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Abstract: This paper showcases the importance of segregating extrinsic and intrinsic reward
streams in the context of a novel hard-exploration task. Various mode-switching algorithms (al-
gorithms with distinct ’modes’ for exploration and exploitation) employing different mechanisms,
are introduced, and their performance is evaluated based on discounted returns. Unlike the Q-
learning agent that was used as a baseline, which failed to escape the environment’s local reward
maximum, the mode-switching agents successfully navigated the environment by locating the
treasure consistently. While some agents benefited from the separation of reward streams, it
resulted in decreased performance for other agents, especially during training. The findings sug-
gest that future research on the efficacy of reward stream separation should explore environments
where pure exploration through intrinsic motivation is not the optimal strategy.

1 Introduction

In the field of reinforcement learning (RL), agents
learn how to behave in an environment by per-
forming actions and receiving feedback in the form
of rewards. The goal of the agent is to learn a
policy; a strategy that maps states to actions,
which maximizes the cumulative reward over time.
Reinforcement learning agents learn from interac-
tion with the environment, can make decisions au-
tonomously and are applicable to a wide range of
problems.(Sutton & Barto, 2018). Within the field
of reinforcement learning, the intricate trade-off be-
tween exploration and exploitation presents a fun-
damental challenge. Exploration is defined as the
process by which an agent actively seeks out and
takes actions with the goal of gaining new infor-
mation about the environment. Conversely, during
exploitation the agent seeks to maximize the cu-
mulative reward over time, using the information
it already has.

Environments in which rewards are provided in-
frequently are referred to as sparse-reward environ-
ments. In a maze scenario, for instance, an agent
might only receive a reward upon successfully ex-
iting the maze. This poses a substantial learning
challenge, because the agent does not get much

useful feedback to update its beliefs about the en-
vironment. Apart from being sparse, rewards can
also be deceptive. Deceptive rewards appear favor-
able from the perspective of the agent, but, in re-
ality, they hinder the agent’s ability to achieve op-
timal performance. In solving these environments,
the agent is compelled to forego immediate rewards
in pursuit of a potentially higher reward. Formally,
deceptive-reward environments can be said to con-
tain local reward maxima. When an environment
contains sparse rewards, deceptive rewards, or a
combination of both, it poses what is known as a
hard-exploration problem (Ecoffet et al., 2021).

Hard-exploration problems are effectively ad-
dressed with the utilization of intrinsic rewards
(Barto, 2013; Parisi et al., 2021; Burda et al., 2018),
as opposed to solely using extrinsic rewards. In-
trinsic rewards are often a representation of cu-
riosity, wherein the agent actively pursues a mea-
sure of novelty, whereas extrinsic rewards are di-
rectly provided by the environment. Additionally,
the recently introduced mode-switching paradigm
proposes two distinct modes for agents: exploration
mode and exploitation mode. Further clarifications
of these concepts will be provided later.

In this paper, the significance of separating
extrinsic rewards from intrinsic rewards is demon-

1



strated, by introducing a novel environment:
TunnelVision, and assessing the performance of
several algorithms with and without separated
rewards streams. In the TunnelVision environment,
the agent is tasked with navigating a grid world
characterized by sparse rewards, explicit local
maxima and a single optimal reward, exemplifying
a challenging hard-exploration problem. The
performance of a baseline algorithm (Q-learning)
will be assessed, as well as the performance of
mode-switching algorithms with and without
separated reward streams. Subsequently, the aim
is to answer the question whether the separation
of reward streams positively affects performance,
and, if confirmed, to identify the contributing
factors to this effect.

A classic exploration technique is Upper Confi-
dence Bound (UCB) (Auer, 2003). UCB is based
on the principle of optimism in the face of uncer-
tainty. It selects actions that maximize a combina-
tion of their estimated value and a confidence term
that reflects the uncertainty in the estimate. By
placing value on uncertain actions, exploration is
maintained. Another technique is softmax or Boltz-
mann exploration (Cesa-Bianchi et al., 2017). This
method selects actions probabilistically based on
their estimated values. Actions with higher esti-
mated values have a higher probability of being
chosen, but all actions have a non-zero probabil-
ity, introducing a degree of exploration.
As previously mentioned, hard-exploration prob-

