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Abstract

The popularity of cloud computing and the increasing demand for computing resources have led to a significant
increase in energy consumption. In 2015, the electricity consumed by data centers accounted for 0.9% of global
energy usage. This is expected to reach 4.5% in 2025. This increase in demand also drives the carbon footprint
of computing environments. This thesis starts by conducting a comprehensive literature review, focusing on
methodologies for estimating and mitigating the carbon footprint in computing infrastructures, spanning various
models and monitoring tools.

Subsequently, this thesis presents an exploratory approach to monitoring carbon emissions down to the level
of individual containers. Unlike conventional methods that require hardware, hypervisor, or software access,
we try to operate independently of such dependencies. We instead rely exclusively on virtual machine metrics
to estimate energy consumption and carbon emissions at the bare metal server level. This result is used to
estimate the carbon footprint of the virtual machines and containers in a Kubernetes environment.

The validation of our approach involves assessments to ensure that the calculations align consistently across
various levels of abstraction. In addition, we align the energy consumption with the number of requests per
second by adding load to a container.

Although the results of inaccessible levels of abstraction approximately align with the load that is added
to the system, there is no internal consistency. The results could be useful to get a rough understanding of the
carbon footprint. However, additional research is required to explore whether there exists a consistent method
for estimating energy consumption in the absence of hardware or hypervisor-level metrics, and thereafter assess
the accuracy of the results.
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1 Introduction

Our world has become increasingly reliant on cloud computing, a trend expected to continue growing in the
foreseeable future. Over the next two decades, computational capacity is predicted to multiply a million-fold
[1]. This exponential growth has brought about a new era of enhanced online connectivity and innovative
thinking, with data centers serving as the backbone of an increasingly digitalized society [2].

Cloud computing, essentially offering computing services over the internet, provides a model allowing
on-demand access to a shared pool of configurable computing resources [3]. This includes networks, servers,
storage, applications, and services, which can be rapidly provisioned and released with minimal management
effort, enabling both companies and individuals to utilize high-quality IT infrastructures without large invest-
ments in hardware and software. As cloud computing evolves, it incorporates advanced features like virtualiza-
tion, automation, and data management capabilities [4].

According to the latest forecast from Gartner Inc., worldwide end-user spending on public cloud services
grew by 20.7% to $591.8 billion in 2023, up from $490.3 billion in 2022, surpassing the 18.8% growth forecast
for 2022 [4]. This highlights that cloud computing is a rapidly growing industry and is expected to continue to
grow in the future.

As cloud computing continues to increase its position as a fundamental component of modern operations,
the demand for energy to sustain its functionality rises substantially. This is a significant challenge, as the
electricity consumed by data centers amounted to 0.9% of global energy consumption in 2015, a figure projected
to reach 4.5% by 2025 [5].

This surge in energy consumption results in higher carbon emissions. While the relationship between energy
use and emissions is not purely proportional [6], increased energy consumption directly leads to more carbon
emissions. Consequently, this contributes directly to global warming, resulting in extreme weather events
like typhoons and high temperatures, which adversely affect people’s health and quality of life. Therefore,
finding effective ways to decrease greenhouse gas emissions during economic development has become a global
priority [7]. Given the ongoing energy and climate challenges, it is crucial to focus on ways to reduce and
monitor energy consumption and carbon emissions in computing infrastructures [1].

1.1 Carbon Definitions

Before proceeding further, it is essential to understand the terminology used in this thesis regarding carbon
emissions and footprint. Section 2.3 will explore more about these terms.

Greenhouse Gas (GHG) Protocol In the domain of carbon emission reporting, the Greenhouse Gasses
(GHG) Protocol is used globally and recognized as a standard framework. The mission of the GHG Pro-
tocol is to develop internationally accepted greenhouse gas (GHG) accounting and reporting standards and
tools and to promote their adoption to achieve a low emissions economy worldwide [8]. It is used to measure
and manage greenhouse gas (GHG) emissions from private and public sector operations, value chains, and
mitigation actions. This framework classifies emissions into three scopes, each of them representing different
sources of carbon emissions [9].

CO2 Equivalent Carbon dioxide equivalent1, abbreviated as CO2-eq is a metric measure used to compare
the emissions from various greenhouse gases based on their global-warming potential (GWP), by converting
amounts of other gases to the equivalent amount of carbon dioxide with the same global warming potential.
This ensures that the impact of different gases is expressed in a common unit.

Carbon Intensity The carbon intensity of electricity from the grid worldwide shows how much greenhouse
gas enters the air when fossil fuels are burned to make electricity. It is figured out by adding up the carbon
intensity of different energy sources, with each one’s contribution weighted based on how much of it gets
used (like what kind of fuel it is) [10]. Carbon intensity is often expressed in grams of CO2 per kilowatt-hour

1https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Carbon_dioxide_equivalent
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(gCO2/kWh). This means that for every kilowatt-hour of electricity used, a certain amount of CO2 is emitted.
Therefore, we can calculate the carbon emissions by multiplying the energy usage by the carbon intensity [9].

Carbon Footprint This article by The Carbon Trust [11] defines carbon footprint as ”A carbon footprint
is the total greenhouse gas (GHG) emissions caused directly and indirectly by an individual, organization,
event or product”. It is calculated by summing the emissions resulting from every stage of a product or
service’s lifetime (material production, manufacturing, use, and end-of-life). Throughout a product’s lifetime
or lifecycle, different GHGs may be emitted, such as carbon dioxide (CO2), methane (CH4), and nitrous oxide
(N2O), each with a greater or lesser ability to trap heat in the atmosphere. These differences are accounted for
by the global warming potential (GWP) of each gas, resulting in a carbon footprint in units of mass of carbon
dioxide equivalents (CO2e).

1.2 Virtualization

Virtualization will be a key concept in this thesis, therefore important to introduce it here. Virtualization is
a technique integral to enhancing system infrastructure efficiency by dividing a system into simpler, more
independent modules. Its widespread adoption has made it a common feature in everyday computing. By
focusing on consolidation to reduce costs, virtualization seeks to enhance system efficiency and performance
[4]. The case study in this thesis involves virtualization at multiple levels of abstraction, including servers,
virtual machines, clusters, and containers. Therefore, the following paragraph provides a brief overview of
these abstractions.

Servers are often virtualized, which means that the physical bare metal (BM) machine, also called a server,
is abstracted and shared among multiple virtual machines (VM), also called nodes. The layer between the
physical machine and the virtual machines is called the hypervisor. The hypervisor is responsible for managing
the virtual machines and their resources, such as CPU, memory, and storage. Often multiple of these virtual
machines are then grouped in a cluster (CLU). A cluster abstracts a group of interconnected physical machines,
enabling them to function collectively as a unified entity. It facilitates the distribution of workloads across
multiple virtual machines for improved efficiency and fault tolerance. Containers (CON) abstract the operating
system and its dependencies, encapsulating applications in isolated environments. They enable lightweight and
portable deployment of software, sharing the underlying host system’s kernel for efficient resource utilization.
A cluster determines on which virtual machine a container runs. The software (SOFT) is the highest level of
abstraction and is the application that runs in the container. These abstractions and their abbreviations are used
frequently throughout this thesis.

1.3 Case Summary

Efforts to optimize energy consumption and reduce carbon emissions in computing infrastructures are imper-
ative. This thesis delves into the research and development of solutions aimed at creating insights into energy
consumption and carbon emissions, particularly in the context of cloud computing. By examining the carbon
emissions resulting from server utilization this thesis seeks to raise awareness, facilitate informed decision-
making, and drive proactive steps toward mitigating environmental impact.

This thesis focuses on a case study originating from the Digital Lab at the University of Groningen, respon-
sible for applications used in the Computing Science department. The applications, hosted at a private data
center managed by the university, require computational resources to operate efficiently. Specifically, this study
examines the Themis application, which automates code submission checks by running them in individual con-
tainers. Given the energy consumption associated with running these containers, understanding and monitoring
carbon emissions becomes imperative.

With both the University of Groningen and the Digital Lab committed to sustainability, the objective is
to monitor and visualize carbon emissions resulting from server utilization, especially at the container level
within Themis. By comprehensively understanding the extent of carbon emissions released into the atmosphere,
stakeholders can make informed decisions and take proactive measures to mitigate environmental impact.
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1.4 Problem Definition

The wider configuration space and more heterogeneity of current data center and cloud architectures make
software operation more complex [5]. This complexity of data center environments and the rise of cloud
computing have made it difficult to monitor and manage energy consumption.

The complexity of our case study is further increased by requirements and constraints coming from Digital
Lab. The case study requires the solution to be compatible with OpenStack2 and Kubernetes. The system
needs to support multi-tenancy to enable simultaneous monitoring of containers. Multi-tenancy is understood
in various ways depending on the service models [12]. In our case, we adopt the Software as a Service (SaaS)
model, where multi-tenancy means that two or more customers utilize the same service or application provided
by the Cloud Service Provider (CSP) regardless of the underlying resources [13]. On top of that, a strict
requirement is that the solution must monitor at least the container-level abstraction so that the carbon emissions
of individual containers can be calculated. In addition, the solution must be able to operate without access to
physical hardware, hypervisor, or administrative rights on OpenStack.

Therefore the following research questions arise:

1. How can the carbon footprint of individual containers be calculated in virtualized environments?
This is a broad question, yet it is the main objective that this thesis aims to solve. Since virtualization is a
key technology in cloud computing in combination with containers, it is important to see how the related
carbon footprint can be calculated in such an environment.

2. How can the reliability and precision of carbon emission calculations be assessed and validated to en-
sure consistency and accuracy in results?
Ensuring the reliability and precision of carbon emission calculations is crucial for making informed
decisions. This question investigates methodologies to validate and assess the accuracy of these calcula-
tions.

3. How to monitor and visually represent carbon emissions at various levels of abstraction and raise users’
awareness?
This question delves into techniques for real-time monitoring and visual representation of carbon emis-
sions, aiming to raise awareness among stakeholders and facilitate informed decision-making.

1.5 Thesis Structure

The remainder of the thesis is structured as follows: Section 2 provides a comprehensive literature review,
focusing on state-of-the-art methodologies for calculating, monitoring, and mitigating carbon emissions in
computing infrastructures. Section 3 presents the case study in detail, outlining the context, objectives, and
problems. Section 4 discusses the design and implementation of the solution, followed by its validation in
Section 5. Finally, Section 6 concludes the thesis by discussing the results, answering the research questions,
reflecting on lessons learned, and highlighting avenues for future research.

2https://www.openstack.org/software/
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2 Background & Related Work

This section investigates the state-of-the-art literature on the relationship between carbon footprint and cloud
computing. A large part of this study is dedicated to tools that can monitor the cloud environment. The tools are
categorized into system metrics, energy consumption, and carbon footprint monitoring. For each tool, the level
of abstraction and the resources it can monitor are gathered. The tools can be found in Section 2.4. Besides
the tools, this section also goes into depth about the literature on energy consumption, carbon emissions, and
reduction.

2.1 Server Power Modeling

Power Models can be seen as the foundation of software-centric power monitoring and estimation. A power
model is a mathematical model that estimates the power consumption of a system based on its resource utiliza-
tion.

Besides using them to calculate the current power, they are useful for several reasons. First, they can
be used to design data center systems. When a data center is designed, it is important to know how much
power the complete system will consume. Second, it can help with forecasting trends in power efficiency,
some of these models can be used to predict future power consumption. Finally, these can be used to optimize
power consumption. However, modeling the exact power consumption behavior of a data center, either at
the whole system level or the individual component level, is not straightforward. In particular, data center
power consumption patterns depend on multiple factors such as hardware specifications, workload, cooling
requirements, types of applications, etc. [14].

Since we are now only discussing the modeling of power consumption and not energy consumption, we
will gain a rapid understanding of the conversion from power to energy. Energy (E) represents the cumulative
work executed by a system during a specific duration (T ), whereas power (P) signifies the speed at which the
system performs this work. See Equation 1.

E = PT (1)

So, we understand that we can find energy by multiplying power by time. However, the complicated part
is to find out the power when we only have metrics from the system. This is where power models come into
play. Power models help us estimate how much power a system is using based on how its resources are being
used. Several of these resources like CPU, memory, and disk are the main parts that use up most of the system’s
power [15].

For the top level of these power models, they fall into two main categories. One category relies on utilization
data provided by the operating system, while the other is based on metrics provided by the hardware. The former
estimates power consumption by analyzing the energy data of a specific computer against various utilization
metrics. The latter utilizes hardware performance counters.

Server power consumption can be broken down into two main types: static power and dynamic power.
Static power remains constant, encompassing leakage currents and idling processes, while dynamic power
varies based on active operations and workloads. This division helps in understanding the different factors
contributing to overall power usage in servers.

On the second level, these models can be further divided into additive power models and baseline + active
(BA) models. Additive power models represent the total power consumption of a server as the sum of its
components, whereas BA models assume that the server’s idle state already consumes a significant amount of
power [14] [9].

BA models can be subdivided into various types such as linear regression, power function, non-linear, and
polynomial models. They are also applicable to distributed servers, where each slave employs a BA model. In
contrast, additive models require the calculation of each component individually. E.g. the Distributed Energy
Monitoring (DEM) tool, which will be discussed later in Section 2.4, facilitates the use of BA models.

In the following enumeration, we will go over the different types of power models in the second level.
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1. Additive Power Models
A foundational power model can be found in Equation 2. This model only considers the CPU and
memory. It gives a good understanding of what a power model looks like. The equation provides the
total energy consumption E(A) by taking the sum of the energy consumption of the CPU Ecpu(A) and
the memory Ememory(A). This power model can be expanded by adding more energy values of other
hardware components to the equation. Components like the hard disk (Edisk(A)), network interface card
(ENIC(A)), and input/output devices (EI/O(A)) can be added to the equation can be added to the equation.

E(A) = Ecpu(A)+Ememory(A) (2)

In Equation 3, we describe the predicted power consumption (Pt) of a server at a specific time t. This
prediction takes into account several key factors such as the CPU utilization ucpu, the rate of memory
access umemory, the rate of hard disk I/O requests udisk, and the rate of network I/O requests unet . The
coefficients of these factors, denoted as Ccpu, Cmemory, Cdisk, and Cnic, are applied to their respective
components in the equation. These coefficients are determined through training and are used to predict
the power consumption of a server at a specific time.

Pt =Ccpu,nucpu,t +Cmemoryumemory,t +Cdiskudisk,t +Cnicunic,t (3)

Another approach to calculating energy consumption is by dividing the components into two groups
called static power and dynamic power. An example is defined in Equation 4. The total power con-
sumption of a server is the sum of the static power Pf ix and the dynamic power Pvar. Static power Pf ix

consumption in a server refers to the power used regardless of the server’s activity, including energy
wasted due to leaks in semiconductor components and the power needed to maintain basic processes,
which should be minimized to reduce energy waste but requires improvements at the chip level [14] [9].
Dynamic power Pvar consumption in a server is determined by activities such as circuit operation, disk
drive access (I/O), and workload execution, with a significant portion of power usage allocated to disk,
network, I/O, peripherals, regulators, and other circuitry [14] [9].

