-the-art literature on agents participating
in the (LEM) day-ahead market. Namely, this research focuses on the development of two stochastic
optimization bidding models and one robust optimization bidding model, accounting for LEM price
uncertainty [108, 111, 99, 109, 15, 62]. These developed models focus on the participation of a
single agent in the LEM day-ahead market, owning a BESS asset. For the stochastic optimization
bidding models, scenario-based modeling is employed to obtain a representable set of scenarios. For
the robust optimization model, the uncertainty is represented by an uncertainty set. Consequently,
real-life data is used to forecast the uncertain day-ahead LEM prices, enabling the development of
scenarios for stochastic optimization and generating input for the robust optimization model. The
first stochastic optimization model allows for a single price-quantity point submission and acts as
a benchmark for this research. The robust optimization model also allows single price-quantity
bid submission per time step. However, the second stochastic optimization model allows for the
submission of multiple price-quantity points per time step, constructing bidding curves for both
selling and buying electricity. This model is an extension of [50], where the focus of this research
lies on modeling the BESS asset in the day-ahead market. Then, the two stochastic optimization
models are extended to incorporate risk management via the CVaR risk measure [108]. The robust
optimization model incorporates risk management via the budget of uncertainty [111, 10]. Lastly,
performance is compared between the two stochastic optimization models as well as the performance
of the first stochastic optimization model with the robust optimization model.

This research starts by providing the theoretical background for both stochastic and robust opti-
mization modeling, addressing the challenge of incorporating uncertainty in LEM prices. First, the
theoretical outline is provided for uncertain price modeling, focusing on scenario generation in
stochastic optimization (Scenario-based modeling of price uncertainty). These scenarios are used to
capture the day-ahead LEM price variability in stochastic programming. Then, the theory behind
risk management modeling in stochastic optimization is outlined in Risk management in stochastic
optimization. Shifting the focus to robust optimization, the theoretical framework of constructing a
general robust problem with the use of an uncertainty set is provided in Robust modeling of price
uncertainty. Here, the uncertainty set is used to model the price uncertainty of the LEM day-ahead
prices. Next, the theoretical background provided in the first three chapters is used to construct the
bidding models of the battery asset, targeting both stochastic and robust optimization. In other
words, the provided theory is applied to model the battery asset. First, Stochastic optimization
applied to battery asset modeling outlines the two developed stochastic optimization models.
This chapter immediately incorporates risk management for both models, by implementing the
Conditional Value at Risk. Afterward, Robust optimization applied to battery asset modeling
constructs the robust optimization model applied to the battery asset, also accounting for the
risk attitude of the agent. Once all bidding models including risk management are introduced, the
Numerical investigations of the models outline the specifications of the case studies, followed by
the Numerical results. Lastly, the Discussion and Conclusion are provided.
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4 Scenario-based modeling of price uncertainty
In this chapter, the theoretical framework of scenario-based modeling in the domain of stochastic
optimization is elaborated. The goal of this chapter is to provide an outline of how to obtain a
representable set of scenarios to forecast the day-ahead LEM prices. This set of scenarios can be
used as input in a stochastic program. This chapter elaborates on existing theories.

Stochastic optimization is a modeling domain to model price uncertainty, which works well under the
condition that the probability distribution of the uncertainty is explicitly modeled. This introduces
the need to attain the probability distribution of the underlying random variable(s) to use as an
input for stochastic programming [111, 9, 15, 88, 63].

Within the domain of stochastic optimization, scenario-based modeling is widely adopted in the
day-ahead electricity market decision-making to deal with the uncertainty [65, 111, 99, 15, 73].
(Local) Market prices are typically represented by continuous probability distributions, which are
complex to attain [111]. As an alternative, scenarios can be created, which represent a discretization
of the distribution of the uncertain parameters [53]. Scenarios approximate the true distribution of
the uncertainty present, where each scenario stands for a possible realization of the underlying
uncertain local market price [64, 99, 85]. Figure 1 represents a visualization of discrete scenarios to
approximate the probability distribution [111, 99, 15, 63, 96].

Figure 1: Scenario discretization of a continuous Probability Density Function [63]

Suppose the uncertain parameter vector c represents the local market price. Then, a scenario is
represented as cω, where ω represents a scenario. This scenario has occurrence probability πω
[96]. Lastly, since each scenario represents a possible realization of the uncertainty, it holds that∑

ω πω = 1 [99].

The papers of [59] and [110] both successfully use stochastic programming to incorporate price
uncertainty in energy storage decision-making in the electricity market. Both papers include
acquiring scenarios via scenario-based modeling to address the stochastic nature of electricity
market prices, and aim to derive a discrete probability distribution of the uncertain electricity
market price. Overall, scenario generation techniques are successfully used in literature to create
accurate forecasts [111, 68, 44, 63].

The goal of scenario-based modeling is to obtain a set of scenarios together with their scenario
probabilities. Then, these scenarios are integrated into the scheduling (bidding) optimization
problem that maximizes profit for the agent with the battery asset. The local market price
determines the expected revenue and costs for the agent with the battery asset by multiplying
the forecasted local market price with the (dis)charging bid quantities [72]. The local electricity
market price is represented in the form:

∑
ω∈Ω πω cω. Here, the uncertain market price realization

of scenario ω is represented via a discrete scenario price (cω) and its corresponding probability
(πω) [63, 110, 59, 111, 105, 23, 25, 19].
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4 Scenario-based modeling of price uncertainty

In stochastic programming, a large number of scenarios is generated to create an accurate approxi-
mation of the probability distribution [99]. However, the computational requirements grow with
the number of scenarios created [99], meaning that a trade-off arises between the accuracy of the
forecast and computational performance [111]. To deal with the large numbers of scenarios, scenario
reduction techniques are used that select a subset of the scenarios and determine corresponding
optimal probabilities [111, 65, 46, 30, 15]. The theoretical framework for obtaining a representable
set of scenarios for the day-ahead LEM prices is divided into four stages, depicted in Figure 2
[59, 23]. The remaining of this chapter is divided to elaborate on these four stages.

Figure 2: Framework for price scenario generation via stochastic programming [59]

4.1 Point forecast model
In this research, the day-ahead LEM price is stochastic, and hourly intervals need to be accurately
predicted using a forecasting method [106]. In principle, different elements can be incorporated
when forecasting the day-ahead LEM price. First, the local electricity price time series is considered
as a base. According to [38], a correlation of the LEM with the WSM is present, meaning that
additionally an accurate training and testing set of wholesale electricity prices could be incorporated
in the point forecast model. Lastly, to incorporate the dependency of prices on weather conditions,
temperature and cloud coverage could be taken into account in the LEM price forecast [91].

As a point forecast model, (Seasonal) Auto-regressive (Integrated) Moving Average model with
Exogenous variables type models ((S)AR(I)MA(X)-type) are found to be suitable for predicting
the mean local market price variable [48, 76, 6]. The AR(I)MA model types are popular and widely
used price forecasting models [40, 84, 27, 48, 81, 82, 93, 21]. Namely, electricity prices exhibit
strong auto-regressive behavior and seasonal patterns [60]. Incorporating seasonal patterns in the
price forecast is enabled in the SARIMA-type model [23, 78]. Finally, the SARIMAX model is an
extension of the (S)AR(I)MA-type models that incorporates an exogenous variable that correlates
with the time series to be forecasted (e.g. local electricity price) [48, 56, 82]. Hence, when using
the SARIMAX point forecast model, weather conditions and WSM price data can be incorporated
to capture the correlation between the time series.

Throughout this section, the (S)AR(I)MA(X)-type model is elaborated to develop a sophisticated
price forecast. The following sections build up from the ARMA point forecast model to the
SARIMAX point forecast model, to forecast the LEM day-ahead market prices by including
daily seasonality and wholesale market price data as exogenous variables. Incorporating weather
conditions is out of the scope of this research.

4.1.1 ARMA model
The Auto-Regressive Moving Average model is a linear model that combines auto-regressive and
moving average components to forecast data [71, 23, 96, 95, 48].

The auto-regressive term (AR) uses the lagged values of the uncertain variable to estimate the
next value. On the other hand, the moving average term (MA) is concerned with modeling the
error (residual) term by predicting the error terms based on the realization of previous error terms
[27, 24]. Equation 4.1 illustrates the auto-regressive model and Equation 4.2 illustrates the moving
average model. In these equations, Zt represents the stochastic variable denoting the local market
price.

Zt = ψ1Zt−1 + ψ2Zt−2 + ...+ ψpZt−p + ϵt (4.1)

Zt = ϵt + φ1ϵt−1 + φ2ϵt−2 + ...+ φqϵt−q (4.2)
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4 Scenario-based modeling of price uncertainty

The AR(p) model takes into account lagged values of the variable up to order p, while the MA(q)
model considers lagged values of the error term up to order q. In Equation 4.1 and Equation 4.2,
the sequence {ϵt} is considered to be white noise, meaning it consists of uncorrelated random
variables with zero mean and variance σ2 ({ϵt} ∼ N(0, σ2)) [107, 82, 60, 97, 43].

The combination of the AR(p) and MA(q) models yields the hybrid ARMA(p,q) model, expressed
as follows [96, 95, 23, 107]:

Zt =

p∑
i=1

ψiZt−i + ϵt −
q∑

j=1

φjϵt−j (4.3)

In [48], the ARMA(p,q) model additionally includes a constant term C:

Zt = C +

p∑
i=1

ψiZt−i + ϵt −
q∑

j=1

φjϵt−j (4.4)

The prediction error ϵt represents the gap between the predicted local market price generated by
the ARMA(p,q) model and the actual observed local market price Zt. To clarify ϵt in Equation 4.4,
this equation can be decomposed into Equation 4.5 and Equation 4.6 to explicitly define ϵt. As
mentioned above, in Equation 4.6, ϵt is considered white noise [107, 82, 60, 97, 43].

Ẑt = C +

p∑
i=1

ψiZt−i −
q∑

j=1

φjϵt−j (4.5)

Zt = Ẑt + ϵt (4.6)

Equation 4.4 is often rewritten with the use of a backshift operator/lag operator B, which is
represented as BkZt = Zt−k [48, 82]. The new, equivalent formulation of the ARMA model is
represented in Equation 4.7:

(
1−

p∑
i=1

ψiB
i

)
Zt =

1 +

q∑
j=1

φjB
j

 ϵt + C (4.7)

In Equation 4.7, there are p auto-regressive parameters ψ1, ψ2, ..., ψp, and q moving average
parameters φ1, φ2, ..., φq. If q equals zero, the ARMA model operates akin to an AR(p) model,
and conversely, when p is zero, it functions akin to an MA(q) model [96]. The methodology of the
AR(I)MA model is described by [16]. In the ARMA(p,q) model, the parameters p and q dictate
the order of the auto-regressive (AR) and moving average (MA) terms, respectively [95]. Besides
determining the orders p and q, it is necessary to estimate the coefficients ψ and φ associated with
the AR and MA terms, as well as the standard deviation σ of the error term [95]. The methodology
for obtaining these coefficients and orders is outlined in the Box-Jenkins approach, elaborated in
Box-Jenkins approach section.

An important premise of the ARMA model is that the time series of the stochastic variable, denoted
as Zt, should exhibit stationarity [23]. Stationarity in a time series implies that each forecasted
point originates from a consistent distribution with constant mean and variance. In other words,
the mean and variance should remain consistent over time [23]. If this condition is not met, there
exist two methods to achieve stationarity in the time series [23]:

1. Box-Cox transformations: This technique involves applying either the logarithm or the
square root to the original time series. While it is a straightforward approach, it does not
always ensure a stable mean and variance [23, 24, 43].
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2. Differencing: This method involves computing the differences between consecutive
observations (change series), resulting in what is known as the Auto-Regressive Integrated
Moving Average (ARIMA) model [107, 23]. This extension of the ARMA model is further
elaborated in the ARIMA model section.

4.1.2 ARIMA model
The ARIMA(p,d,q) model is an extension of the ARMA(p,q) model, where the d stands for the
order of differentiation, referring to the integrated part of the model [48, 107]. This differencing
term d is applied to the time series until the series becomes stationary [48]. Applying d differences
corresponds with Equation 4.8 [48]:

Z
(d)
t = Z

(d−1)
t − Z(d−1)

t−1 (4.8)

According to [23], typically a first-order differencing (d = 1) is adequate to achieve a stable mean.
Using the backshift operator B, this differencing process of Zt can be described as [107, 23, 48]:

Z
(1)
t = Zt − Zt−1

∇1Zt = Zt − Zt−1 (4.9)

∇1Zt = (1−B)Zt

The formal formulation of the ARIMA(p,d,q) model is represented in Equation 4.10. In the ARIMA
model, the additional order parameter d should be estimated on top of the p and q orders of the
AR and MA terms.

Z
(d)
t = C +

p∑
i=1

ψiZ
(d)
t−i +

q∑
j=1

φjϵt−j + ϵt (4.10)

Using the backshift operator, Equation 4.10 can be rewritten in Equation 4.11:(
1−

p∑
i=1

ψiB
i

)
(1−B)dZt =

1 +

q∑
j=1

φjB
j

 ϵt + C (4.11)

The ARIMA model in Equation 4.11 does not encompass seasonal patterns, despite their presence
in electricity prices [107, 60]. Local electricity market prices often exhibit daily, weekly, and annual
seasonal variations [23, 107, 6, 48, 70, 75, 24, 93, 106]. Therefore, to account for this seasonality,
the Seasonal ARIMA (SARIMA) model is employed.

4.1.3 SARIMA model
The Seasonal ARIMA (SARIMA) model extends the capabilities of the ARIMA model to account
for seasonal patterns inherent in the stochastic process Zt [23, 78]. The SARIMA model type
has been successfully applied to forecast electricity prices [78]. The SARIMA model is denoted
as SARIMA(p, d, q)(P,D,Q)S , where S indicates the order of seasonality [23]. The parameters
P, D, and Q must be estimated to captue the auto-regressive, differencing, and moving average
effects at a specified seasonal level [48, 78]. The general expression of SARIMA(p, d, q)(P,D,Q)S
is provided in Equation 4.12 [48, 23].(

1−
p∑

i=1

ψiB
i

)1−
P∑

j=1

ζjB
Sj

 (1−B)d(1−BS)DZt =

C +

(
1 +

q∑
i=1

φiB
i

)1 +

Q∑
j=1

θjB
Sj

 ϵt (4.12)

University of Groningen 12



4 Scenario-based modeling of price uncertainty

In Equation 4.12, the coefficients ψi represent the non-seasonal auto-regressive components, ζj
denote the coefficients for the seasonal auto-Regressive component, φi represent the non-seasonal
moving average component, and lastly θj represents the seasonal Moving Average component [23].

Considering the presence of seasonal patterns in electricity prices, this research focuses on the daily
seasonality that is present in the local market price time series. When observing hourly electricity
price data, capturing the daily seasonality includes a term in Equation 4.12 with S equal to 24. This
represents the daily periodicity of the local price time series, resulting in Equation 4.14. Typically, a
seasonal difference term (D=1) is adequate for captuing seasonal variations [48]. Concrete examples
of applying seasonality and differencing terms in electricity price forecasting for the day-ahead
market are discussed in detail in [24].(

1−
p∑

i=1

ψiB
i

)1−
P∑

j=1

ζjB
24j

 (1−B)d(1−B24)DZt =

C +

(
1 +

q∑
i=1

φiB
i

)1 +

Q∑
j=1

θjB
24j

 ϵt (4.13)

In Equation 4.14, the term (1−B24)Zt represents a day seasonal difference, which can be described
as Zt − Zt−24. [48]. As concrete example, the SARIMA(1, 0, 1)(1, 0, 1)24 can be formulated as:

(1− ψ1B)
(
1− ζ24B24

)
Zt = C + (1 + φ1B)

(
1 + θ24B

24
)
ϵt (4.14)

4.1.4 ARIMAX model
The Auto-regressive integrated moving average with exogenous variables model (ARIMAX) is
an extension of ARIMA model that incorporates exogenous variables in the forecasting process
[48, 56, 82]. These exogenous variables are additional time series that are known to co-vary with the
local market price time series [107]. In this research, the exogenous variable that can be included
in the price forecast is the wholesale market price. The prediction of the wholesale market price at
time t (Xt) is assumed to be accurate and is utilized as an exogenous variable in the ARIMAX
model to predict the local electricity market price. Historical data on the wholesale market price
are publicly available. As an extension to Equation 4.11, ARIMAX is formulated in Equation 4.15:

Z
(d)
t = C +

h∑
i=0

µiXt−i +

p∑
i=1

ψiZ
(d)
t−i +

q∑
j=1

φjϵt−j (4.15)

In the ARIMAX model, µ represents the coefficients associated with the exogenous variable, which,
like, ψ and φ, must be estimated. Additionally, h denotes the order of the exogenous variable,
indicating the number of historical values of the exogenous time series considered when forecasting
the next value in the time series.

4.1.5 SARIMAX model
Lastly, combining section ARIMAX model with the seasonality elements of SARIMA model, the
most sophisticated forecasting model is obtained, namely the SARIMAX model [58].

With the daily seasonality of the price time series as described in SARIMA model, combined
with wholesale electricity price data as an exogenous variable, the most sophisticated local market
price forecast is obtained. The mathematical formulation of the SARIMAX model is described as
Equation 4.16, similar to [58]. Here, similar to the previous section, X represents the exogenous
variable, namely the wholesale electricity price time series. In the Econometrics Modeler of Matlab,
one parameter µ can be estimated, limiting the order h that corresponds to the exogenous lagged
values. As a result, the mathematical formulation becomes:
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(
1−

p∑
i=1

ψiB
i

)1−
P∑

j=1

ζjB
Sj

 (1−B)d(1−BS)DZt =

C + µ1X1 +

(
1 +

q∑
i=1

φiB
i

)1 +

Q∑
j=1

θjB
Sj

 ϵt (4.16)

4.1.6 Box-Jenkins approach

To estimate and fit the (S)AR(I)MA(X)-type models to the available data, the methodology of
Box-Jenkins is followed [16, 21]. According to [16], the estimation process of (S)AR(I)MA(X)
models involves three iterative stages: 1) identifying the tentative model, 2) estimating the model,
and 3) verifying the accuracy of the estimated model.

1) Model identification
In this stage, the configuration and order parameters of the SARIMA(p, d, q)(P,D,Q)S model
are determined. This entails estimating the parameters p, d, q, P, D, Q. Initially, as discussed in
the ARIMA model section, it is essential to ensure that the time series Zt exhibits stationarity.
This can be achieved by employing transformations, such as taking the logarithm function instead
of the original Zt time series. Furthermore, the order d is established by differencing the time
series Zt iteratively until a stationary time series is achieved [1]. The stationarity of the series
can be confirmed through the examination of the Autocorrelation Function (ACF) and Partial
Autocorrelation Function (PACF) plots. Following this, the orders p and q are determined using the
ACF and PACF plots [95, 48, 82, 43, 81, 1]. These function plots aid in identifying interdependencies
between a variable and its lagged values [48, 6]. This phase yields initial parameter estimates,
which serve as a foundation for the subsequent iterative model estimation process [16].

2) Model estimation
During the model estimation stage, the parameter estimates from stage 1 are compared, and the
coefficients are determined [81]. In addition to determining the order parameters, it is necessary to
estimate the coefficients ψ and φ of the AR and MA terms, the constant term C, and the standard
deviation σ of the error term [95]. Additionally, the seasonal coefficients ζ and θ are determined.
These coefficient estimations can be conducted using methods such as the Least Square Method or
Maximum Likelihood [52, 82, 43, 81, 16]. To identify which model best fits the data, statistical
criteria such as the Akaike information criterion (AIC) and Schwarz Bayesian information criterion
(BIC) can be employed. These criteria are expressed as follows:

AIC = 2k− 2ln(L) (4.17)

BIC = nln(σ2) + kln(n) (4.18)

Here, k is the number of estimated parameters, L is the maximized value of the likelihood function,
n is the sample size, σ2 is the error variance [81, 107]. Different formulas of the AIC and BIC are
used in literature, for example in [81, 48, 16]. In the above equations, the estimated model with the
smallest AIC and BIC values is chosen to be the best fit [81]. Selecting the model with the smallest
values of the AIC and BIC ensures a balance between the complexity of the model (number of
inputs) and its goodness of fit [48].

Initially, it is beneficial to analyze the ARIMA model without exogenous variables to ascertain the
orders of the parameters p, d, and q. Subsequently, the ARIMAX model, which incorporates the
wholesale market price as an exogenous variable, can be fitted [48]. However, it should be noted
that the final determination of the parameters p and q is made by evaluating at the AIC of the
complete ARIMAX model [48].
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3) Diagnostic checking
In the third stage, it is assessed whether the parameters and coefficients determined in stages 1
and 2 result in a satisfactory fit of the model while avoiding overfitting [81]. The goodness of fit
of the model can be evaluated by examining the residuals of the model [16]. Specifically, ARIMA
models assume that the error term (residual) behaves as white noise, e.g. zero mean and constant
variance [107, 60, 43, 97, 82, 1]. In other words, the residuals should follow a normal distribution
with a mean of zero and σ standard deviation. Therefore, the residuals are tested on the following
aspects via ACF and PACF analysis [81, 6, 16]:

• Autocorrelation: Residuals should not exhibit correlation with lagged residual values.

• Homoskedasticity: The variance of the residuals should remain constant.

• Normality: Residuals should conform to a normal distribution with zero mean.

If the residuals do not conform to the characteristics of white noise, additional features/models are
required to achieve an appropriate fit [81, 1]. In such cases, adjustments to the order parameters p,
P, q, and Q may be necessary, and the iterative process of the three stages is restarted [1].

4.2 Residual analysis
In the final state of the Box-Jenkins approach, known as diagnostics checking, the residuals of
the SARIMAX model are investigated to ensure their adherence to the white noise assumption:
zero mean and constant variance, in line with the principles of ARIMA model methodologies
[16, 1, 107, 60, 82, 97, 23].

In this stage, it is important to gain insight into the distribution of the SARIMAX model’s residuals,
which serve as essential inputs for generating price scenarios [63, 111]. Analyzing these residuals
allows for the detection of any remaining auto-correlation in the prediction errors, which can
indicate the need for refining or extending the SARIMAX model to better capture the underlying
patterns [81, 1].

When the SARIMAX model is effectively fitted within the Box-Jenkins methodology, the residuals
ideally conform to a Gaussian (Normal) distribution, characterized by a zero mean and standard
deviation σ [23, 16]. The estimation of the standard deviation σ is typically accomplished using
methods like the Least Square Method or Maximum Likelihood Function [52, 82, 43, 81, 16]. This
white noise prediction errors serve as input in the scenario generation stage to generate scenarios.

4.3 Scenario generation
In the Residual analysis section, it is determined that the residuals of the SARIMAX model
exhibit characteristics of white noise ({ϵ} ∼ N(0, σ)), with a constant σ determined through the
Box-Jenkins approach. [107, 82, 60, 97, 43].

Utilizing the estimated white noise of the prediction error, along with the parameters of the
(S)AR(I)MA(X)-type model, historical local market price values, and historical local market price
residuals, a desired number of scenarios can be generated by sampling the error terms from the
defined Gaussian distribution [23]. In other words, a random number following a normal distribution
is generated for each scenario time step [95, 96].

Before initiating scenario generation, it is crucial to specify the number of scenarios (NΩ), denoted
as ω [23]. The algorithm described in [23] is employed to generate NΩ scenarios for predicting the
local market price, comprising seven sequential steps:
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• Step 1: Initialize the scenario counter ω ← 0.

• Step 2: Update the scenario counter ω ← ω+1, and initialize the time period counter: t← 0.

• Step 3: Update time period counter: t← t+ 1.

• Step 4: Randomly generate prediction error: ϵt ∼ N(0, σ).

• Step 5: Using the SARIMAX model expression, obtain the price prediction Ztω.

• Step 6: If t < NT return to step 3), else proceed to step 7).

• Step 7: If ω < NΩ return to step 2), otherwise, all scenarios have been generated and the
algorithm concludes.

In this algorithm, each scenario is assigned an equal probability of 1/NΩ. However, given the
probability distribution nature of local market prices, a considerable number of scenarios are
needed to adequately approximate the distribution. This amplifies the need to reduce the number
of scenarios, to maintain tractability of the stochastic optimization problem [45, 96, 73]. The
subsequent section elaborates a scenario reduction technique to reduce the number of scenarios.

4.4 Scenario reduction
As mentioned before, solving a stochastic program via scenario generation becomes increasingly
complex as the number of scenarios increases [111, 96, 23]. Hence, to ensure tractability of the
scenario-based optimization model, it is essential to reduce the number of scenarios while preserving
the stochastic properties as closely as possible [96, 46, 95, 73, 23]. In essence, the reduced scenario
set should still yield an optimal solution that closely approximates that of the original problem with
the complete set of scenarios [73]. The general concept of scenario reduction involves eliminating
improbable scenarios and grouping scenarios with similar characteristics.

The optimal solution obtained using the reduced scenario set resembles the optimal solution
derived from the original scenario set when the two scenario sets are sufficiently close in terms of
probability distance [73, 23, 46]. Probability distance serves as a metric to measure the similarity
between two distinct scenario sets representing the same stochastic process [23]. The goal is to
ensure that the final reduced scenario set possesses a probability measure that closely aligns
with the original probability measure, indicating minimal probability distance between the two
sets [95, 23, 49, 73, 45, 31]. The Kantorovich Distance, denoted as DK(·), stands out as the
most commonly employed probability distance measure in stochastic programming [73]. Further
elaboration on this distance metric is provided next..

Kantorovich Distance
Kantorovich Distance DK(Q,Q′) quantifies the probability distance between two distinct scenario
sets (Ω and Ω′) associated with the same stochastic process. These scenario sets possess probability
functions Q and Q′, respectively. Utilizing the Kantorovich Distance enables the assessment of the
proximity between different scenario sets representing identical stochastic processes, and reduces
and bundles scenarios using the KD matrix [96, 95]. In the case of discrete probability distributions,
the Kantorovich Distance is used to obtain the optimal reduced scenario set ΩS . The Kantorovich
Distance matrix is comprised by the product of the cost function and the occurrence probability of
all generated scenarios [96].

The overarching objective of the scenario reduction is to identify a subset of scenarios ΩS ⊂ Ω,
accompanied by adjusted probabilities. This adjustment aims to ensure that the reduced probability
function Q′ associated with scenario subset ΩS closely approximates the original probability function
Q corresponding to the initial scenario set Ω [23, 46, 49, 96].

The Kantorovich Distance DK(Q,Q′) is determined by solving the problem called the ’Monge-
Kantorovich mass transportation problem’, represented in Equation 4.19 [45, 23, 49, 46, 73, 95]:
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DK(Q,Q′) = min
ρ(ω,ω′)

{ ∑
ω∈Ω

ω′∈ΩS

c(ω, ω′)ρ(ω, ω′) :

ρ(ω, ω′) ≥ 0,∀ω ∈ Ω,∀ω′ ∈ ΩS ,∑
ω′∈ΩS

ρ(ω, ω′) = πω,∀ω ∈ Ω,

∑
ω∈Ω

ρ(ω, ω′) = πω′ ,∀ω′ ∈ ΩS

}
(4.19)

In Equation 4.19:

• ω is a realization of a scenario belonging to scenario set Ω (ω ∈ Ω). πω is a scenario probability
of scenario ω, in the scenario set Ω, according to probability distribution Q.

• ω′ is a realization of a scenario belonging to scenario set ΩS (ω′ ∈ ΩS). πω′ is a scenario
probability of scenario ω′, in the scenario set ΩS , according to probability distribution Q′.

• ρ(ω, ω′) represents the joint probability defined over Q×Q′ [45].

• c(ω, ω′) represents the cost function; a non-negative, continuous, symmetric function. The
cost function is represented by the norm of the local electricity prices, representing the vector
distance between ω and ω′.

An equivalent notation of Equation 4.19 is represented in Equation 4.20. This equivalency is
maintained because the stochastic elements are typically integrated solely within the objective
function and/or on the right-hand sides of the optimization problem. For elaboration on this
equivalency, please consult [31].

DK(Q,Q′) =
∑

ω∈Ω\ΩS

πω min
ω′∈ΩS

c(ω, ω′) (4.20)

The Monge-Kantorovich mass transportation problem poses significant computational challenges,
particularly when dealing with a large nubmer of scenarios ω [45, 23]. Efficiently solving Equa-
tion 4.19 or its equivalent Equation 4.20 using algorithms is generally difficult, with few available
solutions in practice [46]. As a result, various heuristic algorithms have been developed, with
two primary approached being backward reduction and forward selection, both derived from
Equation 4.20 [23]. These heuristics, although efficient and effective, realy on simplifications to
manage computational complexitiy [31, 73]. Using the forward selection algorithm tends to exhibit
slightly better performance compared to backward reduction [31]. According to studies by [95, 49],
forward selection is particularly advantageous when the reduced number of scenarios is less than
one-fourth of the total of scenarios generated, which is the case in this research.