lems are typically approached using intrinsic re-
wards. Intrinsic rewards are generated within the
agent itself and serve as a means to encourage ex-
ploration and learning in the absence of frequent
or informative extrinsic rewards. However, hard-
exploration problems continue to pose significant
challenges. A useful illustration of the difficulties
associated with deceptive rewards is found in the
work by Burda et al. (2018). In the game Mon-
tezuma’s Revenge, their agent failed to complete
the first level because it could not refrain from us-
ing the keys it found due to the immediate reward.
P̂ıslar et al. (2022) initiated a shift in approach

by introducing the concept of mode-switching, di-
recting attention towards the timing of exploration
as opposed to solely considering exploration ra-
tios. This paper also introduced a critical consider-

ation that was not explicitly emphasized: the sep-
aration of extrinsic and intrinsic reward streams.
The mode-switching mechanism that they intro-
duced proposes two distinct modes for agents: ex-
ploration mode and exploitation mode. In exploita-
tion mode, the agent simply pursues the extrinsic
reward provided by the environment. Conversely,
in exploration mode, the agent solely focuses on an
intrinsic reward which can take various forms. It
is crucial to note that, during exploration mode,
the agent completely ignores extrinsic rewards; in
previous research these reward streams are com-
bined, usually through summation, instead of be-
ing treated individually (Parisi et al., 2021; Burda
et al., 2018). This temporary indifference towards
extrinsic rewards allows the agent to engage in pro-
longed periods of exploration, discovering entirely
new paths without being drawn to local reward
maxima.

2 Method

2.1 Preliminaries

First, Markov Decision Processes (MDP’s) will be
covered. MDP’s are the mathematical framework
for reinforcement learning problems. The compo-
nents of an MDP are

• Set of possible states: S where st ∈ S is the
current state.

• Set of possible actions: A where at ∈ A is the
current action.

• Transition function: P : S ×A× S → [0, 1].

• Reward function: ℜ : S × A × S → R which
returns rt.

Together, these components define a Markov De-
cision ProcessM = ⟨S,A, P,R⟩. The MDP frame-
work assumes the Markov property, which requires
that the future state depends only on the current
state and action. In other words, all the information
influencing the transition to the next state, is en-
capsulated within the current state. This property
is assumed throughout the study. The interaction
between the agent and the environment under the
MDP framework is shown in Figure 2.1 below. The
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next section will introduce the TunnelVision envi-
ronment, which aligns with the framework of an
MDP.

Figure 2.1: The agent–environment interaction
in a Markov decision process.

In order to learn how to act in an MDP, the
agent uses and improves a policy π(a|s). The
policy determines the action a taken in state s.
By following the policy, the agent generates a
sequences of states, actions and rewards that make
up a trajectory. The goal of the agent is to find a
policy that maximizes the estimated cumulative
sum of rewards (the return). In this study, the
agents will be using action value functions to
compare the desiredness of performing certain
actions in certain states. The action value function
is defined as

qπ(s, a) = Eπ[Gt |St = s,At = a]. (2.1)

Here, the estimated value of the state-action pair
(or q-value) is the expected return (Gt) when per-
forming action a in state s, and adhering to policy
π for the remainder of the trajectory. Using these
values, policies can be compared with each other.
A policy π is considered superior to or equal to an-
other policy π′, if the expected return under π is
greater than or equal to that under π′ for all states.

2.2 Q-learning

All of the algorithms in this study are derived from
the Q-learning algorithm (Watkins & Dayan, 1992).
Q-learning attempts to find an optimal policy for a
given finite MDP. Since the actual estimated re-
wards associated with state-action pairs are un-
known, the algorithm works by iteratively updat-
ing its q-values from sampled experience. The algo-
rithm maintains a Q-table; a tabular structure con-
taining value estimates for each state-action pair.
The Q-table is initialized with all values set to 0.
Equation 2.2 shows the update equation.

Q(st, at)← Q(st, at)+α[rt+1 + γmax
a

Q(st+1, a)

−Q(st, at)] (2.2)

Q(st, at) is the q-value, representing the esti-
mated cumulative reward for taking action at in
state st, at a certain time t. The learning rate α
regulates the degree to which new information over-
rides the existing Q-values, and rt+1 is the immedi-
ate reward received after taking action at in state
st. The discount factor γ determines the balance
between future and immediate rewards. A larger
value for γ signifies greater emphasis on future re-
wards. Finally, maxa Q(st+1, a) is the maximum Q-
value among all possible actions a in the next state
st+1.