Ptotal = Pf ix +Pvar (4)

If we integrate the previously discussed equations with some also presented in this paper [14], then the
entire server power model can be seen in Equation 5. Here, n represents the number of VMs running in
the node, encompassing various hardware components. baseline denotes the baseline power, empirically
determined. The paper from which the above models are obtained showcases over 200 models. While
each serves a different purpose, detailing all of them is beyond the scope of this study.

Pserver = a
n

∑
k=1

Ucpu(k)+b
n

∑
k=1

Umem(k)+ y
n

∑
k=1

Uio(k)+ne+baseline (5)

2. Baseline + Active Power (BA) Models
Bohra and Chaudhary [16] introduced the Vmeter model, designed for estimating the power consumption
of virtual machines. This model considers various factors, including CPU, cache, DRAM, and disk
utilization. These metrics are estimated using a linear BA approach, where the calculation had to be done
manually. However, in a later stadium, this became automatic.

Lin et al. [15] reviewed and compared several popular power models of cloud server components including
CPU, vCPU, memory, and hard disk. Interestingly, they consider vCPU because most of the time vCPU is
used in data centers. Most of them need training parameters as input. They built a dataset by collecting power
data from SPECpower ssj20083. The SPEC Power benchmark is the first industry-standard benchmark that

3https://www.spec.org/power_ssj2008/
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evaluates the power and performance characteristics of single-server and multi-node servers. It is used to
compare power and performance among different servers and serves as a toolset for use in improving server
efficiency. They used this data to fit different forms of CPU power models and calculated their error distributions
[15]. Also, they discussed two types of memory power models. One is based on performance counters and one
is based on memory usage. They show that the correlation between memory power and LLC misses is much
stronger than the one between memory power and memory usage.

2.2 Cloud Energy Consumption

Dayarathna et al. [14] surveyed in 2016 the state-of-the-art techniques used for energy consumption modeling
and prediction for data centers and their components. Interestingly is that they focused on hardware-centric
and software-centric power models. Regarding software-centric approaches, they looked at three layers of
abstraction. They also split software-centric into performance counter-based and machine learning-based. The
survey makes distinctions between modeling and prediction. This is important to keep in mind because there is
a clear difference between the two. The paper goes further about how direct power measurement is almost not
used frequently. In addition, they claim that hardware performance counters are a more commonly employed
approach for energy consumption prediction.

Hardware Performance Counters, sometimes called Performance Monitoring Counters, are special registers
provided by modern processors to indicate their state of execution. These registers can obtain profile code per-
formance. They capture the amount of event types that occur. It can monitor hundreds of different performance
metrics, including cycle counts, instruction counts for fetch/decode/retire, cache misses, instructions executed,
cache misses, branch mispredictions, and more [17].

However, the main focus of Dayarathna et al. [14] was discussing all sorts of energy and power models.
They examined more than 200 power models in their survey at different layers of the data center systems in a
bottom-up fashion. Some of them are more advanced than others [18] [19]. Some considered more data center
components(e.g. CPU, Disk, etc) and some included the booting and halting phase [20]. They concluded
that there is not much work done at higher levels of energy consumption modeling. In addition, the accuracy,
generality, and practicality of the majority of power consumption models remain open.

Dullak et al. [17] researched different energy models for each data center component. The components that
they considered were CPU, Fan, GPU, Memory, Storage, Network Devices, Switches, and Power Supply. This
work distinguishes itself from other studies by finding the most efficient energy model for each component and
making a recommendation for it. A noteworthy discovery is the significant power consumption of CPUs, which
leads to a linear relationship between CPU utilization and server energy consumption. They explain that some
models are based on different theories. One is performance monitoring units, also called Hardware Performance
Counters as explained before. However, to obtain these counter registers a driver has to be installed because
they are not provided to the user space by most operating systems. Another modeling technique Dullak et al.
[17] discuss is based on a queuing theory, which is measured by task arrival rate and mean task execution. They
elaborate on additional theories and explore various components.

Noureddine et al. [21] outlines the state-of-the-art approaches and tools for monitoring and estimating the
energy consumption of software. First, it starts with explaining about existing hardware-based tools. However,
they make a clear statement that these approaches are challenging to maintain and upgrade, yet they offer the
benefit of achieving good accuracy. Westin et al. [22] has done some work for predicting energy consumption
from CPU usage from a containerized application. The author used an empirical simulation and the use of
linear regression. However, the proof of concept does not guarantee high accuracy.

To calculate energy consumption some multiplication factors need to be considered in the model. One is
Power Usage Effectiveness (PUE). The PUE is useful to present the proportion of energy that is used to
operate the IT equipment concerning the total power draw of a facility [23]. This means it gives a score of how
energy efficient a data center is, with the lowest possible score of 1 meaning all energy consumed goes directly
to powering the servers and none is being wasted on cooling4. This score is often given by the cloud provider.

4https://www.cloudcarbonfootprint.org/docs/methodology/#power-usage-effectiveness
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Another factor is Replication, which defines the number of replications of data as well as any associated
compute and memory resources. This is done to achieve adequate durability and availability for data stores and
to ensure better redundancy in the case of service outages5. This advantage comes with a cost, as it uses more
resources. Therefore, the energy consumption needs to be multiplied by the total number of replications.

2.3 Carbon Emission Fundamentals

This section will provide a comprehensive exploration of the fundamentals of carbon emissions, focusing es-
pecially on the definitions introduced in Section 1.1. The first definition, Greenhouse Gas (GHG) Protocol,
classifies emissions into three scopes. These scopes are enumerated below:

1. Direct emissions, originating from the company, include on-site machinery and power generator emis-
sions; data centers, although not typically emitting these, may have on-site power generators for backup.

2. Indirect emissions, stemming from electricity consumption by devices like servers and cooling systems,
are the primary focus of this research, in line with Sotos’ guideline for Scope 2 emissions reporting,
which encompasses all energy consumption.

3. Remaining emissions, that are not in scope 1 or 2, account for either a significant share or most of the
emissions. The official GHG website6 provides a standard calculation guide to classify these emissions
within scope 3.

However, GHG protocol has an issue with reporting. If deployments are outsourced to the cloud their
respective scope 1 and 2 move to scope 3. This means that it will be more difficult to get the total emissions
since scope 3 is not required to report. Therefore, some extensions are being made to the GHG protocol called
the Clean Energy Emission Reduction (CLEER) protocol and the Science Based Targets Initiative (SBTi).
The goal of these extensions is to reduce emissions of their businesses [9]. An additional proposal has been
introduced that discusses the subdivision of scope 3 into scope 3 and 4 [24]. In this framework, Scope 3
encompasses the entirety of the supply chain, while Scope 4 focuses specifically on delivery, usage, and end-
of-life considerations. Despite its potential benefits, widespread adoption of this extension has not yet occurred.

The term Carbon Footprint will be used extensively throughout this thesis. There are multiple versions
of the definition, without a coherent accepted definition. E.g. Wiedmann and Minx proposed an official def-
inition of carbon footprint [25]: ”The carbon footprint is a measure of the exclusive total amount of carbon
dioxide emissions that is directly and indirectly caused by an activity or is accumulated over the life stages of a
product”. This definition does not consider different greenhouse gases in combination with the GHG protocol.
Therefore, this thesis uses the definition outlined in Section 1.1 from [11].

ENTSO-E, the European Network of Transmission System Operators for Electricity, is the association for
the cooperation of the European transmission system operators (TSOs). The 40 member TSOs representing 36
countries are responsible for the secure and coordinated operation of Europe’s electricity system, the largest
interconnected electrical grid in the world7. ENTSO-E is responsible for coordinating and ensuring the reliable
operation of the electrical transmission system across Europe. It plays a crucial role in facilitating the exchange
of electricity across borders and promoting the integration of renewable energy sources into the European
electricity grid.

Multiple sources are available for obtaining the current carbon intensity, with many relying on ENTSO-
E data. One popular option is Nowtricity8, which offers real-time emissions data from energy production
across countries. This platform presents interactive graphs illustrating current emissions through its website
dashboard. Additionally, Nowtricity offers an API for accessing this data.

Another valuable resource for carbon intensity information is Electricity Maps9, which provides a con-
5https://www.cloudcarbonfootprint.org/docs/methodology/#replication-factors
6https://ghgprotocol.org/scope-3-calculation-guidance-2
7https://www.entsoe.eu/about/inside-entsoe/objectives/
8https://www.nowtricity.com/country/netherlands/
9https://www.electricitymaps.com
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sistent API for accessing data at hourly intervals for over 160 regions. Users can access this data freely for
non-commercial purposes. Previously, CO2-signal10 served as another source, but it has been integrated into
Nowtricity.

The above shows that the relationship between energy consumption and CO2 emissions is not simply one-
to-one. CO2 emissions are influenced by the energy sources used for generation at any given time. These
sources can range from local ones like solar panels to those determined by the regional energy mix. Each
source emits a specific amount of CO2-eq per kWh produced. Therefore, the average CO2 emissions can
fluctuate significantly as different sources are utilized throughout the day [14]. Greenhouse gas emissions from
electricity production show considerable variation depending on the time and place. This broad fluctuation in
carbon intensity (the average greenhouse gas emissions per unit of energy consumption) or marginal emissions
(the extra greenhouse gas emissions per additional unit of electricity consumption) suggests that both the timing
and location of electricity consumption significantly impact its overall global warming effect [26].

The state-of-the-art literature on carbon emissions provides various models to calculate carbon emissions.
While Haghshenas et al. [6] primarily discussed reducing carbon emissions, they also introduced equations
for estimating power and CO2 emissions. These formulas rely on input parameters, such as the average power
consumption of CPUs and GPUs based on their hardware specifications, along with their corresponding average
utilization rates.

2.4 Monitoring Cloud Environments

This section delves into the cloud monitoring tools already discussed in the literature and accessible on the Web.
Section 2.4.1 will outline tools suitable for system metrics, while Section 2.4.2 will cover tools applicable to
energy consumption. Lastly, Section 2.4.3 will dive into tools specifically designed for monitoring carbon
footprint.

2.4.1 System Metrics Tools

The tools that are collected in this section focus on performance characteristics, execution metrics, and resource
usage. Moreover, these tools do not provide any information about energy consumption. They all have different
levels of abstraction and their unique features. A comparison table of the tools that are collected for this purpose
can be found in Table 1.

1. cAdvisor
cAdvisor11 is specifically developed for container orchestrations. The tool can monitor and profile met-
rics from containers. cAdvisor runs as a daemon inside a concurrent container which could interfere with
profiling results. So, it can collect execution metrics system-wide and for individual containers. Since
the tool is designed for Docker containers, it can be integrated into a Kubernetes environment.

2. OProfile
OProfile12 is an open-source profiling framework capable of tracing application execution and evaluating
run-time performance. It supports profiling single or multiple processes but has a maximum sampling
granularity of 100 ms. When working with software containers, OProfile faces compatibility challenges,
requiring additional setup and scripting for monitoring, which can affect profiling accuracy [5].

3. Ceilometer
Ceilometer13 serves as a data collection service, offering the capability to standardize and convert data
from all existing core components within the OpenStack ecosystem. Efforts are also being made to extend
support to upcoming OpenStack components. Ceilometer is an integral part of the Telemetry project, and

10https://www.co2signal.com
11https://github.com/google/cadvisor
12https://oprofile.sourceforge.io/news/
13https://docs.openstack.org/ceilometer/latest/index.html
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its data plays a crucial role in enabling functions such as customer billing, resource monitoring, and
alerting across the entire spectrum of OpenStack core components. One crucial disadvantage is that this
tool only compatible is with OpenStack.

4. Monasca
Monasca14 is an open-source multi-tenant, highly scalable, performant, fault-tolerant monitoring-as-a-
service solution that integrates with OpenStack. Monasca comes with a monitoring agent for gathering
metrics and sending them to the Monasca API. The Agent supports collecting metrics from a variety of
sources. First, it can collect system metrics such as CPU and memory utilization. Second, it supports
scraping metrics from endpoints provided by Prometheus exporters or Prometheus instrumented appli-
cations. Third, the agent can perform checks on OpenStack processes. Just like Ceilometer, Monasca is
only compatible with OpenStack.

5. Venus
Venus15 is an OpenStack project that aims to provide a one-stop solution to log collection, cleaning,
indexing, analysis, alarm, visualization, report generation, and other needs, which involves helping op-
erator or maintainer to quickly solve retrieve problems, grasp the operational health of the platform, and
improve the level of platform management. Which can include OpenStack logs, operating system logs,
cloud platform service logs, and virtualized application-related logs. Again, this tool is only compatible
with OpenStack.

6. OpenTelemetry
OpenTelemetry16 provides a set of tools and interfaces for tracking and managing data regarding soft-
ware performance and behavior. This data includes metrics, which are measurements taken while your
software runs. Each measurement, called a ”metric event,” not only includes the measurement itself but
also records when it happened and any related information. These metrics can also be obtained in a
Kubernetes environment since it has an advanced integration with Kubernetes.

On top of that, OpenTelemetry provides some additional plugins that can be used to monitor the system.
One interesting to mention is a collector plugin called Host Metrics Receiver17 that is able to collect
metrics about the host system scraped from various sources. This is intended to be used when the collector
is deployed as an agent. It can scrape metrics from all sorts of hardware resources. One major advantage
is that the plugin is able to collect host metrics from inside a container. Host metrics are collected from
the Linux system directories on the filesystem. When it is preferred to collect metrics about the host
system and not the container, the host file system needs to be bind-mounted and the path of the root
needs to be configured.

7. Prometheus
Prometheus18 is an open-source system monitoring and alerting toolkit originally built at SoundCloud.
After Kubernetes, Prometheus joined the Cloud Native Computing Foundation as well. Kubernetes is
also used a lot in combination with Prometheus. The Query language and structure that Prometheus
offers are also frequently adopted by many tools that are discussed in this section.

Prometheus has a Node Exporter19 that can collect hardware and OS metrics exposed by *NIX kernels,
written in Go with pluggable metric collectors. It can collect metrics from the host system. By default, it
is not able to collect metrics from inside a container. This can be accomplished by binding the host file
system and configuring the path of the root.

14https://www.openstack.org/software/releases/zed/components/monasca
15https://docs.openstack.org/venus/latest/
16https://opentelemetry.io
17https://github.com/open-telemetry/opentelemetry-collector-contrib/blob/main/receiver/

hostmetricsreceiver/README.md
18https://prometheus.io/docs/introduction/overview/
19https://prometheus.io/docs/guides/node-exporter/
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Name Abstraction Depends On Disadvantages Resources Advantage
cAdvisor BM, VM,

CLU, CON

OProfile BM, VM Extra setup
needed for
containers

Ceilometer BM, VM OpenStack Mem, CPU,
Disk, Network

Monasca BM, VM OpenStack CPU, Mem

Venus BM, VM OpenStack

OpenTelemetry
HMR

BM, VM, CON Kubernetes in-
tegration

Prometheus
NE

BM, VM,
CLU, CON

Table 1: System Metric Monitoring Tools Comparison

2.4.2 Energy Consumption Tools

The following enumeration will discuss various energy and power measuring tools. At the end of this collection,
a comparison is presented in Table 2.