Forward selection algorithm
This algorithm initiates with an empty set of scenarios (ΩS = ∅), where each iteration involves
the addition of one non-selected scenario (Ω\ΩS) to the scenario set ΩS . The scenario selected for
inclusion in ΩS is chosen to minimize the KD between the reduced and original scenario sets (ΩS

and Ω respectively) [73, 23]. The algorithm finishes when one of the two stop conditions is met;
either a pre-defined number of scenarios or a ’threshold’ of Kantorovich Distance is reached [73].
As this algorithm is heuristic in nature, there is no guarantee of obtaining an optimal reduced
scenario set after iterations. However, empirical testing conducted in [31, 49, 73] demonstrates that
the resulting reduced scenario sets are a good approximation to the optimal value of the original
problem.

The algorithm of the forward selection generates a sequence of reduced scenario sets (ΩS) un-
til it converges to the optimal reduced scenario set Ω∗

S . This progression can be denoted as:
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Ω
[0]
S ,Ω

[1]
S ,Ω

[i]
S , ...,Ω

∗
S , where the superscript [i] represents the i-th iteration of the algorithm. At

each iteration, one scenario is incrementally added to ΩS , resulting in a gradual increase in the
cardinality of the reduced scenario set until the final reduced scenario set Ω∗

S is obtained. NΩ∗
S

denotes the number of scenarios included in reduced scenario set Ω∗
S . Additionally, Ω

[i]
J is used to

denote the set of non-selected scenarios in the first i steps of the forward selection algorithm. The
combination of non-selected scenarios and the reduced scenario set sums up to the original scenario

set: Ω
[i]
J ∪ Ω

[i]
S = Ω [23].

The forward selection algorithm is described in several steps, following the methodology described
in [23, 45]:

• Step 0: scenario pre-processing

– Initialize the reduced scenario set: Ω
[0]
S = ∅.

– Define the set of non-selected scenarios: Ω
[0]
J = {1, ..., NΩ}

– Calculate the cost function c(ω, ω′), which defines the Kantorovich Distance for each
pair of scenarios in the original scenario set ω, ω′ ∈ Ω. Here, the stochastic local
electricity price is u, and with scenarios ω, the stochastic local price is represented as:
u = {u(ω), ω = 1, 2, ..., NΩ}. Then, the cost function is formulated as the norm of the
difference between two distinct scenario realizations ω and ω′:

c(ω, ω′) = ||u(ω)− u(ω′)|| (4.21)

• Step 1: choice of starting scenario
The starting scenario is the first scenario that is added to the reduced scenario set ΩS . The
first scenario to be added to ΩS is formulated as:

ω1 = arg{min
ω′∈Ω

∑
ω∈Ω

πωc(ω, ω
′)} (4.22)

Since the reduced scenario set is still empty, the Kantorovich distance of all scenario pairs

in Ω is calculated. ω1 is added to Ω
[1]
S . The non-selected scenarios are formulated as: Ω

[1]
J =

{1, ..., NΩ}\ω1.

• Step i: selection of scenarios to be added to reduced set
When generalizing step 1 into iteration i, Equation 4.22 changes into Equation 4.23 and
Equation 4.24, where each iteration scenario ωi is added to the reduced scenario set ΩS . This

can be described as: Ω
[i]
S = Ω

[i−1]
S ∪{ωi}. Simultaneously, ωi is removed from the non-selected

scenario set defined as Ω
[i]
J = Ω

[i−1]
J \{ωi}.

ωi ∈ arg min
ω∈Ω

[i−1]
J

d[i]ω (4.23)

where
d[i]ω =

∑
ω′∈Ω

[i−1]
J \{ω}

πω′c[i](ω′, ω), ∀ω ∈ Ω
[i−1]
J (4.24)

In Equation 4.23 and Equation 4.24, the cost function c(·) needs to be updated each iteration.
The updated cost function is calculated by Equation 4.25:

c[i](ω, ω′) = min
{
c[i−1](ω, ω′), c[i−1](ω, ωi−1)

}
, ∀ω, ω′ ∈ Ω

[i−1]
J (4.25)

Step i is iterated NΩ∗
S
−1 times, where NΩ∗

S
represents the number of scenarios in the optimal

reduced scenario set Ω∗
S .
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• Step NΩ∗
S
+ 1: redistribution of probabilities

In this final step, the probabilities are reallocated to the optimal reduced scenario set Ω∗
S . The

probabilities associated with the non-selected scenarios (ω ∈ Ω∗
J) are added to the selected

scenarios in the reduced scenario set (ω ∈ Ω∗
S). By construction, Ω∗

J ∪ Ω∗
S = Ω. It is assumed

that all deleted scenarios have a probability of zero [96], and the probability associated with
a deleted scenario is transferred to the nearest remaining scenario based on the distance
metric c on Ω [96, 49, 95].

Thus, the preserved scenario inherits a new probability equal to the sum of its original
probability and the probabilities of the deleted scenarios with the closes distance c. The
redistribution of probabilities from deleted scenarios to the nearest scenario that is not
eliminated is determined via the optimal redistribution rule[46]:

π∗
ω = πω +

∑
ω′∈J(ω)

πω′ (4.26)

In Equation 4.26, J(ω) is defined as the set of scenarios ω′ ∈ Ω∗
J such that:

ω = arg min
ω′′∈Ω∗

S

c(ω′′, ω′). (4.27)

Note that in Equation 4.26, the cost function c(ω′′, ω′) is the cost function that is calculated
in step 0, not the updated cost function from step i.
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5 Risk management in stochastic optimization
This chapter provides the theoretical background on incorporating risk management in stochastic
programming. The Conditional Value at Risk (CVaR) risk measure is used in this research to cope
with the profit volatility of the day-ahead market caused by LEM price uncertainty [20]. Both
subsections elaborate on existing theories.

In the literature, it becomes apparent that risk management is a crucial element when
coping with uncertainties in stochastic optimization problems [2]. For example, [59] considers
risk management in stochastic optimization as further research to reduce day-ahead market
infeasibility. Incorporating a risk measure in the formulation of the stochastic optimization
allows the agent to cope with the uncertainties of the market resulting in profit volatility
(i.e. probability of having low profit) [25, 20, 86, 23]. Hence, this research incorporates risk
management of the agent participating in the LEM day-ahead market. The next two sections pro-
vide the framework for incorporating CVaR in a stochastic program to account for risk management.

5.1 CVaR derivation
In general, stochastic optimization problems are risk-neutral problem formulations. Namely, stochas-
tic programs represent the expected profit in the objective function. Adding the CVaR risk measure
to the optimization problem adds the possibility for the agent to reflect his risk attitude in the
optimal bidding schedule.

CVaR is a popular, suitable risk measure to represent risk [74, 110]. CVaR is widely incorporated
as a risk measure in stochastic optimization, for example in [25, 110, 77, 20]. The CVaR risk
measure is applicable as a tool in optimization modeling due to its robustness regarding its input
[77, 86, 3, 2]. Besides, CVaR can be integrated into the objective function of a linear program to put
off unfavorable uncertainty realizations [20]. Additionally, CVaR satisfies the axioms of a coherent
risk measure and is linear [77, 86, 3, 2, 55], resulting in a convex, tractable problem [8, 74, 86].
Hence, every local optimum qualifies as a global optimum, which is a significant advantage of
CVaR [83]. Detailed information on the axioms of risk measures is provided in Uncertainty set
construction via risk measures.

As firstly introduced by [87, 86], CVaR can be simultaneously determined by finding the solution of
a convex, elementary optimization problem. The function to be minimized is described in [87, 86]
as:

Fα(x, ζ) = ζ +
1

1− α
E{[f(x, y)− ζ]+}, where[t]+ = max{0, t} (5.1)

In Equation 5.1, x represents the decision variable, and y represents the uncertainty that affects
the loss [87]. In this research, the uncertainty corresponds to the stochastic local market clearing
price. The decision variables x represent the behavior of the agent in the LEM. Finally, f(x, y)
represents the random loss function [90].

CVaR is defined as the expected value of the profit that is smaller than the (1 - α) ×100 % of the
whole profit distribution [23, 2, 55, 33]. In case of a cost minimization problem, CVaR considers the
(1−α)× 100% of the scenario expectations that incur the highest expected costs [89]. In the case of
a maximization problem, CVaR represents the average profit obtained by the (1 - α)× 100% lowest
profit scenarios [72]. Hence, α in Equation 5.1 represents the confidence interval of the CVaR term
[108]. As mentioned in [20], the value of α commonly lies between 0.90 and 0.99. In other words,
only the 10%-1% worst-case expected profits are considered in the CVaR term. When α is set to 0,
the agent exhibits risk-neutral behavior.

Furthermore, the function in Equation 5.1 is a convex function and is piece-wise linear with respect
to ζ [86, 87, 110]. As defined in [86, 90], in optimality, ζ represents the Value-at-Risk of the problem.
More elaboration on the Value-at-Risk risk measure can be found in the Risk measures section.
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Importantly, the function described in Equation 5.1 can be minimized by formulating it as elementary
linear program [87, 83, 77, 86, 55]. The function presented in Equation 5.1 can namely be converted
to a linear problem through the introduction of an additional decision variable [110]. This problem
derivation is described in CVaR optimization problem.

Multiple characteristics of the function derived in Equation 5.1 can be derived [87, 86, 90]:

1. Fα(x, ζ) is convex with respect to α.

2. VaRα(x) is a minimum point of function Fα(x, ζ) with respect to ζ.

3. Minimizing Fα(x, ζ) with respect to ζ yields CVaRα(x) :

CVaRα(x) = min
ζ
Fα(x, ζ) (5.2)

Examining the convexity characteristics of the random loss vector f(x, y) revails the significant
advantages of CVaR [90]. If f(x, y) is convex in the decision variable x, CVaRα(x) is convex in x.
Moreover, given the convexity of f(x, y) in x, the minimization function Fα(x, ζ) as described in
Equation 5.1 is convex in both x and ζ [86]. Based on this characteristic, the following property
holds [90, 86, 87]:

min
x∈X

CVaRα(x) = min
(x,ζ)∈X×ℜ

Fα(x, ζ) (5.3)

With optimizer (x∗, ζ∗) as solution for the minimization of Fα(x, ζ) over X × ℜ, x∗ minimizes
CVaRα(x) over set X. In addition, ζ∗ represents the VaRα(x)[87]. Regarding the values of the
objective functions, the following property holds:

CVaRα(x
∗) = Fα(x

∗, ζ∗) (5.4)

To conclude, rather than directly minimizing CVaRα(x), the minimization function illustrated
in Equation 5.1 is employed to preserve the convexity within the problem [86, 90]. Minimizing
Fα(x, ζ) (Equation 5.1) simultaneously in both x and ζ to integrate risk yields a more tractable
problem compared to minimizing CVaRα(x) in X [86]. In next section, Equation 5.1 is translated
to fit into a stochastic optimization problem.

5.2 CVaR optimization problem
According to Equation 5.3, incorporating CVaRα(x) is equivalent to minimizing the function Fα(x, ζ)
in both x and ζ [86, 90]. This section focuses on transforming the function Fα(x, ζ) outlined in the
previous section into a solvable minimization problem in the application of stochastic optimization.

The derivation of a tractable equivalent problem incorporating CVaR into the stochastic program
closely follows the approach outlined in [86, 90]. In theory, CVaR can be integrated into both
the constraints and/or to the objective function within stochastic optimization [86]. This section
elaborates on the derivation process by incorporating CVaR into the constraints of the optimization
problem.

First, let αi ∈ (0, 1) denote the confidence interval specified by the decision maker, and ωi represent
the loss tolerance for constraints i = 1, ..., l [90]. For each constraint i, a confidence interval and
loss tolerance are defined. The decision maker can select a value for αi, where a higher value reflects
a more risk-averse decision maker [100, 25, 23]. Note that the loss tolerance ω is absent when
incorporating CVaR in the objective function. When formulating CVaR in the objective function,
the goal is to minimize the function Fα(x, ζ). When constructing CVaR for the constraints, the
problem incorporating CVaRα(x) is rewritten into the equivalent problem incorporating Fα(x, ζ)
[86, 90, 87]:

min
x∈X

g(x) ⇐⇒ min
x,ζ1,...,ζl∈X×ℜ×...ℜ

g(x)

s.t CVaRαi
(x) ≤ ωi, i = 1, ..., l s.t. Fαi

(x, ζi) ≤ ωi, i = 1, ..., l
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The expected value component within Fαi(x, ζi) in Equation 5.1 (E{[f(x, y) − ζ]+}) can be
reformulated for finite, discrete probability spaces, which aligns with the scenarios generated in
this research [55, 29]. Then, function Fα(x, ζ) is rewritten into:

Fαi(x, ζi) = ζi +
1

1− αi

N∑
k=1

pk[f(x, yk)− ζi]+ (5.5)

In Equation 5.5, yk denotes the random vector y of risk vectors within the discrete probability
space Y. Every yk has probability pk, for k = 1, ..., N [90, 86]. Subsequently, the constraint
Fα(x, ζ) ≤ ω is restructured into a system of inequalities, as represented in Equation 5.6 [90, 86].
This transformation is achieved through the introduction of additional (auxiliary) variables, ηk
[55].

f(x, yk)− ζ − ηk ≤ 0, k = 1, ..., N

ζ +
1

1− α

N∑
k=1

pkηk ≤ ω (5.6)

ηk ≥ 0, k = 1, ..., N

Following the approach in [90], the minimization problem is formulated below. In the cases where
the loss function f is linear in x, the constraints of the minimization problem also maintain linearity
[90]. Below, Equation 5.9 represents the linearized expression of Fαi

(x, ζi), wherein the auxiliary
variable ηk captures the positive part of [f(x, yk)− ζi]+ in Equation 5.8.

min
x,ζ1,...,ζl∈X×ℜ×...ℜ

g(x) (5.7)

s.t. f(x, yk)− ζ − ηk ≤ 0, k = 1, ..., N (5.8)

ζ +
1

1− α

N∑
k=1

pkηk ≤ ω (5.9)

ηk ≥ 0, k = 1, ..., N (5.10)

The optimization problem described in Equation 5.7 until Equation 5.10 represent the linearized
form of the function introduced in Equation 5.1.
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6 Robust modeling of price uncertainty
In this chapter, the theoretical framework of having an uncertainty set in an optimization problem
to integrate price uncertainty is provided. The goal of Uncertainty set modeling is to provide an
outline on how to integrate price uncertainty to obtain a general robust problem. Additionally, the
budget of uncertainty is introduced to adjust the size of the uncertainty set, adjusting the risk
attitude of the agent. Afterward, Uncertainty set construction via risk measures derives a different
uncertainty set using a coherent and comonotone risk measure. Both subsections elaborate on
existing theories.

Robust optimization constitutes a modeling framework that can incorporate price uncertainty
without explicitly modeling its complete underlying probability distribution. As opposed to stochas-
tic optimization methods, robust optimization does not necessitate knowledge of the complete
probability distribution of uncertainty electricity prices [26]. Instead, robust optimization functions
with only the range of uncertainty, often defined by distribution bounds,uncertainty set, or robust
sets, without requiring the full probability distribution as an input [111, 99, 88, 54]. Consequently,
while Scenario-based modeling of price uncertainty may encounter computational complexity issues
due to requiring a large number of scenarios, robust-based modeling of price uncertainty does not
encounter this issue [111, 9].

Robust optimization makes use of interval ranges [13, 5], where the optimal solution is designed to
withstand all potential scenarios within an uncertainty set [10, 94, 9, 54]. Robust optimization aims
to optimize based on the worst-case realization within a specified uncertainty set [26, 13, 35, 74],
resulting in a min-max type formulation [111, 41, 62, 9, 54]. For instance, an uncertainty set may
be defined as u ∈ 4, 7, where no assumption is made regarding the probability of u within the
uncertainty set [99]. Hence, robust optimization proves beneficial when dealing with stochastic
process that are complex to capture.

The initial step in formulating a robust optimization problem is constructing the uncertainty set
to encompass the uncertain LEM prices [10]. Instead of elaborating on the distribution of the
uncertainty within the uncertainty set, the set represents the support of the uncertainty. The range
interval of the local market price is predetermined, where the range (box) interval is represented
as [c̄j − dj , c̄j + dj ] [13, 111, 18]. In general, this range forecast is symmetric around the point
forecast [8, 47, 111]. Within the range interval, c̄j represents the point forecast value of the LEM
price (mean) and dj represents the (standard) deviation from the mean forecast value. Both c̄j
and dj are derived from the (S)AR(I)MA(X) point forecast model, as elaborated in stage 1 of
Scenario-based modeling of price uncertainty. To construct the range interval, both a mean price
and standard deviation forecast are required.

The decision-maker ensurer that the solution remains feasible for any realization of uncertainty
within the predefined uncertainty set [9]. Consequently, solutions derived from robust optimization
can be overly conservative [88, 12, 109], a phenomenon commonly referred to as the ’price of
robustness’ [12]. In extreme cases, robust optimization may lead to scenarios where no solution
adequately safeguards against uncertainty [88]. To mitigate over-conservatism [13], restricting the
uncertain LEM price to lie within ellipsoidal uncertainty sets is employed, which helps eliminate
consideration of the least probable outcomes and enhances the traceability of the optimization
problem [13]. However, modeling uncertainty using ellipsoidal sets is complex. As a result, [12]
have introduced the concept of polyhedral uncertainty sets to represent the uncertainty parameters,
which result in a tractable, linear problem [13, 5, 57].

The size of the uncertainty set significantly influences the conservativeness of the optimization
model [47], as larger uncertainty set tend to yield more conservative optimal solutions [111].
Adjusting the size of the uncertainty set can be achieved by introducing the concept of a budget of
uncertainty [111, 10], resulting in less conservative outcomes. Rather than directly considering the
worst-case realization of the box interval [c̄j − dj , c̄j + dj ], the budget of uncertainty allows for the
adjustment of the level of conservatives in robust optimization [26, 11, 98, 10]. Hence, even with a
large uncertainty set, the conservativeness of the optimal solution can be reduced. The budget of
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uncertainty (Γ) determines the maximum number of times the price is allowed to deviate from its
mean forecast (c̄j) [26, 98]. Therefore, Γ should be pre-defined by the agent. Opting for a smaller
budget of uncertainty results in a reduced polyhedral uncertainty set compared to the original
range interval [57]. Introducing the budget of uncertainty reduces over-conservative solutions while
maintaining high level of confidence [111, 10]. Thus, risk management in robust optimization can
be effectively implemented through through the budget of uncertainty.

The primary advantage of polyhedral uncertainty sets is that the robust version of the linear
programming problem remains linear, maintaining its traceability [13]. In other words, the
sub-problem can be reformulated as a linear problem [9]. To obtain this robust linear problem, the
original min-max problem is initially translated into its robust counterpart [98, 34]. Subsequently,
the problem is transformed into a single-level problem using duality theory [111, 5, 57]. This
robust problem, which integrates an uncertainty set to represent stochastic prices, is derived in
Uncertainty set modeling.

6.1 Uncertainty set modeling
A standard optimization problem can be written in the form:

minimize c′x

subject to Ax ≤ b

x ∈ X (6.1)

In Equation 6.1, A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. In total, there are m constraints in Equation 6.1.
Lastly, x ∈ X , where X is a polyhedron [13]. Next, the coefficients i and j are defined, representing
the coefficients of the A matrix. Then, N = {1, 2, ..., n}, j ∈ N , i = {1, 2, ...,m}.

In this chapter, only uncertainty in the cost vector c in the objective function is present. Hence,
each entry cj , j ∈ N takes values in the range [c̄j − dj , c̄j + dj ], where dj is represented as the
deviance from mean c̄j [11, 18, 13, 12]. It is assumed in this research that each entry cj in the
objective function can be subject to deviation from its nominal value (dj > 0,∀j ∈ N). The mean
forecast c̄j and the deviance of the point forecast dj (standard deviation) are determined via the
output of the point forecast model SARIMAX.

Next, the budget of uncertainty parameter Γ0 is introduced to facilitate control and adjustment of
the risk-preference of the decision-maker [18]. Γ0 is constrained within the range [0, n], where 0
indicates deviation from the mean forecast value c̄j is completely excluded in the problem, while n
implies complete protection of the cost function against deviations in all cost coefficients c̄j [13, 12].
Therefore, varying Γ0 ∈ [0, n] enables adjustment of the level of conservatism in the solution of the
robust optimization problem [12]. Furthermore, Γ0 is assumed to take only integer values [11]. The
following equation is obtained from including the budget of uncertainty [13]:

n∑
j=1

|z0j | ≤ Γ0, Γ0 ∈ [0, n] (6.2)

In Equation 6.2, z0j represents the scaled deviation of c̄j from its nominal value cj [13]. This means
that in general z0j takes on values in the interval [-1,1] [13]. When the nominal value cj exceeds
c̄j , zoj takes a positive value, meaning that the worst-case term incorporates the possibility of
having higher costs than originally forecasted. The reverse also holds. In other words, z0j can be
represented as:

z0j =
cj − c̄j
dj

(6.3)
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In order to construct the robust counterpart of Equation 6.1, a polyhedral uncertainty set C is
formulated [13]. This research uses an uncertainty set that is also called the box interval [111]. The
uncertainty set C is defined as:

C = {(cj)| cj = c̄j + djz0j , ∀j, z0 ∈ Z0} (6.4)

with

Z0 =

{
z0

∣∣∣∣∣ |z0j | ≤ 1,∀j,
n∑

j=1

|z0j | ≤ Γ0

}
(6.5)

Equation 6.1 is reformulated into its robust counterpart, incorporating the uncertainty set C as
formulated in Equation 6.4:

min
x

max
cj∈C

c′x

s.t. ai
′x ≤ bi, ∀i

x ∈ X (6.6)

The robust counterpart described in Equation 6.6, which includes uncertainty in cost vector c, can
be reformulated to eliminate the uncertainty set C, and to have z0 as decision variable in the sub
maximization problem [13, 11]. In other words, Equation 6.6 is equivalently expressed as:

min
x

 n∑
j=1

c̄jxj + max
z0∈Z0

n∑
j=1

dj |xj |z0j


s.t.

n∑
j=1

aijxj ≤ bi, ∀i,

x ∈ X (6.7)

where Z0 is represented by Equation 6.8:

Z0 =

{
z0

∣∣∣∣∣ |z0j | ≤ 1,∀j,
n∑

j=1

|z0j | ≤ Γ0

}
(6.8)

Taking the maximum term out of Equation 6.7 and including the properties of Z0,
maxz0∈Z0

∑n
j=1 dj |xj |z0j can be rewritten in Equation 6.9 [11]. Note that the absolute sign around

z0j can be left out, because in the maximization problem the worst-case cost realization is sought.
This means that the costs cj is taken as maximum (cj > c̄j), resulting in positive z0j values. Here,
a vector x∗ is given, meaning that xj is not a decision variable in this representation.

β0(x
∗,Γ0) = max

z0j ,∀j∈N

n∑
j=1

dj |x∗j |z0j

s.t.

n∑
j=1

z0j ≤ Γ0

0 ≤ z0j ≤ 1 ∀j ∈ N (6.9)
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Equation 6.9 can be rewritten in the simplistic form Equation 6.10, where there are two constraints,
such that right-hand side vector represents the column vector: [Γ0 1]T .

max
z0j ,∀j∈N

n∑
j=1

dj |x∗j |z0j

s.t.

n∑
j=1

z0j ≤ Γ0

z0j ≤ 1 ∀j ∈ N
z0j ≥ 0 ∀j ∈ N (6.10)

Next, the dual problem of Equation 6.10 is considered in Equation 6.11, which is used to finally
represent the final, linear proble [11, 13, 12, 34]. Here, two dual variables p0 q0j are introduced for
the dual problem in Equation 6.11:

min
p0;q0j∀j∈N

Γ0p0 +

n∑
j=1

q0j

s.t. p0 + q0j ≥ dj |x∗j | ∀j ∈ N,
q0j ≥ 0 ∀j ∈ N,
p0 ≥ 0 (6.11)

To end up with the final dual representation of the sub problem, |x∗j | is substituted back to |xj |:

min
p0;q0j∀j∈N

Γ0p0 +

n∑
j=1

q0j

s.t. p0 + q0j ≥ dj |xj | ∀j ∈ N,
q0j ≥ 0 ∀j ∈ N,
p0 ≥ 0 (6.12)

Including Equation 6.12 into the robust counterpart defined in Equation 6.7, the final, robust mixed
integer program is formulated as [18] in Equation 6.13. Here, |x∗j | is replaced with yj , meaning that
at optimality, the following three characteristics hold [13]:

• yj equals |xj | for any j.

• p0 will equal the ⌈Γ0⌉-th greatest dj |xj |.

• q0j = max(0, dj |xj | − p0)

min
xj ,q0j ,yj∀j∈N ;p0

n∑
j=1

cjxj + p0Γ0 +

n∑
j=1

q0j

n∑
j=1

aijxj ≤ bi, i = {1, ...,m}

p0 + q0j ≥ djyj ∀j ∈ N
q0j ≥ 0 ∀j ∈ N
yj ≥ 0 ∀j
p0 ≥ 0

− yj ≤ xj ≤ yj ∀j
x ∈ X (6.13)
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Equation 6.13 is derived according to the methodology from [11, 13, 12, 18]. The decision-maker
needs to assign the budget of uncertainty Γ0 in the interval [0,n] as input to the optimization
problem [13].

6.2 Uncertainty set construction via risk measures
In the Uncertainty set modeling section, a general robust optimization problem is derived in
Equation 6.13, based on the introduction of the budget of uncertainty as a risk-attitude parameter.
By adjusting this parameter, the conservativeness of the optimal solution can be adjusted [18].
In addition, the polyhedral uncertainty set C as defined in Equation 6.4 is provided as input to
the robust optimization model, meaning that the parameters c̄j and dj are estimated before the
robust optimization problem is executed. However, instead of defining the budget of uncertainty
Γ0 separately as a parameter in Equation 6.13, the uncertainty set itself can be constructed to
incorporate the decision maker’s risk-attitude as well as historical data [13]. This is different from
the derivation in Uncertainty set modeling, where the size of the uncertainty set is constructed and
adjusted afterward by the budget of uncertainty parameter.

This section establishes the connection of coherent risk measures with uncertainty sets in robust
optimization [17, 8]. This connection leads to the possibility that uncertainty sets in itself can be
constructed taking into account the risk attitude of the decision maker [17]. The derivation is based
on a linear problem where the uncertainty is located in the constraints, thus removing uncertainty
in the objective function. Without loss of generality, it is possible to rewrite the linear problem,
remove the uncertainty from the objective function, and include it in the constraints as follows [13]:

min
x

c′x ⇐⇒ min
x

t ⇐⇒ min
x

t

s.t. Ax ≤ b s.t c′x ≤ t s.t. Ax ≤ b

x ∈ X Ax ≤ b x ∈ X
x ∈ X

Note in the equivalence above that the uncertainty of c is incorporated as a row in matrix A, and
t as an entry in vector b [8]. As a result, the right representation only represents uncertainty in
matrix A. However, for clarity, the derivation is continued with the middle formulation above,
since in this research the risk is concerned with uncertain local market price c. The uncertainty is
represented as c̃, where N historical observations make up potential realizations of c̃: c1, ..., cN
[13].

In order to incorporate the risk-attitude of the decision maker, a numerical value µ(c̃′x) is assigned
to the random variable c̃′x [23]. Here, the function µ serves as the risk measure, symbolizing the
risk attitude of the decision-maker [13]. Equation 6.14 represents the incorporated risk measure in
the optimization problem:

min
x

t

s.t. µ(c̃′x) ≤ t,
Ax ≤ b

x ∈ X (6.14)

6.2.1 Risk measures
Let S be an almost surely bounded random variable, and R denote the space of real numbers.
In addition, let X and Y represent realizations of uncertainty, where these random variables can
signify either loss or gain. Then, any function µ: S → R can theoretically be regarded as a risk
measure [17]. The practical interpretation of a risk measure can be defined as the minimal capital
necessary to adjust a position X to a level where it becomes “acceptable” in terms of risk tolerance
[8, 9, 3]. Nevertheless, some risk measures make more sense than others. Generally, a risk measure
is subject to two axioms, namely monotonicity and translation invariance [8, 13, 9].

University of Groningen 27



6 Robust modeling of price uncertainty

• Monotonicity: if X ≤ Y almost surely, then µ(X) ≤ µ(Y ), ∀X,Y ∈ S. This axiom
represents the case where the random variable X is consistently smaller than random variable
Y, meaning that the risk measure of random variable X is also lower than that of Y [17]. In
this context, the realization of uncertainty represents loss, where lower loss results in less risk.