At every step, the q-value for the experienced
state-action pair is nudged towards the difference
between the observed immediate reward plus the
expected value of the next state, and the previous
estimate of the state-action pair.

2.3 Mode-switching

The mode-switching paradigm is a novel way to bal-
ance exploration (performing actions with the goal
of gaining new knowledge about the environment),
and exploitation (exploiting the gained knowledge
to perform well at the task). In this paradigm, the
exploitation mode is defined as the greedy pursuit
of extrinsic rewards. In contrast, during exploration
mode, the agent exclusively seeks an intrinsic re-
ward, for which there are many possible implemen-
tations. In this study the intrinsic reward is based
on visitation counts, which is a particularly sim-
ple approach that is well-suited for solving small
discrete Markov decision processes (Kolter & Ng,
2009; Tang et al., 2017; Parisi et al., 2021), such
as TunnelVision. The intuition behind visitation
counts is that more frequently visited states imply
reduced uncertainty regarding the rewards associ-
ated with those states, and should therefore yield
a low intrinsic reward. The intrinsic reward (ri) is
defined as

ri =
1

N + 1
, (2.3)

where N is the visitation count for a given state. In
exploration mode, the agent employs an epsilon-
greedy policy, incorporating random actions into
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the otherwise greedy pursuit of intrinsic rewards.
An epsilon-greedy policy works as follows: with
a probability of ϵ, the agent chooses to explore
and randomly selects an action. Conversely, with
a probability of 1− ϵ, the agent opts to exploit by
selecting the action with the highest value estimate.
The value for epsilon decays over time and can be
tuned as a hyperparameter.
In this study we explore three distinct mecha-

nisms for mode-switching: blind switching, epsilon-
visitation switching and trigger-state switching.
Blind switching is the most straightforward method
of the two, involving a switch after a predetermined
number of steps. The other two mechanisms are in-
formed switching mechanisms, where a trigger sig-
nal akin to a heuristic is used to switch between
modes. In this study the signal that is used is sim-
ply the visitation count of the encountered state.
If this value surpasses a designated threshold, the
agent switches to exploitation mode. Conversely, if
the count drops below a threshold, the agent re-
verts to exploration mode. The epsilon-visitation
mechanism expands on this signal by introducing
stochasticity. A random value is generated, and if
it is lower than the epsilon value, the trigger signal
is disregarded and the agent switches modes. If not,
the switching process proceeds as described above.
In the trigger-state switching approach, a list of

so-called trigger states is maintained. States present
in the list are exempt from causing the agent to
switch again. If we consider the trigger signal as
a heuristic, this approach makes sense intuitively.
An intelligent agent, having witnessed the starting
square on numerous occasions, would not view this
as an appropriate signal to repeatedly shift to ex-
ploitation mode. On the other hand, encountering
a previously unknown square and surpassing the
threshold after multiple instances serves as a valu-
able indication that the agent has gained substan-
tial knowledge about the environment and should
transition to exploitation mode.

2.4 Separation of reward streams

To completely separate extrinsic rewards from in-
trinsic rewards for the purpose of this study, a sec-
ond Q-table is introduced. In exploitation mode,
the agent references the first Q-table (Qe) to de-
termine its action, whereas, in exploration mode,
it references the second Q-table (Qi). During the

update step the Q-tables are independently up-
dated: Qe is updated using the extrinsic reward,
and Qi is updated using the intrinsic reward. No-
tably, during exploitation mode, Qi remains unal-
tered. Algorithm 2.1 provides the pseudocode for
a generic Q-switching algorithm with separated re-
ward streams.