1. PowerScope
This application is proposed by [27] to profile the energy usage of applications. It needs a hardware
investment to function, but then it can sample the energy usage by process. This means that it does not
use estimation, so it is more precise. In addition, it does not offer real-time energy information [21].

2. pTop
This process-level power profiling tool [28] provides power consumption of running processes. It calcu-
lates the Joules of four different components, namely CPU, Network Interface, Memory, and Hard Disk.
It retrieves resource utilization by accessing the /proc directory. This tool can be used with only software
and can give real-time energy information. One downside of pTop is that it needs hardware interfaces
from the vendor of the machine to access power consumption data [21].

3. PowerAPI
PowerAPI20 can track how much energy applications use as they run, focusing on system processes and
software code blocks. It works at various levels of abstraction, like Bare Metal, VM, Container, App,
Process, and Code. The estimates come from both hardware and software perspectives, giving insights
into CPU and Hard Disk energy usage [21]. For instance, it relies on a Hardware Performance Counter
(HWPC) Sensor, which keeps an eye on Intel CPU performance counters and CPU power consumption.

4. Jalen
Jalen21 is almost similar to PowerAPI. Both tools use power models to estimate the energy consumption
of processes and software blocks. However, Jalen measures consumption at a finer level of abstraction.
A disadvantage of Jalen is that it is only compatible with Java applications and it is now deprecated.
It uses power information provided by the hardware and operating system [21]. The same author of
Jalen introduced a new source code monitoring tool called JoularJX. However, this approach is also only
compatible with Java applications.

20https://powerapi.org
21https://www.noureddine.org/research/jalen
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5. PowerTop
PowerTop22 can diagnose issues with the power consumption of a Linux-based system. This tool also
gives an estimation of the energy consumption of software applications and system components [21]. It
is possible to monitor processes and show which of them are utilizing the CPU and wake it from its idle
states, allowing it to identify applications with particular high power demands.

6. Energy Checker
This paper [21] discussed Energy Checker, an SDK by Intel that gives the possibility to export and import
hardware performance counters from an application. These can measure the run-time of a particular
event or process and estimate the energy consumption. Nevertheless, it needs a hardware power meter to
function, so only applicable in some scenarios. On top of that, the reference link in the paper [21] is not
working anymore and the tool is not available on the Intel website.

7. Joulemeter
Joulemeter23 uses laboratory benchmarks for their model to calculate the energy consumption of hard-
ware resources and software applications. These models learn over time through calibration. Thus,
without previous benchmarks, the models cannot be used. It uses multiple power models for measuring
the power consumption of servers desktops, laptops, and individual processes [21] [29] [15]. However,
this tool is deprecated and no longer available for public download

8. CloudMonitor
CloudMonitor [30] is an energy monitoring tool that does not require additional hardware. It uses a
methodology that predicts energy consumption by usage of hardware resources. It uses a linear relation-
ship to estimate the power. Moreover, it can predict precise information about resource usage once a
power model has been trained on a particular hardware configuration [29].

9. DEM
DEM was proposed by Lin et al. in 2018 and stands for distributed energy consumption measurement
system. They introduce a model for each hardware resource component. Then the system investigates the
mathematical relationship between the resource usage of hardware components and the system energy
consumption. In other words, DEM uses a Master-Slave architecture. The slave has different compo-
nents including a hardware detection module that detects the hardware of the local device to obtain the
hardware model. The model matching module matches the same or the closest hardware model with
energy consumption information according to the underlying hardware. The power estimation module
uses the method based on component power models to calculate the energy consumption. Interesting to
say is that the results not only show great accuracy on heterogeneous cloud servers but also in measuring
the energy consumption of a cluster [29]. This model is categorized under the BA models as discussed
in Section 2.1.

10. RAPL
Running Average Power Limit24 (RAPL) is an interface by Intel to measure energy consumption. The
tool is not an analog power meter but uses a software model [22]. Administrative rights and hardware
access on the host are needed for this tool to function. In addition, it requires an Intel CPU with Linux
or Windows installed. With RAPL it is possible to programmatically get real-time data on the power
consumption of the CPU package and its components, as well as of the DRAM memory that the CPU is
managing.

22https://wiki.archlinux.org/title/powertop
23https://www.microsoft.com/en-us/research/project/joulemeter-computational-energy-measurement-and-optimization/

overview/
24https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/

advisory-guidance/running-average-power-limit-energy-reporting.html
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11. PAPI
In addition to the previous tool, Performance Application Programming Interface25 (PAPI) can report
power and energy measurements through RAPL events. PAPI provides an API for reading hardware
performance counters. A major disadvantage is that it needs to modify the code of the application it
wants to measure [5].

12. Containergy
The authors Silva-De-Souza et al. of [5] present a new performance evaluation and profiling tool, namely
Containergy. This tool can profile container-specific applications while isolating hardware performance
metering using control groups.

Control Groups (cgroups) are a Linux kernel feature that enables the allocation of system resources to
processes, managing and monitoring their resource usage. Cgroups provide a mechanism for grouping
processes and applying resource constraints, such as CPU, memory, and disk I/O limits. This allows
administrators to control and distribute resources efficiently, preventing one process or group of processes
from monopolizing system resources. These processes are organized in hierarchical trees [5]. Essentially,
cgroups enhance the kernel’s ability to regulate and allocate resources, contributing to improved system
performance and resource management in virtualized and containerized environments [31].

Containergy leverages cgroups to organize processes hierarchically, enabling efficient resource alloca-
tion. It combines cgroups with namespaces to create lightweight software containers that offer effective
process isolation and resource control, all with minimal overhead compared to traditional hypervisor-
based virtualization. These containers not only simplify software distribution by packaging software
and related files but also facilitate efficient energy and performance data collection through Performance
Counters and container logs. The tool ensures precise data matching by utilizing timestamps with mi-
crosecond resolution, allowing for accurate analysis of both hardware and software metrics. It does not
use code instrumentation, this means however that the tool is not able to extract metrics on specific parts
of the code. As a disadvantage, Containergy requires that a container engine Docker, in this case, must
be available and operational on the target system. In addition, kernel support for control groups must
already be enabled on the system kernel.

13. Kepler
Kepler26 27 (Kubernetes-based Efficient Power Level Exporter) is a Prometheus exporter. It uses eBPF
to probe CPU performance counters and Linux kernel tracepoints. eBPF28 is a revolutionary technology
with origins in the Linux kernel that can run sandboxed programs in a privileged context such as the
operating system kernel. It is used to safely and efficiently extend the capabilities of the kernel without
requiring to change kernel source code or load kernel modules.

These data and statistics can then be fed into ML models to estimate energy consumption by Pods. Cur-
rently, Kepler uses power consumption API as RAPL or ACPI. ACPI stands for Advanced Configuration
and Power Interface and is an open industry specification establishing industry-standard interfaces for
OS-directed configuration and power management on laptops, desktops, and servers [32]. If a device
does not support RAPL or ACPI, another way to get power consumption has to be found. Kepler is a
Cloud Native Computing Foundation sandbox project.

Kepler consists of four different modules:

• Kepler Model Server - The main feature of this module is to return a power estimation model. The
request that is sent to this server contains data to estimate the power consumption. Data such as the
total of a component, input metrics, and accuracy filters.

25https://icl.utk.edu/papi/
26https://sustainable-computing.io
27https://github.com/sustainable-computing-io/kepler
28https://ebpf.io/what-is-ebpf/
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• Kepler Estimator - Client module.

• Kepler Exporter - This module exposes metrics about the energy consumption of Kubernetes
components such as Pods and Nodes. These statistics are exported in a Prometheus-friendly format.
Besides energy consumption, it exports a variety of container metrics as well.

• Kepler Power Model - Kepler provides three modeling approaches. The default model is Power
Ratio Modeling which uses the ratio over the total summation of power. This one can be used when
the total power is known. Second, Power Estimation Modeling estimates power by using input
features of the trained model. This model can be measured on three levels: node total power, node
internal component, and pod power. Lastly, Pre-trained Power Models has for some deployment
scenarios pre-trained models that can be used29.

14. Scaphandre
Scaphandre30 serves as a monitoring agent exclusively designed for tracking energy consumption met-
rics. Its primary function is to reveal the power usage of individual processes on a computer. The tool
effectively executes two key tasks: first, it gathers and pre-computes the power consumption metrics, and
second, it publishes this data. By employing Prometheus31 for metric scraping and Grafana for dashboard
creation, users can visualize the collected data. Moreover, Scaphandre offers interaction at various levels
of abstraction, including the bare metal host, containers themselves, or the container orchestrator.

Scaphandre aims to solve the problem that virtual machines usually do not have access to power metrics.
By enabling communication between a Scaphandre instance on the hypervisor/bare metal machine and
another one running on the virtual machine. The Scaphandre agent on the hypervisor will compute the
metrics meaningful for that virtual machine and the one on the VM access those metrics to allow its
user/administrator to use the data as if they had access to power metrics in the first place (as if they were
on a bare metal machine). This enables breaking opacity in a virtualization context with access to the
hypervisor, or in a public cloud scenario where the provider uses Scaphandre on its hypervisors32.

Although Scaphandre offers various methods for monitoring power consumption, there are certain lim-
itations to consider. It currently enables direct measurement of hardware through software interfaces.
Furthermore, as of the time of writing this thesis, the official website indicates plans to introduce a fea-
ture for estimating hardware metrics. A crucial aspect discussed in a GitHub thread33 revolves around
the essential requirement of establishing a lookup database containing specifications of hardware compo-
nents. This database would facilitate the estimation of power consumption by correlating these metrics
with resource consumption metrics such as CPU or RAM usage.

2.4.3 Carbon Footprint Tools

This final section will focus on tools that are specifically designed to monitor carbon emissions or carbon
footprint. We have only found one tool in the literature for this section, which is Cloud Carbon Footprint
(CCF). Hence, there is no comparison table for this section and we discuss the tool here in detail.

CCF34 is an open-source tool that provides tooling to measure, monitor, and reduce cloud carbon emissions.
This data creates visibility of the usage of cloud resources and the associated carbon emissions. This tool uses
best practice methodologies to convert cloud utilization into estimated energy usage and carbon emissions,
producing metrics and carbon savings estimates. The tool can be used with two types of data input but uses

29https://github.com/sustainable-computing-io/kepler-model-db
30https://github.com/hubblo-org/scaphandre
31https://prometheus.io/docs/introduction/overview/
32https://hubblo-org.github.io/scaphandre-documentation/how-to_guides/propagate-metrics-hypervisor-to-vm_

qemu-kvm.html
33https://github.com/hubblo-org/scaphandre/issues/25
34https://www.cloudcarbonfootprint.org
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Name Abstraction
Level

Resources Pros Cons Depends
On

Last Up-
date

PowerScope BM

pTop BM CPU, Disk,
Network,
Memory

PowerAPI BM, VM,
CLU, CON,
SOFT

CPU, Disk

Jalen BM, SOFT CPU, Disk Only Java 2021/09/20

PowerTop BM Only Linux

Energy
Checker

BM Needs hard-
ware power
meter

JouleMeter BM

CloudMonitor BM, VM Memory,
CPU, Disk,
Network

2013/11/29

DEM BM, VM,
CLU

CPU, Mem-
ory Hard
Disk

Only het-
erogeneous
cloud

RAPL BM, VM

PAPI BM, VM Needs addi-
tional hard-
ware

Containergy CON Docker

Kepler BM, VM,
CLU, CON

Kubernetes,
Prometheus

Scaphandre BM, VM,
CLU, CON

Works with
Kubernetes

Table 2: Cloud Energy Consumption Tools Comparison

the same methodology for both. First, it can be used with billing data from cloud providers. The application
pulls usage data from major cloud providers and converts it into energy usage and carbon emissions. Second,
it can be used with manual input data. CCF called this method On-Premise35. With this approach, it is possible
to make estimations without billing information. However, until writing this thesis, the tool only considers
CPU and memory usage. Nevertheless, it only needs the machine name to do its calculations. CCF can map
the machine name to the associated micro-architecture and leverage a specification database to determine the
average compute and memory coefficients.

Currently, CCF exclusively supports on-premise estimations for Compute and Memory usage, omitting
operational emissions beyond these parameters. However, there are plans to integrate embodied emissions for
on-premise scenarios in the future36. The on-premise estimation process mirrors the main methodology37 of

35https://www.cloudcarbonfootprint.org/blog
36https://www.cloudcarbonfootprint.org/docs/on-premise/
37https://www.cloudcarbonfootprint.org/docs/methodology
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the tool but relies on manual input instead of Cloud Provider APIs. Despite its alignment with Compute and
Memory usage, it lacks support for network and disk usage and cannot assess virtual machines. Moreover, it
requires metrics from entire physical machines, posing challenges for users employing VMs in data centers.
Nevertheless, the tool showed confidence as a working energy and carbon footprint model, powered by its
open-source nature and active development community.

2.5 Reducing Carbon Emissions

Haghshenas et al. [6] investigated how we can reduce emissions by using the iterative training process and
the varying intensity of CO2 signals from the power grid. They introduced the idea of migrating computing
jobs to geographical locations with the lowest carbon intensity. Building upon the ideas presented in [10] [26],
Haghshenas et al. [6] proposed two mechanisms for shifting load to when and where low-carbon energy is
available, namely suspend resume and moving between clouds. Of the two, the latter showed more promising
results in emission reduction.

Another strategy for reducing energy consumption involves leveraging stranded power, as outlined in [9].
This initiative, termed Zero Carbon Cloud (ZCCloud), aims to utilize renewable energy that would otherwise
go to waste. ZCCloud achieves this by situating data centers near renewable energy sources, thereby elimi-
nating carbon emissions associated with energy production. This paper [33] created a concept called Follow
the Renewable. This approach aims to establish data centers near renewable energy sources, optimizing job
scheduling to prioritize the use of green energy over traditional sources. Additionally, heat generated by data
centers can be repurposed by supplementing it with higher-quality heat, which can then be distributed to nearby
households.

A Carbon Kubernetes Scheduler has been created and put into action by James et al. [10]. It moves
workloads to areas with reduced carbon dioxide emissions. In other words, it migrates energy consumption to
countries with the lowest carbon intensity in real-time. This paper by Xu and Buyya [33] also considers shifting
workloads among multi-cloud locations in different time zones. The results show that their approaches, which
apply workload shifting, can reduce around 40% carbon emissions in comparison to the baseline while ensuring
the average response time of user requests. This is a significant reduction in carbon emissions. This method is
similar to the moving between clouds mechanism proposed by Haghshenas et al. [6].

Radovanovic et al. [26] took another approach by delaying workloads temporally, so that workloads can
run at moments with a lower carbon intensity and therefore minimize the carbon footprint. This is done by
using Google’s Carbon-Intelligent Computing System. The paper shows effective results when delaying the
execution of temporally flexible workloads to greener times. This technique is identical to the suspend resume
mechanism proposed by Haghshenas et al. [6].

The following paper by Kaur et al. [34] introduces a Kubernetes-based energy and interference-driven
scheduler. So, it is not delaying workloads but it schedules it beforehand. They designed a composite controller,
called KEIDS. This controller can use maximal green energy leading to minimal emission of carbon footprints,
optimal performance, minimal interference, and energy minimization.