• Translation invariance: µ(X + a) = µ(X) − a, ∀X ∈ S, a ∈ R. This axiom represents
the case where a deterministic amount a is added to the uncertain random variable X.
Consequently, the capital requirement is reduced by the exact amount a, since a is a real,
deterministic number.

Value-at-Risk
A widely used risk measure is Value-at-risk (VaR)[86, 74, 8]. VaR is defined as a value z, such
that the probability of obtaining less profit than z is less than 1 - α [23]. The formula of VaR is
commonly defined as follows, similar to [90, 83, 87, 22, 77, 20, 23]. Let random variable X represent
losses, with cumulative distribution function FX(z) = P{X ≤ z}. Then, with confidence level
α ∈ (0, 1], VaR is defined as:

VaRα(X) = min{z|FX(z) ≥ α} (6.15)

In the case of a confidence level of 0.95, 95% of the uncertain realizations yield fewer losses than
the VaR, while 5% of the uncertain realizations result in greater losses than the VaR [51]. It is
important to note here that loss is defined in relation to the expected value of the uncertainty. VaR
indicates potential losses due to local market price fluctuations [51]. However, VaR encounters
difficulties that restrict the functional use of VaR as a risk measure:

• VaR can properly be used when the uncertainty conforms to a (log)normal distribution.
However, frequently, uncertainty does not adhere to a normal distribution, as loss distributions
may exhibit “fat tails” [86]. When uncertainty follows an different distribution, optimization
of VaR appears to be difficult due to instability and numerical difficulties [8, 86, 74].

• VaR does not incorporate the expected loss magnitude beyond the threshold amount (VaR)
[86].

• The risk counterpart of the problem including the VaR risk measure can yield a non-convex
problem, rendering it intractable [74].

Given the constraints of VaR and other risk measures that only adhere to the two mentioned
axioms, the application of coherent risk measures proves to be more fitting for integrating risk
management in the problem [3, 13].

6.2.2 Coherent risk measures

According to [74, 3, 17], coherent risk measures satisfy two additional axioms in addition to the
axioms described above, namely subadditivity and positive homogeneity :

• Subadditivity: µ(X + Y ) ≤ µ(X) + µ(Y ), ∀X,Y ∈ S. This axiom acknowledges that
diversification of stochastic realizations results in an overall reduction in risk compared to
considering individual uncertainty realizations separately [8].

• Positive homogeneity: µ(λX) = λµ(X), ∀X ∈ S, λ ≥ 0. This axiom stands for the fact
that risk scales linearly with the size of random variable X [17]. Additionally, due to this
axiom, the subadditivity axiom is equivalent to a convexity axiom [8].

The aforementioned four axioms applicable to coherent risk measures ensure the preservation of
convexity of the problem. This is advantageous as convexity of the problem leads to computational
tractability [8, 74]. Coherent risk measures are valuable for attaining conservative solutions, without
compromising the convexity of the problem [8].
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Intuitively, coherent risk measures represent the worst-case expected value over a family of
distributions [13]. Mathematically, µ is a coherent risk measure function if and only if there exists
a family of probability measures Q such that the following equation holds [17, 3, 13]:

µ(X) = sup
q∈Q

Eq[X], ∀X ∈ S (6.16)

In Equation 6.16, X represents a random variable, Eq[X] denotes the expected value of X given
probability measure q [17]. The probability measure q in Equation 6.16 is part of the family
of probability measures Q. Then, Equation 6.16 illustrates that a coherent risk measure µ(X)
can alternatively expressed in a dual form. This dual representation involves taking the worst-
case expected value over a family Q of “generating measures” or “generalized scenarios” [17, 8].
According to [3], the family Q of “generating measures” in Equation 6.16 can be expressed as a set
of “generalized scenarios” each representing a distinct probability measure q. Most importantly, a
risk measure is coherent if and only if it can be expressed (via its dual form) into the worst-case
expected value over a family of distributions Q [8].

For simplicity, let the historical observations of the uncertainty c̃, c1, ..., cN all have a probability
of 1/N. In other words, all historical observations have equal probability [13]. Then, the coherent
risk measure µ(c̃′x) as generally formulated in Equation 6.16 can be rewritten into Equation 6.17,
similar to [13, 17, 9, 8]. q represents a probability measure in the family of probability measures Q.

µ(c̃′x) = sup
q∈Q

Eq[c̃
′x] = sup

q∈Q

N∑
i=1

(c′ix)qi = sup
q∈Q

(
N∑
i=1

qici

)′

x = sup
c∈C

c′x, (6.17)

where

C = conv

({
N∑
i=1

qici

∣∣∣∣ q ∈ Q
})

(6.18)

Note here that uncertainty set C in Equation 6.18 is either a subset of or equal to the convex hull
of the historical observations c1, ..., cN . By incorporating Equation 6.17 into the minimization
problem, an equivalent formulation is obtained from Equation 6.14:

min
x

t

s.t. c′x ≤ t, ∀c ∈ C
Ax ≤ b,

x ∈ X (6.19)

where C is represented by Equation 6.18.

Starting from a coherent risk measure µ as represented in Equation 6.14, Equation 6.19 now
represents the equivalent robust optimization problem, including a unique convex (not necessarily
polyhedral) uncertainty set C that incorporates deviating realizations of c [13, 17, 8]. The structure
of the convex uncertainty set depends on the chosen coherent risk measure of the decision maker
[17]. However, as discussed in Uncertainty set modeling, it is advantageous for a robust optimization
problem to be formulated with a polyhedral uncertainty set [13]. In the upcoming section, a more
specific subclass of coherent risk measures is introduced that allows the equivalence between risk
measure formulation and a specific type of polyhedral uncertainty sets.

6.2.3 Comonotonic risk measures
In general, computation of the family of probability measures Q is complex [17]. In this subsection,
a subclass of coherent risk measures is introduced, namely comonotone risk measures. When the
risk measure µ is constructed as a comonotone risk measure, the family of probability measures
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Q can be constructed in such a manner that the corresponding uncertainty set is a polyhedron
[17, 13].

Next, the derivation of a comonotone risk measure is provided. Remember that a risk measure is a
function µ: S → R. A random variable X is comonotonic if its support S follows complete order
structure: for any x,y ∈ S, either x ≤ y or y ≤ x [13, 17]. Then, for any comonotonic random
variables X and Y, if Equation 6.20 holds, the risk measure is said to be comonotonic:

µ(X + Y ) = µ(X) + µ(Y ) (6.20)

Unlike the axiom of subadditivity for coherent risk measures, where diversification typically results
in overall reduced risk, for comonotonic risk measures, diversification does not imply risk reduction
[17, 3].

Coherent and comonotonic risk measures formulate a class of polyhedral uncertainty sets in robust
optimization [17]. The mathematical proof of reformulating the comonotonic and coherent risk
measure into a class of polyhedral uncertainty sets for certain types of distributions is further
elaborated in [17, 8, 13, 111]. Nevertheless, this result serves to bridge stochastic optimization and
robust optimization together [111].

6.2.4 Conditional Value at Risk
Conditional Value at Risk (CvaR) is an important example of a coherent, comonotone risk measure
utilized in the stochastic optimization models within this research. Hence, the formulation of CVaR
in stochastic optimization is provided in Risk management in stochastic optimization. Overall,
CVaR represents the conditional expectation of the profit, given that the profit is less than or equal
to the VaR value. In other words, CVaR is the expected value of the worst (1 - α)×100 % cases of
profit [8], where α denotes the confidence interval and lies between 0 and 1 [100]. The parameter
α is used to reflect the risk attitude of the decision-maker, influencing the conservatism of the
optimal solution. α = 1 reflects solely the worst-case scenario of the profit realization. Conversely,
setting α = 0 yields CVaR as the mean value of all potential profit realizations [100]. Thus, a
higher α implies a more risk-averse attitude of the decision-maker [100].

The risk measure CVaR offers several advantages over the regular VaR [90, 86]. Importantly, CVaR
being a coherent risk measure ensures a convex, tractable problem formulation [90, 74, 86, 103, 79].
As mentioned in the Risk measures section, VaR does not quantify the expected loss beyond the
threshold value, whereas CVaR effectively predicts the expected loss in the tail of the distribution
[86, 103, 79]. The risk measure CVaR is defined in Equation 6.21, similar to [8, 9, 83]:

CVaRα(X) = µ(X)
∆
= inf

v∈R

{
v +

1

1− α
E
[
(X − v)+

]}
(6.21)

for any α ∈ (0, 1]. Here, X represents the random variable, and [t]+ = max{0, t}. To show the
connection with VaR (Equation 6.15), CVaR can be similarly be described as [69, 83, 22]:

CVaRα(X) = E [X|X ≥ VaRα(X)] (6.22)

On top of being coherent, CVaR is also comonotonic. As a result, the risk measure CVaR can
equivalently be rewritten into a polyhedral uncertainty set in robust optimization [8]. As mentioned
before, the uncertainty is represented in vector c̃, with N data points {c1, ..., cN} [100]. Each entry
of ci has corresponding probability pi [9]. For the risk measure CVaR, the family of probability
measures Q can be represented as [8, 9]:

Q = {q ∈ ∆N : qi ≤ pi/α} (6.23)
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In Equation 6.23, q denotes a probability distribution within the family of probability measures
Q. The term ∆N refers to the probability simplex in an N-dimensional space, implying that each
component of q is non-negative and the sum of all N components of element q is one. Then, Q is
used to formulate the uncertainty set that corresponds to CVaR in robust optimization, as can be
seen in Equation 6.24 [100, 13, 9, 8]. Note again that c represents the uncertainty vector, and ci
and cj represent data points in that uncertainty vector. Also, α corresponds to the confidence level
set by the decision-maker, where a higher value indicates a more conservative solution [100].

C = conv

(
1

1− α
∑
i∈I

pici +

(
1− 1

1− α
∑
i∈I

pi

)
cj :

I ⊆ {1, ..., N}, j ∈ {1, ..., N}\I ,
∑
i∈I

pi ≤ 1− α

})
(6.24)

The set described in Equation 6.24 forms a polytope, meaning that the robust optimization problem
as formulated in Equation 6.25 can be rewritten into a linear program [9, 8]. Moreover, when
setting the probability of each historical observation ci to have equal probability (pi = 1/N), and
α = j/N for some j ∈ Z+, the uncertainty set C outlined in Equation 6.24 can be interpreted as
the convex hull of all j-point averages of the historical observations of the uncertainty c1, ..., cN
[9, 8]. Lastly, Equation 6.24 can be inserted as uncertainty set in a robust optimization problem as
follows:

min
x

t

s.t. c′x ≤ t, ∀c ∈ C
Ax ≤ b,

x ∈ X (6.25)

To sum up, uncertainty sets to represent price uncertainty in robust optimization can be constructed
by using coherent and comonotonic risk measures. Risk management in stochastic optimization
derives how the CVaR risk measure can be incorporated in stochastic programming. On the other
hand, as elaborated in this chapter, CVaR is a coherent and comonotone risk measure that can
be equivalently written into a polyhedral uncertainty set in the robust optimization problem in
Equation 6.25 [8]. The polyhedral uncertainty set representing CVaR in robust optimization is
formulated in Equation 6.24. Consequently, the uncertainty set derived in Conditional Value at
Risk is different from the (box interval) uncertainty set derived in Uncertainty set modeling. In
Uncertainty set modeling, the size of the uncertainty set is constructed and afterward the budget of
uncertainty parameter is adjusted to adjust the risk attitude of the agent. In Conditional Value at
Risk, the uncertainty set is constructed incorporating the decision maker’s risk attitude.
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7 Stochastic optimization applied to battery asset modeling
This chapter introduces the two stochastic optimization models developed in this research. Both
stochastic optimization models are risk-neutral by nature, because a stochastic program represents
the expected profit in the objective function [99]. After introducing the risk-neutral SO models, this
chapter extends both models to incorporate risk management, applying the theoretical framework
provided in Risk management in stochastic optimization.

Based on the scenario generation and reduction technique as described in Scenario-based modeling
of price uncertainty, the final product of the scenario-based modeling method is a set of reduced
scenarios Ω∗

S , each scenario with obtained optimal probability π∗
ω. This set of scenarios represents

possible realizations of the local market price, for the day-ahead window (24 hours). Then, the
objectives of the battery models are to maximize the revenue from discharging the battery, while
minimizing the costs of charging the battery [110, 105, 102]. Hence, the models can be formulated
as maximization or minimization problems. The uncertainty of the LEM price is only present in
the objective function of the stochastic programs.

Two bid types are considered in this research, however, only one of them is used for the bidding
strategies for the agent owning the BESS participating in the day-ahead LEM. For price-quantity
point bids, clearance of the bid depends on the local market clearing price [59]. Namely, when the
local market clearing price is higher (lower) than the submitted price of the charging (discharging),
the bids are not cleared in the LEM [59]. This is also called economic bidding [59]. On the other
hand, self-scheduled bids are cleared regardless of the realization of the local market clearing price
[59, 50, 72]. When an agent submits a self-schedule bid, the agent is willing to supply/buy energy
regardless of the energy price [72]. According to [59, 50], submitting a single price-quantity point
per time step results in higher profit compared to submitting one self-scheduled bid per time step.
Hence, the models developed in this research submit price-quantity point bids (economic bids),
rather than self-scheduled bids.

7.1 Model 1: single bid (base model)

The risk-neutral SO model 1 is based on [50, 110], and serves as a benchmark in this research.
In SO model 1, the charging and discharging decision variables of the BESS (xdt and xct) have
only time in their index, meaning that for every time t, one (dis)charging bid can be submitted
to the market operator. All scenarios ω belonging to the reduced scenario set Ω∗

S represent a
local market price realization for every time step t. In the objective function (Equation 7.1),
ct,ω represents the forecasted local market price for scenario ω. A realization of scenario ω = 1,
obtaining the local market price forecast for day-ahead hours T = 1 until T = 24 is represented as
ct,1 = [c1,1 c2,1 c3,1 ... c24,1]. The (dis)charging quantities of the battery (xdt and xct) are submitted
to the day-ahead market as price-quantity points, meaning the bids have both a price and a
quantity. In SO model 1, the bid price that corresponds to a (dis)charging quantity at time t is the
expected price at time t (ĉt =

∑
ω∈ΩS

π∗
ωct,ω). Finally, the objective function of the SO model 1

(the base model) is formulated as a minimization problem in Equation 7.1, multiplying the bid
prices with the bid quantities:

min
xd,xc,u

∑
ω∈Ω∗

S

π∗
ω

T∑
t=1

ct,ω
(
xct − xdt

)
(7.1)

Next, the constraints of SO model 1 are derived from [110, 72, 44, 105, 59, 102, 19, 50]. SO model
1 incorporates the inability of the battery to submit opposing bids at time t [72, 110]. Hence,
at time t the agent owning the battery asset can either submit a charging/buying bid (xct) or a
discharging/selling bid (xdt ). This is ensured via the binary variable (ut) [110, 105], where in this
research ut = 0 represents the charging mode of the battery, and ut = 1 represents the discharging
mode of the battery. The binary variable ut forces the bidding quantity of the opposing state of

University of Groningen 32



7 Stochastic optimization applied to battery asset modeling

the battery at time t to zero. This is ensured via the following constraints:

xct − xcmax (1− ut) ≤ 0 ∀t
xdt − xdmax ut ≤ 0 ∀t
ut ∈ {0, 1} ∀t
xct , x

d
t ≥ 0 ∀t

In these constraints, xcmax and xdmax represent the maximum charge and discharge rate of the
battery, respectively [72, 105, 102]. Hence, when the agent submits a price-quantity point to the
market operator, xct and xdt cannot exceed these maximum (dis)charge rates.

Furthermore, the state of charge (SOC) variable (et) should remain within the capacity bounds
of the battery (emin and emax) for the entire time horizon [72]. Lastly, ηd and ηc represent
the discharging and charging efficiency of the battery and ∆t represents the time step length
[110, 105, 102, 50]. Mathematically, these constraints are represented as:

et = et−1 + ηc ∆t xct −
1

ηd
∆t xdt ∀t

emin ≤ et ≤ emax ∀t

7.2 Model 1 with risk management
This chapter extends the risk-neutral SO model 1 as elaborated in Model 1: single bid (base model)
to account for the risk-attitude of the agent owning the battery asset. Following the theoretical
outline provided in Risk management in stochastic optimization, this chapter applies the provided
risk theory to SO model 1. Firstly, SO model 1 is extended by incorporating the charging risk of
the agent bidding in the day-ahead market via CVaR. Afterward, SO model 1 with discharging
risk management via CVaR is considered. Lastly, simultaneous charging and discharging risk in
SO model 1 is considered. While risk management for SO model 1 is similarly present in existing
literature, this chapter provides a more extensive elaboration on the complete problem derivation.

In literature, CVaR has been widely implemented as a risk measure in linear programs in the context
of price uncertainty in energy systems [108], for example in [110, 90, 103, 77, 20, 72, 89, 2, 55].
Scoping down and applying risk management on a battery asset operating in the energy market,
literature is explored. For example, [110] incorporates the charging risk of a battery asset in
stochastic optimization, but leaves the discharging risk for future work. The optimization model
described in [110] has the ability to submit a single bid per time step, similar to SO model 1. [72]
briefly describes adding risk management as a future direction, and briefly introduces CVaR as
a risk measure. [55] also incorporates charging and discharging risk in a battery energy storage
system, but with a different purpose. In this paper, not the trade-off between risk and profit is
considered, but the focus lies on minimizing system operating costs. However, similar to SO model
1, one bid per time step can be submitted to the market. Then, [89] introduces CVaR for multiple
BESS, and allows multiple values for ζ, one for each BESS. Similar to SO model 1 constructed
in this research, the optimization model proposed in this paper enables one bid per time step for
every battery energy storage system.

Adding the CVaR term to the objective function of SO model 1 ensures that the agent also cares
about minimizing the average costs in scenarios that incur high loss [72, 55]. To add the CVaR risk
measure to SO model 1, the minimization function Fα(x, ζ) is derived for the single bid battery
model application. Adapting the discrete minimization function in Equation 5.5 for the battery
model with scenario-based modeling, the minimization function representing the CVaR is adapted
to:

min
xc,xd,ζ

Fα(x
c, xd, ζ) = ζ +

1

1− α
∑
ω∈Ω∗

S

πω
[
f(xc, xd, cω)− ζ

]+
(7.2)
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In Equation 7.2, f(xc, xd, cω) represents the loss function. cω represents the price uncertainty
realization for scenario ω with corresponding probability πω, for the whole time horizon. The
decision variables xc and xd are incorporated in the loss function because the loss function is a
function of the bid quantities.

It is important to note that the loss function f(x,y) as first introduced in Equation 5.1 represents
the loss function for the whole time horizon of a scenario realization (the aggregate). This is clearly
illustrated in for example [39, 33]. In [33], the random variable y is represented as a factor in the
“total wealth at the end of the examined period”. In other words, the loss function is concerned
with the totality of the examined period. In this research, xc, xd represent the decision variables of
the charging and discharging quantities over the whole time horizon. In this research, yk represents
the LEM price scenario vector cω. k equals ω, namely a price scenario realization. A price scenario
realization is a vector with length T. Hence, the loss function f(x,y) is the aggregate loss over the
complete time horizon (1:T) of SO model 1.

Next, the minimization formula Equation 7.2 is represented as a system of inequalities, via the
introduction of zω. Adding decision variable zω in the objective function and adding the two
constraints in Equation 7.3, the problem remains a linear program. Linearity of the problem
is desired for the tractability of the problem [110]. There are ω auxiliary variables zω, each of
them representing max(0, f(xc, xd, zω)− ζ) of respective scenario ω. In the objective function of
Equation 7.3, each value of zω is multiplied with its scenario probability to obtain the expected
profit of the worst (1-α)× 100% of the uncertainty realizations. The battery model formulation in
Equation 7.3 is used to extend the risk-neutral SO model 1 with a risk attitude:

min
xc,xd,ζ

ζ + 1

1− α
∑
ω∈Ω∗

S

πωzω

 (7.3)

s.t f(xc, xd, cω)− ζ ≤ zω ∀ω
zω ≥ 0 ∀ω

In the next sections, the loss functions f(xc, xd, zω) in Equation 7.3 need further specification.
In this research, the loss function can be two-fold. Namely, the loss is caused by high potential
charging costs of the battery, as well as negative revenue in case of discharging the battery. The
next sections describe the separate risks of charging and discharging, as well as the simultaneous
risk. Namely, the loss function for charging risk, discharging risk, or simultaneous (dis)charging risk
is different. Hence, in the application of the CVaR extensions for SO model 1 from Equation 7.3,
the loss function construction, f(xc, xd, cω), needs adaptation.

7.2.1 SO Model 1 with battery charging risk
To add the CVaR risk measure to SO model 1, the additional minimization term from Equation 7.3
is added to the objective function. In Equation 7.1, the stochastic optimization is formulated as
a minimization problem. Hence, the CVaR term appearing in the new objective function also
represents a minimization problem, formulated as [110, 55, 89, 77]:

min
xd,xc,ζ

β

ζ + 1

1− α
∑
ω∈Ω∗

S

πωzω

 (7.4)

In Equation 7.4, β is the risk parameter, representing the trade-off of the agent between minimizing
risk and minimizing the expected value. In other words, β represents the trade-off between the
expected profit of the agent and its profit variability [23]. The larger β, the more risk-averse the
agent becomes, and more emphasis is put on the CVaR term. β = 0 represents a risk-neutral
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attitude of the agent [72]. As a consequence of the construction of β in the final objective function
(Equation 7.8), β lies within the range 0 and 1.

In addition, zω represent the auxiliary variables, represented for each scenario ω [110, 72]. The loss
function f(xc, cω) for charging risk is represented in Equation 7.5. Here, xd is not present in the
loss function, because the loss function is only concerned with charging bids. The risk of the set of
decision variables xct is represented for the scenario dependent LEM price forecast ct,ω.

f(xc, cω) =

T∑
t=1

ct,ωx
c
t ∀ω (7.5)

Hence, in the case of four scenarios ω = 1, 2, 3, 4, the loss function is constructed for:

f(xc, c1) =

T∑
t=1

ct,1x
c
t

f(xc, c2) =

T∑
t=1

ct,2x
c
t

f(xc, c3) =

T∑
t=1

ct,3x
c
t

f(xc, c4) =

T∑
t=1

ct,4x
c
t

Equation 7.6 is the CVaR constraint that is needed to maintain the linearity of the model. The
risk represents the chance of high charging costs in case of a high local market price ct,ω. Note
here that ζ can be positive or negative.

zω ≥
T∑

t=1

ct,ωx
c
t − ζ ∀ω (7.6)

zω ≥ 0 ∀ω (7.7)

In optimality, zω is constructed as [23, 55]:

zω = [f(xc, cω)− ζ]+ =

[
T∑

t=1

ct,ωx
c
t − ζ

]+

These values of zω for all scenarios ω are normalized in the objective function by multiplying them
with their scenario probability. This is because each of the auxiliary variables zω is concerned with
the loss function of one scenario, and the CVaR term in the objective function determines the
expected profit in the worst (1−α)× 100% of the cases.

Together with the battery constraints as described in Model 1: single bid (base model), SO model
1 with the charging CVaR extension is formulated below. The formulation of SO model 1 with
charging risk is similar to the risk formulation in [110].

min
xc
t ,x

d
t ,u,ζ

(1− β)

 ∑
ω∈Ω∗

S

πω

T∑
t=1

ct,ω
(
xct − xdt

)+ β

ζ + 1

1− α
∑
ω∈Ω∗

S

πωzω

 (7.8)
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T∑
t=1

ct,ωx
c
t − ζ ≤ zω ∀ω (7.9)

xct − xcmax (1− ut) ≤ 0 ∀t (7.10)

xdt − xdmaxut ≤ 0 ∀t (7.11)

et = et−1 + ηc∆tx
c
t −

1

ηd
∆txdt ∀t (7.12)

emin ≤ et ≤ emax ∀t (7.13)

ut ∈ {0, 1} ∀t (7.14)

xct , x
d
t ≥ 0 ∀t (7.15)

zω ≥ 0 ∀ω (7.16)

β ∈ [0, 1] (7.17)

α ∈ (0, 1) (7.18)

7.2.2 SO model 1 with battery discharging risk
This chapter represents the discharging risk of SO model 1 via the CVaR risk measure. The
construction of SO model 1 with the discharging risk is very similar to the charging risk, the
difference lies in the representation of the loss function f(xd, cω) in the CVaR constraint. Note
here that the loss function is only a function of xd and cω, and x

c is not included. This is due to
the fact that this section only incorporates the discharging risk of the model.

To follow the structure of SO model 1 as described in Model 1: single bid (base model), the objective
function is formulated as a minimization problem, similar to [23, 20, 2]:

min
xc
t ,x

d
t ,u,ζ

(1− β)

 ∑
ω∈Ω∗

S

πω

T∑
t=1

ct,ω
(
xct − xdt

)+ β

ζ + 1

1− α
∑
ω∈Ω∗

S

πωzω

 (7.19)

The loss function of discharging risk is represented as:

f(xd, cω) = −
T∑

t=1

ct,ωx
d
t ∀ω (7.20)

Similar to the loss function of charging risk (Equation 7.5), Equation 7.20 has one scenario dependent
stochastic variable (uncertainty), the LEM price ct,ω. The risk of discharging is concerned with
obtaining a lower revenue than expected, since the LEM price ct,ω realization is lower than expected.
Due to the minimization formulation, more loss results in a less negative loss function (larger value).
Accordingly, the CVaR constraints are formulated as:

zω ≥ −
T∑

t=1

ct,ωx
d
t − ζ ∀ω (7.21)

zω ≥ 0 ∀ω (7.22)

The formulation of ζ can be both positive or negative in the CVaR constraint, dependent on whether
the sign of ζ in the objective function is negative or positive. Changing them both accordingly
results in the same optimization problem results, but the sign of ζ reverses. This is allowed since
VaR is defined relative to zero [87]. For coherence, the construction of ζ is kept the same throughout
the research.
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By construction of the stochastic program in case of discharging risk only, in optimality the auxiliary
variable zω is equal to max(0, −

∑T
t=1 ct,ωx

d
t − ζ):

zω = [f(xd, cω)− ζ]+ =

[
−

T∑
t=1

ct,ωx
d
t − ζ

]+
(7.23)

7.2.3 SO model 1 with battery discharging and charging risk
The final extension of SO model 1 is to add simultaneous the discharging and charging risk CVaR
to the optimization model. The formulation is again similar to the previous two sections, only
the loss function in the CVaR constraint changes into Equation 7.24. The loss function of both
discharging and charging risk consists of the addition of the two individual loss functions of previous
two sections. Again, there are ω realizations of the expected LEM price ct,ω, constructing ω loss
functions f(xc, xd, cω).

f(xc, xd, cω) =

T∑
t=1

ct,ω
(
xct − xdt

)
∀ω (7.24)

Implementing the system of inequalities as generally represented in Equation 7.3, the CVaR
constraints become:

zω ≥
T∑

t=1

ct,ω
(
xct − xdt

)
− ζ ∀ω (7.25)

zω ≥ 0 ∀ω (7.26)

By the construction of zω, as the system of inequalities represented in Equation 7.3, in optimality,
the auxiliary variables has ω realizations equal to max(0,

∑T
t=1 ct,ω(x

c
t − xdt )− ζ):

zω = [f(xc, xd, cω)− ζ]+ =

[
T∑

t=1

ct,ω(x
c
t − xdt )− ζ

]+
(7.27)

The final stochastic optimization problem including CVaR for both discharging and charging risk
is represented as:

min
xc
t ,x

d
t ,u,ζ

(1− β)

 ∑
ω∈Ω∗

S

πω

T∑
t=1

ct,ω
(
xct − xdt

)+ β

ζ + 1

1− α
∑
ω∈Ω∗

S

πωzω

 (7.28)

T∑
t=1

ct,ω
(
xct − xdt

)
− ζ ≤ zω ∀ω (7.29)

xct − xcmax (1− ut) ≤ 0 ∀t (7.30)

xdt − xdmaxut ≤ 0 ∀t (7.31)

et = et−1 + ηc∆tx
c
t −

1

ηd
∆txdt ∀t (7.32)

emin ≤ et ≤ emax ∀t (7.33)

ut ∈ {0, 1} ∀t (7.34)

xct , x
d
t ≥ 0 ∀t (7.35)

zω ≥ 0 ∀ω (7.36)

β ∈ [0, 1] (7.37)

α ∈ (0, 1) (7.38)
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7.3 Model 2: multiple bids
This chapter outlines the risk-neutral SO model 2, relaxing the constraint of being able to submit
one price-quantity point per time step to the market operator. Risk-neutral SO model 2 is mainly
based on [50], with some novel additions.