Algorithm 2.1 Q-Switching Separate

Require: State space (S) and action space (A)
Require: Initialize Qe(s, a) is 0 for all s ∈ S, a ∈ A
Require: Initialize Qi(s, a) is 0 for all s ∈ S, a ∈ A
Require: Learning rate α, discount factor γ, epsilon ϵ
1: for each episode do
2: Initialize state s
3: while episode is not terminated do
4: Update mode via switching mechanism
5: if in exploration mode then
6: if random number < ϵ then
7: Choose a random action a from A
8: else
9: Choose action a with the highest Qi value

for state s
10: end if
11: end if
12: if in exploitation mode then
13: Choose action a with the highest Qe value

for state s, and set ri := 0
14: end if
15: Take action a, observe reward re, reward ri

and new state s′

16: Update Qe(s, a) ← Q(s, a) + α · [re + γ ·
maxa′ Qe(s

′, a′)]
17: Update Qi(s, a) ← Q(s, a) + α · [ri + γ ·

maxa′ Qi(s
′, a′)]

18: Move to the new state s′

19: end while
20: end for

2.5 Environment

The standard TunnelVision environment is a grid
world with dimensions (4, 12). The state and ac-
tion spaces are both discrete. The grid consists of
48 states, each corresponding to a square on the
grid. The action space includes four possible ac-
tions: up, down, right, and left. Every transition is
deterministic; when the agent performs a specific
action in a given state, it will invariably end up in
the same next state. The agent is spawned in the
top-left corner at the beginning of every episode,
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and its objective is to locate the treasure situated
at the bottom-right corner. Episodes terminate un-
der three conditions: encountering toxic gasses at
specific grid locations, resulting in an immediate
episode termination with a reward of zero; encoun-
tering inferior reward states, leading to an episode
termination with a reward of 0.25; or successfully
reaching the treasure, resulting in an episode ter-
mination with a reward of 1. A notable property of
the standard environment is its stationarity; the en-
vironment dynamics of the MDP remain constant.
Therefore, once an agent has successfully found the
optimal policy, there is no requirement for it to un-
dergo changes, because the environment itself does
not change. Hence the need for continued explo-
ration eliminated from that point onward.

Figure 2.2: Representation of the TunnelVision
environment. The agent is depicted in the top-
left corner. The toxic gasses are indicated with
skulls and the treasure is shown at the bottom-
right corner.

2.6 Algorithms

For this study, a total of seven algorithms were
created and assessed. Their distinctions arise along
two dimensions: the mode-switching mechanism as
described in section 2.3, and the separation of re-
ward streams as outlined in section 2.4. As a base-
line, conventional Q-learning featuring exponential
epsilon decay was used. Below is an overview of the
algorithms.

• Q-learning with epsilon-decay

The Q-learning algorithm as explained in section
2.2, with an epsilon-greedy (see section 2.3) behav-
ior policy. The behavior policy is the policy that

is used to select the agents actions a, whereas the
target policy is used to update the agents value esti-
mates. For Q-learning, the target policy is a greedy
policy with respect to the value estimates; the agent
updates its estimates based on the next action with
the highest Q-value. Additionally, the epsilon value
for the epsilon-greedy policy decays exponentially
over time.

• Q-learning with blind switching

A Q-learning algorithm with the addition of two
distinct modes as specified in section 2.3. This algo-
rithm uses the blind switching mechanism to switch
between modes.

• Q-learning with blind switching and separated
reward streams

Similar to the preceding algorithm, except for the
addition of separated reward streams, as outlined
in section 2.4.

• Q-learning with epsilon-visitation switching

Also a mode-switching algorithm, but this algo-
rithm uses the epsilon-visitation switching mech-
anism.

• Q-learning with epsilon-visitation switching
and separated reward streams

The separated variant of the preceding algorithm.

• Q-learning with trigger-state switching

This mode-switching algorithm uses the trigger-
state switching mechanism (section 2.3).

• Q-learning with trigger-state switching and
separated reward streams

This is the variant of the prior algorithm featuring
separated reward streams.

3 Experimental setup

For all of the experiments conducted in this study,
agents were trained for 100,000 episodes. Through-
out this training period, the agents were evaluated
every ten episodes. During these evaluations, agents
were configured to be greedy with respect to their

5



Q-values for a single episode, and the resulting re-
turns were recorded. Agents featuring separated re-
ward streams were configured to be greedy with re-
spect to their Qe-values. Additionally, a measure
of the overall proportion of exploration to exploita-
tion (pX ) was tracked. This metric was computed
using the respective frequencies of the two modes
across every step of every episode. For the base-
line which did not feature modes, the proportion
of random exploratory steps was computed. All of
the algorithms that were tested contain some de-
gree of stochasticity, in order to prevent them from
repetitively exploring the same states in every run.
Because of this, ten runs were conducted for each
experiment, and the results were averaged.