This article by Radersma [1] provides some recommendations for software engineers about how they can
optimize software to reduce their carbon footprint. It includes choosing a green language, comparing energy
usage between different versions, and using GPUs over CPU. Although GPU uses more energy it can be more
efficient by good parallelisation. Further, it recommends recalculation over retrieving from (local) storage.
Finally, it advises choosing the greenest cluster, since it can differ in twofold.
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3 Case Study

This section presents the case study of this thesis and is structured as follows. First, the context of the case
study is provided in Section 3.1. The objective is given in Section 3.2, followed by the problem definition in
Section 3.3. A technology assessment is conducted in Section 3.4, assessing the tools that can be utilized to
achieve the objective. After that, different alternatives are discussed in Section 3.5. The setup that is used for
testing and implementation is explained in Section 3.6. Finally, the potential tools are tested in Section 3.7.

3.1 Context

Digital Lab is a team within the Computing Science department at the University of Groningen. It is respon-
sible for applications used by the faculty. Among these applications are Virtual Labs, facilitating access to
computational resources for courses, and Repo Man, which simplifies the creation of source code repositories.

A particular relevant application is Themis, which automates code submission checks by executing and
compiling the submitted code. These submissions, provided by students for specific assignments, undergo
evaluation within a container set up by Themis. The application then compares the container’s output with
the expected result. Themis is used by half of all the Computing Science courses, processing roughly 120.000
submissions annually.

Themis has an extensive infrastructure, illustrated in Figure 1. It leverages OpenTelemetry to monitor the
submission pipeline, tracking metrics such as execution time. Data storage is managed through Minio database
buckets, organized by course editions, assignments, and groups. Metadata is stored in MariaDB. Additionally,
Themis utilizes Kafka for submission queuing. Thus, the container for the code submissions is surrounded by
a diverse array of techniques and resources.

These applications from Digital Lab are hosted at Coenraad Bron Center, the University of Groningen’s
data center. Infrastructure management is facilitated by OpenStack, granting Digital Lab access to resources
via the OpenStack API. OpenStack serves as a cloud operating system, controlling computing, storage, and
networking resources across the data center. Its dashboard empowers administrators to oversee resource pro-
visioning while enabling users to manage resources via a web interface. In addition to standard infrastructure
services, OpenStack offers orchestration, fault management, and service management functionalities to ensure
application availability.

One might imagine that conducting all of these checks consumes a significant amount of server computa-
tion, which translates into energy consumption. The energy usage of the servers is not only important for the
University of Groningen, but also for the environment. The University of Groningen is a public institution and
has a responsibility to be sustainable.

The computational requirements of these applications lead to a considerable amount of energy being used
by servers, which in turn contributes to carbon emissions. As a public institution, the University of Groningen
is committed to sustainability38, recognizing its responsibility to minimize environmental impact alongside
operational efficiency.

3.2 Objective

Given the University of Groningen’s and Digital Lab’s commitment to sustainability, it is practical to monitor
the carbon emissions produced by the servers utilized by various applications. By understanding the extent
of carbon emissions released into the atmosphere, proactive steps can be taken to mitigate the environmental
impact.

The primary goal of this thesis is to track and visualize carbon emissions arising from the utilization of
Themis. Specifically, the objective is to monitor emissions up to the level of container abstraction. As individual
containers rely on different components directly and indirectly linked to a code submission, it is also interesting
to explore other levels of abstraction to grasp the energy consumption of the infrastructure comprehensively.

38https://www.rug.nl/about-ug/profile/facts-and-figures/duurzaamheid/roadmap-sustainability?lang=en
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Figure 1: Themis Architecture

A container that runs a submission is only active for a specific timeframe, and it is essential to measure the
container’s carbon footprint during this period, providing a precise insight into the carbon footprint of a specific
code submission.

Furthermore, this project delves into determining the most effective approach to visually represent energy
consumption and carbon footprint data. This aspect ensures that the findings are understandable and actionable
for making informed decisions. This will give Digital Lab insight into the carbon footprint of their application,
Themis.

3.3 Problem Definition

Several challenges must be overcome to achieve the objective. Various requirements and constraints need con-
sideration, originating from Digital Lab’s design choices and infrastructure. These requirements are essential
for the solution to be compatible with Digital Lab’s infrastructure and to monitor the energy consumption of
multiple code submissions simultaneously. The constraints, on the other hand, are imposed by the infrastructure
used by Digital Lab, over which they have no control.

3.3.1 Requirements

• Frameworks - The solution must be compatible with OpenStack and Kubernetes, as Digital Lab utilizes
these for infrastructure management.

• Multi-tenancy - The solution must handle multi-tenancy to differentiate between multiple code submis-
sions and monitor their energy consumption simultaneously. With 120.000 submissions annually, this
capability is crucial.

• Container Level - The solution should monitor at least the container level to track the carbon footprint
of specific code submissions running in single containers.
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3.3.2 Contraints

• Hardware - Physical access to the hardware is unavailable as Themis operates in a data center with
restricted access. This means that it is not possible to measure the energy consumption of the hardware
directly. The hardware is owned by Digital Lab. However, they have six servers in total with three
different hardware specifications. So there are three groups of two with the same hardware specifications.
To conclude, there are specifications of the hardware available, but there is a chance that we do not know
which resources are used at a specific moment.

• Administrative rights - Digital Lab has no administrative rights on OpenStack, limiting actions to those
possible with ordinary user permissions. While they can configure virtual machines and therefore have
access to the kernel of the VM, installing certain plugins or advanced settings is restricted.

• Hypervisor access - Digital Lab lacks access to the hypervisor, preventing software installation at that
level. This gap between the hardware and virtual machines complicates synchronizing hardware utiliza-
tion with different levels of abstraction.

The challenge lies in whether we can still measure the energy consumption of code submissions given these
constraints and requirements.

3.4 Technology Assessment

This section conducts a technology assessment of tools that can be utilized to achieve the objective with the
limitations of the problem considered. The tools gathered in Section 2 will be evaluated to determine which
one best suits the needs of Digital Lab.

The assessment will follow a bottom-up approach in comparison to the order of related work. The related
work is structured into metrics, energy consumption, and carbon footprint, respectively. This order is chosen
because if a potentially applicable carbon footprint technique is identified, we can then search for missing
components in the subsequent tools that can serve as input for the carbon footprint technique. Similarly, missing
pieces related to energy consumption can be found in the metrics. Each tool has a brief minimum requirement
at the end written in italics.

We will evaluate the tools to determine if they can provide information on energy consumption rather than
just carbon emissions. Once we have data on energy consumption, we can then proceed to calculate the carbon
emissions by multiplying the energy consumption with the carbon intensity of the electricity grid.

In total, two assessment tables are provided besides the enumeration below. The same abbreviations used
for the abstraction levels in the related work are applied here, although the software (SOFT) abstraction is
excluded from this assessment. First, Table 3 presents the tools alongside checkboxes indicating whether they
meet each requirement. Second, Table 4 offers an overview of each tool’s compatibility with the constraints
grouped by different levels of abstraction. A cross in a checkbox means that the tool can be used despite
constraints. A tilde (∼) indicates that the tool can monitor that level when there is no constraint.

1. Cloud Carbon Footprint (CCF) - This tool can be used to estimate the carbon footprint and energy
consumption based on the hardware specifications. It can only be used to estimate at BM level.

Requires hardware specifications as a minimum to function. For better estimations, it needs resource
utilization data.

2. Scaphandre - This is a promising tool since it provides a way to integrate with Kubernetes. However, it
requires to have Scaphandre installed on the hypervisor to make it work with virtualized environments.
When Scaphandre is installed on the hypervisor, it can expose power readings to the virtual machines
and containers that are running on the hypervisor. This enables monitoring power consumption at virtual
machine and container levels39. Scaphandre uses underwater PowercapRAPL sensors. This means that

39https://hubblo-org.github.io/scaphandre-documentation/explanations/how-scaph-computes-per-process-power-consumption.html
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this tool can only be used in two cases. One is that if Digital Lab has access to the hypervisor, they can
install Scaphandre by themselves. The other case is that the hypervisor already has Scaphandre installed.

Requires access to the hypervisor, so Scaphandre can be installed.

3. Kepler - Another promising approach is Kepler, which focuses on Kubernetes, hence its name Kubernetes-
based Efficient Power Level Exporter. It is designed to measure energy consumption at the container
level. Kepler utilizes the energy consumption measurement capability of RAPL. This tool requires ac-
cess to the operating system kernel, facilitated by eBPF, to obtain power consumption data. With this
access, it leverages hardware performance counters, cgroup, and sysfs to measure all processes/threads
on the specified CPU. While Kepler can measure or estimate energy consumption at all considered ab-
straction levels, it needs a power model to function. Either this model is trained initially on the hypervisor
or a pre-trained model is used40. This power model is then utilized in the Kepler Model Server module
as explained in Section 13.

Requires access to the hypervisor for initial model training or a pre-trained model with the same deploy-
ment scenario.

4. Containergy - This tool is capable of measuring energy consumption specifically at the container level,
rather than at other levels. It focuses on isolating hardware performance counters to measure the energy
usage of a container by utilizing control groups. Since access to the host kernel and hardware perfor-
mance counters is necessary, this tool cannot be employed for measuring energy consumption.

Requires access to the hypervisor for cgroups, namespaces, and hardware performance counters.

5. PAPI - This tool is an addition to RAPL. It is an API that can be used to access the hardware performance
counters. This tool alone cannot measure energy consumption, the underlying tool is RAPL. Therefore,
we continue with RAPL.

Requires access to the hypervisor to gain kernel-level access to hardware performance counters.

6. RAPL - With this tool, it is possible to get real-time power consumption of the CPU on BM & VM level.
It requires administrative rights on the (guest) OS. In addition, the CPU vendor must be Intel. Digital
Lab has three AMD CPUs.

Requires access to the hypervisor to retrieve data from the host CPU and a CPU of the vendor Intel.

7. DEM - The DEM can gauge energy usage at the cluster level. For estimating energy consumption, the
Hardware Detection Module requires access to the /proc virtual directory to gather raw hardware data.
In the Linux version, the slave component accesses files such as /proc/stat, /proc/meminfo, and
/sys/block/sda/stat to retrieve information on CPU, memory, and disk usage. Consequently, this
tool is solely functional when the /proc-filesystem is activated in the kernel and has permission to
access the host OS kernel.

Requires access to the hypervisor to gain kernel-level access to the /proc directory.

8. CloudMonitor - CloudMonitor provides this capability, by initially collecting “training” information
from PDUs to ascertain the connections between resource consumption and power used [30]. This means
that it first needs access to the previous data of the host machine. Thus, access to the BM is required.

Requires access to the hypervisor for previous PDU data of the host machine.

9. JouleMeter - This tool, developed by Microsoft, can estimate the energy consumption of various re-
sources used in a computer. It operates at the bare metal abstraction level, meaning it delves into the
fundamental aspects of computation. However, the models it employs are derived from calibration,
which poses a limitation in terms of flexibility since power models cannot be established without prior

40https://www.cncf.io/blog/2023/10/11/exploring-keplers-potentials-unveiling-cloud-application-power-consumption/
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laboratory benchmarks. Unfortunately, the public release of Joulemeter has been deprecated and is no
longer available for download41.

Deprecated.

10. Energy Checker - Although this tool can measure energy consumption on a bare metal level, it requires
a hardware power meter to measure the energy consumption.

Requires a hardware power meter to be installed.

11. PowerTop - This tool is designed to measure energy consumption on a bare metal level. However, to use
this tool an additional package is needed on the host machine.

Requires access to the host machine to install a package.

12. Jalen - Jalen is a great tool to measure energy consumption at the source code level of Java applications.
Unfortunately, it is only compatible with Java applications. On top of that, it is deprecated.

Requires the use of Java applications only and is deprecated.

13. PowerAPI - Currently, PowerAPI proposes one Sensor: HWPC. In particular, it exploits the perf API
of the Linux kernel. It is only available on Linux and needs to have root access to be used. The sensor
can not be used in a virtual machine, it must have access (via Linux kernel API) to the real CPU register
to read performance counter values42. It is possible to install the formula by hand in a Virtual Machine
if needed, but then several metrics from the hardware are still needed to be able to calculate the energy
consumption. This means that it needs access to the kernel of the host OS to be able to measure energy
consumption.

Needs access to the hypervisor to gain kernel-level access to hardware performance counters.

14. pTop - This process-level power measurement tool can measure energy consumption on a variety of
different abstractions. However, it requires access to the /proc directory to be able to measure energy
consumption. Being a service of the operating system, pTop runs at the kernel level and provides energy
consumption data from all applications and processes running in the system [28].

Needs access to the hypervisor to gain kernel-level access to the /proc directory.

15. PowerScope - This tool is a process-level energy consumption measurement tool. But it has a disadvan-
tage, it requires a hardware power meter to measure the energy consumption.

Requires a hardware power meter to be installed.

16. Prometheus NE - Prometheus itself is not able to gather metrics from the hardware directly. However,
Prometheus Node Exporter (NE) offers a way to gather metrics from the hardware. It is compatible with
OpenStack and Kubernetes. However, it does not measure energy consumption by itself. It needs to be
combined with a tool that can measure energy consumption. This means that it is not applicable to solve
the problem completely. In addition to that, Prometheus offers a structure for metrics, but it does not
offer a way to calculate the carbon footprint.

Requires combination with an energy approach, but can provide resource metrics at various levels of
abstraction.

17. OpenTelemetry - OpenTelemetry is an open source observability framework. It is compatible with
OpenStack and Kubernetes. It provides a good way to monitor the infrastructure, but it needs to be
combined with a model that can calculate the energy consumption and carbon footprint.

Requires combination with an energy approach, but can provide resource metrics at various levels of
abstraction.

41https://www.microsoft.com/en-us/research/project/joulemeter-computational-energy-measurement-and-optimization/
42https://powerapi.org/reference/sensors/hwpc-sensor/
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18. Venus - Venus is an OpenStack project. It is more focused on retrieving logs from the infrastructure and
not on metrics of running applications. Also, it can only be used in combination with OpenStack and
needs administrative rights.

Not focused on metrics of running applications and requires administrative rights on OpenStack.

19. Monasca - Monasca is a promising tool that can obtain CPU and memory utilization. Monasca relies
on Keystone for running the service. One of the requirements is that the API must have an admin token.
This means that we need administrative rights to install this tool with OpenStack.

Requires administrative rights on OpenStack.

20. Ceilometer - Ceilometer is also a tool designed for OpenStack. It has the same obstacles as Monasca.

Requires administrative rights on OpenStack.

21. OProfile - One downside of OProfile is it can not measure energy consumption at the container level
without additional setup. This results in accuracy loss. So, they should be used with caution. Probably,
another tool has the preference over this tool.

Requires combination with an energy approach, but can provide resource metrics at various levels of
abstraction.

22. cAdvisor - cAdvisor is a tool that can be used to collect system metrics up to container level. It can
collect system-wide and on container level, but can interfere with results because it is running in the
same container. In Kubernetes, cAdvisor is integrated into the Kubelet binary. It is pretty intelligent to
auto-discover all the containers running in the machine, collect CPU, memory, file system, and network
usage statistics, and provide a comprehensive overall machine usage by analyzing the root container43.