Model 1: single bid (base model) allows the agent to submit one (dis)charging price-quantity point
to the market operator per time step, similar to [59]. According to [37], having more price-quantity
points at the same time step results in equal or higher expected profit in the stochastic optimization
model [50]. Hence, similar to [50], SO model 2 relaxes the constraint of only being able to bid one
(dis)charging quantity-price point per time step to the market operator. For SO model 2, the agent
wants to know the bidding quantity of power to be charged or discharged for every scenario in the
reduced scenario set [23].

In SO model 2, the agent can submit a bid for every reduced scenario ω ∈ Ω∗
S, for every time step

t. The bid price of a price-quantity point in SO model 2 is equal to the corresponding scenario
price. The agent can submit multiple bids at the same time step, upper bounded by the number of
reduced scenarios ΩS∗ . As a result, the discharging decision variable xdt,ω and the charging decision
variable xct,ω are matrices of size T × |ΩS∗ |. Note here that similar to SO model 1, the battery
cannot submit both charging and discharging bids for the same time step. In the objective function
(Equation 7.39), the total expected profit of the agent with the battery asset is determined, over the
day-ahead time horizon. To align with the formulation of SO model 1, the problem is formulated
as a minimization problem.

max
xd,xc

∑
ω∈Ω∗

S

π∗
ω

[
T∑

t=1

ct,ω
(
xdt,ω − xct,ω

)]
⇐⇒ min

xd,xc

∑
ω∈Ω∗

S

π∗
ω

[
T∑

t=1

ct,ω
(
xct,ω − xdt,ω

)]
(7.39)

7.3.1 Battery constraints

Similar to SO model 1, the battery constraints are derived from [110, 72, 44, 105, 59, 102, 19, 50].
For every time t and scenario ω, the binary variable ut ensures the battery is either in a discharging
or charging state [110, 72, 105]. Hence, SO model 2 can submit multiple charging or discharging
price-quantity bids at time t. However, it is not allowed to submit price-quantity points at time t
that are in opposing battery state. Hence, the binary variable only has subscript t. Similar to SO
model 1, the binary variable ut is a decision variable in the final stochastic optimization problem.
The inability to submit opposing bids in SO model 2 is ensured via:

xct,ω − xcmax(1− ut) ≤ 0, ∀t, ω (7.40)

xdt,ω − xdmaxut ≤ 0, ∀t, ω (7.41)

xdt,ω, x
c
t,ω ≥ 0, ∀t, ω (7.42)

xdmax, x
c
max ≥ 0 (7.43)

ut ∈ {0, 1} ∀t, ω (7.44)

In the constraints above, xct,ω and xdt,ω are upper bounded by the maximum charging and discharging

power of the battery xcmax and xdmax, respectively [110, 72, 105, 102]. The decision variables xct,ω
and xdt,ω are lower-bounded by zero.

Furthermore, et,ω represents the state of charge (SOC) for every individual scenario ω at every time
step, meaning that within the time horizon of a scenario, the state of charge of the battery remains
within the capacity bounds (emin and emax) [105, 50, 108]. For every scenario ω, a separate bidding
schedule is created that remains within the state of charge boundaries of the battery. Similar to
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SO Model 1, ηd and ηc represent the discharging and charging efficiency of the battery, and ∆t
represents the time step length [110, 105, 102, 50].

et,ω = et−1,ω + ηcx
c
t,ω∆t−

1

ηd
xdt,ω∆t, ∀t, ω (7.45)

emin ≤ et,ω ≤ emax, ∀t, ω (7.46)

7.3.2 Monotonicity constraints of bidding curves
With the allowance of submitting multiple price-quantity points to the market operator, SO model
2 should create piece-wise constant, monotonic bidding curves for the selling and buying bids
resulting from the model [36]. Hence, different day-ahead price realizations can result in different
(dis)charging quantities submitted to the market at time t [23]. In the case of a selling/discharge
curve, the bidding curve of the agent should be monotonically increasing (non-decreasing) [28].
In the case of a buying/charging curve, the bidding curve of the agent should be monotonically
decreasing (non-increasing) [50, 23, 36]. A monotonically decreasing buying curve is represented as:

When having n price-quantity charge points (P0, x0), (P1, x1), ..., (Pn, xn), monotonically decreasing
means that P0 ≤ P1 ≤ ... ≤ Pn, while x0 ≥ x1 ≥ ... ≥ xn [37].

Similar to [50], SO model 2 adds two decision variables, ∆xct,ω and ∆xdt,ω, that represent the
incremental quantity increase of the bidding curve at time t for buying and selling price-quantity
points in the day-ahead local electricity market. The monotonicity constraints for the bidding
curve are elaborated for the buying curve to clarify the construction of the bidding curves for the
agent. The monotonicity constraints for the selling (discharging) curve work in the exact opposite
direction.

Constructing a monotonically decreasing bidding curve in the case of a charging state of the battery
at time t is performed as follows:

• Sort the scenario price realizations ct,ω at time t from low to high. Here, Ot,ω is used to
represent the ranking of the scenario price realization, meaning that the lowest scenario
price realization is ranked as Ot,ω = 1 and the highest scenario price realization is ranked as
Ot,ω = Omax

t [50].

• Two distinct scenarios (ω and ω′) with the same price realization obtain the same ranking
Ot,ω = Ot,ω. When having two equal price realizations, the scenario with the lowest index
number is added to the distinct scenario subset Ωdist

t . For example, when ω = 1 and ω = 4
have the same price realization for time t = 4, ω = 1 is added to the distinct scenario set
Ωdist

4 .

• Lastly, starting from Omax
t , the quantity xct,ω is determined via the optimization model.

Next, the scenario with the second highest price realization is considered, and again xct,ω is
constructed. For this scenario, the bid quantity equals the bid quantity of the Omax

t scenario
plus its incremental quantity increase ∆xct,ω. In other words, the bidding quantity of scenario
ω at time step t is equal or larger than the buying bidding quantity of scenario ω′, which is
the scenario closest to ω with higher scenario price realization [50]. This iteration continues
for all other scenarios, in descending price order.

Mathematically, the monotonicity constraints for the buying curve are ensured via [50]:

xct,ω = ∆xct,ω ∀ω ∈ Ωdist
t , t : Ot,ω = Omax

t (7.47)

xct,ω = xct,ω′ +∆xct,ω ∀(ω, ω′) ∈ Ωdist
t , t : Ot,ω′ = Ot,ω + 1 ∧ 1 < Ot,ω′ ≤ Omax

t (7.48)

∆xct,ω ≥ 0 ∀ω ∈ Ωdist
t (7.49)

The constraints above are illustrated in Figure 3. Here, the black price-quantity point is considered
first, since this is the scenario with the highest price. Then the blue price-quantity point, and
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lastly the red price-quantity point is considered. Note here that the blue price-quantity point
has zero incremental quantity increase (∆xct,ω = 0 compared to the black price-quantity point.
The red price-quantity point has a non-zero incremental quantity increase compared to the blue
price-quantity point. Elaboration on the meaning of having (non-)zero incremental quantity increase
∆xct,ω and ∆xdt,ω is stated in the Active price-quantity point constraints.

Figure 3: Mathematical construction for buying price-quantity points of a buying curve [50]

Similar constraints are constructed for the selling (discharge) monotonic bidding curve. Instead of
iterating through the scenario realizations from the highest to the lowest scenario price, the selling
bidding curve iterates through the scenarios from the lowest to the highest scenario prices. Hence,
Ot,ω can be used reversely for the selling bidding curve. The mathematical construction of the
constraints is represented as [50]:

xdt,ω = ∆xdt,ω ∀ω ∈ Ωdist
t , t : Ot,ω = 1 (7.50)

xdt,ω = xdt,ω′ +∆xdt,ω ∀(ω, ω′) ∈ Ωdist
t , t : Ot,ω = Ot,ω′ + 1 ∧ 1 < Ot,ω ≤ Omax

t (7.51)

∆xdt,ω ≥ 0 ∀ω ∈ Ωdist
t (7.52)

7.3.3 Non-anticipativity constraints
The reduced scenario set Ω∗

S may have different scenarios with an identical local market price
forecast at time t, denoted as ct,ω. The non-anticipativity constraints ensure that having an equal
local market price prediction for two different scenarios at time t (ct,ω = ct,ω′) results in equal
bidding quantity at time t (xct,ω = xct,ω′ and xdt,ω = xdt,ω′) for both price-quantity points for buying
and selling power [23, 50, 28]. With this construction, ω is in the distinct scenario set, while
ω′ represents the scenarios not part of the distinct scenario set. As elaborated in Monotonicity
constraints of bidding curves, the distinct scenario set (Ωdist

t ) is constructed with the notion that
in case of similar price realizations for different scenarios, the scenario with the lowest index
is added to the distinct scenario set Ωdist

t . Hence, in the construction of the non-anticipativity
constraints, having ct,ω = ct,ω′ automatically ensures that ω ∈ Ωdist

t and ω′ /∈ Ωdist
t , as well as

ω′ > ω. Mathematically, the non-anticipativity constraints are constructed as [50]:

xct,ω = xct,ω′ ∀ω ∈ Ωdis
t , ω′ > ω, t, ct,ω = ct,ω′ (7.53)

xdt,ω = xdt,ω′ ∀ω ∈ Ωdis
t , ω′ > ω, t, ct,ω = ct,ω′ (7.54)
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7.3.4 Active price-quantity point constraints
In Monotonicity constraints of bidding curves, the meaning of ∆xct,ω and ∆xdt,ω is provided. In the
constraints described in this section, the distinction between an active price-quantity point and an
inactive price-quantity point is made.

When ∆xct,ω (∆xdt,ω) exceeds the minimum threshold quantity (∆xmin), the price-quantity point
of the corresponding bid is a corner point on the constructed buying (selling) curve. When a
charging bid ∆xct,ω or a discharging bid ∆xdt,ω exceeds the minimum threshold quantity, the
price-quantity point of the corresponding bid is called an ’active’ bid. When a charging bid ∆xct,ω or

a discharging bid ∆xdt,ω is lower than the minimum threshold quantity, the price-quantity point of
the corresponding bid is called an ’inactive’ bid [50]. Inactive price-quantity points do not creative
new corner points on the bidding curves. For example, in Figure 3 the blue price-quantity point
represents an inactive price-quantity point. As stated in [50], inactive price-quantity points do not
add information to the bidding curves.

Two binary variables are introduced to represent whether the price-quantity point is active
or inactive. Y c

t,ω and Y d
t,ω are equal to 1 in case of an active price-quantity point (meaning

∆xct,ω ≥ ∆xmin or xdt,ω ≥ ∆xmin), and 0 in case of an inactive price-quantity point [50]. In Figure 3,
the red price-quantity point has an incremental bidding quantity of non-zero. In addition, ∆xmin

is considered very small in this example. As a result, the red price-quantity point is an active
price-quantity point. In the constraints below, the upper bound of the incremental bidding quantity
∆xct,ω and ∆xdt,ω is represented by large numbers M c

x and Md
x , respectively [50].

Due to the Non-anticipativity constraints, different scenarios ω with the same local price prediction
at time t are enforced to have the same bidding quantities (xct,ω and xdt,ω) [23, 50, 28]. The active
price-quantity point constraints are constructed in a way that only scenarios in the distinct scenario
set Ωdist

t can have non-zero incremental bidding quantities (∆xct,ω and ∆xdt,ω) and hence be active
price quantity points. To illustrate, having two scenarios ω and ω′ with equal price prediction for
time t, where ω′ > ω, the scenario with the lowest index number (ω) can be an active price-quantity
point, while the scenario with the higher index number (ω′) is never an active price-quantity point.

Mathematically, the active price-quantity point constraints are represented as [50]:

∆xmin Y
c
t,ω ≤ ∆xct,ω ≤M c

x Y
c
t,ω ∀ω ∈ Ωdist

t , t (7.55)

∆xmin Y
d
t,ω ≤ ∆xdt,ω ≤Md

x Y d
t,ω ∀ω ∈ Ωdist

t , t (7.56)

7.3.5 State of charge constraint of active price-quantity points
The SO models considered in this research only consider a BESS asset for a single agent. Hence,
after constructing the bidding curves for the agent owning the battery, the battery should remain
within its capacity bounds (emin and emax) during the whole time horizon. After all, the battery
cannot discharge more than the capacity that empties the battery at time t.

As previously described in the state of charge constraint Equation 7.45, every scenario in itself
should remain within the capacity bounds of the battery during the whole time horizon. If this
is not the case, the limitation arises that there is an asymmetrical incentive for charging and
discharging the battery. If not every individual scenario should remain within the capacity bounds
of the battery, there is an incentive to have multiple discharging bids at time t because this directly
adds revenue to the agent. However, in the charging state of the battery, the agent would never
submit multiple price-quantity points at time t since this only adds costs to the objective function.
Hence, it is important to have a state of charge constraint for every scenario separately (et,ω.
However, since the BESS asset is the only asset considered in this research, there should also be a
constraint that targets the capacity of the battery from an aggregate perspective. Hence, this SoC
(et) targets the overall state of charge constraint for the time horizon. This is different from the
bidding model constructed in [50], where multiple assets are considered.

When actually submitting the price-quantity points to the market operator, care should be given
to the active price-quantity points that represent the corner points on the bidding curves. It is
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important to note that the actual price-quantity points that are submitted to the market operator are
the incremental quantity increases (∆xct,ω and ∆xdt,ω) together with their corresponding scenario
prices. Hence, the state of charge over time et, dropping the scenario index, is influenced by the
incremental quantities of the price-quantity points (∆xct,ω and ∆xdt,ω).

et = et−1 + ηc∆t
∑

ω∈Ωdis
t

∆xct,ω −
1

ηd
∆t

∑
ω∈Ωdis

t

∆xdt,ω ∀t (7.57)

emin ≤ et ≤ emax ∀t (7.58)

7.3.6 SO model 2 mathematical overview

min
xd,xc

∑
ω∈Ω∗

S

π∗
ω

[
T∑

t=1

ct,ω
(
xct,ω − xdt,ω

)]
(7.59)

Battery constraints 

xct,ω − xcmax(1− ut) ≤ 0, ∀t, ω
xdt,ω − xdmaxut ≤ 0, ∀t, ω
xdt,ω, x

c
t,ω ≥ 0, ∀t, ω

xdmax, x
c
max ≥ 0

ut ∈ {0, 1} ∀t, ω

et,ω = et−1,ω + ηcx
c
t,ω∆t−

1

ηd
xdt,ω∆t, ∀t, ω

emin ≤ et,ω ≤ emax, ∀t, ω

Monotonicity constraints

xct,ω = ∆xct,ω ∀ω ∈ Ωdist
t , t : Ot,ω = Omax

t

xct,ω = xct,ω′ +∆xct,ω ∀(ω, ω′) ∈ Ωdist
t , t : Ot,ω′ = Ot,ω + 1 ∧ 1 < Ot,ω′ ≤ Omax

t

∆xct,ω ≥ 0 ∀ω ∈ Ωdist
t

xdt,ω = ∆xdt,ω ∀ω ∈ Ωdist
t , t : Ot,ω = 1

xdt,ω = xdt,ω′ +∆xdt,ω ∀(ω, ω′) ∈ Ωdist
t , t : Ot,ω = Ot,ω′ + 1 ∧ 1 < Ot,ω ≤ Omax

t

∆xdt,ω ≥ 0 ∀ω ∈ Ωdist
t

Non-anticipativity constraints{
xct,ω = xct,ω′ ∀ω ∈ Ωdis

t , ω′ > ω, t, ct,ω = ct,ω′

xdt,ω = xdt,ω′ ∀ω ∈ Ωdis
t , ω′ > ω, t, ct,ω = ct,ω′

Active price-quantity point constraints{
∆xmin Y

c
t,ω ≤ ∆xct,ω ≤M c

x Y
c
t,ω ∀ω ∈ Ωdis

t , t

∆xmin Y
d
t,ω ≤ ∆xdt,ω ≤Md

x Y d
t,ω ∀ω ∈ Ωdis

t , t

State of charge constraints of active price-quantity points
et = et−1 + ηc∆t

∑
ω∈Ωdis

t

∆xct,ω −
1

ηd
∆t

∑
ω∈Ωdis

t

∆xdt,ω ∀t

emin ≤ et ≤ emax ∀t
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7.4 Model 2 with risk management
This chapter extends the risk-neutral SO model 2 as elaborated in Model 2: multiple bids to account
for the risk-attitude of the agent owning the battery asset. SO model 2 allows submitting multiple
bids at the same time step, one for every reduced scenario ω ∈ Ω∗

S . The objective function and
constraints for the risk-neutral SO model 2 are represented in SO model 2 mathematical overview.
Similar to Model 1 with risk management, this chapter starts with formulating the stochastic
problem with charging risk, then discharging risk, and lastly with simultaneous charging and
discharging risk. Adding risk to SO model 2 is newly derived in this research.

Examining existing literature on risk management for a stochastic bidding model that allows for
multiple price-quantity point submissions per time step, literature is limited. [2] serves as a base for
the risk management extension of SO model 2 since this paper has the ability to submit multiple
bids per time step. In [2], a wind power producer with a battery energy storage system (BESS)
participates in the day-ahead and real-time energy market. Risk management is added to deal
with uncertain wind power generation and electricity prices. Lastly, [108] formulates CVaR for an
integrated energy system, including amongst others a battery storage system, where the problem is
formulated as a two-stage optimization problem. Similar to [2], SO model 2 can submit multiple
bids per time step.

The methodology of adding the risk attitude of the agent to SO model 2 is very similar to Model
1 with risk management. The difference between these models is that SO model 1 considers the
decision variables xct and xdt , while SO model 2 considers xct,ω and xdt,ω. Consequently, the loss

functions f(xc, xd, zω) are different for SO models 1 and 2, since the expected costs are constructed
differently (Equation 7.1 and Equation 7.39). The meaning of a bid quantity xct,ω or xdt,ω is

interpreted in a different way than for SO model 1 (xct , x
d
t ). Namely, SO model 2 allows multiple

price-quantity points per time step, where the increments of the price-quantity points are the
actual bid quantities submitted to the market operator. As a result, the CVaR constraint that is
added to maintain the linearity of the problem is formulated differently from SO model 1 with risk
management, because of the difference in the loss function construction f(x,y).

Similar to Model 1 with risk management, the loss functions are different for charging risk,
discharging risk, and simultaneous charging and discharging risk. Despite the different loss functions,
the CVaR term that is added to the objective function of SO model 2 is similar to Model 1 with
risk management. The general form of incorporating CVaR into a stochastic program is introduced
in Model 1 with risk management, and is also applicable for SO model 2 with risk management.
The general formulation is represented in Equation 7.3, containing an additional objective term
and two constraints. In the following sections, the loss functions require more specification.

As mentioned in Model 1 with risk management, the loss function f(xc, xd, cω) constructs the loss
over the aggregate time horizon (t = 1:T). This also applies to the CVaR formulation in SO model
2. As a result, zω remains with only the scenario index in SO model 2, and ζ remains to be one
value, which equals the VaR in optimality [86, 90]. The following sections derive the loss functions
specifically for the incorporated type of risk; charging risk, discharging risk, and simultaneous
charging and discharging risk, and formulate the stochastic programs accordingly.

7.4.1 SO model 2 with battery charging risk

To illustrate the construction of the loss function for SO model 2 with charging risk (f(xc, cω)),
an example is constructed. Suppose scenarios ω = 1, 2, 3 are present and only one time step is
considered. Hence, the aggregate of the loss function consists of time step 1 only. Only charging
risk is considered here, potentially having bid quantities xc1,1, x

c
1,2, and x

c
1,3. The expected costs

are calculated as:

exp. costs =
∑

ω∈1,2,3

πωct,ωx
c
t,ω

= π1c1,1x
c
1,1 + π2c1,2x

c
1,2 + π3c1,3x

c
1,3 (7.60)
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In Equation 7.60, the three scenario price realizations c1,1, c1,2, and c1,3 are used to construct the
expected costs. However, for the construction of the loss function all the bids of time step 1 will
acquire only one scenario price realization (either c1,1, c1,2, or c1,3), against which all the bids of
time step 1 will be submitted.

Hence, the construction of the loss function f(xc, c1) for scenario 1 is constructed in Equation 7.61.
Here, the three terms all have the same uncertainty realization, namely c1,1. Here, for the loss
function in Equation 7.61, the sum of πω is equal to 1, meaning that all charging bid quantities
(xc1,ω) are taken into account. However, it is important to note that not all price scenario realizations
are taken into account into Equation 7.61. The scenario price is the uncertainty in the loss function,
and hence there are ω different loss functions to be constructed, one for each scenario price.

f(xc, c1) = π1c1,1x
c
1,1 + π2c1,1x

c
1,2 + π3c1,1x

c
1,3 (7.61)

For completeness, the loss functions of scenarios 2 and 3 are presented below:

f(xc, c2) = π1c1,2x
c
1,1 + π2c1,2x

c
1,2 + π3c1,2x

c
1,3 (7.62)

f(xc, c3) = π1c1,3x
c
1,1 + π2c1,3x

c
1,2 + π3c1,3x

c
1,3 (7.63)

To generalize above example, the loss function for charging risk in SO model 2 is expressed as:

f(xc, cω) =

T∑
t=1

ct,ω

 ∑
ω∈Ω∗

S

πωx
c
t,ω

 ∀ω (7.64)

In Equation 7.65, the uncertainty cω is outside of the scenario aggregation
∑

ω∈Ω∗
S
πωx

c
t,ω, since a

loss function realization f(xc, cω) of uncertainty cω represents one scenario realization. Still, within
one loss function realization, it is important to take into account all scenario charging bids xct,ω,
normalizing them with corresponding scenario probability. To clarify, instead of using ω, ω′ is
used to represent the scenario probabilities in Equation 7.65. This is done to illustrate that the
probabilities used in the

∑
ω∈Ω∗

S
term are different from the probability used in ct,ω. However,

it should be noted that it holds that ω, ω′ ∈ Ω∗
S . Adding the prime to the ω symbol is purely

illustrative, but does not change the scenario set and corresponding probabilities.

f(xc, cω) =

T∑
t=1

ct,ω

 ∑
ω′∈Ω∗

S

πω′xct,ω′

 ∀ω (7.65)

Then, similar to SO model 1, the construction of zω in optimality is equal to:

zω = [f(xc, cω)− ζ]+ =

 T∑
t=1

ct,ω

 ∑
ω′∈Ω∗

S

πω′xct,ω′

− ζ
+

∀ω (7.66)

zω is constructed with the loss function f(xc, cω) of only the price uncertainty of particular scenario
ω: ct,ω. Since price uncertainty ct,ω corresponds to specific scenario probability πω, the values of
zω are scenario dependent, and need to be normalized in the objective function to incorporate the
scenario probability of a certain scenario price ct,ω. This explains the ’double’ presence of πω, both
present in the objective function (Equation 7.67) and the CvaR constraint (Equation 7.68). In the
CvaR constraint Equation 7.68, all scenarios ω′ are considered in the term

∑
ω′∈Ω∗

S
πω′xct,ω′ , due to

incorporating all charging bids at time t. In Equation 7.68, ct,ω is outside of this inner term, and
hence the scenario price ct,ω is for a specific ω, with scenario probability πω. This is normalized in
the objective function to construct the expected costs in the worst (1− α)× 100% cases. Similar
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to Model 1 with risk management, the construction of β in the objective function adjusts the risk
attitude of the agent.

Besides these additions, the constraints represented in SO model 2 mathematical overview remain.

min
xc
t ,x

d
t ,u,ζ

(1− β)

 ∑
ω∈Ω∗

S

πω

T∑
t=1

ct,ω
(
xct,ω − xdt,ω

)+ β

ζ + 1

1− α
∑
ω∈Ω∗

S

πωzω

 (7.67)

zω ≥

 T∑
t=1

ct,ω

 ∑
ω′∈Ω∗

S

πω′xct,ω′

− ζ ∀ω (7.68)

zω ≥ 0 ∀ω (7.69)

7.4.2 SO model 2 with battery discharging risk
SO model 2 with battery discharging risk is equal to SO model 2 with battery charging risk, apart
from the loss function representing a different function. The objective function and two CVaR
constraints as represented in Equation 7.3 also apply to SO model 2 with discharging risk. To
construct the loss function for the discharging risk, it is important to recognize that the example
from the charging risk section of SO model 2 also applies to the discharging risk. Hence, full
elaboration on the construction of the loss function of SO model 2 can be found in SO model 2
with battery charging risk. However, the distinction between the loss function of charging risk and
discharging risk is that only discharging bids are taken into account in the loss function f(xd, cω),
and not charging bids. Hence, the loss function of the battery discharging risk is represented as:

f(xd, cω) = −
T∑

t=1

ct,ω

 ∑
ω′∈Ω∗

S

πω′xdt,ω′

 ∀ω (7.70)

Similar to the charging risk, ω′ is used to illustrate the difference between the scenarios within the
aggregate term

∑
ω′∈Ω∗

S
and the single scenario meant for the LEM price uncertainty (ct,ω). By

construction, zω represents max(0, −
∑T

t=1 ct,ω
∑

ω′∈Ω∗
S
πω′xdt,ω′ − ζ). Alternatively written, zω is

represented as:

zω = [f(xd, cω)− ζ]+ =

− T∑
t=1

ct,ω

 ∑
ω′∈Ω∗

S

πω′xdt,ω′

− ζ
+

∀ω (7.71)

To conclude, the objective function and the two CVaR constraints are represented next, incorporating
the loss function from Equation 7.70:

min
xc
t ,x

d
t ,u,ζ

(1− β)

 ∑
ω∈Ω∗

S

πω

T∑
t=1

ct,ω
(
xct,ω − xdt,ω

)+ β

ζ + 1

1− α
∑
ω∈Ω∗

S

πωzω

 (7.72)

zω ≥

− T∑
t=1

ct,ω

 ∑
ω′∈Ω∗

S

πω′xdt,ω′

− ζ ∀ω

zω ≥ 0 ∀ω

The rest of the original constraints in SO model 2 mathematical overview remain.
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7.4.3 SO model 2 with battery discharging and charging risk
The final extension of SO model 2 is to incorporate simultaneous charging and discharging risk of
the battery. The loss function is different compared to the previous two sections. However, the
objective function and two CVaR constraints from Equation 7.3 also apply for this extension.
Elaboration on the construction of the loss function for SO model 2 is stated in SO model 2 with
battery charging risk. The loss function is the summation of the two previous loss functions, for
charging and discharging separately. Again, ω′ is used to denote the difference between the one
particular scenario meant in ct,ω and the aggregate scenario term

∑
ω′∈Ω∗

S
πω′(xct,ω′ − xdt,ω′). Hence,

the loss function for simultaneous charging and discharging risk is represented as:

f(xc, xd, cω) =

T∑
t=1

ct,ω

 ∑
ω′∈Ω∗

S

πω′
(
xct,ω′ − xdt,ω′

) ∀ω (7.73)

By construction, zω is introduced to linearize the problem, and can be formulated as max(0,∑T
t=1 ct,ω

∑
ω′∈Ω∗

S
πω′

(
xct,ω′ − xdt,ω′

)
− ζ). Alternatively written, zω is represented as:

zω = [f(xc, xd, cω)− ζ]+ =

 T∑
t=1

ct,ω

 ∑
ω′∈Ω∗

S

πω′
(
xct,ω′ − xdt,ω′

)− ζ
+

∀ω (7.74)

The rest of the original constraints in SO model 2 mathematical overview remain. The final
objective function including the simultaneous charging and discharging risk term and the two
CVaR constraints is represented as:

min
xc
t ,x

d
t ,u,ζ

(1− β)

 ∑
ω∈Ω∗

S

πω

T∑
t=1

ct,ω
(
xct,ω − xdt,ω

)+ β

ζ + 1

1− α
∑
ω∈Ω∗

S

πωzω

 (7.75)

zω ≥

 T∑
t=1

ct,ω

 ∑
ω′∈Ω∗

S

πω′
(
xct,ω′ − xdt,ω′

)− ζ ∀ω

zω ≥ 0 ∀ω
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8 Robust optimization applied to battery asset modeling
In this chapter, the general robust optimization model as derived in Uncertainty set modeling
(Equation 6.13) is applied to model the robust problem of the agent owning the BESS asset,
participating in the LEM day-ahead market. This application of the general robust optimization
model is newly derived in this research.

In this section, two decision variables xcj and xdj are introduced, representing the non-negative
charge and discharge quantities respectively. This is different from the formulation in Uncertainty
set modeling, where xj could take negative values. Similar to before, c̄j represents the non-negative
mean local electricity price, where dj represents the non-negative deviation from the mean point
forecast c̄j .