3.1 Hyperparameter optimization

The learning rate (α) and the discount factor (γ)
are two hyperparameters native to the Q-learning
algorithm that are present in all five variants pre-
sented in this study. To limit the amount of con-
founding variables, both parameters were consis-
tently set to fixed values of 0.1 and 0.99, respec-
tively, across all algorithms. These values are based
on example problems from the textbook by Sut-
ton & Barto (2018). The optimality of these val-
ues for this specific environment is irrelevant; it is
only their uniformity across agents that is crucial,
since this eliminates confounding variables. The ex-
ponential epsilon decay that is used for the baseline
algorithm follows a simple formula that is applied
at the end of every episode:

ϵ = 0.01 + 0.99e−decay rate·episode (3.1)

This dynamic epsilon value was also used for the
epsilon-visitation switching mechanism, as well as
the epsilon-greedy policy employed during explo-
ration mode, as explained in section 2.3. Figure 3.1
illustrates how this value progresses during a run of
100,000 episodes. The decay rate was kept constant
at a value of 0.0001. This value was determined
through empirical testing with the aim of ensuring
that the the lower bound of 0.01 was reached within
a reasonable timeframe.
The three switching mechanisms introduce var-

ious tunable hyperparameters. The blind switch-
ing mechanism was set to switch to exploitation

Figure 3.1: The value of epsilon throughout
a run of 100,000 episodes. This exponentially
decaying function asymptotically approaches a
value of 0.01.

mode after 10,000 steps, and reverted back to ex-
ploration mode after 1,000 steps. The step count
was not reset at the end of an episode. These num-
bers were chosen based on the observation that
a high pX is needed to succeed in this environ-
mnent. For the epsilon-visitation switching mech-
anism, two hyperparameters were also fine-tuned:
the visitation count threshold for switching to ex-
ploitation mode and the complementary threshold
for switching back. Aimed at maintaining a high
proportion of exploration, these values were set to
1024 and 32, respectively. Ultimately, these values
did not have a significant impact, as the visita-
tion count of the starting square, which was al-
most exclusively responsible for the switching in
this mechanism, quickly exceeded any threshold.
The trigger-state switching mechanism was created
to address this problematic observation. For this
switching mechanism, the threshold for transition-
ing to exploitation mode was kept low at a value
of 2, while the threshold for switching back was set
to 3200, and later 200. All of these hyperparame-
ter values for the switching mechanisms were deter-
mined through empirical adjustments conducted in
simulations.

3.2 Assessment criteria

The agents were assessed based on two main cri-
teria: evaluation performance and training per-
formance. The metric used to assess performance
across these two domains was the (discounted) re-
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turn Gt realized by the agent per episode. The re-
turn is defined as

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . =

N∑
k=0

γkrt+k+1

(3.2)
where rt is the extrinsic reward provided by the
environment at time step t, T is the final time step
and γ is the discount factor. Since it is only possible
to obtain an extrinsic reward once per episode in
this environment, this simplifies to

Gt = γT · rT , (3.3)

where, once again, T is the final time step of the
episode. From the standard environment represen-
tation in Figure 2.1, it can be inferred that reaching
the treasure, which has an extrinsic reward of 1, re-
quires a minimum of 16 steps. Therefore, the maxi-
mum episodic return is calculated as γ16 ·1 = 0.851.
In this study, a path is defined as the full sequence
of steps taken by an agent within an episode. The
episodic return for the optimal path to the first in-
ferior reward of 0.25 is four steps long. This path
represents one of the local reward maxima in the
environment, with a return of γ4 · 0.25 = 0.240.
Both of these calculated returns will frequently ap-
pear in the results.
Furthermore, the evaluation of agents will in-

volve considering the proportion of exploration to
exploitation (pX ), as specified in the beginning of
Section 3. The equation for (pX ) is

pX =
Nexploratorysteps

Nsteps
, (3.4)

Where Nexploratorysteps is the total amount of ex-
ploratory steps in a run, and Nsteps represents the
total amount of exploitation steps in a run. Note
that exploitation steps can involve any method of
exploration, be it intrinsically motivated through
visitation counts, or random. A lower overall pro-
portion of exploration, coupled with good evalua-
tion and training performance, indicates quick yet
effective exploration. The expectation is that agents
exhibiting effective exploration will not only out-
perform purely exploratory agents during training,
but will also demonstrate superior performance in
greedy evaluation when facing more challenging en-
vironments. This expectation is grounded in the ob-
servation that agents employing pure exploration
excel in the standard TunnelVision environment.