Requires combination with an energy approach, but can provide resource metrics at various levels of
abstraction.

3.5 Alternatives

The previous section has provided a comprehensive list of tools along with their minimum requirements for
applicability. While constraints may initially limit options, exploring potential solutions can lead to finding the
optimal approach. Therefore, we will present four design alternatives aimed at addressing the issues outlined in
the case study. These alternatives offer valuable insights for the Digital Lab, particularly when operating with
fewer constraints. It is important to note that this section focuses solely on constraints for different alternatives,
as the requirements are established by the Digital Lab itself. These requirements will eliminate many tools,
especially those incapable of monitoring container-level activity.

The first alternative represents the ideal scenario with all constraints relaxed. In the second alternative, we
consider the hardware constraint. The third alternative maintains both the hardware constraint and assumes
no access to the hypervisor. Lastly, the fourth alternative integrates all identified constraints and serves as the
baseline scenario.

For each alternative, we compile a list of compatible tools. In cases where a single tool falls short of pro-
viding all necessary functionalities, we explore combinations with other tools to achieve the desired outcome.
Table 5 offers a comprehensive overview of the tools applicable to each alternative.

3.5.1 Alternative 1 - All constraints relaxed

For this first alternative, we will assume that all constraints are relaxed. This means that we have access to the
hardware, hypervisor, and administrative rights on OpenStack. Therefore, we can use any tool to collect the

43https://scaleyourapp.com/what-is-cadvisor-how-does-it-work-explained/



26 Chapter 3 CASE STUDY

Tools Frameworks Multi-Tenancy Container Level

Cloud Carbon Footprint (CCF) x

Scaphandre x x x

Kepler x x x

Containergy x x x

PAPI x

RAPL x

DEM x

CloudMonitor x

Joulemeter x

Energy Checker x

PowerTOP x

Jalen x

PowerAPI x x x

pTop x

PowerScope x

Prometheus NE x x x

OpenTelemetry x x x

Venus x x

Monasca x x

Ceilometer x x

OProfile x

cAdvisor x x x

Table 3: Technology Assessment: Requirements

data. This alternative will be the ideal solution. If we take a look at Table 4 we can use all tools that have a
cross or tilde in all the container-level columns and meet all the requirements. However, since this alternative
has the same applicable tools as the second alternative, we will continue with the second alternative.

3.5.2 Alternative 2 - No access to hardware

Most tools that measure on the container level do not need access to the hardware physically. This means that
we can use all of the tools that apply to the first alternative. If this alternative is chosen the preference is to use
tools that can monitor energy out-of-the-box (OOTB). Therefore, some of the tools below, that need the support
of an Energy Model (EM), will not be used for this alternative. The following tools are therefore applicable to
this alternative:

• Scaphandre

• Kepler

• Containergy

• PowerAPI

• Prometheus Node Exporter + EM
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Category Tool Hardware Admin Rights OpenStack Hypervisor access

BM VM CLU CON BM VM CLU CON BM VM CLU CON

Footprint CCF x x x x

Energy

Scaphandre x x x x x x x x ∼ ∼ ∼ ∼
Kepler x x x x x x x x x x x x
Containergy x x ∼
PAPI x ∼ x x
RAPL x ∼ x x
DEM x x x x x x x x x
CloudMonitor x ∼ x x
Joulemeter x x x
Energy Checker ∼ x x
PowerTOP x x x x
Jalen x x x
PowerAPI x x x x x x x x ∼ ∼ ∼ ∼
pTop x x x
PowerScope ∼ x x

Metrics

Prometheus NE x x x x ∼ x x x
OpenTelemetry HMR x x x x ∼ x x
Venus x x ∼ ∼ x x
Monasca x x ∼ ∼ x x
Ceilometer x x ∼ ∼ x x
OProfile x x x x x x
cAdvisor x x x x x x x x x x x x

Table 4: Technology Assessment: Constraints
x: Can measure with the constraint
∼: If no constraint it can measure on this level

• OpenTelemetry Host Metrics Receiver + EM

• cAdvisor + EM

3.5.3 Alternative 3 - No access to hardware nor hypervisor

For this alternative, we will assume that we do not have access to the hardware and hypervisor. This means that,
in addition to the previous alternative, we can not use any tool that measures with the help of the hypervisor.
Since this alternative has the same applicable tools as the fourth alternative, we will continue with the next
alternative.

3.5.4 Alternative 4 - All constraints considered

This final alternative will consider all the constraints and requirements. In comparison to the previous alterna-
tive, it adds administrative rights to OpenStack. However, this extra constraint does not lock any tool out. This
means that we can use the following tools below. As we can see, all of the tools need the support of an Energy
Model (EM) to translate utilization metrics into energy consumption.
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Name Last Update Energy OOTB Alternative BM VM CLU CON
Scaphandre 2023 Yes 2 x x x x

Kepler 2023 Yes
2 x x x x
4 x x x x

Containergy 2020 Yes 2 - - - x

PowerAPI 2023 Yes 2 x x x x

Prometheus NE + EM 2023 No
2 x x x x
4 - x x x

OpenTelemetry HMR + EM 2023 No
2 x x - x
4 - x - x

cAdvisor + EM 2023 No
2 x x x x
4 x x x x

Table 5: Alternatives Overview

• Kepler (Existing Pre-trained model)

• Prometheus Node Exporter + EM

• OpenTelemetry Host Metrics Receiver + EM

• cAdvisor + EM

3.6 Setup

Before proceeding to the next sections on exploratory tool testing and implementation, it is important to outline
the setup along with all the known specifications used for all explorations and implementations.

We utilize servers owned by Digital Lab and hosted in the University of Groningen’s data center. We have
been allocated some resources to use for the experiments and implementations. We are interfacing with an
individual bare metal server that possesses the following specifications:

• CPU: Dual AMD EPYC™ 7763 processor, totaling 128 physical cores with 2 virtual CPUs per physical
core, resulting in a total of 256 vCPUs/Threads.

• Memory: 512GB RAM

We have set up three virtual machines (VMs) on this server to deploy a Kubernetes cluster. The VMs are
configured with the following specifications, all running Ubuntu ARM server images:

1. master-node: 3 vCPUs, 15.6GB RAM, 20GB disk.

2. worker-node1: 2 vCPUs, 8GB RAM, 10GB disk.

3. worker-node2: 2 vCPUs, 4GB RAM, 10GB disk.

Before proceeding, it is practical to gather more information about each VM, as they may be deployed on
different underlying hardware. To achieve this, the following commands are executed on each node:

• Linux Kernel version: uname -r



Chapter 3 CASE STUDY 29

Name Type Description
system cpu load average nm ratio gauge The ratio of the system load average to the number of logical

CPUs.

system cpu time seconds total counter Total user and system CPU time spent in seconds.

system cpu utilization ratio gauge The ratio of the CPU utilization.

system memory usage bytes gauge The number of bytes used in memory.

system memory utilization ratio gauge The ratio of the memory utilization.

Table 6: Host Metrics Receiver metrics

1. master-node: 5.4.0-137-generic

2. worker-node1: 5.4.0-137-generic

3. worker-node2: 5.4.0-137-generic

• CPU details: lscpu

1. master-node: AMD EPYC-Milan Processor x86 64

2. worker-node1: AMD EPYC-Milan Processor x86 64

3. worker-node2: AMD EPYC-Milan Processor x86 64

As we observe, the output is consistent across all nodes, allowing us to confidently proceed.

3.7 Exploratory Tool Testing

The assessment of technology and alternatives relies solely on the documentation provided by the tools. How-
ever, at times, we encountered uncertainties in the documentation, which lowered our confidence in the tools’
applicability. Additionally, there is a possibility that the documentation might not be completely up-to-date.
Consequently, we felt it necessary to conduct experiments with some of the tools to validate if they indeed
meet the requirements outlined in the documentation. To address these uncertainties, we proceeded with our
experiments as outlined below. Our primary focus will be on alternative four, as it will serve as our baseline
scenario.

3.7.1 Scaphandre

There were concerns regarding the hardware compatibility of Scaphandre. The documentation showed some
doubt about the compatibility of CPUs and whether they can be deployed on a virtual machine. Considering
that Digital Lab plans to implement OpenTelemetry, we opted to experiment with the Host Metrics Receiver
plugin of this tool. Therefore, we conducted a quick test to determine if it is compatible with the machines that
we use.

The virtual machines we employ for the experiment, which will also be utilized in the final production
environment of Digital Lab, are based on AMD processors. This poses a challenge for using Scaphandre
because it relies on IntelRAPL under the hood. We can verify the availability of IntelRAPL by running the
following command: egrep "(pts|pln)" /proc/cpuinfo. This command returns nothing, indicating that
IntelRAPL is not available, which is also confirmed by the Scaphandre documentation.

The compatibility page of Scaphandre44 states that it can be used for AMD x86 bare metal servers. How-
ever, it requires a Linux kernel of version 5.11 or higher, which is not the case for the machines we use.

44https://hubblo-org.github.io/scaphandre-documentation/compatibility.html
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Name Type Description
node cpu seconds total counter Seconds the cpus spent in each mode.

node memory MemTotal bytes gauge Total amount of memory.

node memory MemFree bytes gauge The amount of free memory.

node memory Cached bytes gauge The amount of cached memory.

node memory Buffers bytes gauge The amount of buffered memory.

node memory SReclaimable bytes gauge The amount of reclaimable memory.

container cpu usage seconds total counter Cumulative CPU usage in seconds.

container memory usage bytes gauge Current memory usage in bytes.

Table 7: Prometheus Node Exporter metrics

Despite the warnings, we decided to try it ourselves. Therefore, we installed the helm chart and de-
ployed it on all the nodes in the cluster. However, we encountered an instant CrashLoopBackOff and even-
tually an Error status. The following logs confirm the incompatibility, as also stated in the documentation.
scaphandre:: sensors:: powercap rapl: Couldn’t find intel rapl modules. scaphandre::
sensors:: powercap rapl: Couldn’t find domain folders from powercap. Fallback on socket
folders. scaphandre:: sensors:: powercap rapl: Scaphandre will not be able to provide
per-domain data.

This marks the end of our experimentation with Scaphandre. Consequently, we cannot use Scaphandre for
our specific use case.

3.7.2 Kepler

For alternative four Kepler looks like a good candidate. As already discussed in the previous sections, Kepler
needs a pre-trained model to estimate the energy consumption at VM level. Diving into the documentation45 we
found that the current existing model is developed in Intel® Xeon® Processor E5-2667 v3. They mention
that models with other architectures will be coming soon. However, this means that the current existing pre-
trained model is not compatible with the AMD EPYC 7763 processor that we use in our setup. Therefore, we
decided not to experiment with Kepler.

3.7.3 OpenTelemetry Host Metrics Receiver

We utilize the OpenTelemetry demo project for this tool, which can be set up on a Kubernetes cluster using the
provided Helm chart46. The demo showcases a microservice-based application written in various programming
languages that interact with each other, along with a load generator simulating traffic.

With the demo, we can install the Host Metrics Receiver plugin of OpenTelemetry. Enabling the daemonset
for the OpenTelemetry collector is crucial as it establishes a daemon on every node in the cluster, allowing us
to retrieve metrics indicating where a process is running. Subsequently, we activate the plugin itself to assess
whether the Host Metrics Receiver exports the relevant data while operating within our setup.

Upon observation, it is evident that the Host Metrics Receiver successfully exports the desired data, includ-
ing metrics related to CPU, memory, disk, and network. Some of these metrics, related to VM-level estimations,
are detailed in Table 6. However, despite these metrics, there is a notable absence of data at the container level.
Consequently, we explore Prometheus Node Exporter as an alternative avenue.

45https://sustainable-computing.io/design/power_model/
46https://opentelemetry.io/docs/demo/kubernetes-deployment/
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Name Type Description
cpuDescription string Central processing unit description

memory number Number of gigabytes of memory usage

machineType string Machine type (Ie. server, laptop, desktop)

startTime Date Timestamp recording the start day/time of usage

endTime Date Timestamp recording end day/time of usage

country string Country where server was located

region string Region or state within country server was located

machineName? string Physical host name

cost? number The amount of cost associated with each row

cpuUtilization? number Specific server utilization percentage (Ie. 50% = 50)

powerUsageEffectiveness? number Power usage effectiveness for data center

dailyUptime number Active usage hours in the last day

weeklyUptime number Active usage hours in the last week

monthlyUptime number Active usage hours in the last month

annualUptime number Active usage hours in the last year

Table 8: Cloud Carbon Footprint On-Premise Input

3.7.4 Prometheus Node Exporter

Prometheus Node Exporter is a handy tool for exporting host metrics. We decided to experiment with this tool
because the OpenTelemetry Host Metrics Receiver does not scrape metrics at the container level. Hence, our
focus was particularly on finding container metrics using this tool.

After conducting several tests, we found that Prometheus Node Exporter effectively scrapes the metrics
we need, which are crucial for monitoring container utilization. The metrics we are interested in are listed
in Table 7. Notably, this tool can gather metrics from both virtual machine and container levels, offering a
significant advantage as it merges our monitoring needs into one tool. It achieves this by leveraging cAdvisor,
as outlined in a Medium article47. Essentially, Prometheus Node Exporter serves as the scraper for various
levels of abstraction, while cAdvisor retrieves the metrics. cAdvisor, in turn, interacts with Kubernetes Kubelet
to access metrics from within the cluster.

3.7.5 Cloud Carbon Footprint

Since none of the available energy tools are compatible with alternative four, we must seek an energy model
that aligns with a system host metric tool. The Cloud Carbon Footprint (CCF) tool is a good candidate for this,
but we first want to experiment with it to see if it meets our requirements.

CCF is designed to estimate energy usage and carbon emissions within cloud infrastructure. Our goal is to
assess if it can be used to make estimations with only host metrics scraped from the Kubernetes cluster.

Our investigation starts with installing the tool locally on our machine. The installation process is facilitated
through npx, providing a user-friendly setup. With the tool set up, we proceed to input data. Presently, CCF
solely supports data input and output via CSV files for on-premise measurements. Table 8 lists the required
data points for estimation, with some being optional. Following data input, we execute the command yarn run
estimate-on-premise-data --onPremiseInput [<Input File Name>], which generates an output CSV
file detailing kilowatt hours and CO2e for each uptime increment.

47https://medium.com/@onai.rotich/understand-container-metrics-and-why-they-matter-9e88434ca62a
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In our exploration, we examined the cpuDescription field’s impact on estimation accuracy. Initially, we
observed seemingly consistent results regardless of the input. However, upon closer inspection, we discovered
the necessity of specifying the exact CPU description. For instance, identifying our CPU as AMD EPYC 7763
without appending 2.25Ghz yielded accurate estimations.
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4 Design & Implementation

This section will present a model and implementation to address the problem outlined in the case study and
achieve the stated objective. Initially, in Section 4.1, we will outline the chosen technology stack. Following
that, in Section 4.2, we will introduce the model employed to estimate energy consumption and carbon foot-
print, relying on utilization metrics. All relevant equations will be covered within this section. Finally, the
implementation is outlined in Section 4.3. This section consists of two subsections. First, Section 4.3.1 will
detail how the model of Section 4.2 is implemented. Second, Section 4.3.2 will show how the dashboard is
implemented. This dashboard will visualize the results of the implementation.