The goal of the optimization problem is to minimize the cost of charging the BESS, while maximizing
the revenue obtained when discharging the battery [72]. Incorporating the price uncertainty in the
robust optimization problem, similar to Uncertainty set modeling, the objective function of the
robust optimization problem in the application of a BESS asset is formulated as:

min
xd,xc

 n∑
j=1

c̄j
(
xcj − xdj

)
+ max

z0∈Z0

n∑
j=1

djx
c
jz0j + max

z0∈Z0

n∑
j=1

djx
d
jz0j

 (8.1)

where Z0 is formulated as:

Z0 =

{
z0

∣∣∣∣∣ |z0j | ≤ 1,∀j,
n∑

j=1

|z0j | ≤ Γ0

}
(8.2)

The interpretation of each term in Equation 8.1 is formulated as:

• c̄j
(
xcj − xdj

)
: this term represents the mean cost of charging and the mean revenue of

discharging the BESS.

• maxz0∈Z0

∑n
j=1 djx

c
jz0j : this term represents the worst-case scenario of the charging cost xcj ,

where maximum cost is considered. In the case of the battery, worst-case charging cost is the
result of a high local market price.

• maxz0∈Z0

∑n
j=1 djx

d
jz0j : this term represents the worst-case scenario of the discharging

revenue, maximizing the loss from discharging the battery compared to the mean forecasted
local price. This term works in the opposite of revenue, making it a positive term in
Equation 8.1.

The next two subsections elaborate on the derivation of the objective function described in
Equation 8.1. From now on, the robust optimization problem is adapted to incorporate time
evolution. In addition, the local market price forecast c̄ consists of one value for each time step.
Hence, for the time span of 24 hours with hourly local market price updates, c̄ becomes a horizontal
vector of 24x1 values. Hence, Equation 8.1 and Equation 8.2 are reformulated into Equation 8.3
and Equation 8.4 to clearly indicate the inclusion of time. When incorporating time, the budget of
uncertainty Γ0 becomes an integer defined on the interval [0,T] instead of [0,n].

min
xd,xc

(
T∑

t=1

c̄t
(
xct − xdt

)
+ max

z0∈Z0

T∑
t=1

dtx
c
tz0t + max

z0∈Z0

T∑
t=1

dtx
d
t z0t

)
(8.3)

where Z0 is formulated as:

Z0 =

{
z0

∣∣∣∣∣ |z0t| ≤ 1,∀j,
T∑

t=1

|z0t| ≤ Γ0

}
(8.4)
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8.1 Charging state of BESS
For the charging state of the battery, the optimization problem is similar to the general formulation
from Uncertainty set modeling. The only difference is the feasibility of xct , because in Equation 8.5
xct is non-negative. This eliminates the need for the absolute value around xct . In Equation 8.5, the
goal is to minimize the cost of charging the battery, and the ’worst-case’ situation represents high
charging costs for the agent. This optimization problem is formulated as:

min
xc

(
T∑

t=1

c̄tx
c
t + max

z0∈Z0

T∑
t=1

dtx
c
tz0t

)

s.t.

T∑
t=1

aitx
c
t ≤ bi ∀i,

xct ≥ 0, ∀t (8.5)

The procedure from Robust modeling of price uncertainty is followed, where the sub maximization
problem is transformed in a tractable, linear sub-problem [13, 11, 12, 18, 34].

max
z0∈Z0

T∑
t=1

dtx
c
tz0t ⇐⇒ max

z0

T∑
t=1

dtx
c∗
t z0t ⇐⇒ min

p0,q0
Γ0p0 +

T∑
t=1

q0t

s.t.

T∑
t=1

z0t ≤ Γ0 s.t. p0 + q0t ≥ dtxc∗t

0 ≤ z0t ≤ 1 q0t, p0, x
c∗
t ≥ 0

The final robust linear problem is formulated similarly to Equation 6.13. In Equation 8.6, p and q
are the dual variables introduced in the dual subproblem.

min
xc,q0,p0

T∑
t=1

ctx
c
t + p0Γ0 +

T∑
t=1

q0t

s.t.

T∑
t=1

aitx
c
t ≤ bi, i = {1, ...,m}

p0 + q0t ≥ dtxct ∀t ∈ T
q0t, x

c
t ≥ 0 ∀t ∈ T

p0 ≥ 0 (8.6)

8.2 Discharging state of BESS
The goal of the discharging state of the battery is to maximize the revenue obtained by selling
energy at the local market price ct. Hence, if the discharging state is represented as a maximization
problem, the sub-problem worst-case scenario represents negative revenue, because the possible
downward deviation from the nominal value of the local price at time t (c̄t), is added to the cost of
the agent (revenue loss).

The objective function of the discharging state of the battery is:

max
xd

(
T∑

t=1

c̄tx
d
t − max

z0∈Z0

T∑
t=1

dtx
d
t z0t

)
⇐⇒ max

xd

(
T∑

t=1

c̄tx
d
t + min

z0∈Z0

T∑
t=1

dtx
d
t z0t

)
(8.7)

Similarly, when transforming the maximization objective functions in Equation 8.7 into a mini-
mization objective function, the similarity with the charging state of the battery is achieved:
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min
xd

(
−

T∑
t=1

c̄tx
d
t + max

z0∈Z0

T∑
t=1

dtx
d
t z0t

)

s.t.

T∑
t=1

aitx
d
t ≤ bi, ∀i,

xdt ≥ 0, ∀t (8.8)

In Equation 8.8, the minimization sub-problem has decision variable z0, where the values of z0t can
be both positive and negative, for all t. Finding the maximum over the term dtx

d
t z0t then results

in a positive term, where xdt and dt are always non-negative and the decision variable z0t becomes
positive. As a result, the total sub-problem maximization term is positive in Equation 8.8, which
satisfies the goal of finding the ’worst-case scenario’ in terms of revenue loss.

The procedure from Robust modeling of price uncertainty is followed, where the sub maximization
problem is transformed in a tractable, linear sub-problem [13, 11, 12, 18, 34]. Similar to the charging
state problem, the absolute value surrounding xdt is dropped due to the restriction of xdt being
non-negative. k and l are the dual variables from the sub-problem.

max
z0∈Z0

T∑
t=1

dtx
d
t z0t ⇐⇒ max

z0

T∑
t=1

dtx
d∗
t z0t ⇐⇒ min

k0,l0
Γ0k0 +

T∑
t=1

l0t

s.t.

T∑
t=1

z0t ≤ Γ0 s.t. k0 + l0t ≥ dtxd∗t

0 ≤ z0t ≤ 1 l0t, k0, x
d∗
t ≥ 0

The final robust linear problem is formulated similarly to Equation 6.13. Looking at the objective
function of Equation 8.9, it makes sense that the two terms with the dual variables are positive,
meaning that these two terms work in the opposite direction of the mean revenue term (−

∑T
t=1 ctx

d
t ).

(k0Γ0) and (
∑T

t=1 l0t) add costs to the objective function in the form of revenue loss.

min
xd,l0,k0

−
T∑

t=1

ctx
d
t + k0Γ0 +

T∑
t=1

l0t (8.9)

s.t.

T∑
t=1

aitx
d
t ≤ bi, i = {1, ...,m}

k0 + l0t ≥ dtxdt ∀t ∈ T
l0t, x

d
t ≥ 0 ∀t ∈ T

k0 ≥ 0

8.3 Simultaneous charging and discharging state of battery
As can be seen in Equation 8.3, the combination of charging and discharging the battery in the
objective function results in one overall minimization problem, containing two sub-maximization
problems:

min
xd,xc

(
T∑

t=1

c̄t
(
xct − xdt

)
+ max

z0∈Z0

T∑
t=1

dtx
c
tz0t + max

z0∈Z0

T∑
t=1

dtx
d
t z0t

)
(8.10)

In this section, the distinction is made between the budget of uncertainty for the discharging
and charging state of the battery (Γ0d and Γ0c). As a result of having two risk parameters, the
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risk attitude of the decision-maker in the charging state of the battery can be different from the
discharging state of the battery. Based on Equation 8.6 and Equation 8.9, the objective function
containing both the worst-case discharging and charging state of the BESS is transformed into a
robust, linear problem in Equation 8.11.

min
xd,xc,u,q0,p0,k0,l0

(
T∑

t=1

c̄t
(
xct − xdt

)
+

(
p0Γ0c +

T∑
t=1

q0t

)
+

(
k0Γ0d +

T∑
t=1

l0t

))
(8.11)

The dual constraints from Equation 8.6 and Equation 8.9 are combined into the following set of
constraints:

p0 + q0t ≥ dtxct , ∀t k0 + l0t ≥ dtxdt , ∀t (8.12)

q0t, x
c
t ≥ 0, ∀t l0t, x

d
t ≥ 0, ∀t (8.13)

p0 ≥ 0 k0 ≥ 0 (8.14)

In the dual constraints, xct (xdt ) is equal to zero when the battery is discharging (charging). Hence,
in the charging state, the constraint k0 + l0t ≥ dtx

d
t is always satisfied, while in the discharging

state, the constraint p0 + q0t ≥ dtx
c
t is always satisfied. This is true since the dual variables are

non-negative.

Additionally, battery constraints are added to the optimization problem, where the binary variable
uj is inserted to denote the state of the battery [110, 105]. ut = 0 represents the charging state of
the battery at time t, and ut = 1 represents the discharging state of the battery at time t. Here,
when the battery is discharging, xct is forced to zero. The reverse also holds, because when the
battery is charging, xdt is forced to zero by the construction of the constraints:

xct − xcmax (1− ut) ≤ 0, ∀t xdt − xdmaxut ≤ 0, ∀t (8.15)

ut ∈ {0, 1} ∀t (8.16)

To incorporate the state of charge (SoC) of the BESS, the energy efficiency of charging and
discharging is denoted as ηc and ηd respectively [110, 105]. Then, the variable et is used to represent
the state of charge (SoC) of the BESS at time t. The stored energy in the battery always lies within
the lower and upper bound emin and emax [110, 59, 7, 54, 79]:

et = et−1 + ηcx
c
t∆t−

1

ηd
xdt∆t, ∀t (8.17)

emin ≤ et ≤ emax, ∀t (8.18)

ut ∈ {0, 1}, ∀t (8.19)

et ≥ 0, ∀t (8.20)

The following parameters are predefined and serve as input to the optimization problem: c̄t (mean
local price forecast), dt ((standard) deviation from mean local price forecast), Γ0d (budget of
uncertainty for discharging state), Γ0c (budget of uncertainty for charging state), xcmax (maximum
charge power), xdmax (maximum discharge power), e0 (initial state of charge), emin (minimum
stored energy in the battery), emax (maximum stored energy in the battery), ηc (efficiency of
charging battery), ηd (efficiency of discharging battery).

8.3.1 Case: identical budget of uncertainties
When investigating combined charge and discharge budgets of uncertainty, this case represents
them to be equal. This case is used throughout the rest of this research, to obtain the numerical
results. In this case, Γ0c = Γ0d = Γ0. Then, only one budget of uncertainty (Γ0) is selected by
the agent owning the BESS, covering both the charging and discharging state of the battery.
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Consequently, the agent has the same risk attitude for both charging and discharging the BESS.
Next, the robust optimization problem from previous chapter, formulated in Equation 8.11 until
Equation 8.20, can be simplified into the problem derived in this chapter. Due to the equality of
the budgets of uncertainties, two dual variables are present instead of four. Also, the formulation of
Equation 8.10 containing the two maximization sub-problems is converted into one maximization
sub-problem in Equation 8.21.

min
xc
t ,x

d
t

(
T∑

t=1

c̄t
(
xct − xdt

)
+ max

z0∈Z0

T∑
t=1

dtz0t
(
xct + xdt

))
(8.21)

In Equation 8.21, only one budget of uncertainty can be appointed, instead of the two separate
budgets of uncertainty for the discharging and charging state of the battery in Equation 8.11.
Similar to before, the maximization term is rewritten into its robust counterpart, and using duality
theory it is converted into a tractable sub-problem.

max
z0∈Z0

T∑
t=1

dtz0t
(
xdt + xct

)
⇐⇒ max

z0

T∑
t=1

dtz0t
(
xd∗t + xc∗t

)
⇐⇒ min

p0,q0
Γ0p0 +

T∑
t=1

q0t

s.t.

T∑
t=1

z0t ≤ Γ0 s.t. p0 + q0t ≥ dt
(
xd∗t + xc∗t

)
0 ≤ z0t ≤ 1 q0t, p0, x

d∗
t , x

c∗
t ≥ 0

Finally, the combined robust optimization problem with one budget of uncertainty Γ0 becomes:

min
xd,xc,u,q0,p0

(
T∑

t=1

c̄t
(
xct − xdt

)
+

(
p0Γ0 +

T∑
t=1

q0t

))
(8.22)

p0 + q0t ≥ dt
(
xct + xdt

)
, ∀t et = et−1 + ηcx

c
t∆t−

1

ηd
xdt∆t, ∀t

xct − xcmax(1− ut) ≤ 0, ∀t, emin ≤ et ≤ emax, ∀t
xdt − xdmaxut ≤ 0, ∀t et ≥ 0, ∀t
q0t, x

c
t , x

d
t ≥ 0, ∀t, p0 ≥ 0

ut ∈ {0, 1}, ∀t

As opposed to the final robust optimization problem formulated in Simultaneous charging and
discharging state of battery, this special case deals with only two dual variables (p, q) instead
of four (p, q, k, l), and one budget of uncertainty Γ0. The optimization model represented in
Equation 8.22 is used later in this research to develop the optimal bidding schedule of the agent
owning the BESS, by varying the risk attitude Γ0. Furthermore, it should be noted that the RO
model submits price-quantity points to the market operator, indicating that a bid both contains
a quantity and a price [59]. The argumentation for submitting price-quantity points instead of
self-schedule bids is already provided in Stochastic optimization applied to battery asset modeling.
Furthermore, the Numerical investigations of the models elaborates on the bid prices the RO model
submits to the market operator.

As elaborated in Uncertainty set modeling, the meaning of dual variables p and q are represented
below, similar to [13]:

• p0 will equal the ⌈Γ0⌉-th greatest dt(x
c
t + xdt ).

• q0t = max(0, dt(x
c
t + xdt )− p0)
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9 Numerical investigations of the models
This chapter investigates the model specifications before obtaining the numerical results. In this
chapter, the price scenario specifications for the SO models are outlined, followed by the uncertainty
set specification for the RO model. Based on constructed examples and simulations, multiple case
studies are outlined and assessed by the outlined pre-clearance and post-clearance performance
metrics introduced in this chapter.

9.1 Price scenarios for stochastic optimization
As elaborated in Scenario-based modeling of price uncertainty, obtaining a representable set of
price scenarios consists of four subsequent stages, as depicted in Figure 2: point forecast, residual
analysis, scenario generation, and scenario reduction.

9.1.1 Point forecast
As elaborated in Point forecast model, the (S)AR(I)MA(X)-type model is used to forecast the
day-ahead LEM clearing price [82]. Due to a lack of accurate LEM historical data, public historical
WSM data is set equal to the LEM historical data in this research [32]. The forecast interval is
hourly, hence 24 hourly prices ahead are forecasted.

Due to the lacked availability of historical LEM data, the SAR(I)MAX model as described in Point
forecast model cannot be used as forecasting model in this research. Instead, the SAR(I)MA model
is used to forecast the day-ahead market prices, to capture the seasonality in the electricity price
time series [107, 60]. The forecast in this research incorporates the daily seasonality of the LEM
day-ahead market prices, as mentioned in for example [75].

First, three training sets and corresponding testing sets are selected. These Examples vary in length
of the training set, where Example 1 has a training set duration of two months, Example 2 one
month, and Example 3 one week. These sets are represented in Table 1:

Table 1: Training and testing data sets

Example Training set Testing set (prediction)
1 March 1st 00.00 - April 30th 23.00 (2015) May 1st 00.00 - 23.00 (2015)
2 February 18th 00.00 - March 17th 23.00 (2015) March 18th 00.00 - 23.00 (2015)
3 March 5th 2015 00.00 - March 11th 23.00 (2015) March 12th 00.00 - 23.00 (2015)

The optimal SARIMA parameters (p,d,q)(P,D,Q) and S, as elaborated in SARIMA model, are
found for Example 1. The Econometrics Modeler App from Matlab is used to obtain the LEM price
forecast in this research. For coherence of the scenario generation algorithm, these optimal order
parameters are also used for the scenario generation corresponding to Examples 2 and 3. Since this
forecast incorporates daily seasonality, S automatically equals 24. To validate the goodness of fit of
the forecasting model on the training set of Example 1, multiple methods are used:

• Investigate the AIC and BIC values of the tried combinations of p, d, q, P, D, Q. The lowest
value is the best fit [81].

• Validate that the residuals (prediction errors) behave as white noise (e.g. normally distributed
with zero mean and constant standard deviation σ) [107].

• Explore the Autocorrelation Function (ACF) plot that represents the autocorrelation of the
residuals, to validate that the residuals do not have significant autocorrelation left in the
residuals [81, 6].

Examples 1, 2, and 3 obtain their model coefficients (ψ, ζ, φ, θ), constant term C, and their variance
σ2. In addition, generating scenarios requires knowledge of historical residuals (prediction errors)
ϵ and historical LEM price values. The historical residuals are obtained via the Econometrics
Modeler App and the historical LEM price values originate from the historical training set.
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9.1.2 Scenario generation
In this stage, NΩ = 100 scenarios for the day-ahead time frame are generated for Examples
1, 2, and 3, in Matlab 2022b. Every scenario has equal probability 1

NΩ
. This is done via the

algorithm elaborated in Scenario generation. The inputs required for generating the scenarios for
the day-ahead are specified in the previous section. Besides these inputs, the algorithm generates a
set of random errors with characteristics {ϵ} ∼ N(0, σ) [16].

9.1.3 Scenario reduction
In this final stage, the scenario reduction algorithm as described in Scenario reduction is
implemented in Matlab 2022b. For this research, the 100 scenarios created in the Scenario
generation section, are reduced to an optimal reduced scenario set Ω∗

S , containing four and ten
scenarios. The output of this algorithm is the scenario realization of the day-ahead time frame for
Examples 1, 2, and 3, as well as their corresponding reduced scenario probabilities.

9.2 Simulations LEM price forecast
After the development of the scenario realizations for Examples 1, 2, and 3, following the theoretical
framework of Scenario-based modeling of price uncertainty, simulations are performed on a larger
scale for the Example training set duration with the best price prediction. Hence, ten simulations
are executed with the same training set duration, for ten random days in 2015. The prediction
days are represented in Table 2.

To determine the optimal training set duration, the performance metric Mean Absolute Percentage
Error (MAPE) is determined for Examples 1, 2, and 3 [107]. MAPE enables the measurement
of the accuracy of a fitted SARIMA model on the training data [107, 4]. The MAPE measures
the average gap between the forecasted price and the actual price, as a percentage [107]. A lower
MAPE represents a higher accuracy of the forecast. The MAPEs of Examples 1, 2, and 3 are
determined with four price scenarios. The final MAPE value of an Example is the aggregate of the
MAPE of the four scenarios, normalized with their scenario probabilities. Hence, one MAPE value
per Example is obtained.

Table 2: Training and testing data sets

Simulation Testing set (prediction)
1 March 12th 00.00 - 23.00 (2015)
2 April 10th 00.00 - 23.00 (2015)
3 May 8th 00.00 - 23.00 (2015)
4 June 10th 00.00 - 23.00 (2015)
5 June 24th 00.00 - 23.00 (2015)
6 July 11th 00.00 - 23.00 (2015)
7 October 18th 00.00 - 23.00 (2015)
8 November 3rd 00.00 - 23.00 (2015)
9 November 30th 00.00 - 23.00 (2015)
10 December 24th 00.00 - 23.00 (2015)

9.3 Uncertainty set for robust optimization
To obtain numerical results for the RO model outlined in Robust optimization applied to battery
asset modeling, the box interval has to be constructed. For coherence, the same SAR(I)MA
model used for scenario-based modeling in stochastic optimization is used to construct the box
interval in robust optimization. Hence, similar to stage 1 of scenario-based modeling in stochastic
optimization, the SARIMA(1,0,1)(1,0,1)24 model is used to obtain the mean price forecast and
its standard deviation to construct the box interval uncertainty set. These are the only two
required price inputs in the constructed RO model in Case: identical budget of uncertainties. Then,
the numerical results are obtained for all examples and simulations, similar to the stochastic
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optimization models.

9.4 Model overview
Multiple optimization models are developed in this research. An overview of the optimization
models is presented in Table 3, connecting the models used in the case studies to the correct chapter
of the research. All of the optimization models are developed in Matlab 2022b GUROBI.

Table 3: Optimization models developed in this research

Model Optimization methods Risk management Chapter
Model 1: single bid Stochastic Optimization No Chapter 7.1
Model 1: single bid Stochastic Optimization Yes Chapter 7.2
Model 2: multiple bids Stochastic Optimization No Chapter 7.3
Model 2: multiple bids Stochastic Optimization Yes Chapter 7.4
RO model Robust Optimization Yes Chapter 8.3.1

Charging risk and discharging risk are incorporated separately as well as simultaneously in the SO
models 1 and 2. However, the Numerical results section only incorporates the results of the risk
management for simultaneous charging and discharging risk of the agent owning the battery, since
this is the most contributing and valuable result. For the RO model, the numerical results are
obtained for the case with identical budget of uncertainties: Γ0c = Γ0d = Γ0.

9.5 Case studies
In this research, multiple case studies are conducted with the scenario sets from Examples 1, 2,
and 3, and separately with the ten simulations with a one-week training set duration. All case
studies are carried out with both four and ten scenarios. In all case studies below, the risk-neutral
SO model 1 serves as a benchmark result, similar to [112, 50].

• Case study 1: comparison SO model 1 varying the risk-attitude of the agent (Chapter 7.1
and Chapter 7.2). Here, the risk parameter is β, ranging between 0-1 by construction
of Model 1 with risk management. The study is conducted with β values: 0, 0.5, 0.999,
meaning risk-neutral, medium risk-averse, and completely risk-averse. Then, pre-clearance
and post-clearance performance is assessed.

• Case study 2: comparison SO model 2 varying the risk-attitude of the agent (Chapter 7.3
and Chapter 7.4). Again, the risk parameter is β. The study is conducted with β values:
0, 0.5, 0.999, meaning risk-neutral, medium risk-averse, and completely risk-averse. Then,
pre-clearance and post-clearance performance is assessed.

• Case study 3: comparison of SO model 1 and SO model 2, for both risk-neutral and varying
risk-attitude of the agent (Chapter 7.1, Chapter 7.2, Chapter 7.3, and Chapter 7.4). Case study
3 compares case studies 1 and 2 in terms of pre-clearance and post-clearance performance.

• Case study 4: comparison of SO model 1 with RO model (Chapter 7.1, Chapter 7.2, and
Chapter 8.3.1). Both these models submit single price-quantity points per time step. In case
study 4, SO model 1 has a ranging risk parameter β (0, 0.5, 0.999), while the RO model has a
ranging Γ0 (0, 3, 4, 6, 8). For case study 4, performance is assessed in terms of pre-clearance
and post-clearance performance.

9.5.1 Data specifications
In Table 4, an overview of the used battery parameters is provided. In addition, the following risk
parameters are used for stochastic optimization (Table 5) and robust optimization (Table 6).
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Table 4: Battery parameters used in case studies

Specification Symbol Value Unit
Charging efficiency ηc 1 [-]
Discharging efficiency ηd 1 [-]
Initial state of charge (SOC) e0 400 [kWh]
Minimum battery storage emin 0 [kWh]
Maximum battery storage emax 450 [kWh]
Maximum charge rate xcmax 450 [kW]
Maximum discharge rate xdmax 450 [kW]
Time step length ∆t 1 [h]

Table 5: Risk parameters used in case studies 1, 2, 3, 4

Specification Symbol Value
Confidence interval α 0.95
Risk-coefficient β 0-1

Table 6: Risk parameters used in robust optimization model

Specification Symbol Value
Budget of Uncertainty Γ 0-8

9.5.2 Performance metrics

All case studies are evaluated by the following performance metrics. It is important here to make
the distinction between pre-clearance performance and post-clearance performance.

• Pre-clearance performance concerns the performance directly obtainable from the optimiza-
tion model. Within stochastic optimization, pre-clearance performance concerns the expected
costs/revenue and profit [eur] and the CVaR value [eur] of the resulting bidding schedule.
Note here that the expected profit is the expected revenue minus the expected costs. As
elaborated in Stochastic optimization applied to battery asset modeling, the bid price of SO
model 1 is the mean expected scenario price, and for SO model 2 the bid price is equal to a
scenario price corresponding to the bid quantity. Furthermore, the confidence interval (α)
for SO models 1 and 2 is set to 0.95, similar to [108, 72] and recommended in [86]. In other
words, CVaR illustrates the expected profit of the worst 5% of the model realizations [89].

For the RO model, expected profit, envisioned profit, envisioned costs, envisioned revenue,
and the dual variable p are represented. To calculate the expected profit, the bid price is
taken as the mean expected LEM price (c̄t). As a result, the expected profit is calculated

as
∑T

t=1 c̄t(x
d
t − xct). The expected profit is directly obtainable from the RO model results.

For the second method (the envisioned profit/costs/revenue), the bid prices are adjusted
to include the chosen risk attitude of the agent; Γ0 (the robust bid price). Then, the total

envisioned profit is calculated as
∑T

t=1(c̄t ±
Γ0

24 × dt)(x
d
t − xct). Hence, a chosen fraction of

the standard deviation from the mean is included in the bid price of the agent. The ± is
dependent on whether the bid is a charging or discharging bid. Hence, the envisioned profit
calculation is calculated manually after the results of the RO model are obtained. For the
RO model, Γ0 between 0-8 is considered, since according to [13], Γ is always of the order

√
n.

In this research, n represents the day-ahead time window, meaning n = 24 and
√
n = 4.47.

The pre-clearance performance of all case studies is obtained for Examples 1, 2, and 3, and
simulations 1 - 10. To assess the influence of the number of scenarios, performance is assessed
for both four and ten scenarios.
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• Post-clearance performance is the performance of the optimization model after the LEM
has cleared. Acquiring the post-clearance performance results of the optimization models
requires an additional step. Namely, the bid prices of the bidding schedule resulting from the
model are compared with the market clearing price realization. Here, instead of the forecasted
LEM prices, the actual LEM price realizations are used to check whether the submitted
price-quantity points are cleared in the LEM. For the SO models, a selling bid (discharging)
is cleared in the LEM when the bid price is lower or equal to the actual LEM price. A buying
bid (charging) is cleared in the LEM when the bid price is higher or equal to the actual LEM
price. For the RO model, the bid price that determines whether a bid is cleared in the LEM
is the robust bid price, calculated as c̄t ± Γ0

24 × dt.

The post-clearance performance is obtained in monetary values, representing the actual costs
of the submitted charging bids and the actual revenue of the submitted discharging bids. The
actual costs and revenue of the bidding schedule are calculated by multiplying the actual
market clearing price of the day-ahead time frame with only the cleared bids. There is no
value in investigating the actual profit of the models since these results can be skewed to
high profits in the case of high discharging bid clearance or negative profit in the case of high
charging bid clearance. In addition, two percentages are represented to indicate the clearance
performance of the models, namely the % of bids cleared and % of bid quantity cleared.

The post-clearance performance of all case studies is obtained for Examples 1, 2, and 3, and
simulations 1 - 10. To assess the influence of the number of scenarios, performance is assessed
for both four and ten scenarios.
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10 Numerical results
This chapter starts by obtaining the price scenarios of Examples 1 - 3 and simulations 1 - 10, used
as input for the stochastic models. The mean and standard deviation of the used SARIMA point
forecast model are also used to construct the uncertainty sets for the robust model. Afterward, this
chapter elaborates on the pre- and post-clearance performance of the case studies described in
Numerical investigations of the models.

10.1 Price scenarios
Following the four subsequent stages of scenario-based modeling, as described in Figure 2, the
optimal set of reduced day-ahead scenarios is obtained, for Examples 1, 2, and 3. As elaborated in
Numerical investigations of the models, the SARIMA model is used to forecast the LEM day-ahead
prices. The SARIMA order parameters p, d, q, P, D, and Q are obtained by fitting the training
set data of Example 1. The Matlab code of the price scenario algorithm can be found on Github [104].