4 Results

As previously mentioned, the following parameters
were fixed across all agents:

• Number of runs: 20

• Number of episodes per run: 100000

• Learning Rate (α): 0.1

• Discount Factor (γ): 0.99

4.1 Baseline

Figure 4.1 illustrates the outcomes of the baseline
Q-learning agent, revealing a notable inability to
find the optimal policy. Instead, the agent becomes
trapped in a local reward maximum, specifically
that of the first inferior reward. The (pX ) measure
is at a moderate value of 0.33 for this agent. In
contrast to other agents, the exploratory steps for
this agent were not intrinsically motivated; rather,
they were random, leading to a comparatively lower
effectiveness.

Figure 4.1: Q-Learning with Epsilon Decay
Ratio of Exploration (pX ): 0.32690

Upon closer inspection (Figure 4.2), it becomes
evident that the variance in returns across the 20
runs is only observable during the initial evaluation;
subsequent evaluations consistently yielded identi-
cal values across all runs.
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Figure 4.2: A closer look at the Q-learning eval-
uation performance averaged over 20 runs.

Recall that the epsilon decay adheres to equation
3.1. During training, the agent found the goal twice
across all 20 runs: in episode 4963 of the second run,
and in episode 2870 of the third run. During these
relatively early episodes, the values for epsilon were
0.61 and 0.75, respectively. While infrequent, this
shows that this agent does occasionally discover the
treasure when epsilon is still high. In figure 4.3, the
spike in standard deviation caused by one of these
occurrences is observed.

Figure 4.3: A spike in standard deviation caused
by a chance encounter with the treasure.

Despite these chance encounters, the agent was
unable to convert them into an optimal policy. To
understand why, a deeper analysis of the agent’s

value estimates is needed. In Figure 4.4, a heatmap
depicts the agent’s rounded maximum Q-values for
each state at the end of the third run. There are
four Q-values per state, corresponding to each pos-
sible action. The maximum among these values is
displayed, to represent the anticipated value of the
action that the agent is most likely to choose. While
there is some minimal information gained about the
treasure’s location, evident in the heightened Q-
value adjacent to the treasure, the agent would need
to reach the goal many times (via similar paths)
for this information to propagate back toward the
starting location through the Q-values.

Figure 4.4: Maximum Q-values per state at the
end of the third run for the baseline Q-learning
agent.

4.2 Blind switching agents

The performance of the blind Q-switching agent
is shown in figure 4.5. After an initial spike orig-
inating from the first local reward maximum, the
agent’s evaluation returns average at a value of zero
for a brief period. This behavior can be attributed
to the decreasing value of the intrinsic reward (as
per Equation 2.3) as the run progresses. Initially,
the intrinsic reward for reaching unknown states,
even those with a reward of zero (toxic gasses),
surpasses the appeal of reaching the first inferior
reward. This occurs due to the lack of separation
between extrinsic and intrinsic during evaluation.
As N increases, the intrinsic reward diminishes and
the agent temporarily returns to the local reward
maximum.

Subsequently, the agent succeeds in discovering
and consistently reaching the treasure, although
this outcome does not occur in every run. This
variability accounts for the considerable magnitude
of the standard deviation in the evaluation plot.
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The shaded region, which represents the standard
deviation from the mean across runs, is bounded
by adding and subtracting its magnitude from the
mean. It’s important to note that this shaded re-
gion does not necessitate the inclusion of every pos-
sible value within its range in the data.

Even after the averaged evaluation returns have
converged, there remains a significant variance in
training return averages. This is attributed to the
misalignment of modes across runs; the agent has
a fixed step size interval for switching between
modes, but the number of steps per episode is vari-
able. Although all 20 runs begin in exploration
mode, the time it takes for them to switch modes
varies. This agent’s pX is 0.91, indicating that the
majority of its time was spent in exploration mode.