4.1 Design Decisions

Given the alternatives and experimentation, we have arrived at several key design choices. Our decision to
utilize existing tools is because they are proven and have a large community. By doing so, we ensure access to
reliable support and ongoing updates. Thus, we the implementation shows to be stable and accurate we enhance
the longevity of our project.

• Prometheus Node Exporter
The main reason we selected Prometheus Node Exporter is that it demonstrated its ability to monitor
container-level abstraction by using cAdvisor under the hood. On top of that, it can auto-detect running
containers and monitor their resource usage directly. This is a key feature for our project, as it allows us
to monitor the resource usage of containers without having to manually configure each one. It offers host
metrics such as CPU and memory utilization.

• Cloud Carbon Footprint
Resource utilization metrics need to be paired with an energy estimation model. Several models exist,
but Cloud Carbon Footprint (CCF) has emerged as a promising tool. It is an open-source project with
significant contributions, making it more than just a standalone energy equation it is a project with strong
community involvement. As of the time of writing this thesis (March 2024), CCF has garnered 817 stars
on GitHub48 and continues to receive regular contributions each month. Furthermore, the project offers
both energy and carbon emissions estimations simultaneously, enhancing its utility.

• Electricity Maps
We selected Electricity Maps for our carbon intensity data. Among the tools we reviewed, all relied
on ENTSO-E as their data source. We opted for Electricity Maps due to its user-friendly interface.
Additionally, Electricity Maps has merged with CO2 Signal, indicating its growth. Furthermore, CCF
utilizes Electricity Maps as their data source for their non-on-premises approaches.

• Grafana Dashboard
Grafana49 is widely used for displaying time series data, making it a suitable tool for our project. Its
compatibility with Prometheus via PromQL makes it a strong choice. Additionally, its advanced visual-
ization features are beneficial. This aspect is particularly crucial for our project as we aim to visualize
energy and carbon footprint data across various levels of abstraction.

4.2 Model Design

This thesis presents an extension method on the CCF model to estimate energy usage and carbon emissions at
the BM level, based exclusively on metrics from virtual machines. Furthermore, it distributes the calculated
energy consumption and associated emissions among virtual machines and containers.

48https://github.com/cloud-carbon-footprint/cloud-carbon-footprint
49https://grafana.com
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We first define the symbols used in the equations in Section 4.2.1. Next, we explain how we prepare the
virtual machine metrics so that they can be given to the CCF model in Section 4.2.2. Section 4.2.3 then employs
these prepared metrics as input for the equations originating from the CCF main methodology. Finally, Sections
4.2.4 and 4.2.5 address the distribution of energy and carbon footprint from the bare metal server to the virtual
machines and containers. The sections labeled with Extension are the new parts that we have added to the
CCF model.

The steps in the following sections have to be repeated for a certain interval. The time window can be
chosen freely. It is recommended to use the same interval as the Prometheus scrape interval for virtual machine
metrics. This ensures that the metrics are collected at the same time and are consistent with each other. On top
of that, when having a smaller interval the below steps are calculated for the same metric values, which in turn
cause overhead.

4.2.1 Symbols

To improve the readability of the equations below, we have introduced the following symbols:

E: Energy in kWh

CO2eq: Carbon Dioxide Equivalent in mg

K: Known metric values (e.g. CPU utilization, memory usage, etc.)

UK: Unknown metric values

BM: Bare Metal

V M: Virtual Machine

CON: Container

MU : Memory Usage in GiB

MT : Memory Total in GiB

U : CPU Utilization in %

vCPU : Virtual CPU

vCPUs: List of vCPUs

pCPU : Physical CPU

Sum: Sum of the values. E.g. sum of all CPU utilization percentages

Median: Median of the values in a list

4.2.2 CCF Model Extension: Metric Preparation

The CCF model depends on certain metrics outlined in Table 8, with a particular focus on CPU and memory
utilization. Consequently, this section is dedicated to gathering these metrics. Three approaches are being
considered:

1. Obtaining hypervisor access would provide precise data regarding physical CPU, total memory usage,
vCPUs information, and overhead. However, this option is often not feasible as access is typically re-
stricted to the virtual machine.
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2. Assuming equal CPU and memory utilization between the virtual and physical machines, ignoring the
difference in abstraction levels.

3. Try to find how many virtual CPUs and the total memory are on a physical CPU, so we can apply the
average or median of the known virtual machine metrics to the unknown virtual machines.

When opting for the first or second approach, this section may be omitted as the necessary input for the fol-
lowing section is already accessible. The CPU and memory utilization metrics can then be directly provided to
the CCF model. If there are restrictions on hypervisor access, only the second or third approach is appropriate.
Considering that the third approach is likely to provide values closer to the actual ones compared to the second
approach, we outline the third approach in this section.

Below, we outline the method for this third approach. First, we calculate the median or average of the
known virtual machine metrics. Subsequently, these computed values are then applied to the unknown virtual
machines. Finally, we derive an average of the metrics from both the known and unknown virtual machines to
estimate the metrics of the physical machine.

1. Sum of all known vCPUs values
Equation 6 calculates the sum of all known vCPUs values. This is done by summing the CPU utilization
of each vCPU.

SumUKV M = ∑
vCPU∈vCPUs

UKvCPU (6)

2. Median or Fifty Percent methodology
Equation 7 provides a variable that is used to determine if the median or fifty percent methodology should
be used. If the median is enabled, the median of the known vCPUs utilization values is used. Otherwise,
the value is set to 0.5. This value will be used to indicate that fifty percent of the vCPU is utilized. The
CCF model uses 50% as the default value for the average server utilization50. CCF based this value on
the projected estimate for the average server utilization of servers in hyperscale data centers in 2020 of
50% [35].

medianOrFi f tyPercent =

{
MedianUKV M , if MEDIAN ENABLED = True
0.5 otherwise

(7)

3. Sum of all unknown vCPUs values
Equation 8 calculates the sum of all unknown vCPUs utilization values. This is done by multiplying the
difference between the total number of vCPUs on the bare metal server and the total number of vCPUs
on the known virtual machines with variable medianOrFiftyPercent from Equation 7.

SumUUKV M = (k−n)×medianOrFi f tyPercent (8)

where

• k is the total number of vCPUs on the bare metal server

• n is the total number of vCPUs on the known virtual machines

4. Sum of all vCPUs values of the Bare Metal Server
Equation 9 calculates the sum of all vCPUs values of the bare metal server. This is done by summing the
sum of all known vCPUs values and the sum of all unknown vCPUs values.

SumUBM = SumUKV M +SumUUKV M (9)
50https://www.cloudcarbonfootprint.org/docs/on-premise/#methodology
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5. CPU Utilization of the Bare Metal Server
Equation 10 calculates the CPU utilization of the bare metal server. This is done by dividing the sum of
all known and unknown vCPUs values by the total number of vCPUs on the bare metal server. With this,
we get the average CPU utilization of the bare metal server based on the known and unknown virtual
machines.

UBM =
SumUBM

k
(10)

where

• k is the total number of vCPUs on the bare metal server

6. Sum of all known memory usage values
Equation 11 calculates the sum of memory usage of each known virtual machine.

SumMUKV M = ∑
V M∈V Ms

MUKV M (11)

7. Sum of all memory total values
Equation 12 calculates the sum of total memory available on each known virtual machine.

SumMTKV M = ∑
V M∈V Ms

MTKV M (12)

8. Memory Usage Percentage of known virtual machines
Equation 13 calculates the memory usage percentage of the known virtual machines. This is done by
dividing the sum of memory usage of the known virtual machines from Equation 11 by the sum of the
total memory of the known virtual machines from Equation 12.

PercentageMUKV M =
SumMUKV M

SumMTKV M

(13)

9. Memory Total of unknown Virtual Machines
Equation 14 calculates the total memory of the unknown virtual machines. This is done by subtracting
the sum of total memory of the known virtual machines from Equation 12 from the total memory of the
bare metal server.

MTUKV M = MTBM −SumMTKV M (14)

where

• MTBM is the total memory of the bare metal server that is user input

10. Memory Usage of the Unknown Virtual Machines
Equation 15 calculates the memory usage of the unknown virtual machines. This equation has two cases.

The first case is when the average memory is enabled, then the memory usage percentage of the known
virtual machines is multiplied by the total memory of the unknown virtual machines. This gives us the
memory usage of the unknown virtual machines. We use an average calculation instead of a median
because we are unable to calculate the median memory of the unknown virtual machines. For CPU
utilization, we do know the total number of vCPUs so we can calculate the median. However, for memory,
we do not know how the unknown memory is distributed across how many virtual machines or vCPUs.
Therefore, we use the average.

The second case is when the average memory is not enabled, then the total memory of the unknown virtual
machines is divided by two. Both cases provide the memory usage of the unknown virtual machines.

MUUKV M =

{
PercentageMUKV M ×MTUKVM , if MEM AV G = True
MTUKVM

2 , otherwise
(15)
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11. Memory Usage of the Bare Metal Server
Equation 16 calculates the memory usage of the bare metal server. This is done by summing the memory
usage of the known virtual machines from Equation 11 and the memory usage of the unknown virtual
machines from Equation 15.

MUBM = SumMUKV M +MUUKV M (16)

4.2.3 CCF Model: Energy Consumption and Carbon Footprint of BM

This section applies the Cloud Carbon Footprint main methodology to estimate the energy consumption and
carbon footprint of the bare metal server.

1. Average Watts to be used
Equation 17 calculates the average watts value. There are two cases to consider. The first case is when
the average watts are already known and CPU utilization is not considered. The second case is when the
average watts are not known and the minimum and maximum watts are known. In this case, the average
watts are calculated by adding the minimum watts to the product of the CPU utilization factor and the
difference between the maximum and minimum watts.

AvgWatts =

{
averageWatts, if averageWatts ̸= 0
minWatts+UBM × (maxWatts−minWatts), otherwise

(17)

where

• averageWatts is the average watts of the bare metal server (user input)

• minWatts is the minimum watts of the bare metal server (user input)

• maxWatts is the maximum watts of the bare metal server (user input)

2. Energy in kWh of the CPU Utilization
Equation 18 calculates the energy in kWh of the CPU utilization. This is done by multiplying the average
watts we calculated in Equation 17 with the uptime usage of the CPU in hours, the Power Usage Effec-
tiveness (PUE) of the data center, and the Replication factor. These factors are introduced in Section 2.2.
Keep in mind that this amount of energy only considers the CPU utilization.

EUBM =
AvgWatts×H ×PUE ×RF

1000
(18)

where

• H uptime usage of the CPU in hours

• PUE is the Power Usage Effectiveness of the data center

• RF is the Replication factor

• E is the energy in kWh

3. Carbon Dioxide Equivalent in metric tons of the CPU Utilization
Equation 19 calculates the carbon dioxide equivalent in metric tons of the CPU utilization. This is done
by multiplying the energy in kWh of the CPU utilization with the carbon intensity of the electricity.

mtCO2eqUBM = EUBM × c (19)

where

• c is the carbon intensity of the electricity in mtCO2eq/kWh
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4. GbHours of the Memory Usage
Equation 20 calculates the gigabyte hours of memory usage. This is done by multiplying the memory
usage with the uptime. Memory usage is the max of either zero or the usage of memory minus the average
processor memory from the SPECPower database. The uptime refers to the duration, measured in hours,
during which the server has been operational.

GbHours = max(0,MUBM −MEM AV G)×H (20)

where

• MEM AV G is the average memory that is used in the SPECPower benchmark51 for this processor.

• H is the uptime of the server in hours. In this case, calculated in time windows of 15 seconds

The max function is used to ensure that we do not estimate a double amount of energy usage. The CCF
model only applies additional estimation when our bare metal server has a higher amount of memory us-
age than what is provided in the SPECPower database. This means that the CPU utilization is responsible
for the energy usage of the memory. When using the watts from the SPECPower database, the energy
usage of the memory is already included in the CPU utilization. Therefore, Equation 20 will only result
in another value than zero when the actual memory usage is higher than the total memory used in the
SPECPower database for this system architecture.

5. Energy in kWh of the Memory Usage
Equation 21 calculates the energy in kWh of the memory usage. This is done by multiplying the gigabyte
hours from Equation 20 with the memory coefficient, the PUE of the data center, and the Replication
factor. The memory coefficient is the average of the power usage of DDR4 and DDR5 memory.

The usage of DDR4 or DDR5 memory is assumed. Manufacturers of these memories offer a rule of
thumb. Crucial52 suggests allocating approximately 3 watts of power for every 8GB, which amounts to
0.375 W/GB. However, Micron53 states that each DRAM will consume approximately 408.3mWh of total
power, which amounts to 0.4083 W/GB. CCF decided to use the average of both values, which is 0.392
W/GB. Thus, the application uses 0.000392 kWh/GbHours.

EMUBM = GbHours×mc×PUE ×RF (21)

where

• mc is the memory coefficient. This is 0.000392 kWh/GbHours. This is the average of the power
usage of DDR4 and DDR5 memory.

• PUE is the Power Usage Effectiveness of the data center

• RF is the Replication factor This replication factor is default set to only one.

• E is the energy in kWh

6. CO2eq in metric tons of the Memory Usage
Equation 22 calculates the carbon dioxide equivalent in metric tons of memory usage. This is done by
multiplying the energy in kWh of the memory usage with the carbon intensity of the electricity.

mtCO2eqMUBM = EMUBM × c (22)

where
51https://www.spec.org/power_ssj2008/
52https://www.crucial.com/support/articles-faq-memory/how-much-power-does-memory-use
53https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_

power_calculation.pdf
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• c is the carbon intensity of the electricity in mtCO2eq/kWh

7. Energy in kWh of the Bare Metal Server
Equation 23 calculates the energy in kWh of the bare metal server. This is done by summing the energy in
kWh of the CPU utilization from Equation 18 and the energy in kWh of the memory usage from Equation
21.

EBM = EUBM +EMUBM (23)

8. CO2eq in metric tons of the Bare Metal Server
Equation 24 calculates the carbon dioxide equivalent in metric tons of the bare metal server. This is done
by summing the carbon dioxide equivalent in metric tons of the CPU utilization from Equation 19 and
the carbon dioxide equivalent in metric tons of the memory usage from Equation 22.

mtCO2eqBM = mtCO2eqUBM +mtCO2eqMUBM (24)

4.2.4 CCF Model Extension: Share VM of BM

1. Share of CPU Utilization of the Virtual Machine to the Bare Metal Server
Equation 25 calculates the share of CPU utilization of the virtual machine to the bare metal server. This
is done by dividing the CPU utilization of an individual virtual machine by the sum of all CPU utilization
of the bare metal server from Equation 9.

UShareBMV M =
UV M

SumUBM
(25)

2. Share of Memory Usage of the Virtual Machine to the Bare Metal Server
Equation 26 calculates the share of memory usage of the virtual machine to the bare metal server. This
is done by dividing the memory usage of an individual virtual machine by the memory usage of the bare
metal server from Equation 16.

MShareBMV M =
MUV M

MUBM
(26)

3. Share of the Virtual Machine to the Bare Metal Server
Equation 27 calculates the share of the virtual machine to the bare metal server. This is done by taking
the maximum share of either the CPU utilization from Equation 25 or the memory usage from Equation
26.