10.1.1 SARIMA model Example 1
As elaborated in the Box-Jenkins approach, the Akaike Information Criterion (AIC) and the
Schwarz Bayesian information criterion (BIC) are used to identify which model order parameters
fit the training set of Example 1 best. An overview of different combinations of the order
parameters and their corresponding AIC and BIC values are visualized in Table 7 and Table 8.
The model with the lowest sum of AIC and BIC values is the SARIMA(1,0,1)(1,0,1)24, providing
the SARIMA(1,0,1)(1,0,1)24 model as the best fit to the training set of Example 1.

Table 7: AIC values of SARIMA(p,d,q)(P,D,Q)S model

Seasonality
ARIMA

(1,0,0) (1,0,1) (0,0,1) (1,1,1)

(1,0,0) 9217.3 9110.3 9697.7 9158.8
(1,0,1) 8852.1 8836.1 9571.0 8870.5
(0,0,1) 9217.3 8854,6 9819.7 9395.6
(1,1,1) 8855.9 8856.2 9610.6 8883.9

Table 8: BIC values of SARIMA(p,d,q)(P,D,Q)S model

Seasonality
ARIMA

(1,0,0) (1,0,1) (0,0,1) (1,1,1)

(1,0,0) 9233.1 9136.6 9718.8 9186.1
(1,0,1) 8873.2 8877.7 9597.4 8902.1
(0,0,1) 9233.1 8881.0 9840.9 9422.0
(1,1,1) 8882.2 8887.7 9636.8 8915.4

Despite the AIC and BIC values, the residuals of the training set of Example 1 are investigated. First,
it can be observed that the distribution of the residuals follows a normal distribution (Figure 4a).
Besides, when investigating the Auto-correlation Function plot (ACF) (Figure 4b), it can be seen
that there is a small auto-correlation left at lag 3, 23, and 25. However, this auto-correlation remains
uncaptured in the other parameter model combinations as illustrated in Table 7 and Table 8.
In other words, choosing another model parameter combination as investigated in this research
does not reduce the residual auto-correlation of Example 1. Based on the residual distribution
(Figure 4a), the ACF plot (Figure 4b), and the AIC (Table 7) and BIC values (Table 8), the
SARIMA(1,0,1)(1,0,1)24 model is the best fit to the training set of Example 1.
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(a) Residual histogram (b) ACF plot

Figure 4: SARIMA(1,0,1)(1,0,1)24 model of Example 1

10.1.2 SARIMA(1,0,1)(1,0,1)24 model
The SARIMA(1,0,1)(1,0,1)24 model is used as point forecast model in this research, for Examples
1, 2, and 3 and simulations 1 - 10. This is done for coherence of the scenario generation procedure.
The mathematical formulation of the SARIMA(1,0,1)(1,0,1)24 model is represented as:

(1− ψ1B)
(
1− ζ24B24

)
Zt = C + (1 + φ1B)

(
1 + θ24B

24
)
ϵt (10.1)

In Equation 10.1, Zt represents the LEM price, and ϵt represents the prediction error. In Equa-
tion 10.1, the backshift operator B is represented as BkZt = Zt−k [48, 82]. Hence, when rewriting
Equation 10.1, the alternative mathematical formulation is represented as:

Zt = ψ1Zt−1 + ζ24Zt−24 − ψ1ζ24Zt−25 + C + ϵt + φ1ϵt−1 + θ24ϵt−24 + φ1θ24ϵt−25 (10.2)

Next, the model coefficients of the SARIMA(1,0,1)(1,0,1)24 model (Equation 10.2) for Examples 1,
2, and 3 are found. These fitted model coefficients are represented in Table 9, whose values are
used as input in the scenario generation algorithm. Note here that the variance is a constant value
over the complete time horizon, since the SARIMA model assumes that the error term behaves
as white noise, e.g. zero mean and constant variance [107, 60, 43, 97, 82, 1]. Despite the values
displayed in Table 9, the LEM prices of the last day of the training set and the last day residuals
(prediction errors) are used as input in the scenario generation algorithm.

Table 9: SARIMA model coefficients of Examples 1, 2, and 3

Ex. 1 Ex. 2 Ex. 3
SARIMA model coefficient Symbol Value Value Value
Auto-regressive 1 ψ1 0.8169 0.8361 0.8987
Seasonal Auto-regressive 24 ζ24 0.9757 0.9961 0.9214
Moving average 1 φ1 0.0499 −0.0083 −0.1695
Seasonal Moving average 24 θ24 0.0152 −0.7980 −0.6167
Constant C 0.2034 0 0.3034
Variance σ2 24.3772 14.6219 14.0110

As a third stage, the model coefficients in Table 9 are used to generate 100 scenarios for Examples
1, 2, and 3. Then, using the fast forward selection algorithm [95, 23], these scenarios are reduced
to both four and ten scenarios. Figure 5 represents the day-ahead LEM price forecast of Example 1
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with four scenarios. In Appendix B.1: Example 1 scenarios, the day-ahead LEM price forecast of
Example 1 with 100 scenarios and 10 scenarios are visualized. The four scenarios generated for
Example 2 are visualized in Figure 6. The other two sets of scenarios with 100 and 10 scenarios are
represented in Appendix B.2: Example 2 scenarios. Lastly, Figure 7 represents the four scenarios of
Example 3 while Appendix B.3: Example 3 scenarios represents the scenario realizations with 100
and 10 scenarios.

Figure 5: Example 1 day-ahead price scenarios 1st of May 2015. Black: actual price 1st of May
2015. Colors: 4 scenario realizations

Figure 6: Example 2 day-ahead price scenarios 18th of March 2015. Black: actual price 18th of
March 2015. Colors: 4 scenario realizations
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Figure 7: Example 3 day-ahead price scenarios 12th of March 2015. Black: actual price 12th of
March 2015. Colors: 4 scenario realizations

10.2 Simulations LEM price forecast
As represented in the previous section, three Example forecasts of the day-ahead prices are developed.
These forecasts have different training set durations, and the training set duration that fits the
data best (by investigating the MAPE values) is used to develop ten simulations of the LEM price
forecast for the day-ahead market.

Following the Numerical investigations of the models section, the MAPE values of Examples 1, 2,
and 3 are obtained and represented in Table 10.

Table 10: Mean Absolute Percentage Error of Examples 1, 2, and 3

Example MAPE
1 13.36 %
2 11.54 %
3 8.58 %

Example 3 has the lowest MAPE value, meaning that the accuracy of the forecast of Example 3 is
the highest. The SARIMA(1,0,1)(1,0,1)24 model takes into account daily seasonality but excludes
other seasonalities, for example weekly seasonality or the different electricity patterns during
weekdays and weekends [23, 107, 6, 48, 70, 75, 24, 93]. Hence, a shorter training set potentially
excludes the seasonalities that cannot be captured by the SARIMA(1,0,1)(1,0,1)24 model. As a
result, a shorter training set duration is sufficient. According to [107], a MAPE of less than 10%
is considered very good. The goodness of fit of Example 3 is strengthened by investigating the
ACF plot of Example 3, where no auto-correlation is left in the residuals outside of the confidence
bounds (see Appendix C).

Consequently, simulations 1-10 are performed with a training set duration of one week, similar to
Example 3. The prediction days are represented in Table 2 and the training sets consist of one
week before the prediction day. Similar to Examples 1, 2, and 3, the ten simulations consist of both
four and ten scenarios.
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10.3 Case study 1: SO model 1
Case study 1 is concerned with the pre-clearance and post-clearance performance of SO model 1
(single bid model). The risk-neutral SO model 1 acts as a benchmark model throughout all the
case studies. Hence, for case study 1 the risk-neutral benchmark model (Model 1: single bid (base
model)) enables the assessment of the performance of SO model 1 with risk management (Model 1
with risk management. In this case study, β = 0.0001 is considered risk-neutral, and β = 0.999 is
considered fully risk-averse. The Matlab code for the SO model 1 bidding model can be found on
Github [104].

In Appendix D.1, the pre- and post-clearance performance of SO model 1 is represented for
Examples 1, 2, and 3, for both four and ten scenarios. In Appendix D.2 and Appendix D.3, the
average pre- and post-clearance performance of simulations 1 - 10 are represented, for both four
and ten scenarios, respectively. The average results of simulations 1 - 10 are also visualized in
Figure 8 and Figure 9. Lastly, the expected costs and revenue of simulations 1 - 10 are compared
with their actual costs and revenue. The actual costs represent the costs of the cleared charging
bids multiplied by the actual LEM price. The actual revenue represents the revenue of the cleared
discharging bids multiplied by the actual LEM price. This comparison is represented in Figure 10a
and Figure 10b, for four and ten scenarios, respectively.

Figure 8: Average pre-clearance performance simulations 1-10, 4 and 10 scenarios

Figure 9: Average post-clearance performance simulations 1-10, 4 and 10 scenarios
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(a) 4 scenarios

(b) 10 scenarios

Figure 10: Comparison of expected costs/revenue (pre-clearance) and actual costs/revenue (post-
clearance), case study 1

To illustrate the model results of SO model 1, the model specifications of risk-neutral and risk-averse
Example 1 (four scenarios) are elaborated, for the interval t = 18 until t = 24. The decision variables
of the risk-neutral SO model 1 (β = 0.0001) of Example 1 are represented in Table 11a. To compare,
the decision variables of the BESS with the bidding schedule of risk-averse SO model 1 of Example
1 (β = 0.999) is represented in Table 11b. Here, the bid quantities are represented, together with
the state of charge of the battery (SoC). The state of charge of the battery must lie between
0 [kWh] and 450 [kWh], according to the battery specifications of Numerical investigations of
the models. The bid price of SO model 1 is equal to the expected LEM price at time t, namely
ĉt =

∑
ω∈Ω∗

S
π∗
ωct,ω.

For Example 1, the mean expected LEM price (red) in comparison with the actual LEM price
(black) is visualized in Figure 11. Hence, in Table 11 the price-quantity points for the day-ahead
time frame (ĉ, xct) and (ĉ, xdt ) represent the bids of the agent, for the day-ahead LEM. Furthermore,
the state of charge (et) over the day-ahead horizon for both the risk-neutral and risk-averse SO
model 1 is represented in Figure 12.
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Table 11: (Decision) Variables and expected LEM price Example 1

(a) β = 0.0001

time
[h]

ĉt
[e/kWh]

xct
[kW]

xdt
[kW]

SoC
[kWh]

18 46.19 0 450 0
19 43.53 0 0 0
20 42.31 0 0 0
21 42.00 450 0 450
22 48.59 0 450 0
23 43.60 450 0 450
24 43.93 0 450 0

(b) β = 0.999

time
[h]

ĉt
[e/kWh]

xct
[kW]

xdt
[kW]

SoC
[kWh]

18 46.19 0 450 0
19 43.53 0 0 0
20 42.31 307.61 0 307.61
21 42.00 142.39 0 450
22 48.59 0 450 0
23 43.60 138.58 138.58
24 43.93 0 138.58 0

Figure 11: Expected and actual LEM price Example 1, 4 scenarios

Figure 12: BESS State of Charge Example 1
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10.3.1 Analysis case study 1
Pre-clearance performance
First, the analysis of SO model 1 with four scenarios is carried out. As represented in Appendix D.1,
Appendix D.2 and Figure 8, the expected profit of the bidding schedule obtained for Simulations 1
- 10 and Examples 1 - 3 decreases as the agent owning the BESS becomes more risk-averse. On the
other hand, the CVaR (the expected profit of the worst 5% of the profit realizations) increases
when the agent becomes more risk-averse, meaning that the gap between the expected profit of the
tail (worst 5 %) and the expected profit decreases. As observed in Figure 8, for the risk-averse
attitude of the agent, the gap between the expected profit and the CVaR expected profit is the
smallest. Hence, for β = 0.999, there is the smallest risk of obtaining a significantly smaller profit
than anticipated. For the average simulation results of risk-neutral SO model 1, the gap between
CVaR and the expected profit equals circa 4000 e (for β = 0.0001) and reduces to around 400e
(for β = 0.999) (Appendix D.2).

Looking at the pre-clearance performance of SO model 1 with ten scenarios instead of four, the
same patterns appear, for both the simulations and examples. Hence, more risk-averse behavior
increases the worst 5% of the expected profit, while the expected profit decreases. Observing
Figure 8, the magnitude of the expected profit and the CVaR expected profit of simulations 1 - 10
is smaller when having ten scenarios compared to four scenarios (comparing the purple with the
blue line and the red with the orange line).

Also, for the average performance of simulations 1 - 10 as represented in Figure 8, the magnitude
of the decrease in expected profit is low when changing β, with a total profit deduction between
the risk-neutral and risk-averse model of around 1500 e for both four and ten scenarios.

Post-clearance performance
Similar to the pre-clearance performance, first the post-clearance performance with four scenarios
is analyzed. As represented in Appendix D.1, Appendix D.2 and Figure 9, the % of cleared bids
and % of cleared quantity of simulations 1 - 10 and Examples 1, 2, and 3, remain stable when
varying the risk attitude of the agent. The % clearance is observed around 41%.

The price-quantity points submitted by the agent change when varying the risk parameter, however,
this does not significantly alter the % of bids cleared and the % of bid quantity cleared. This can
be explained by investigating Figure 11. In Figure 11, both the expected and actual LEM prices
are visualized, for Example 1 with four scenarios. It is observed that for every time t, the expected
LEM price is either above or below the actual LEM price. Since the bid price of SO model 1 equals
the expected LEM price at time t, for every time step, one of the two bid types (charging/buying
or discharging/selling) is automatically declined by the market operator. When the agent becomes
more risk-averse, the time steps that the model wants to submit a price-quantity point can change,
as well as the quantity connected to some price-quantity points. To illustrate, for the risk-neutral
SO model 1 of Example 1 the bid quantities are xc23 = 450 and xd24 = 450. For the Example 1
risk-averse model, these bid quantities are changed to xc23 = 138.58 and xc24 = 138.58 (Table 11).
Changing the quantity of a price-quantity point does not change the % of bids cleared, because
still the same expected LEM price ĉt is submitted to the market operator. However, altering bid
quantities can potentially change the % of bid quantity cleared.

As can be seen in Figure 11, during intervals of hours 3-9, 14-22, and 24, the expected LEM price
is above the actual LEM price, meaning that in this interval, no discharging/selling bid will be
cleared in the LEM. Adapting the discharging bid schedule of the agent within this interval does
not increase the post-clearance performance of the agent. During intervals 1-2, 10-13, and 23, the
situation is reversed, and charging/buying bids will not be cleared, also when adapting the charging
schedule of the agent within these intervals.

Investigating the % clearance performance of simulations 1 - 10 with ten scenarios in Figure 9 and
Appendix D.3, again no significant pattern of a changing % clearance is observed when varying the
risk parameter. The % of bid quantity cleared increases from 46.85 % to 51.56 % when increasing β
from 0.0001 to 0.999. However, for the % of bids cleared this pattern is not observed, since here the
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metric changes from 46.74 % to 47.21 %. Investigating the % clearance for Examples 1, 2, and 3 in
the case of ten scenarios, no consistent pattern is observed. Example 1 has stable clearance % when
becoming more risk-averse, while Examples 2 and 3 indicate small improvement in % clearance.
However, due to the larger sample size of the simulations, the post-clearance performance of the
simulations is taken as the most valuable and reliable observation.

Comparing the magnitude of the % clearance performance of four and ten scenarios, an increase is
observed in the case of ten scenarios. While the % clearance with four scenarios results in clearance
around 41% for simulations 1 - 10, the % clearance with ten scenarios results in clearance around
48% for simulations 1 - 10 (for both % of bids cleared and % of bid quantity cleared). This can be
observed in Figure 9.

Lastly, the expected costs/revenue are compared with the actual costs/revenue, for both four
and ten scenarios. The results are represented in Figure 10, and provide similar patterns for four
and ten scenarios. In the case of four scenarios, the expected costs and expected revenue do not
change significantly when becoming more risk-averse. This is also represented in the expected
profit, representing the expected revenue minus the expected costs (purple line in Figure 8). When
investigating the actual costs and revenue, these values represent a relatively constant fraction of
the expected costs/revenue. This constant behavior is correlated to the stable clearance performance
metrics observed (% of bids cleared and % of bid quantity cleared). Namely, for the actual costs
and revenue calculation, only the cleared bids are taken into account. In addition, the actual
costs/revenue can deviate from the expected costs/revenue pattern because the actual LEM price
is used instead of the mean bid price. Overall, the actual costs increase from around 35182 e to
40117 e when increasing β from 0.0001 to 0.999. On the other hand, the actual revenue decreases
slightly from 51102 e to 49680 e.

In the case of ten scenarios, similar patterns are observed. As also observed in Figure 8, the
expected profit is lower in the case of ten scenarios. This difference in magnitude can also be
observed when comparing Figure 10a with Figure 10b, where both expected costs and revenue are
lower in the case of ten scenarios. However, the actual revenue has a similar magnitude for four and
ten scenarios. This can be mostly attributed to the higher % clearance in the case of ten scenarios
(moving from around 41% for four scenarios to 48% for ten scenarios). Besides, the actual clearing
price influences this magnitude, potentially deviating from the % clearance patterns.

10.4 Case study 2: SO model 2
Case study 2 is concerned with the pre- and post-clearance performance of SO model 2 (multiple
bid model), as elaborated in Model 2: multiple bids and Model 2 with risk management. In this
case study, β = 0.0001 is considered risk-neutral, and β = 0.999 is considered fully risk-averse. The
Matlab code for the SO model 2 bidding model can be found on Github [104].

In Appendix E.1, the pre- and post-clearance performance of Examples 1, 2, and 3 with varying
risk is represented, for both for and ten scenarios. The average pre- and post-clearance performance
of simulations 1 - 10 are represented in Appendix E.2 and Appendix E.3. The visual representation
of the pre- and post-clearance performance of simulations 1 - 10, for both four and ten scenarios, is
represented in Figure 13 and Figure 14. Lastly, the expected costs and revenue of the simulation
results are compared with the actual costs and revenue of the simulations. These results are
represented in Figure 15a and Figure 15b, for four and ten scenarios, respectively.
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Figure 13: Average pre-clearance performance simulations 1 - 10, case study 2, 4 and 10 scenarios

Figure 14: Average post-clearance performance simulations 1 - 10, case study 2, 4 and 10 scenarios

To illustrate the results of case study 2, the model specifications of risk-averse Example 1 (β = 0.999)
are elaborated, in the case of four scenarios. The charge bid quantities (xct,ω) and the incremental
charge quantities (∆xct,ω) of the risk-averse SO model 2 of Example 1, t = 15 until t = 24 are
represented in Table 12a and Table 12b, respectively. The discharging bids are omitted in this
visualization, but the methodology is the same. In Table 13, the corresponding scenario prices are
represented, for each scenario ω. By analysing Table 13 and Table 12a, the incremental quantities
in Table 12b can be derived. Namely, when multiple charging bids are submitted at the same time
step, with equal bid quantity, the charging bid with the highest scenario price is represented as
incremental quantity. In the case of different charge bid quantities, as is the case for t = 20, the
(decision) variables xct,ω and ∆xct,ω are constructed via the principles of the monotonic bidding
curve, as elaborated in Model 2: multiple bids.

Furthermore, the incremental quantities (∆xct,ω) together with the corresponding scenario price
construct the (active) charge price-quantity points that are submitted to the market operator.
Hence, for time t = 20, the submitted charge price-quantity points (ct,ω,∆x

c
t,ω) are: (46.01, 253.8)

and (43.9, 82.33).
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(a) 4 scenarios

(b) 10 scenarios

Figure 15: Comparison of expected costs/revenue (pre-clearance) and actual costs/revenue (post-
clearance), case study 2

Table 12: (Decision) Variables Example 1 time 15-24, case study 2

(a) Charge bid quantities xc
t,ω

time
[h]

xct,1
[kW]

xct,2
[kW]

xct,3
[kW]

xct,4
[kW]

15 82.33 0 82.33 82.33
16 367.67 367.67 367.67 367.67
17 0 0 0 0
18 0 0 0 0
19 0 0 0 0
20 336.12 336.12 253.8 336.12
21 113.88 113.88 113.88 113.88
22 0 0 0 0
23 158.26 158.26 158.26 158.26
24 0 0 0 0

(b) Incremental quantities ∆xc
t,ω

time
[h]

∆xct,1
[kW]

∆xct,2
[kW]

∆xct,3
[kW]

∆xct,4
[kW]

15 82.33 0 0 0
16 0 0 0 367.67
17 0 0 0 0
18 0 0 0 0
19 0 0 0 0
20 0 0 253.8 82.33
21 0 0 0 113.88
22 0 0 0 0
23 0 0 0 158.26
24 0 0 0 0
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Table 13: Scenario prices Example 1 [e/kWh], case study 2, 4 scenarios

Time ω = 1 ω = 2 ω = 3 ω = 4
15 44.32 45.35 34.01 43.76
16 41.99 40.21 34.21 45.36
17 41.39 42.62 32.94 48.72
18 51.16 37.78 38.74 54.29
19 45.8 37.49 38.37 49.95
20 41.25 36.11 46.01 43.9
21 40.14 39.66 39.22 46.62
22 44.18 49.36 47.9 51.11
23 41.34 36.97 42.29 49.97
24 46.06 38.06 44.31 46.06

10.4.1 Analysis case study 2

Pre-clearance performance
Regarding the pre-clearance performance of SO model 2 with four and ten scenarios, it is observed
that the expected profit of the bid model decreases as the risk aversion of the agent increases. This
is both observed for Examples 1, 2, and 3 in Appendix E.1 and for simulations 1 - 10 in Figure 13,
Appendix E.2 and Appendix E.3.

For the average performance of simulations 1 - 10 as represented in Figure 13, the magnitude of the
decrease in expected profit is low when changing β, with a total deduction between the risk-neutral
and risk-averse model of around 1000 e for both four and ten scenarios. For the CVaR expected
profit metric, it is observed that CVaR increases when the agent becomes more risk-averse. This is
the case for both Examples 1, 2, and 3 and simulations 1 - 10, for both four and ten scenarios.
This means that when becoming more risk-averse, the worst 5% cases of the profit increase. As
represented in Figure 13, the gap between CVaR and the expected profit is the smallest for the
fully risk-averse agent.

Investigating Figure 13, a difference in magnitude for the expected profit and CVaR between
four and ten scenarios is observed. When looking at the average pre-clearance performance of
simulations 1- 10, in the case of four scenarios, the expected profit lies in the range of 32800-31891
e (purple line), depending on the risk attitude of the agent. In the case of ten scenarios, the
expected profit lies in the range of 29945 - 28974 e (blue line), again depending on the risk-attitude
of the agent. Since the same SARIMA model is used to establish the coefficients for the scenario
generation, it becomes apparent that having more scenarios decreases the expected profit, for all
risk-attitudes of the agent. When observing the difference in magnitude of CVaR for simulations 1
- 10, four scenarios represent a CVaR expected profit between 25906 - 29664 e (red line). When
having ten scenarios, a range of 22298 - 26821e is observed (yellow line). The profit obtained in
the worst 5% of the cases is lower in the case of ten scenarios (yellow line) compared to having
four scenarios (red line).

Post-clearance performance
In the case of four scenarios for simulations 1 - 10, the post-clearance performance remains stable
at around 71% clearance when varying the risk attitude, for both the % of bids cleared and % of
bid quantity cleared. This can be seen in Figure 14. For Examples 1, 2, and 3 in Appendix E.1, it
is observed that the clearance performance increases when becoming more risk-averse. However,
since the sample size of the simulations is larger, the pattern observed in simulations 1 - 10 is more
reliable.

For the individual simulations 1 - 10 with four scenarios, it is observed that for simulations 6, 8, 9,
and 10, clearance performance does not improve when becoming more risk-averse. This can be
attributed to the fact that the scenario forecasts of these simulations do not comprise a consistent
upper and lower bound surrounding the actual LEM price, and the peaks and troughs of the
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scenarios do not properly align with each other as well as the actual LEM price. Exploring all
scenario forecasts of simulations 1 - 10, in the case of four scenarios, it becomes apparent that
aligned peaks and troughs of the scenarios contribute to higher % clearance performance. In
addition, a forecast where the actual price is within the bounds of the scenario prices contributes
to the clearing performance of the model. In other words, having at least one scenario price below
and above the actual LEM price.

Each individual scenario creates a bidding schedule. However, the battery capacity constraints
concern the aggregate of the incremental quantities (∆xct,ω and ∆xdt,ω) of the price-quantity points.
Hence, the overall bid schedule is interconnected across all scenarios. This results in the fact that
not every peak and trough of an individual scenario can be exploited. If for three out of four
scenarios, a trough occurs (meaning the battery wants to charge), and the fourth scenario prefers
to charge a time step later, it is more beneficial for the fourth scenario schedule to align with
the other three scenario schedules. This is because the incremental quantity of the three aligned
scenario bids increases the state of charge of the battery. As a result, the fourth scenario cannot
always charge again one time step later, since this might violate the capacity of the battery. This
’alignment’ of the bidding schedule is preferable because more equal bid quantities at one time step
increase the chance of clearance. If on top of the bid quantity alignment, the actual LEM price
realization is within the bounds of the scenario prices, the model submits the most conservative
scenario bid price that has the most chance of clearance.

This phenomenon is observed in risk-averse Example 1 (with four scenarios), as illustrated in
Table 12 and Table 13. The scenario price realization of Example 1 is represented in Figure 5. At
time t = 23, four equal bid quantities are obtained, namely xc23,1 = xc23,2 = xc23,3 = xc23,4 = 158.26.
For scenarios 1, 2, and 3, the price realization at t = 23 is a price trough. For scenario 4, this is
not the case, because the price at t = 24 is lower than t = 23. Still, it is most profitable for the
model to charge at time t = 23, and discharge at t = 24. The actual price at t = 23 is equal to
47.44 [e/kWh], and the final active price-quantity point that is submitted to the market operator
has a bid price of 49.97 [e/kWh]. Hence, this charge price-quantity point is cleared in the LEM.
Without the alignment of xc23,ω, this price-quantity point would not have been cleared since the
other three scenario prices are below the actual LEM price.

For the case of having ten scenarios, the % of bids cleared and the % of bid quantity cleared has
improved compared to having four scenarios, both in magnitude and risk-attitude pattern. When
investigating the clearance performance of simulations 1 - 10 in Appendix E.3 and Figure 14, it is
observed that the clearance metrics improve when becoming more risk-averse. The % of bid cleared
improves in the range of 72.58 % to 82.02 %, when moving from risk-neutral to risk-averse. The %
bid quantity cleared improves in the range of 75.02 % to 83.43 %. Comparing the post-clearance %
performance metrics with four and ten scenarios, the % clearance with ten scenarios outperforms
having four scenarios. This improvement can be attributed to the fact that ten scenarios can more
comprehensively construct an upper and lower bound surrounding the actual LEM price. However,
still, the peaks and troughs among the scenarios should align as much as possible to obtain a
perfect clearance performance.

Lastly, the actual costs/revenue is compared with the expected costs/revenue in Figure 15. In the
case of four scenarios, the expected costs and revenue both increase when becoming more risk-averse.
The actual costs and revenue remain stable fractions of the expected costs and revenue, respectively,
when becoming more risk-averse. Hence, as can be observed in Figure 15a, the magnitude of actual
costs/revenue also increases when becoming more risk-averse. In addition, the gap between the
expected and actual costs is smaller than the gap between the expected and actual revenue. In the
case of ten scenarios, the magnitude of the gap between the actual and expected costs/revenue is
smaller than for four scenarios. Besides, similar to the case of the four scenarios, the gap between
the expected and actual costs is smaller than the gap between the expected and actual revenue.

Overall, the magnitude of the actual costs and revenue in the case of ten scenarios is lower than
for four scenarios, following the pattern of the expected costs and revenue. However, the pattern of
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increasing actual revenue and costs when becoming more risk-averse is observed more significantly
in the case of ten scenarios. This pattern is correlated with the increasing % clearance for ten
scenarios in SO model 2, and can additionally be influenced by the use of the actual LEM prices
instead of the scenario LEM prices.

10.5 Case study 3: Comparing SO models 1 and 2
Case study 3 is concerned with comparing the pre-clearance and post-clearance performance of SO
model 1 (single bid model/base model) with SO model 2 (multiple bids). This is done for both
four and ten scenarios, similar to Case study 1: SO model 1 and Case study 2: SO model 2.

Starting with four scenarios, the pre-clearance performance results of simulations 1 - 10 of SO
models 1 and 2 are combined in Figure 16. The expected profit of SO model 2 is higher than the
expected profit for SO model 1, for all risk attitudes of the agent. However, the CVaR expected
profit (worst 5% of the uncertainty realizations) is less for SO model 2 compared to SO model 1,
for all risk attitudes of the agent. Similar patterns are observed for Examples 1, 2, and 3, in the
case of four scenarios (Appendix D.1 and Appendix E.1).