Figure 4.5: Blind Q-Switching
Ratio of Exploration (pX ): 0.90967

The blind Q-switching agent with separated re-
ward streams emerged as a successful agent. Figure
4.6 illustrates its performance. In contrast to the
non-separated blind Q-switching agent, its evalua-
tion performance does not dip to zero at the begin-
ning. This is attributed to the agent solely relying
on its knowledge of extrinsic rewards during evalu-
ation, facilitated by its separate Q-tables.

The agent quickly finds the optimal policy, con-
sistently achieving the highest possible return.
However, the training performance never becomes
optimal because the agent keeps exploring indefi-
nitely. During its exploration intervals, the agent
exclusively pursues intrinsic rewards, resulting in a
low extrinsic return.

As expected, the agent’s pX is almost identical to
that of the non-separated blind Q-switching agent.
However, its performance is significantly better in
both training and evaluation. This suggests that
the separation of reward streams proved to be ex-

ceptionally valuable for the blind switching vari-
ants.

Figure 4.6:
Blind Q-Switching with Separate Q-Tables
Ratio of Exploration (pX ): 0.90913

4.3 Informed switching agents

Next, the performance of the informed Q-switching
agents will be assessed, starting with the epsilon-
visitation switching mechanism variants. Figures
4.7 and 4.8 present the results of the non-separate
and separate agents equipped with this switching
mechanism.

The main observation is that, for both agents, the
switching mechanism yields a pX that is too low for
this environment (approximately 0.1). As outlined
in Section 3.1, the visitation count of the starting
square predominantly influences the switching in
this mechanism. As a result, after a certain num-
ber of episodes, the agent consistently switches to
exploitation mode at the start of each new episode.
This drawback prevents either agent from being
able to escape the local reward maximum consis-
tently.

There is one notable difference between the two
agents: the non-separate variant was able to find
the optimal policy precisely once out of 20 runs
using this switching mechanism. This discrepancy
also accounts for the significant standard deviation
in Figure 4.7, which is absent in Figure 4.8. We
anticipate that this dissimilarity does not signify
generalized superior performance, as repeating the
stochastic simulation of 20 runs for this agent twice
using different random seeds resulted in no success-
ful runs.
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Figure 4.7:
Informed Q-Switching (Epsilon-Visitation)
Ratio of Exploration (pX ): 0.09523

Figure 4.8:
Informed Q-Switching (Epsilon-Visitation) with
Separate Q-Tables
Ratio of Exploration (pX ): 0.11093

Now the performance of the informed Q-
switching agents under the trigger-state switching
mechanism will be presented. Figures 4.9 and 4.10
display the performance of the non-separate and
separate variants, respectively.
The trigger-state switching mechanism encoun-

ters an issue opposite to that of epsilon-visitation
switching, particularly for the chosen threshold
value of 3200. Namely, its pX is extremely high.
Unsurprisingly, it becomes evident that in this en-
vironment, the most effective strategy for mode-
switching agents with a potent intrinsic reward
function, such as the one defined in Equation 2.3,
is to concentrate solely on exploration. Both agents
quickly identify the optimal policy as soon as the
extrinsic reward propagates back to the starting
area. Similarly to the non-separate blind switch-
ing agent, the non-separate trigger-state switching
agent briefly averages an evaluation return of zero
because the intrinsic reward outweighs the appeal
of the first inferior reward during this period. It is
also observed that the separate variant fails to find

the optimal policy in 3 out of 20 runs.

Figure 4.9:
Informed Q-Switching (Trigger-States)
Ratio of Exploration (pX ): 0.99997

Figure 4.10:
Informed Q-Switching (Trigger-States) with Sepa-
rate Q-Tables
Ratio of Exploration (pX ): 0.99790

Particularly interesting is the stark contrast in
training performance between the non-separate and
separate variants; the non-separate variant exhibits
excellent performance, whereas the separate variant
performs poorly. In order to understand this differ-
ence it must be considered that the agent was al-
most exclusively in exploration mode during these
runs. The separate variant exclusively pursues in-
trinsic rewards during exploration mode, hence it
values every state approximately uniformly, regard-
less of extrinsic reward. Consequently, its train-
ing performance is severely neglected. The non-
separate variant maintains an incentive to reach
the treasure because it updates its single Q-table
using a sum of the extrinsic and intrinsic reward.
To illustrate this retention of a drive for extrinsic
rewards during exploration mode, Figure 4.11 ex-
hibits the maximum Q-values per state at the end
of a run for the non-separate variant.
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Figure 4.11: The maximum Q-values per state at
the end of a run for the Informed Q-Switching
agent with Trigger-State Switching.