ShareBMV M = max(UShareBMV M,MShareBMV M) (27)

4. Energy in kWh of the Virtual Machine
Equation 28 calculates the energy in kWh of an individual virtual machine. This is done by multiplying
the share of the virtual machine to the bare metal server from Equation 27 with the energy in kWh of the
bare metal server from Equation 23.

EV M = ShareBMV M ×EBM (28)

5. CO2eq in metric tons of the Virtual Machine
Equation 29 calculates the carbon dioxide equivalent in metric tons of an individual virtual machine. This
is done by multiplying the share of the virtual machine to the bare metal server from Equation 27 with
the carbon dioxide equivalent in metric tons of the bare metal server from Equation 24.

mtCO2eqV M = ShareBMV M ×mtCO2eqBM (29)
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4.2.5 CCF Model Extension: Share CON of VM

1. Share of CPU Utilization of the Container to the Virtual Machine
Equation 30 calculates the share of CPU utilization of the container to the virtual machine. This is done
by dividing the CPU utilization of the container by the CPU utilization of the virtual machine.

UShareV MCON =
UCON

UV M
(30)

2. Share of Memory Usage of the Container to the Virtual Machine
Equation 31 calculates the share of memory usage of the container to the virtual machine. This is done
by dividing the memory usage of the container by the memory usage of the virtual machine.

MShareV MCON =
MUCON

MUV M
(31)

3. Share of the Container to the Virtual Machine
Equation 32 calculates the share of the container to the virtual machine. This is done by taking the
maximum share of either the CPU utilization from Equation 30 or the memory usage from Equation 31.

ShareV MCON = max(UShareV MCON ,MShareV MCON) (32)

4. Energy in kWh of the Container
Equation 33 calculates the energy in kWh of the container. This is done by multiplying the share of the
container to the virtual machine from Equation 32 with the energy in kWh of the virtual machine from
Equation 28.

ECON = ShareV MCON ×EV M (33)

5. Carbon Dioxide Equivalent in metric tons of the Container
Equation 34 calculates the carbon dioxide equivalent in metric tons of the container. This is done by
multiplying the share of the container to the virtual machine from Equation 32 with the carbon dioxide
equivalent in metric tons of the virtual machine from Equation 29.

mtCO2eqCON = ShareV MCON ×mtCO2eqV M (34)

4.3 Implementation

Given that we have a model design and have chosen the relevant tools that can support this model, we can
proceed with the implementation. The implementation is divided into two parts. The first part involves imple-
menting the model and supportive tools, as discussed in Section 4.2. The second part focuses on implementing
the dashboard, as detailed in Section 4.3.2.

4.3.1 Model Implementation

The model as described in Section 4.2.2 can be utilized in three different ways. Since we know the total number
of vCPUs and the total amount of memory of the bare metal we can use option three. This means that we need
to collect all known vCPU utilization values and all known memory usage values.

1. Input Parameters
First, we outline the input parameters for our implementation, which align with the setup detailed in
Section 3.6. Therefore we know our bare metal hardware specifications.

Based on the SPECpower ssj2008 results, we derive the average memory from all entries sharing the
same CPU description. However, to determine the average minimum and maximum power consumption,
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we consider records with both the same CPU description and thread count. This is crucial as the number
of threads significantly influences power usage. See Table 9 for all records with the same CPU descrip-
tion. Although our specific configuration is not directly matched, we utilize records with identical thread
counts, as the model incorporates kWh per GB of additional memory usage.

vCPUs: 256

Memory: 512GB

CPU Description: AMD EPYC 7763

Average SPECpower ssj2008 Memory: 332.8 GB

Min. Watts: 98.2 watts

Max. Watts: 455.8 watts

Date MHz Chips Cores Threads Memory min. watts max. watts
15-3-2021 2450 1 64 128 128 58 272

15-3-2021 2450 1 64 128 128 58 268

15-3-2021 2450 1 64 128 128 53.7 270

30-6-2021 2450 1 64 128 128 53 228

30-6-2021 2450 1 64 128 128 52.5 228

30-6-2021 2450 1 64 128 128 54 240

13-7-2022 2450 2 128 256 256 94.6 408

13-7-2022 2450 2 128 256 256 122 406

15-3-2021 2450 2 128 256 256 120 546

24-3-2021 2450 2 128 256 256 75.6 460

24-3-2021 2450 2 128 256 256 104 459

8-4-2021 2450 2 128 256 256 79.3 454

6-5-2021 2450 2 128 256 256 108 455

6-5-2021 2450 2 128 256 256 102 461

28-10-2021 2450 2 128 256 256 78.5 453

15-3-2021 2450 4 256 512 512 331 1192

15-3-2021 2450 4 256 512 512 257 1173

15-3-2021 2450 6 384 768 768 430 1731

15-3-2021 2450 6 384 768 768 352 1694

15-3-2021 2450 8 512 1024 1024 523 2260

Average 332.8 159 695.3

Table 9: SPECpower ssj2008 Results for the AMD EPYC 7763

2. Scrape Data
We employ the Prometheus Node Exporter to gather metrics. The Prometheus server retrieves these
metrics from the Node Exporter, utilizing the Kubelet API to access metrics at varying levels of abstrac-
tion. Given that the CCF model focuses solely on CPU and memory, our interest only lies in the metrics
outlined in Table 7. Subsequently, these metrics are stored in persistent volume storage. This practice
enables us to utilize the data for the CCF model and display it on the dashboard.
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3. Query Node Metrics
After obtaining the metrics, we can begin querying the data from the nodes. The rate function will serve
to handle more queries. This function computes the CPU usage rate per second for all vCPUs of each
node within the last minute. The memory usage of each node is computed by subtracting the free, cached,
and buffered memory from the total memory available. Finally, the total amount of memory is retrieved.
The following queries are used:

• sum by(node, cpu) (rate(node cpu seconds totalmode!="idle"[1m]))

• node memory MemTotal bytes - node memory MemFree bytes - (node memory Cached bytes
+ node memory Buffers bytes + node memory SReclaimable bytes)

• node memory MemTotal bytes

4. Initialize Variables
Before we start with the loop we first initialize some variables. The variables with capital letters are
constants and the other variables are updated throughout the loop. The following variables are initialized:

• CPU MEDIAN ENABLED
This boolean is used to determine if we want to use the median or the AVERAGE VCPU UTILIZATION
of the known vCPU utilization

• MEMORY AVG OF KNOWN NODES ENABLED
This boolean is used to determine if we want to use the average of the known nodes memory usage
or half of all the unknown memory.

• BARE METAL TOTAL VCPU
This represents the overall count of vCPUs on the bare metal and this value remains constant. It is
determined by multiplying the quantity of physical cores by the count of vCPUs per physical core.
In our scenario, we possess 2x AMD EPYC™ 7763, equaling 128 physical cores. The number of
vCPUs per physical core is flexible in OpenStack through overcommitment configuration. In our
setup, we have set it at 2 vCPUs per physical core, resulting in a total of 256 vCPUs.

• AVERAGE VCPU UTILIZATION
This is the average vCPU utilization. This is a constant and is set to 0.5. This is used later to
assume a vCPU utilization is using 50% its capacity when CPU MEDIAN ENABLED is set to false.

• nodes
We initialize an empty array called nodes where we store metric values for each node. This makes
it easier to access later.

• bareMetalAmountOfUnkownVCPU
This variable is used to store the number of vCPUs that are unknown and not used by our setup.
We query the vCPU utilization grouped by node and vCPU. This means that we get the vCPU
utilization for each vCPU on each node. Therefore, every time we loop over a vCPU we subtract
one from the bareMetalAmountOfUnkownVCPU.

• bareMetalTotalKnownCPUUtilization
This variable is used to sum the total vCPU utilization values of all nodes.

• BARE METAL TOTAL MEMORY BYTES
This is a constant value of the total memory of the bare metal in bytes. We know from our hardware
specifications that the server of Digital Lab has 512GB of memory. This is 549755813888 bytes.

• nodesMemoryUsageBytes
This variable is set to zero. When looping through the nodes, the memory usage of each node is
added to this variable.
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• nodesMemoryTotalBytes
This is the same as the previous one but for the total memory of each node.

5. Loop through vCPU of nodes for CPU metrics
Next, we loop through the result of the node CPU query. First, we add the value of the vCPU utilization to
the bareMetalTotalKnownCPUUtilization. Then, we check if cpuTotal exists for the current node.
If it does not exist we add it to the nodes array with the current vCPU value. If it does exist we add the
vCPU utilization to the existing value. Also, we store each vCPU utilization in a separate array within
the current node.

6. Calculate Bare Metal CPU utilization
To calculate the bare metal CPU utilization we use Equation 10. This equation gives us the total CPU
utilization of the bare metal.

7. Loop through nodes for memory usage metrics
We loop through the result of the node memory usage query. We add the memory usage of each node to
the nodesMemoryUsageBytes variable. Also, we add the memory usage of the node to the nodes array
with the current node value.

8. Loop through nodes for memory total metrics
This step is almost the same as the previous one. We loop through the result of the node memory total
query. We add the memory total of each node to the nodesMemoryTotalBytes variable. Also, we add
the memory total of the node to the nodes array with the current node value.

9. Calculate physical memory usage
Up till this point, we have the total memory usage of all nodes. We also have the total memory of
all nodes. We can calculate the memory usage of the bare metal server by using Equation 16. This
calculation uses the total memory usage of all known nodes and the total memory usage of all unknown
nodes. This equation gives us the total memory usage of the bare metal machine.

10. Set timestamps
We set timestamps so that we can use them in the coming steps. We use the timestamp of the last
query and call it nodeMetricTimeStamp. Also, we set a constant timestamp of 15 seconds before the
previous one. We call this nodeMetricTimeStamp15SecondsAgo. After these two timestamp values are
initialized we calculate the difference between them. We call this upTimeInHours. This is the difference
between the two timestamps in hours. For now, this value will always be the same because we loop every
15 seconds.

11. Retrieve latest carbon intensity
In this step, we retrieve the latest carbon intensity from Electricity Maps. It is possible to get the carbon
intensity for a specific country. In this case, we use the Netherlands. The carbon intensity is measured in
gCO2eq/kWh. This is the average carbon intensity of the Netherlands for the current hour.

This request is not called every time we loop. If the datetime of the latest response is older than 60
minutes, we need to get a new response. This is because Electricity Maps only has the carbon intensity
of the latest hour. Then the response is stored in a variable called latestElectricityMapsResponse
outside of the loop. However, for a backup value, we use the average carbon intensity in the Netherlands
for the year 202354. The latest carbon intensity is pushed to Prometheus.

12. Estimate kWh and CO2e for Bare Metal
This is where we use the Cloud Carbon Footprint package. We use the OnPremise package to estimate
the energy usage and carbon emissions of the bare metal infrastructure. The package uses the main

54https://www.nowtricity.com/country/netherlands/
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Figure 2: Grafana Dashboard — Container & Virtual Machine

methodology of the tool. This package needs the input parameters outlined in Table 8. We modified this
package so that it accepts the latest carbon intensity as an input parameter. Hence, we can use the latest
carbon intensity retrieved in the previous step. The package did not support dynamic carbon intensity.
Therefore, we added this feature to the package.

For the memory input field, we use the MUBM / 1000000000 to get the memory in gigabytes. This
value is calculated in Equation 16. For the CPU input field, we use the UBM from Equation 10.

Since some features are not yet supported in the OnPremise package. For example, it did not recognize
a processor from the 3RD GEN AMD processor family. Also, it does not support using the Electricity
Maps API for OnPremise. Therefore, we copied only the necessary files from the repository and used
them in our project. This made the project more maintainable and easier to use.

Then we call the getOnPremiseDataFromInputData function. This function returns the same array as
the input including kWh and CO2e. This function splits immediately into a ComputeEstimator and
MemoryEstimator.

(a) ComputeEstimator
This class is used to estimate the energy usage and carbon emissions of the compute usage. Or
in other words, CPU usage. First, it calculates the energy usage in kilowatt-hours. This energy
formula can be found in Equations 23 and 17. Second, it calculates the carbon emissions in mtCO2e
in Equation 19.

(b) MemoryEstimator
This part also starts with estimating the kilowatt hours. This is done by multiplying the gigabyte
hours with multiple factors. The formula can be found in Equation 21. Then it calculates the carbon
emissions in mtCO2e. This is done by multiplying the kilowatt hours with the carbon intensity. The
formula can be found in Equation 22.

(c) estimateCO2
This function takes the estimated kilowatt hours and carbon intensity. The calculation is done by
multiplying the kilowatt hours with the carbon intensity as seen in Equation 24.

After all of these calculations, it returns the kWh and CO2e for the given input parameters. This data is
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Figure 3: Grafana Dashboard — Bare Metal & Carbon Intensity

then pushed to Prometheus with the bare metal level abstraction label.

13. Calculate Share for each Node
Now that we possess the total energy usage and carbon emissions of the bare metal we can calculate
the share for each node. We loop through the nodes array that has all the node metrics at this point. A
percentage is calculated for each node so that this percentage can be used to divide by the total energy
usage and carbon emissions of the bare metal. This is shown in Equation 27. It takes the maximum of
either the CPU or memory share. This is done by dividing the node CPU utilization by the total sum of
all vCPU utilization values as shown in Equation 25. The same is done for the memory usage. This is
done by dividing the node memory usage by the bare metal memory usage as shown in Equation 26. All
results are then pushed to Prometheus with the node-level abstraction label.

14. Query Container Metrics
In this step, we focus on the container metrics. We use the following queries to get the container metrics.
The filter on the container name is used to prevent containers that are running in the background.

• rate(container cpu usage seconds totalcontainer!=""[1m])

• rate(container memory usage bytescontainer!=""[1m])

15. Loop through each container
The outcomes obtained from the queries undergo a looping process. We iterate through the vCPU results
and locate the relevant memory result using the container ID. Utilizing these values, we compute the
container’s share of the node. This is achieved by dividing the container’s CPU utilization by the node’s
CPU utilization. As demonstrated in Equations 32, 30, and 31 this conversion mirrors the transition from
bare metal to the node. The results are then pushed to Prometheus with the container-level abstraction
label.

16. Start over
At this stage, all the data is transferred to Prometheus. We pause for 15 seconds before restarting the
process.

4.3.2 Dashboard Implementation

The dashboard is implemented using Grafana. It is used to visualize the data that is stored in Prometheus. The
dashboard is divided into four rows. The first row contains eight graphs about the container level. Four of them
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display the CPU utilization, memory usage, energy consumption, and carbon emissions of each container. The
other four display the same metric but for the total of all containers. The second row displays the same metrics
for each node. The first and second rows can be seen in Figure 2. The third row displays only the total energy
usage and carbon emissions of the bare metal. The fourth row is used to display the carbon intensity of the
Netherlands. The third and fourth rows can be seen in Figure 3. All of these graphs are line charts that display
the metric over time. The dashboard is refreshed every 15 seconds. This is the same interval as the loop in the
model implementation. This means that the dashboard is updated every time the model is updated.
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5 Validation

This section focuses on the validation of the model and its implementation given in Section 4. This validation
is split into two parts. First, we will do a baseline measurement in Section 5.1. This measurement is taken
at different times when there is no load on the cluster. This is done to see if the model and implementation
are working correctly when there is no load on the cluster. Second, we will do a load measurement in Section
5.2. This is done to study how the model and implementation behave when there is load added to the cluster.
Finally, we will summarize the results in Section 5.3.