Figure 16: Pre-clearance performance simulations 1 - 10, case study 3, 4 scenarios

The % of bids cleared and % of bid quantity cleared for simulations 1 - 10, for four scenarios is
visualized in Figure 17. Here, a substantial difference of around 30 % is observed between SO
models 1 and 2. Both post-clearance % performance metrics of SO model 1 are observed around
41%, while the post-clearance % performance metrics of SO model 2 are observed around 71%.
For both SO model 1 and SO model 2 with four scenarios it is observed that the % clearances
remain stable when increasing the risk-aversiveness of the agent owning the BESS. No significant
pattern is observed between a high clearance % for individual simulations of SO model 1 and a
high clearance % for SO model 2. For example, simulation 1 has 100 % clearance performance
for SO model 2, while for SO model 1, the % clearance performance is around average. A larger
sample size is required to investigate the potential correlation between the % clearance between
the two models.

Lastly, the expected and actual revenue/costs of SO models 1 and 2 in the case of four scenarios are
compared (Figure 10a and Figure 15a). In line with the comparison of the bid clearance between
SO models 1 and 2, it is observed that the gap between the expected and actual costs/revenue
of the models is smallest for SO model 2. In other words, the actual costs and revenue of SO
model 2 follow the expected costs and revenue more closely. Besides, the magnitude of actual costs
and revenue of SO model 2 is higher than for SO model 1. Overall, more bids are cleared in SO
model 2, resulting in higher actual costs/revenue. This result is closely connected to the clearance
performance as previously mentioned.
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Figure 17: Post-clearance performance simulations 1 - 10, case study 3, 4 scenarios

For ten scenarios, the pre-clearance and post-clearance performance are represented in Figure 18
and Figure 19, respectively. For the pre-clearance performance, similar patterns are observed
compared to having four scenarios. SO model 2 outperforms SO model 1 in terms of expected
profit, for all risk-attitudes of the agent. Additionally, the CVaR expected profit is less for SO
model 2 compared to SO model 1, for all risk-attitudes of the agent. This observation is in line with
the results of Examples 1, 2, and 3, in the case of ten scenarios (Appendix D.1 and Appendix E.1).

It can be observed that both the expected profit and the CVaR expected profit are reduced in
magnitude when having ten scenarios, compared to having four scenarios. This is already elaborated
in Case study 1: SO model 1 and Case study 2: SO model 2.

Figure 18: Pre-clearance performance simulations 1 - 10, case study 3, 10 scenarios

As represented in Figure 19, the substantial gap between the % clearance performance of SO models
1 and 2 again becomes apparent in the case of ten scenarios. The post-clearance performance of
SO model 1 lies in the range of 46 - 52 %, while the post-clearance performance of SO model 2
lies in the range of 72 - 84 %. As elaborated in Case study 2: SO model 2, the post-clearance
performance of SO model 2 also improves as the agent becomes more risk averse. This improvement
is not observed for SO model 1. For the post-clearance performance of Examples 1, 2, and 3,
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this significant clearance performance gap is also observed. Similar to having four scenarios, no
significant pattern is observed that correlates high clearance in SO model 1 with high clearance in
SO model 2.

Figure 19: Post-clearance performance simulations 1 - 10, case study 3, 10 scenarios

Lastly, the comparison between the expected costs/revenue and the actual costs/revenue of SO
models 1 and 2 has been made in the case of ten scenarios (Figure 10b and Figure 15b). The
observations align with the case of having four scenarios. The magnitude of the actual revenue
and costs of SO model 2 is higher than for SO model 1. In addition, the gap between expected
costs/revenue and actual costs/revenue is smaller for SO model 2. This is again correlated with the
higher % clearance performance of SO model 2.

10.6 Case study 4: Comparing SO model 1 and RO model
Case study 4 is concerned with comparing the pre-clearance and post-clearance performance of
SO model 1 (single bid model/base model) with the RO model. The pre- and post-clearance
performance of SO model 1 are represented in Case study 1: SO model 1. First, the results of the
RO model are represented and afterward, the two bidding models are compared. As elaborated
in Numerical investigations of the models, for the RO model, Γ0 is specified for the range 0 - 8.
Γ0 = 0 represents risk-neutral, and Γ0 = 8 represents the risk-averse agent. The Matlab code for
the RO model can be found on Github [104].

10.6.1 RO model results
For the pre-clearance performance metrics of the RO model, the expected profit is obtained as well
as the envisioned profit. For the expected profit, the mean bid price is used, and the expected profit
is directly obtainable from the bidding model. On the other hand, the robust bid prices are the bid
prices that are submitted to the market operator, meaning that the envisioned profit calculated
via the robust bid prices is the most interesting to investigate. However, since the expected profit
is the result directly obtained from the RO model, it is important to also look at the pattern of
the expected profit.

The RO model pre- and post-clearance performance metrics of Examples 1, 2, and 3, are represented
in Appendix F.1, for both four and ten scenarios. In addition, the average pre- and post-clearance
performance of simulations 1 - 10 are represented in Appendix F.2 and Appendix F.3. The average
results of the simulations are visualized in Figure 20 and Figure 21. Lastly, the comparison between
the envisioned costs/revenue and the actual costs/revenue has been visualized for both four and
ten scenarios in Figure 22a and Figure 22b, respectively.

University of Groningen 72



10 Numerical results

Figure 20: Pre-clearance performance simulations 1 - 10, case study 4, 4 and 10 scenarios

Figure 21: Post-clearance performance simulations 1 - 10, case study 4, 4 and 10 scenarios

To illustrate the performance of the RO model in comparison with SO model 1, risk-neutral
Example 1 (Γ0 = 0) is compared with risk-averse Example 1 (Γ0 = 8), from t = 18 until t = 24. For
SO model 1, the results of this same example are visualized in Table 11. For the RO model results,
the bidding schedule is represented in Table 14. For the risk-neutral attitude, the same result is
obtained for both models (RO model and SO model 1), charging at the lowest mean expected price
c̄t and discharging at the highest mean expected price c̄t. For Γ0 = 0, the RO model does not take
into account deviation from the mean expected price c̄t. When looking at the results for Γ0 = 8, a
more conservative bidding strategy is observed. Instead of charging the BESS fully at time t = 21,
where the expected price is the lowest, the risk-averse model wants to charge equally at t = 19, 20,
21. As can be seen in the expected price table (Table 15), the predicted prices of times t = 19, 20,
21 are very close to each other. Due to Γ0 = 8, the conservative model allows the prices to deviate
from the expected prices, taking t = 19, 20, and 21 equally beneficial to charge the BESS.
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(a) 4 scenarios

(b) 10 scenarios

Figure 22: Comparison of expected costs/revenue (pre-clearance) and actual costs/revenue (post-
clearance), case study 4

Table 14: Bidding schedule Example 1 time 18-24, case study 4

(a) Γ0 = 0

Time [h] xct [kW] xdt [kW] SoC
[kWh]

18 0 450 0
19 0 0 0
20 0 0 0
21 450 0 450
22 0 450 0
23 450 0 450
24 0 450 0

(b) Γ0 = 8

Time [h] xct [kW] xdt [kW] SoC
[kWh]

18 0 75 150
19 75 0 225
20 75 0 300
21 75 0 375
22 0 375 0
23 75 0 75
24 0 75 0
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Table 15: Price specifications Example 1, case study 4, 4 scenarios

Time [h] c̄t [e/kWh] dt [e/kWh]
18 46.19 4.94
19 43.53 4.94
20 42.31 4.94
21 42.00 4.94
22 48.59 4.94
23 43.60 4.94
24 43.93 4.94

10.6.2 Analysis case study 4

RO model performance analysis
In the case of four scenarios, it is observed for simulations 1 - 10 and Examples 1, 2, and 3 that the
expected and envisioned profit of the RO model drops when the agent becomes more risk-averse.
This can be seen in Figure 20, Appendix F.1 and Appendix F.2. In addition, the envisioned
profit with the robust bid price is lower than the expected profit with the mean bid price, for
all risk-attitudes except being risk-neutral. These same patterns are observed when having ten
scenarios, for both the examples and simulations (Appendix F.1 and Appendix F.3). Furthermore,
the expected and envisioned profit of the RO model is lower for ten scenarios than four scenarios,
for every risk-attitude of the agent, for simulations 1 - 10.

Regarding the post-clearance performance (%), it is observed that for both four and ten scenarios,
the clearance metrics of simulations 1 - 10 and Examples 1, 2, and 3 improve when moving to a
more risk-averse attitude (Figure 21). In the case of four scenarios, the average % of cleared bids
of simulations 1 - 10 improves from 41.39 % to 63.16 %, and the % cleared quantity improves from
41.25 % to 54.66 %. In the case of ten scenarios, the average % of cleared bids of simulations 1 - 10
improves from 46.74 % to 69.19 %, and the % cleared quantity improves from 46.85 % to 60.56 %.
As can be seen in Figure 21, the clearance performance of ten scenarios outperforms having four
scenarios.

When observing Figure 22, it is observed that the envisioned and actual costs and revenue both
reduce in magnitude when the agent becomes more risk-averse. Similar to before, the actual costs
and revenue follow the behavior of the envisioned costs and revenue. However, the envisioned
costs/revenue decrease with greater magnitude compared to the actual costs/revenue. This can be
mainly attributed to the increase in (%) clearance performance when the agent is more risk-averse,
where the actual revenue/costs comprise a larger fraction of the envisioned revenue/costs for
larger values of Γ0. Furthermore, it is observed that the magnitude of the envisioned and actual
revenue/costs of the four scenarios is higher compared to the ten scenarios, for all risk attitudes.

Investigating the results of the RO model, an important observation is made. For every testing
set example, a ’threshold value’ of Γ0 arises from which onward the dual variable p equals
zero. For both four and ten scenarios, the first Γ0 that obtains p equal to zero lies in between
8 - 13. When this occurs, the performance metrics can show extraordinary patterns. For
example, Example 1 with four scenarios exhibits p = 0 when Γ0 = 12. Then, the bidding
schedule comprises two time steps where the agent submits bid quantities over the whole
time horizon, where only one of the bids is cleared. As a result, the clearing performance
of Example 1 with Γ0 = 12 drops to around 10 %, deviating from the pattern where high
values of Γ0 have better % clearance performance, as can be observed in Figure 21. For all
simulations and examples, increasing Γ0 beyond this ’threshold’ does not alter the bidding schedule
anymore, meaning that the most risk-averse bidding schedule has been obtained. The Numerical
investigations of the models elaborates that Γ0 in the range of 0 - 8 is assessed since Γ0 should
be of the order

√
24. Hence, the results above show the patterns observed only in the range Γ0 in 0-8.
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RO and SO model 1 comparison analysis
A note must be made before comparing the RO model and SO model 1, since the risk parameters
used for both models are not 1-on-1 equivalent. For SO model 1, β is varied between 0 - 1, where 0
means a risk-neutral attitude and 1 means fully risk-averse. For the RO model, Γ0 is varied between
0 - 8. Hence, for this comparison, the risk-attitude of Γ0 = 8 is considered the most conservative
bidding schedule in the case of the RO model.

Comparing Examples 1, 2, and 3, with four scenarios, it is observed that in the case of a risk-neutral
attitude, the expected profit is equal for SO model 1 and the RO model. This also holds for the
envisioned profit of the RO model and the expected profit of SO model 1. For the analysis, the
envisioned profit for the RO model is used, since this resembles the profit with the robust bid price
that is submitted to the market operator. When increasing the risk-aversiveness of the agent, it is
observed that the envisioned profit of the RO model decreases with greater magnitude compared
to the expected profit of SO model 1. For simulations 1 - 10, the average range of envisioned profit
of the RO model reduces from 31953e to 22887e. For SO model 1, this reduction stretches from
31953e to 30572e. This pattern aligns with the Example results and holds for both four and ten
scenarios. Overall, the RO model envisioned profit reduces with greater magnitude when becoming
more risk-averse compared to SO model 1 expected profit.

Similar to the pre-clearance performance, the % post-clearance performance in risk-neutral SO
model 1 and RO model are equal (% of bids cleared and % of bid quantity cleared). As described in
Case study 1: SO model 1, the clearance performance of SO model 1 remains stable when increasing
the risk-aversiveness of the agent. As represented in Figure 21, the clearance performance improves
when the agent becomes more risk-averse. Hence, for all risk attitudes, RO model 2 outperforms
SO model 1 in terms of clearance performance, except for the risk-neutral models. This pattern is
also observed for Examples 1, 2, and 3, for both four and ten scenarios.

When observing Figure 10 and Figure 22, different patterns are observed for the SO model 1 and
the RO model. As elaborated above, the actual costs and revenue of the RO model decrease as the
agent becomes more risk-averse. This is due to the conservative bidding schedule obtained in the
RO model, for high values of Γ0. However, for SO model 1 the actual revenue and costs remain
stable when varying β. As a result, the magnitude of the actual costs and revenue is greater for
SO model 1, for all risk attitudes except being risk-neutral. In the risk-neutral models, the actual
revenue and costs are equal.
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11 Discussion
This chapter discusses the limitations of the research and elaborates on the main findings. The
main findings are compared with existing theory and remarkable observations of the case studies
are discussed. Afterward, three interesting future directions of research are described, where the
last future direction is elaborated in more detail.

Scenario-based modeling of price uncertainty elaborates on the theoretical framework for deriving
a representative reduced set of scenarios, used as input into the developed SO models. First, as
stated in the Numerical investigations of the models section, the lack of accurate historical data on
LEM prices prevented the use of the specified SARIMAX model in this research. The envisioned
methodology to obtain an accurate forecast of the LEM price was to incorporate an historical
LEM price data time series and to use an (accurate) WSM price data time series as an exogenous
variable to capture the correlation between the WSM and the LEM. An attempt was undertaken to
construct LEM data based on bids submitted by dummy agents, meaning that the agents submit
bids based on simple, unsophisticated bidding mechanisms. By aggregating the bids from local
participants in the LEM day-ahead market, the determination of the local market’s short or long
state becomes feasible. Subsequently, according to the proposed market clearing mechanism in
Appendix A, the local market price could be forecasted, and local market price data could be
generated. Hence, it is required to have insight into the local demand and supply ratio to ascertain
deviations of the local market price from the wholesale market price. The Matlab code on Github
[104] was created to determine the local market clearing price based on the local bids submitted,
and to determine which of the submitted bids are cleared in the LEM. The market clearance was
determined by carrying out the proposed market clearing mechanism in Appendix A. Regrettably,
due to time limitations and the lack of accuracy of the dummy agents in the LEM, the generated
LEM price data could not be effectively integrated into this research.

As mentioned throughout the research, the models developed in this research are tailored to the
LEM day-ahead market. Nonetheless, the methodology permits the generation of price scenarios
for different energy markets provided accurate price data is available. Then, with a set of price
scenarios generated according to the methodology elaborated in Scenario-based modeling of price
uncertainty, the developed bidding models to determine the optimal bidding schedules can be
applied across various energy markets.

In this research, the publicly available WSM price data [32] is set equal to the LEM price data,
with a SARIMA point forecast model employed for stage 1 of the scenario generation methodology
described in Scenario-based modeling of price uncertainty. However, there are some limitations in
the methodology of the SARIMA model used in this research. First, the daily seasonality of the
electricity prices is captured in the SARIMA model (S = 24), excluding other price seasonalities,
such as weekly and yearly seasonality [107]. Additionally, the order parameters p, d, q, P, D, Q
are determined by investigating the training set of Example 1 and are subsequently applied to
the other examples/simulations. This approach, while promoting coherence between the scenario
generation algorithm and case studies, may not yield optimal order parameter combinations for
different datasets, potentially comprising the goodness of fit of other forecasts. Furthermore, a
limited number of combinations of the order parameters is investigated in this research, resulting
in a possible sub-optimal order parameter combination for Example 1. As elaborated in Numerical
results, residual auto-correlation persists in Example 1’s prediction error, indicating potential
improvements in capturing time series correlations through an alternative order parameter set.
Moreover, the (S)AR(I)MA(X)-type models make certain simplifying assumptions, for example,
the prediction error (residuals) conforming to white noise characteristics (e.g. zero mean, constant
variance) [107]. In literature, more sophisticated models exist which relax this assumption. For
example, the Generalized Auto-regressive Conditional Heteroskedasticity (GARCH) model enables
varying prediction errors (residuals) over the forecast horizon [27]. Combining the (S)AR(I)MA(X)-
model with the GARCH model, similar to [27] can lead to more sophistication in the LEM price
forecast.
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11.1 Main findings
Analyzing the results of the stochastic optimization models, the pre-clearance performance of SO
models 1 and 2 align with existing theory. First of all, existing literature states that expected profit
diminishes with increasing levels of risk aversion [23]. This pattern is also observed in the case
studies carried out in this research. On the other hand, the CVaR expected profit increases when
becoming more risk-averse, as elaborated in [23]. This pattern is also observed in Case study 1: SO
model 1 and Case study 2: SO model 2. Furthermore, [37] finds that allowing more price-quantity
points per time step have resulted in enhanced expected profit performance compared to a single
price-quantity point submission per time step [50]. This statement is supported by the results of
Case study 3: comparing SO models 1 and 2, where the comparison between SO models 1 and 2
demonstrates superior expected profit performance for SO model 2 across varying risk attitudes.

Furthermore, in Case study 3: comparing SO models 1 and 2 it has been found that the % clearance
performance of SO model 2 outperforms the % clearance performance of SO model 1, for all risk
attitudes. While SO model 1 exhibits constant % clearance regardless of the agent’s risk attitude,
SO model 2 displays an increasing pattern, only evident in the case of ten scenarios. The essence
of risk management in this context revolves around mitigating the potential for high charging
costs when buying energy and avoiding negative revenue when selling energy. In the SO models,
the price scenarios comprise the only information about the day-ahead prices. Consequently, the
optimization model mitigates the risk associated with the forecasted day-ahead prices, operating
under the assumption that the price scenarios accurately reflect the probability distribution of
the day-ahead window. Hence, discrepancies between forecasted and actual day-ahead market
prices can introduce misalignments in the risk the model wants to reduce and the risk the actual
day-ahead market represents. In the end, having a good price forecast is essential in creating an
optimal bidding schedule for an agent participating in the LEM.

Overall, the findings from the simulations were consistent with those from the examples. However,
there were some deviations noted in terms of the % of bids cleared and the % of bid quantity
cleared, which did not coincide with the patterns observed in the simulations. Notably, these two
metrics exhibited significant variability across both simulations and examples, emphasizing the
importance of a large sample size. In this research, more credibility is given to the simulation
observations compared to the example observations, due to its larger sample size. Given that the %
clearance of SO model 2 with ten scenarios outperforms that of four scenarios, further investigation
with an increased sample size can provide a more comprehensive insight into these patterns. Since
the % clearance of SO model 2 with ten scenarios outperforms four scenarios, additional research
with a larger sample size can provide more insight into these observed patterns.

Analyzing the performance of the RO model, with varying Γ0, the distinction is made between the
expected profit and the envisioned profit of the bidding schedule. The expected profit is directly
derived from the model results, while the envisioned profit manipulates the bid price of the bidding
schedule after obtaining the optimal schedule. Consequently, comparing the envisioned profit of the
RO model with the expected profit of SO model 1 is not 1-on-1 equivalent. Moreover, as highlighted
in Case study 4: Comparing SO model 1 and RO model, distinct risk parameters are employed for
the RO and SO models, making the comparison between the two models complex. A proposed
solution to make a more fair comparison between these two models is outlined in Further research.

In the RO model results, Γ0 = 8 is identified as the most conservative risk-attitude of the agent. In
the case of four scenarios, simulations 2, 8, and 10 have reached their most risk-averse bidding
schedule with Γ0 = 8. For ten scenarios, simulations 3, 8, and 10 also obtain their most risk-averse
bidding schedule when Γ0 = 8. Increasing Γ0 beyond this value does not alter their bidding schedule.
Moreover, the dual parameter p equals zero when the most risk-averse bidding schedule has been
obtained. In the most risk-averse bidding schedules, % clearing patterns can deviate from the
observed increasing clearance patterns, because the number of price-quantity points in these bidding
schedules reduces compared to a risk-neutral bidding schedule. Consequently, if the reduced number
of price-quantity point fails to clear in the LEM, the % clearance declines significantly, deviating
from the observed pattern.
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Using a similar argument as for the SO model % clearance behavior, the RO model uses the mean
price forecast and its standard deviation forecast as input. The RO model becomes more risk-averse
using its uncertainty set as reliable information. However, in reality, assuming a constant standard
deviation over the day-ahead timeframe, as presumed by the (S)AR(I)MA(X)-type models, is
unrealistic [27]. Consequently, the upper and lower bounds of the box interval may misalign with the
actual LEM price. To mitigate the risk of high charging costs during battery charging and negative
revenue in the case of battery discharge, an accurate box interval uncertainty set is essential.

Furthermore, the post-clearance performance metrics, actual revenue/costs, are analyzed. Com-
paring the actual revenue/costs with the expected (envisioned) revenue/costs derived from the
bidding models, a note should be made. Moving from the expected (envisioned) costs/revenue to
the actual costs/revenue, the bid price has been changed into the actual LEM price and only the
cleared bids are considered. Hence, a pattern observed in the actual revenue/costs when varying
the risk attitude of the agent can be caused by the changing clearance performance (%) and
changing bidding schedules using different actual price realizations. Notably, the actual revenue
and costs may present a skewed perspective as uncleared bids are disregarded. This research does
not incorporate a penalty or fine system for the agent to compensate for the uncleared bids, and a
balancing market is out of the scope of this research. Hence, relying on the actual revenue and
cost results and the patterns observed when varying the risk is not very reliable. For instance, low
actual charging costs do not necessarily indicate a profitable bidding schedule but could result
from a low % charging clearance performance. Nevertheless, the actual revenue/costs of SO model
2 exhibit the largest magnitude across all risk attitudes of the agent. The gap between the actual
revenue and actual costs and the expected revenue and expected costs is the smallest for SO model
2. This aligns with the good % clearance results obtained for SO model 2.

While the RO model requires solely an upper and lower bound of the uncertainty (using the box
interval uncertainty set), the SO models require explicit scenario price generation to obtain the
bidding schedules. Given the complexity inherent in forecasting energy prices, employing the RO
model with accurate upper and lower bounds of the uncertainty set offers a simpler alternative.
Still, when exploiting RO, using a point forecast model is required to determine an accurate mean
and standard deviation of the LEM prices. When limited information is available on day-ahead
prices, the RO model emerges as a viable choice. However, when enough historical data exists to
obtain an accurate set of scenarios, the superiority of SO model 2 over the RO model in terms of
% clearance and expected profit becomes evident, as demonstrated in this research. In this case,
opting for SO model 2 proves more advantageous than exploiting the RO model developed in this
research.

11.2 Future research
This section is concerned with outlining multiple interesting future research directions in the field
of optimizing bidding schedules for agents in energy markets. The last research direction outlined
in this section is elaborated in more detail.

CVaR uncertainty set in robust optimization model
First, the RO model developed in this research has a simple, straightforward uncertainty set,
namely the box interval [c̄t − dt, c̄+ dt] [26]. As carried out in this research, this uncertainty set
can be integrated into the robust optimization model of an agent owning the BESS asset. As
elaborated in the Discussion, comparing the performance of SO model 1 with risk management
and the RO model developed in this research is complex, since the risk parameters used in the
two models are not 1-on-1 equivalent. However, Uncertainty set construction via risk measures
derives a different uncertainty set in robust optimization, representing the CVaR risk measure
as the uncertainty set in robust optimization. Future research can investigate implementing the
uncertainty set represented in Equation 6.24 into the robust optimization problem and obtain the
optimal bidding schedule of the agent. Then, more emphasis can be put on comparing SO model
1 with CVaR as risk management and the RO model with an uncertainty set as represented in
Equation 6.24.
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Other energy markets
Existing papers focus on exposure to the real-time market besides the day-ahead market, enabling
the agent to bid in both markets. Hence, the bidding schedule of the agent for the day-ahead
market can be corrected in the real-time market [59]. This makes the optimization of the bidding
schedules more complex, but also more realistic. In this research, the bids that are not cleared in
the LEM day-ahead market cannot be compensated or corrected in other markets.

Besides the future direction of incorporating another market to compensate for the uncleared bids
in the day-ahead market, the optimization models developed in this research can be applied to
whole other markets in general. An example of this is the hydrogen market. The only requirement
to use the developed bidding models is to acquire enough data to forecast energy prices, which
have to be used as input in the (stochastic and robust) optimization models.

Multiple asset expansion
This section provides an outline of how to expand the developed optimization models to account for
multiple assets. The scope of this research was to maximize the profit of a single agent operating
within the day-ahead market. The asset collection of the agent in this research consisted of owning
a BESS asset. However, an interesting expansion of the optimization models developed in this
research, especially SO model 2, is to add multiple assets to the asset collection of the single agent,
and again determine the optimal bidding schedule of the agent participating in the day-ahead
market. The guidelines on how to carry out this expansion of assets for SO model 2 are provided
next.

In SO model 2 (Model 2: multiple bids, different types of constraints are constructed. These types
of constraints are categorized into Battery constraints, Monotonicity constraints, Non-anticipativity
constraints, Active price-quantity point constraints, and State of charge of active price-quantity
points constraint. The Battery constraints and State of charge of active price-quantity points
constraint are BESS specific constraints. The other constraint types are general constraints, required
to construct the (monotonic) buying and selling bidding curve of SO model 2.

When adding another asset to the optimization problem, adjustments are made to the constraints
and the objective function. New asset-specific constraints are required, for example, specifications
of PV-panel electricity generation in case of adding PV panels or generator electricity generation
in case of adding a generator. An example of an asset-specific constraint for a generator is that the
electricity output of the generator should remain within the capacity bounds of the generator [50].

Importantly, the distinction between the different electricity outputs of the assets needs to be made.
In this research xct,ω and xdt,ω represent the (dis)charge quantities of the BESS asset, directly bidding
into the day-ahead market. These quantities are the only electricity quantities incorporated in this
research because the (dis)charge rate of the battery is equal to the electricity that is bid into the
day-ahead market. When adding another asset to the optimization model, constructing an internal
energy balance becomes an essential additional element of the optimization problem. For example,
in [50], an internal energy balance is constructed in the constraints, balancing the day-ahead market
quantity sold/bought (macro grid), the real-time market quantity sold/bought (macro grid), the
battery (dis)charge rates, electricity generated by the generator, electricity generated by the PV
system, and electricity demand of the agent (comprising the microgrid). When having multiple
assets in the optimization problem, the supply elements and the consumption of energy need to be
balanced. Focusing on the day-ahead market only, the actual bids that the agent submits are the
electricity quantities sold/bought in the day-ahead market. These bid quantities that are submitted
to the day-ahead market cover the electricity patterns of all assets, not just the battery asset, as is
the case in this research.

Hence, adding additional assets requires the addition of asset-specific constraints and the internal
energy balance of the agent, balancing the electricity usage patterns of all assets. In the objective
function, when only taking into account the day-ahead market costs, the battery charge/discharge
quantities in the objective function (xct,ω and xdt,ω) are replaced by the bid quantities to buy/sell
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electricity in the day-ahead market (xbuy,DA
t,ω and xsell,DA

t,ω ). As mentioned before, these new bid
quantities comprise the aggregate electricity usage of all assets and bid electricity in the day-ahead
market when it is convenient for all assets, not only the BESS asset. Besides, additional costs
can arise when having multiple assets, for example from a generator asset that uses fuel. Hence,
multiple cost terms can arise in the new objective function, targeting cost elements of the different
asset collections of the model.

Adding risk management to SO model 2 with multiple assets is expected to have a similar
methodology as described in Model 2 with risk management. The same risk can be targeted, namely
the risk of the day-ahead market price being uncertain. Still, the goal of the agent is to sell (buy)
electricity in the day-ahead market when the price is high (low). The risk connected is that the
price can deviate from the expected price, resulting in high costs (or negative revenue). However,
care should be given to the decision variables that are incorporated into the CVaR constraints. In
this research, the expected costs in the objective function (including xct,ω and xdt,ω) are used in the
CVaR constraints to measure the risk of the worst 5% of the cases. When having multiple assets,
these decision variables also change to (xbuy,DA

t,ω and xsell,DA
t,ω ), as introduced above.

Lastly, the models developed in this research could expand to also incorporate the real-time
market, which is used when the bid quantity in the day-ahead market is not cleared [59]. When
also incorporating risk management in the real-time market, the complexity of the model grows
significantly.
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12 Conclusion
This research focused on developing the optimal bidding schedule for an agent owning a BESS
asset, participating in the LEM day-ahead market. The agent aims to exploit energy arbitrage
of the LEM, by buying energy at low prices and selling energy when the price is high [59]. To
cope with the uncertainty of the LEM day-ahead prices, both stochastic and robust optimization
domains were investigated.