In contrast, Figure 4.12 showcases the maximum
Qi values per state for the separate variant. These
values give insights into the poor training perfor-
mance of the separate variant; the agent systemat-
ically visits as many non-terminal states as possi-
ble before the episode is concluded at any terminal
state due to the stochastic moves stemming from
its epsilon-greedy exploration policy.

Figure 4.12: The maximum Qi-values per state
at the end of a run for the Informed Q-Switching
agent with Trigger-State Switching and Sepa-
rate Q-Tables.

5 Discussion

In this paper, we demonstrated the significance of
separating rewards streams within mode-switching
approaches for hard-exploration problems. Specifi-
cally, we conducted experiments by applying differ-
ent mode-switching algorithms to an environment
featuring intentionally deceptive rewards, simulat-
ing local reward maxima.
The baseline Q-learning algorithm was never able

to escape the local reward maximum corresponding
with the inferior reward at the bottom left corner

of the environment. This is not surprising, since its
only method of exploring is through random steps
determined by a decaying epsilon. When the agent
did find the goal by chance, it was unable to convert
these encounters to an optimal policy. To achieve
conversion, the agent would need to reach the goal
multiple times to allow the higher reward to prop-
agate backwards through the Q-values to the start-
ing area.

As a result of prolonged predefined periods of
continuous exploration, the blind switching agents
successfully found the optimal policy. However, a
notable distinction emerged between the separate
and non-separate variants. The separate variant
consistently achieved the optimal policy in every
run, whereas the non-separate failed to do so in
many instances. This difference is attributed to the
separation of reward streams. The separated vari-
ant can disregard inferior rewards entirely during
exploration, eliminating any distractions in its pur-
suit of locating the treasure. In contrast, the non-
separate agent updates its value estimates based
on a combination of extrinsic and intrinsic rewards,
introducing a form of ’leakage’ that hinders explo-
ration efficiency. Because the intrinsic reward grad-
ually diminishes due to its nature (Equation 2.3),
the agent only has limited time to reach the trea-
sure frequently enough to convert it into an opti-
mal policy. After the intrinsic reward has dimin-
ished, its incentive to explore the right side of the
environment disappears, leading to the suboptimal
performance observed in some runs. We can con-
clude that the separation of reward streams has a
significant positive effect on the performance of the
blind switching agents under these parameters.

The informed switching agents equipped with
the epsilon-visitation switching mechanism suffered
from an exploration rate that was too low for this
environment. This inadequacy is attributed to the
switching mechanism’s heavy dependence on the
visitation count of the starting square, leading to a
consistent switch to exploitation mode at the begin-
ning of each new episode after the visitation count
threshold has been exceeded. This limitation pre-
vents us from drawing any definitive conclusions
about the efficacy of separated reward streams for
these agents.

The trigger-state switching mechanism produced
a very high proportion of exploration for both
agents, introducing challenges of its own. How-
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ever, two insightful observations were made. Firstly,
there was a significant disparity in training per-
formance between the non-separate and separate
variants. This distinction is attributed to the same
’leakage’ effect that impeded the non-separate blind
switching agent, yet in this context, it results in
the sustained motivation to reach extrinsic rewards
during training. While training performance may
not be the primary focus, this grants a slight ad-
vantage to the non-separate variant. Secondly, ad-
ditional experiments revealed that the non-separate
variant achieves superior performance when sub-
jected to lower ’switch-back’ threshold values. At
low values for this threshold, only the non-separate
variant managed to sustain a favorable exploration
ratio. The reasons for this remain unclear, and
could serve as a topic for future investigation.
There are two factors that limit the power of this

study. The proportion of exploration pX emerges
as a crucial confounding variable, significantly lim-
iting the capacity to make definitive conclusions
about agent performance. This limitation is com-
pounded by the observation that, under the current
evaluation criteria, the most effective strategy for
this environment involves pure exploration, as dis-
cussed in section 4.3. Hence, for future research,
the introduction of new environments that chal-
lenge this optimal strategy would provide valuable
insights. Two possibilities are non-stationary envi-
ronments, and environments with continuous state
and/or action spaces.
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