This research commenced by providing the reader with a theoretical foundation regarding scenario-
based modeling. Scenario-based modeling was used in the modeling domain of stochastic opti-
mization to represent the LEM price uncertainty. Afterward, the outline to add risk management
to a stochastic optimization problem was provided. Risk management is added to the stochastic
optimization models in this research by using the Conditional Value at Risk (CVaR) risk measure
[74]. CVaR represents the expected profit of the (1-α)% worst cases of the profit realizations [72],
where the aim is to minimize these worst cases.

In terms of robust optimization, a general robust problem was firstly derived by specifying the
uncertainty set used in this research. The box interval uncertainty set is constructed, which is
obtained by specifying the mean price forecast and its standard deviation. By using a polyhedral
box interval uncertainty set, the robust counterpart of the original problem could be constructed.
Afterward, by constructing its dual problem, a general, linear robust optimization problem was
derived that could later be scoped to the battery asset specifications.

After the theoretical background has been provided for both stochastic and robust optimization
domains, two stochastic models have been developed in the application of the agent owning the
BESS asset. The risk-neutral SO model 1 serves as a benchmark model, where the agent is allowed
to submit a single bid to the market operator per time step. SO model 2 allows the submission of
multiple bids per time step, resulting in a monotonic bidding curve construction for both charging
and discharging bids [36]. Despite monotonicity constraints, non-anticipativity constraints, and
active price-quantity point constraints are developed for SO model 2 [50]. Both of the stochastic
optimization models are extended to incorporate the risk attitude of the agent. This is done
separately for charging risk, discharging risk, and simultaneous charging and discharging risk of the
battery. However, the case studies are carried out only with simultaneous charging and discharging
risk.

Applying the general robust problem derived in the theoretical background to the agent owning
the BESS asset participating in the day-ahead market, the robust optimization model is developed.
The developed RO model can submit a single price-quantity point per time step. For the robust
optimization model, the budget of uncertainty is used to adjust the risk attitude of the agent.

Transitioning to the numerical investigations of the models, three example training sets and ten
simulation training sets of LEM price data are constructed to develop the LEM day-ahead forecasts.
The SARIMA(1,0,1)(1,0,1)24 model was used as a point forecast model to forecast the LEM
day-ahead prices. Then, based on the found model coefficients, 100 LEM day-ahead price scenarios
were generated via the developed scenario generation algorithm. Afterward, these scenarios were
reduced to a tractable number of four and ten scenarios, by using the forward selection algorithm
based on the Kantorovich Distance [73, 23]. This optimal reduced set of scenarios served as input
in the developed stochastic optimization models. The mean and standard deviation obtained from
the SARIMA(1,0,1)(1,0,1)24 model were similarly used as input in the robust optimization model.

The three examples have different training set durations. Example 3 obtained the lowest MAPE
value, constructing the most accurate price forecast. Consequently, the simulations are constructed
with a training set duration of one week, similar to Example 3. Then, four case studies are conducted
to assess the performance of the bidding models, assessing the performance of having four and
ten scenarios. These case studies assess the performance of SO models 1, 2, and the RO model
separately, varying the risk attitude of the agent. In addition, the performance comparison has
been made between SO models 1 and 2, and between SO model 1 and the RO model.
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The performance metrics are divided into pre-clearance performance metrics and post-clearance
performance metrics. In terms of pre-clearance performance, it is observed for all three models that
the expected profit decreases as the agent becomes more risk-averse. On the other hand, the CVaR
expected profit in SO models 1 and 2 increases when becoming more risk-averse. The gap between
the expected profit and the CVaR expected profit decreases as the agent becomes more risk-averse.

In terms of expected profit, SO model 2 outperforms the other two models, for all risk attitudes of
the agent. In addition, it is observed that the expected (envisioned for the RO model) profit has a
smaller magnitude in the case of ten scenarios compared to four scenarios, for all three models and
all risk attitudes. From the three models, the RO model envisioned profit reduces with the greatest
magnitude when becoming more risk-averse. In all cases, the agent faces the tradeoff between a
higher expected profit and risk aversion. When comparing the CVaR expected profit of SO models
1 and 2, SO model 2 shows a lower CVaR expected profit, for all risk attitudes. In other words,
the 5% worst-case realizations in SO model 2 result in a lower expected profit compared to the
benchmark model.

Besides investigating the pre-clearance performance (expected profit and CVaR), this research
assesses the post-clearance performance of the models in the LEM day-ahead market in terms
of actual costs/revenue, % of bids cleared, and % of bid quantity cleared. The post-clearance
performance metrics require the additional step of checking whether the price-quantity points
submitted to the market operator are cleared in the LEM day-ahead market. In terms of %
clearance (% of bids cleared and % of bid quantity cleared), SO model 2 gives the best results,
for all risk-attitudes. Comparing SO models 1 and 2, the % clearance performance of SO model 1
remains constant around 41% (48%) for four (ten) scenarios, while the % clearance performance of
SO model 2 remains constant around 71% for four scenarios, and increases in the range of 72-84%
for ten scenarios. It is observed that for ten scenarios, the % clearance performance of SO model
2 shows an increasing pattern when becoming more risk-averse. This increasing pattern is not
significantly observed for SO model 1 (four and ten scenarios) and SO model 2 with four scenarios.

Considering the % clearance performance of the RO model, an increasing % clearing pattern
is observed when becoming more risk-averse. Comparing the RO model with SO model 1, the
RO model outperforms SO model 1 in terms of % clearance, except for a risk-neutral attitude.
Overall, the magnitude of % clearance of SO model 2 outperforms the other two models, for all
risk-attitudes of the agent. To strengthen the results, a larger sample size would improve the
credibility and reliability of the % clearance patterns observed. The performance of SO model 2 is
further strengthened by investigating the actual costs of the charging bids and the actual revenue
of the discharging bids of the bidding models. Correlated with the high % clearance of SO model 2,
the actual costs and revenue of SO model 2 have greater magnitude compared to the other two
models, for all risk attitudes. In other words, the gap between the actual costs and revenue and
the expected costs and revenue is the smallest for SO model 2, indicating its effectiveness in the
local day-ahead market.

The results of the stochastic bidding models indicate that having a good set of price scenarios
contributes to good post-clearance performance of the bidding models, especially for SO model
2. In this case, when the actual LEM price realization lies within the bandwidth of the scenario
prices, and the peaks and troughs of the price scenarios align, the best clearance performance is
obtained. When limited historical price data is available, robust optimization can be used since this
only requires the specification of an uncertainty set, without explicitly modeling the probability
distribution of the uncertainty.
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13.1 Appendix A: Proposed market clearing mechanism
This section provides an elaboration of the market clearing mechanism proposed by the market
parties involved, to incentivize the LEM, as visualized in Figure 25. The corresponding Matlab
code is located on Github [104].

• After all bids are submitted to the LEM, a merit order of both demand and supply bids is
established. These bids exclude the extra transport fee.

– Local supply bids with a higher price than pwsm are outside of the market. These local
supplier bids would not be cleared in both the LEM and WSM, since no consumer is
willing to pay such a high price. The organization of these bids in the merit order can
be seen in Figure 23.

(a) Local energy supply bids with some local bids
(blue) at a higher price than WSM (spot) price
(red).

(b) Local energy supply bids higher than WSM
price (red) are considered out of the merit order
(grey).

Figure 23: Local Energy supply bid merit order

– Local demand bids with the transport fee on top that are lower than pwsm are outside
of the market. Any supplier will sell energy to the wholesale trader in this case, and
these local demand bids will not be cleared in both the LEM and the WSM. These local
demand bids are visualized in grey in Figure 24.

Figure 24: Merit order of local demand bids (yellow) and wholesale trader bids at WSM price
(red), and the local demand bids outside of the merit order (grey).

• The provisional local market price is determined which is the market price where local demand
and supply meet.
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• There are two scenarios, namely when the local market is long or short. There is a different
market clearing procedure for both scenarios, these procedures are described in the following
two sections.

Figure 25: Local Electricity Market Clearing Mechanism
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13.1.1 Short local market (local demand > local supply)
1. As can be seen in Figure 26, the provisional local market price is equal to the WSM price:

pprov = pwsm (13.1)

Figure 26: Short local market, with the wholesale volume that is subject to extra transport fee

2. As indicated in Figure 26, the volume of wholesale energy to fulfill the local demand is
determined (vwsm). This volume needs to be bought via the wholesale trader with the
additional transport fee (f). The rest of the local volume can be fulfilled locally (vlem). The
local market volume is equal to v = vwsm + vlem. When the market is short, the consumers
have to pay an additional fee on top of the WSM price. This fee is socialized over all local
demand participants.

3. The total fee for the wholesale volume is calculated. Here, ftot is in [cents], vwsm is in [kWh],
f is in [cents/kWh].

ftot = vwsm · f (13.2)

4. The cleared local market price (plem) is equal to the provisional local market price plus the
total wholesale fee divided by the whole local volume. This is the final market price that will
be paid by the local consumers and is received by the local suppliers.

plem = pprov +
ftot

vwsm + vlem
(13.3)

= pwsm +
vwsm · f

vwsm + vlem
(13.4)

= pwsm +
ftot
v

(13.5)

Hence, the cleared local market price (plem) for the consumers is equal to or larger than
the WSM price (pwsm), depending on how much energy needs to be bought via the
wholesale trader. The term ftot

vwsm+vlem
becomes smaller when less energy is bought via

the wholesale trader, resulting in less additional costs for the local demand participants.
When all energy is bought via the wholesale trader, this additional term becomes large,
making the cleared local market price relatively high. Hence, the more energy is traded
locally, the more ’discount’ the local demand participants get. Note here that ftot is
divided over all local demand participants, meaning that the transport fee is socialized
over all local demand participants. This can be seen in the dark green box in Figure 27b.
Local suppliers also receive plem, as they receive some additional revenue from clearing locally.
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(a) Total transport fee is calculated (light green)
(b) Transport fee is divided over all local demand
participants (dark green)

Figure 27: Transport fee representation in a short market

13.1.2 Long local market (local supply > local demand)

1. In this scenario, the provisional local market price is lower than or equal to the WSM price
(see Figure 28) and is equal to the cleared local market price. In this case, all consumers are
fulfilled in the local market and pay the cleared local market price. Some supply shall be
cleared on the WSM, wherefore the suppliers corresponding to the local supply bids that
are cleared via the wholesale trader have to pay the transport fee to the grid operator. This
is different compared to the short market, where the transport fee is divided over all local
demand participants instead.

pprov = plem (13.6)

Figure 28: Long local market, with the local supply bids that are cleared via the wholesale trader

2. The supply bids that are not cleared locally are sold to the wholesale trader (dark red in
Figure 28). This volume is equal to vwsm. In this case, that particular supplier needs to pay
the transport fee to the grid operator.

• As can be seen in Figure 29, the price the supplier that is cleared via the wholesale
trader receives [ct/kWh], is equal to the WSM price [ct/kWh] minus the transport fee f
[ct/kWh] of the bidding agent:

pwsm − f (13.7)
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Figure 29: Long local market, with the transport fee indicated in green.

The revenue of the supplier i [ct] that is cleared via the wholesale trader is equal to:

revenuei = (pwsm − f) · qi (13.8)

• The revenue of the supplier i that is cleared locally is equal to the local market clearing
price (plem) multiplied with the quantity of the supply bid.

revenuei = plem · qi (13.9)

3. Note that the transport fee should be dynamic to make selling to the local market more
beneficial for a local supplier.

The following relation should hold in a long local market: the revenue of supplying in LEM is
greater than or equal to supplying energy in WSM. Otherwise, the situation arises where
bidding supply below the WSM price is not beneficial, and clearing via the wholesale trader
is more beneficial than remaining local. In a long market, supply agents should respond
competitively with other supply agents to be cleared locally. This drives the market price
down. However, the transport fee should remain a proper incentive for the supply agents.
Hence, the transport fee should be dynamic. The following equation should hold, where plem
is in [ct/kWh], pwsm is in [ct/kWh], and f is in [ct/kWh]. This way, the plem lies within the
range of the transport fee. Hence, clearing locally is more beneficial compared to obtaining a
lower price when selling energy via the wholesale trader (namely pwsm - f). The upper bound
of the equation below is due to the fact that the market is long and there is excess local
supply. Hence, the local market price is smaller or equal to the wholesale market price.

pwsm − f ≤ plem ≤ pwsm (13.10)
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13.2 Appendix B.1: Example 1 scenarios

Figure 30: Example 1 day-ahead price scenarios 1st of May 2015. Black: actual price 1st of May
2015. Colors: 100 scenario realizations

Figure 31: Example 1 day-ahead price scenarios 1st of May 2015. Black: actual price 1st of May
2015. Colors: 10 scenario realizations
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13.3 Appendix B.2: Example 2 scenarios

Figure 32: Example 2 day-ahead price scenarios 18th of March 2015. Black: actual price 18th of
March 2015. Colors: 100 scenario realizations

Figure 33: Example 2 day-ahead price scenarios 18th of March 2015. Black: actual price 18th of
March 2015. Colors: 10 scenario realizations
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13.4 Appendix B.3: Example 3 scenarios

Figure 34: Example 3 day-ahead price scenarios 12th of March 2015. Black: actual price 12th of
March 2015. Colors: 100 scenario realizations

Figure 35: Example 2 day-ahead price scenarios 12th of March 2015. Black: actual price 12th of
March 2015. Colors: 10 scenario realizations
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13.5 Appendix C: Example 3 ACF plot

Figure 36: Autocorrelation Function plot of Example 3

13.6 Appendix D.1: Pre- and post-clearance performance Examples 1,
2, 3, case study 1

Table 16: Pre-clearance performance examples 1 - 3, case study 1, 4 scenarios

β Exp. profit [e] Exp. costs [e] Exp. revenue [e] CVaR [e]
Example 1

0.0001 30320 109795 140114 28467
0.5 30057 118827 148884 29987
0.999 30015 115816 145831 30015

Example 2
0.0001 36511 87866 124377 33036
0.5 36142 88235 124377 33558
0.999 34725 72072 106797 33846

Example 3
0.0001 36553 53380 89934 31121
0.5 35269 64969 100238 34354
0.999 34803 83393 118196 34803
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Table 17: Post-clearance performance examples 1 - 3, case study 1, 4 scenarios

β Actual costs [e] Actual revenue [e] Cleared bids [%] Cleared
quantity [%]

Example 1
0.0001 49523 49246 38.46 % 37.93 %
0.5 49230 49246 37.50 % 36.02 %
0.999 47031 49246 37.50 % 35.88 %

Example 2
0.0001 63567 23792 45.45 % 45.92 %
0.5 64121 23792 45.45 % 45.92 %
0.999 49513 24574 54.55 % 45.00 %

Example 3
0.0001 0 71035 42.86 % 41.94 %
0.5 7264 71035 40.00 % 42.87 %
0.999 19341 71035 41.67 % 40.76 %

Table 18: Pre-clearance performance examples 1 - 3, case study 1, 10 scenarios

β Exp. profit [e] Exp. costs [e] Exp. revenue [e] CVaR [e]
Example 1

0.0001 30072 72832 102904 25200
0.5 29614 77526 107141 27070
0.999 28886 63322 92209 27410

Example 2
0.0001 36795 73019 109813 29313
0.5 35623 83860 119483 32089
0.999 35121 85033 120154 32275

Example 3
0.0001 35126 53485 88612 31885
0.5 348896 50936 85833 33581
0.999 34793 52752 87544 33587

Table 19: Post-clearance performance examples 1 - 3, case study 1, 10 scenarios

β Actual costs [e] Actual revenue [e] Cleared bids [%] Cleared
quantity [%]

Example 1
0.0001 66992 49246 66.67% 66.25 %
0.5 71583 48819 64.29% 65.22 %
0.999 55905 47626 61.54 % 66.39 %

Example 2
0.0001 52668 23792 44.44 % 45.00 %
0.5 63080 24597 41.67 % 45.60 %
0.999 70289 24597 53.85 % 49.33 %

Example 3
0.0001 14684 540059 42.86 % 43.55 %
0.5 14684 69268 50.00 % 56.64 %
0.999 14684 71204 41.67 % 56.47 %
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13.7 Appendix D.2: Pre- and post-clearance performance simulation 1 -
10, case study 1, 4 scenarios

Table 20: Average pre-clearance performance simulations 1 - 10, case study 1, 4 scenarios

β Exp. profit [e] Exp. costs [e] Exp. revenue [e] CVaR [e]
0.0001 31953 93705 125658 27873
0.5 31458 95103 126561 29808
0.999 30572 94399 124971 30165

Table 21: Average post-clearance performance simulations 1 - 10, case study 1, 4 scenarios

β Actual costs [e] Actual revenue [e] Cleared bids [%] Cleared
quantity [%]

0.0001 35182 51102 41.39 % 41.25 %
0.5 39953 50254 41.00 % 42.39 %
0.999 40117 49680 41.63 % 42.36 %

13.8 Appendix D.3: Pre- and post-clearance performance simulation 1 -
10, case study 1, 10 scenarios

Table 22: Average pre-clearance performance simulations 1 - 10, case study 1, 10 scenarios

β Exp. profit [e] Exp. costs [e] Exp. revenue [e] CVaR [e]
0.0001 29506 71878 101384 23037
0.5 28693 75220 103913 26931
0.999 28102 70272 98375 27136

Table 23: Average post-clearance performance simulations 1 - 10, case study 1, 10 scenarios

β Actual costs [e] Actual revenue [e] Cleared bids [%] Cleared
quantity [%]

0.0001 29175 48156 46.74 % 46.85 %
0.5 35733 50270 49.00 % 49.59 %
0.999 36149 48970 47.21 % 51.56 %
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13.9 Appendix E.1: Pre- and post-clearance performance Examples 1,
2, 3, case study 2

Table 24: Pre-clearance performance examples 1 - 3, case study 2, 4 scenarios

β Exp. profit [e] Exp. costs [e] Exp. revenue [e] CVaR [e]
Example 1

0.0001 31877 84878 116755 25842
0.5 31233 102099 133332 28765
0.999 30256 117334 147589 29808

Example 2
0.0001 36893 74316 111209 31103
0.5 36511 87866 124377 33036
0.999 36142 88235 124377 33558

Example 3
0.0001 36553 53380 89934 31121
0.5 35679 61470 97419 33805
0.999 35269 64969 100238 34354

Table 25: Post-clearance performance examples 1 - 3, case study 2, 4 scenarios

β Actual costs [e] Actual revenue [e] Cleared bids [%] Cleared
quantity [%]

Example 1
0.0001 86072 125256 84.62 % 84.48 %
0.5 112686 117008 86.67 % 88.74 %
0.999 120113 127222 89.47 % 91.30 %

Example 2
0.0001 63567 65057 63.64 % 64.29 %
0.5 84402 65057 72.73 % 73.47 %
0.999 84956 65057 72.73 % 73.47 %

Example 3
0.0001 55134 90110 100.00 % 100.00 %
0.5 61173 98185 100.00 % 100.00 %
0.999 65719 102211 100.00 % 100.00 %

Table 26: Pre-clearance performance examples 1 - 3, case study 2, 10 scenarios

β Exp. profit [e] Exp. costs [e] Exp. revenue [e] CVaR [e]
Example 1

0.0001 30096 70201 100296 23573
0.5 29938 75881 105819 26609
0.999 29614 77526 107141 27070

Example 2
0.0001 36795 73019 109813 29313
0.5 36285 83479 119764 31163
0.999 35623 83860 119483 32089

Example 3
0.0001 35126 53485 88612 31885
0.5 35071 54161 89232 33257
0.999 34900 51001 85901 33572
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Table 27: Post-clearance performance examples 1 - 3, case study 2, 10 scenarios

β Actual costs [e] Actual revenue [e] Cleared bids [%] Cleared
quantity [%]

Example 1
0.0001 66992 103098 100.00 % 100.00 %
0.5 69948 108036 100.00 % 100.00 %
0.999 71583 109404 100.00 % 100.00 %

Example 2
0.0001 70641 69908 77.78 % 78.75 %
0.5 80570 79320 75.00 % 81.00 %
0.999 81053 66272 75.00 % 73.68 %

Example 3
0.0001 53010 90110 100.00 % 100.00 %
0.5 53751 91981 100.00 % 100.00 %
0.999 50513 88548 100.00 % 100.00 %

13.10 Appendix E.2: Pre- and post-clearance performance simulation 1
- 10, case study 2, 4 scenarios

Table 28: Average pre-clearance performance simulations 1 - 10, case study 2, 4 scenarios

β Exp. profit [e] Exp. costs [e] Exp. revenue [e] CVaR [e]
0.0001 32800 87887 120687 25906
0.5 32217 93161 125405 29223
0.999 31891 94379 126270 29664

Table 29: Average post-clearance performance simulations 1 - 10, case study 1, 10 scenarios

β Actual costs [e] Actual revenue [e] Cleared bids [%] Cleared
quantity [%]

0.0001 70784 80443 70.97 % 70.93 %
0.5 72279 84494 70.00 % 71.21 %
0.999 73762 86073 71.07 % 72.60 %

13.11 Appendix E.3: Pre- and post-clearance performance simulation 1
- 10, case study 2, 10 scenarios

Table 30: Average pre-clearance performance simulations 1 - 10, case study 2, 10 scenarios

β Exp. profit [e] Exp. costs [e] Exp. revenue [e] CVaR [e]
0.0001 29945 61415 91360 22298
0.5 29366 71736 101101 26239
0.999 28974 73238 102212 26821

Table 31: Average post-clearance performance simulations 1 - 10, case study 2, 10 scenarios

β Actual costs [e] Actual revenue [e] Cleared bids [%] Cleared
quantity [%]

0.0001 54668 72329 72.58 % 75.02 %
0.5 63513 83281 79.00 % 81.42 %
0.999 66017 83858 82.02 % 83.43 %

University of Groningen 96



13 Appendix

13.12 Appendix F.1: pre- and post-clearance performance Examples 1,
2, 3, case study 4

Table 32: Pre-clearance performance Examples 1 - 3, case study 4, 4 scenarios

Γ0 Obj. Exp. profit [e]
(mean price)

Envis. profit [e]
(robust price)

Envis. costs [e]
(robust price)

Envis. revenue
[e] (robust price)

p

Ex. 1
0 30320 30320 30320 109795 140114 2222
3 23673 29845 26451 105080 131530 1975
4 22225 27779 24405 77026 101431 1111
6 20855 25854 23015 38747 61762 555
8 19871 24315 21270 30079 51349 370

Ex. 2
0 36511 36511 36511 87866 124377 1721
3 31349 36511 34169 88941 123110 1721
4 29707 36016 33084 83224 116309 1529
6 27726 33845 30881 53401 84283 574
8 26725 31982 29943 24322 54265 96

Ex. 3
0 36553 36553 36553 53380 89934 1685
3 31500 36553 35103 54012 89115 1684
4 29972 34183 32530 44912 77442 842
6 28288 34183 31704 45263 76967 842
8 27104 32157 29568 34203 63771 421

Table 33: Post-clearance performance examples 1 - 3, case study 4, 4 scenarios

β Actual costs [e] Actual revenue [e] Cleared bids [%] Cleared
quantity [%]

Example 1
0 49523 49246 38.46 % 37.93 %
3 49584 48993 50.00 % 40.00 %
4 43970 39359 50.00 % 45.12 %
6 26830 26096 61.11 % 51.09 %
8 23970 38764 71.43 % 75.68 %

Example 2
0 63567 23792 45.45 % 45.92 %
3 63567 23792 45.45 % 45.92 %
4 60039 23881 57.14 % 46.74 %
6 42449 24060 62.50 % 53.23 %
8 21710 23836 64.71 % 64.06 %

Example 3
0 0 71035 42.86 % 41.94 %
3 0 71035 42.86 % 41.94 %
4 16333 70487 63.64 % 66.04 %
6 33728 70487 81.82 % 83.02 %
8 27815 62193 86.67 % 89.16 %
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Table 34: Pre-clearance performance Examples 1 - 3, case study 4, 10 scenarios

Γ0 Obj. Exp. profit [e]
(mean price)

Envis. profit [e]
(robust price)

Envis. costs [e]
(robust price)

Envis. revenue
[e] (robust price)

p

Ex. 1
0 30072 30072 30072 72832 102904 2222
3 23781 27113 25694 38034 63727 1111
4 22702 25664 24019 32535 56553 741
6 21281 24613 22607 25087 47694 555
8 20384 22935 21838 5277 27115 82

Ex. 2
0 36795 36795 36795 73019 109813 1721
3 31793 36573 34757 69454 104211 1530
4 30827 35798 33823 54183 88006 860
6 29269 35387 32711 48102 80813 574
8 28169 34860 31483 45526 77009 430

Ex. 3
0 35126 35126 35126 53485 88612 1685
3 30256 34935 33531 51994 85526 1497
4 29399 34265 32612 44741 77353 842
6 27993 33420 31081 42205 73286 561
8 26870 33420 30301 42532 72833 561

Table 35: Post-clearance performance examples 1 - 3, case study 4, 4 scenarios

β Actual costs [e] Actual revenue [e] Cleared bids [%] Cleared
quantity [%]

Example 1
0 66992 49246 66.67 % 66.25 %
3 34748 39359 72.73 % 70.65 %
4 29578 41843 78.57 % 77.50 %
6 22606 31382 73.33 % 72.31 %
8 4745 29566 76.47 % 90.00 %

Example 2
0 52668 23792 44.44 % 45.00 %
3 66265 23881 66.67 % 56.79 %
4 50949 24194 66.67 % 58.06 %
6 44622 24060 71.43 % 58.93 %
8 41916 23993 75.00 % 59.43 %

Example 3
0 14684 54059 42.86 % 43.55 %
3 14915 54054 50.00 % 45.00 %
4 15725 54036 50.00 % 50.94 %
6 22064 53633 61.54 % 60.00 %
8 34175 53633 76.92 % 72.00 %
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13.13 Appendix F.2: pre- and post-clearance performance of simulations
1 - 10, case study 4, 4 scenarios

Table 36: Average pre-clearance performance simulations 1 - 10, case study 4, 4 scenarios

Γ0 Obj. Exp. profit [e]
(mean price)

Envis. profit [e]
(robust price)

Envis. costs [e]
(robust price)

Envis. revenue [e]
(robust price)

p

0 31953 31953 31953 93705 125658 2261
3 25411 31006 28067 80116 108183 1805
4 23831 29449 26154 67425 93579 1242
6 21890 27696 23965 50274 74239 766
8 20729 25715 22887 26586 49472 294

Table 37: Average post-clearance performance simulations 1 - 10, case study 4, 4 scenarios

Γ0 Actual costs [e] Actual revenue [e] Cleared bids [%] Cleared quantity [%]
0 35182 51102 41.39% 41.25%
3 31670 49806 45.35% 44.53%
4 30913 46518 49.14% 48.67%
6 26370 40754 56.30% 57.57%
8 14993 28316 63.16% 54.66%

13.14 Appendix F.3: pre- and post-clearance performance of simulations
1 - 10, case study 4, 10 scenarios

Table 38: Average pre-clearance performance simulations 1 - 10, case study 4, 10 scenarios

Γ0 Obj. Exp. profit [e]
(mean price)

Envis. profit [e]
(robust price)

Envis. costs [e]
(robust price)

Envis. revenue [e]
(robust price)

p

0 29506 29506 29506 71878 101384 2261
3 23573 27863 25803 54882 80686 1323
4 22447 26878 24462 47295 71758 940
6 20880 25302 22773 33320 56093 530
8 20149 24170 22003 17970 39973 230

Table 39: Average post-clearance performance simulations 1 - 10, case study 4, 10 scenarios

Γ0 Actual costs [e] Actual revenue [e] Cleared bids [%] Cleared quantity [%]
0 29175 48156 46.74 % 46.85 %
3 25949 44692 53.05 % 52.97 %
4 24831 38003 54.52 % 54.17 %
6 19368 32181 58.47 % 55.53 %
8 12540 25341 69.19 % 60.56 %
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[78] Paraschiv, D. M., Bălăs,oiu, N., Ben-Amor, S., and Bag, R. C. (2023). Hybridising neurofuzzy
model and the seasonal autoregressive model for electricity price forecasting on germany’s spot
market. The AMFITEATRU ECONOMIC journal, 25(63):463–463.

[79] Parvar, S. S. and Nazaripouya, H. (2022). Optimal operation of battery energy storage under
uncertainty using data-driven distributionally robust optimization. Electric Power Systems
Research, 211:108180.

[80] Parvar, S. S., Nazaripouya, H., and Asadinejad, A. (2019). Analysis and modeling of electricity
market for energy storage systems. In 2019 IEEE Power & Energy Society Innovative Smart
Grid Technologies Conference (ISGT), pages 1–5. IEEE.
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