Given that Electricity Maps provides carbon intensity measurements in grams of CO2 equivalent per
kilowatt-hour (gCO2eq/kWh), it is evident that the intensity is already expressed in carbon dioxide equivalent
format. Consequently, in the subsequent sections, we will employ CO2eq to denote the carbon footprint.

5.1 Baseline Measurement

This section will validate the results when there is no load on the cluster. This validation is done in iterations
so that we can improve both the model and its implementation. It can be seen as a series of improvements, with
each iteration representing a refinement over the previous one. The goal is to ensure consistency and accuracy
by doing this iterative process of validation computations.

Important to note is that some modifications are already made to the model and implementation after these
iterations. These changes are made based on the results of the iterations. The changes are explained in the
respective iterations.

5.1.1 Iteration One

For this initial iteration, we sampled the results on 2024-02-07 within a time frame from 15:52:00 to
15:52:15. Since data is pushed every 15 seconds, we have one value for each metric for each abstraction.
The results are shown in Table 10.

Now that we have the results, we can start with the validation checks. If we take the mgCO2eq of all the
three known nodes and add them up, we get a total of 2.76 mgCO2eq. These nodes have 7 vCPUs in total. So
when we divide this total mgCO2eq by the number of vCPUs, we get 0.394 mgCO2eq/vCPU.

We now possess the amount of mgCO2eq per vCPU. Subsequently, we can use this value to calculate the total
mgCO2eq for the bare metal server. The bare metal server has 256 vCPUs. When we multiply the mgCO2eq/vCPU
of the known nodes by the total vCPUs, we get 100.9376 mgCO2eq. This result is not equal to the total BM
server mgCO2eq estimated by the CCF model, which is 136 mgCO2eq. This means we have an error rate of
-25.781%.

In addition, we can check if the total of the vCPUs of the nodes is equal to the total vCPUs of the server.
When we divide the total mgCO2eq by the mgCO2eq/vCPU, we get 345 vCPUs. This result is not equal to the
total vCPUs of the server. Moreover, the calculated vCPUs has 89 more vCPUs than the total vCPUs of the
server. The error rate for this calculation is 34.766%.

Given the discrepancy between these findings, further investigation is needed. The mgCO2eq calculations
do not align as expected, leading us to move to the next iteration hoping to improve the results.

2024-02-07 (15:52:00 - 15:52:15)
CPU (%) MEM (GiB) mWh mgCO2eq

server 48.8 245.84 443.00 136

master 12.6 1.71 3.30 1.015
calico-kube-controllers 0.13 0 0.0309 0.009

calico-node 1.82 0.00193987 0.518 0.159

coredns 0.369 0 0.082 0.0255
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dashboard-metrics-scraper 0.00967 0 0.003 0.000956

kubernetes-dashboard 0.0204 0 0.002 0.002

metrics-server 0.211 0.00000232 0.057 0.017

node-exporter 0.0149 0 0.00521 0.0016

worker1 21.6 1.7 3.29 1.012
calico-node 1.71 0.00184 0.328 0.101

carbon-sight 0.207 0.00617188 0.023 0.00715

frontend-proxy 0.314 0 0.0436 0.013

node-exporter 0.0206 0 0.004 0.001

worker2 10.5 1.23 2.38 0.733
calico-node 1.64 0.00348 0.389 0.12

grafana 0.878 0.0000028 0.199 0.061

node-exporter 0.0109 0 0.00303 0.000933

prometheus-server 0.719 0.00787109 0.138 0.042

Table 10: Iteration One — Baseline Measurement — 2024-02-07 (15:52:00 - 15:52:15)

5.1.2 Iteration Two

The earlier iteration did not show confidence in the results. After some consideration, we realized that our
assumption of the average vCPU utilization might be too optimistic. This encouraged us to explore alternative
methods for calculating bare metal CPU utilization. Since we know the total number of known vCPUs and
their respective CPU utilization percentages, it is possible to calculate the median value of the known vCPUs
utilization. We added this approach to the model as an option, so that we can compare the results of the two
methods. Therefore, the model and implementation sections were updated accordingly. Previously, our formula
assumed a fixed CPU utilization percentage of 50% for all unknown vCPUs. In contrast, the new formula
derives the CPU utilization percentage for unknown vCPUs from the median value of the known vCPUs.

After the formula was updated, we took another sample of the results on 2024-02-13 within a time
frame from 11:11:00 to 11:11:15. The sum of mgCO2eq for the three known nodes is 2.5 mgCO2eq. This
value comes close to the sum in the previous iteration. Again, dividing this value by the 7 vCPUs utilized
by the nodes, we get 0.357 mgCO2eq/vCPU. This is slightly beneath the previous iteration’s value of 0.394
mgCO2eq/vCPU, but the reason for that can be the different time frames.

The total BM server mgCO2eq estimated by the CCF model is 86.1 mgCO2eq. When we multiply the
mgCO2eq/vCPU value by the same fixed number of vCPUs, we get 91.4 mgCO2eq as can be seen in Equation
35. This result is considerably closer to the expected result than the previous iteration. The error rate between
the mgCO2eq of the known nodes and the total BM server provided by the CCF model is 6.156%. This is a
significant improvement from the previous iteration.

In addition, when we look at Equation 36, we can see that the vCPUs based on the mgCO2eq/vCPU is 241
vCPUs. This time the total calculated vCPUs is fewer than the actual number of vCPUs, which is 256. The
error rate is -5.86%.

This iteration shows some improvements, but we are not convinced yet. Also, since kWh will be more stable
than mgCO2eq, we will assess both mgCO2eq and kWh in the next iteration.

0.357 mgCO2eq/vCPU×256 vCPUs = 91.4 mgCO2eq (35)
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86.1 mgCO2eq
0.357 mgCO2eq/vCPU

= 241 vCPUs (36)

5.1.3 Iteration Three

The prior iteration indicated advancements in the desired direction. However, we wanted to replicate the strat-
egy employed for CPU utilization in evaluating memory usage. While utilizing the median for memory usage
seemed impractical, we opted to experiment with the average of the known memory usage. Previously, we used
half of the memory that was left for the unknown total memory. This was a very rough estimate, thus using the
average of the known memory usage for the unknown memory usage seemed like a more accurate approach.
This change is reflected in the model design and implementation by giving the option to use either the average
or half of the memory for unknown memory usage.

Because of this change, we took another sample of the results. We sampled the results on 2024-02-13
within a time frame from 14:11:45 to 14:12:00.

We will do validation computations for mWh first. The summed-up known nodes have a total of 13.73 mWh.
Dividing this by their 7 vCPUs, we get 1.961 mWh/vCPU, see Equation 37. Proceeding to calculate the total
mWh for the bare metal server based on the mWh/vCPU, we get 502.016 mWh as can be seen in Equation 38. This
is higher than the total mWh of the bare metal server estimated by the CCF model, which is 435 mWh. This gives
an error rate of 15.4%. In addition, when we look at Equation 39, we see that the calculated number of vCPUs
based on the mWh/vCPU is 221.7 vCPUs. This is lower than the actual number of vCPUs, which is 256. The
error rate is -13.4%. The previous iteration did not consider the mWh, so for this iteration, we can not compare
these results with the previous iteration.

13.73 mWh
7 vCPUs

= 1.961 mWh/vCPU (37)

1.961 mWh/vCPU×256 vCPUs = 502.016 mWh (38)

435 mWh
1.961 mWh/vCPU

= 221.7 vCPUs (39)

When looking at mgCO2eq again, we have a total of 1.701 mgCO2eq for the known nodes. In Equation 40,
we divide this by the 7 vCPUs. This gives us 0.243 mgCO2eq/vCPU.

The total mgCO2eq for the bare metal server provided directly by the CCF model is 54 mgCO2eq. When
we multiply the mgCO2eq/vCPU by the total vCPUs in Equation 41, we get 62.208 mgCO2eq. This number is
higher than the 54 mgCO2eq of the bare metal server. This gives an error rate of 15.2%. While the previous
iteration showed a trend in the right direction, the error rate of this iteration is higher again than the previous
iteration. Looking at Equation 42, we see that the calculated number of vCPUs based on the mgCO2eq/vCPU
is 222 vCPUs. This is lower than the actual number of vCPUs, which is 256. The error rate is -13.281%.
Comparing this error rate with the previous iteration, we see that this error rate is higher.

1.701 mgCO2eq
7 vCPUs

= 0.243 mgCO2eq/vCPU (40)

0.243 mgCO2eq/vCPU×256 vCPUs = 62.208 mgCO2eq (41)

54 mgCO2eq
0.243 mgCO2eq/vCPU

= 222 vCPUs (42)
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5.1.4 Iteration Four

Given that the formulas were updated to use the median for CPU and the average for memory, we decided to
compare the results of the two different methods. Table 11 shows the results of the iteration. Since mgCO2eq
is not practical for comparison due to the fluctuating carbon intensity, we focus only on energy from this point.
While the CPU utilization differs greatly, the total mWh is approximately the same. While the half method has
almost 6.6 times as much CPU utilization, the total mWh is only 9 mWh higher. This shows that the different
methods do not have a big difference or that there is a mistake in the implementation.

Calc. vCPUs Level CPU (%) MEM (GB) mWh mWh/
vCPU

vCPUs/
server

mWh/
server

Median
256 server 7.4 96.25 434 1.695 256 434

7
VMs - 5.449 24.49 3.499 124.051 895.634
containers - - 4.826 0.689 629.507 176.494

Half
256 server 48.8 245.84 443 1.731 256 443

7
VMs - 4.64 8.97 1.281 345.708 328.046
containers - - 1.82574 0.261 1698.489 66.77

Table 11: Iteration Four — Compare methods of calculating the bare metal CPU utilization

5.1.5 Iteration Five

Upon reviewing the implementation again, we noticed an error in the calculation of average watts. Equation
17 was not correctly implemented. The code mistakenly divided the CPU utilization of the bare metal server
by 100, although it was already represented as a fraction ranging from 0 to 1. Essentially, this resulted in the
CPU utilization being divided by 100 twice. This likely explains why the total mWh remained approximately the
same in the previous iteration because the percentage is too small to make a difference. This is fixed and we
took another sample of the results.

On top of that, in this phase of the iteration, it came to our attention that we could use more accurate
minimum and maximum watts for the implementation since we know the CPU and memory specifications of
the server. Therefore, we took all records from the SPECpower ssj 200855 benchmark that have the same CPU.
These records are shown in Table 9. Previously, the CCF package took the average of all values within the same
CPU family, but we will only use the ones that have the same number of vCPUs/threads. From this point, the
new values are used in the implementation.

This iteration focuses on the use of different numbers of vCPUs and the use of different CPU utilization
calculation methods. The reason for this is to see how the results behave in terms of consistency when having
a different number of total vCPUs. If the model and implementation are consistent, the energy consumption
and carbon emissions should decrease respectively when having fewer vCPUs. Because memory usage is only
considered in the formulas when the usage is higher than the average memory total of the SPECpower ssj 2008
records, we will use only the average method for memory usage.

See Table 14 in Appendix A for the results of the iteration. It becomes clear that the CPU utilization is
now reflected in the energy consumption. We already know that the CPU utilization is higher when using the
average method, but now with the error fixed, we can see that the total energy consumption is also higher. In
addition, the error rates have increased as well. When looking at the first row in Table 14, we see that the server
has 820.222 mWh estimated directly from the CCF model. The calculated server total based on the mWh/vCPU
of the nodes, we get 1690.696 mWh. This is an error rate of 106.6%. This is a significant increase from iteration
three, which only had an error rate of 15.4%.

55https://www.spec.org/benchmarks.html#power
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Figure 4: Iteration Five — Total energy consumption per server by different methods

In Figure 4, we see that the total energy consumption of the server is higher when the CPU utilization is
calculated with the average of the known vCPUs. Also, the total energy consumption does not change when
having different numbers of vCPUs for the median method. However, for the Average method, the total energy
consumption is increasing very slightly when having more vCPUs, but this is minimal. The energy consumption
does not change when having different numbers of vCPUs because the model does not consider the total number
of vCPUs when calculating the energy consumption. The model will still use the same amount of min and max
watts for the calculation, regardless of the number of vCPUs.

Figure 5, shows that both calculation methods are decreasing in the same way. Both have a lower mWh/vCPU
when having more vCPUs. As mentioned in the previous paragraph, this is because the same amount of min
and max watts is used for the calculation.

When reviewing Table 14 in Appendix A, particularly focusing on the last four columns, there appears to
be a discrepancy in the results. Looking at the first row, which represents three different abstraction levels, is
an example to illustrate this issue. This row indicates 256 vCPUs. For the BM CPU utilization of 7.4%, the
energy consumption is recorded as 820.222 mWh, resulting in 3.204 mWh/vCPU. However, when we sum up
the energy consumption for all known vCPUs, we obtain 46.230 mWh, translating to 6.604 mWh/vCPU. This is
almost twice the initial mWh/vCPU for the BM.

The inconsistency may stem from the use of the median, which could inflate the total mWh at the VM level
if one vCPU has disproportionately high utilization. Alternatively, we can explore the results of the average
method, which assumes uniform vCPU utilizations. When looking at the first row that has CPU MEDIAN set to
False. We know that all the vCPU utilization values are lower than 50%, so the average method should give
us a lower mWh/vCPU at the VM level compared to the BM level. However, the data shows that the mWh/vCPU
at the VM level is nearly twice that of the BM level. Once again, this inconsistency raises concerns about the
reliability of the findings.

5.1.6 Iteration Six

The purpose of this iteration is to determine the energy consumption at both minimal and maximal CPU utiliza-
tion levels. This check ensures that the results are within the boundaries of the minimum and maximum watts
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Figure 5: Iteration Five — Energy consumption per vCPU by different methods

of the server. Additionally, we aim to compare the outcomes obtained through the two methods of calculating
CPU utilization.

The results of this iteration are presented in Table 12. It is evident from the table that both methods yield
identical energy values (mWh) for corresponding CPU utilization levels. Specifically, the maximum energy
consumption is recorded as 3000.7 mWh, while the minimum stands at 646.5 mWh. Furthermore, in Equation
43, we verify the energy consumption at 50% CPU utilization. We find that the result is 1823.6 mWh, which is
consistent with the values obtained from the table. This iteration did not result in any extra improvements.

(3000.7−646.5)
2

+646.5 = 1823.6 (43)

CPU (%) CPU MEDIAN mWh
100 False 3000.7

50 False 1823.6

0 False 646.5

100 True 3000.7

50 True 1823.6

0 True 646.5

Table 12: Iteration Six — Energy consumption bare metal server at different CPU utilizations

5.2 Load Measurement

In this section, we will study the behavior of the model and implementation by adding a load to the cluster. We
do this to see if the energy consumption is increasing when the load is increasing. We will use different types
of loads to see if the energy consumption is increasing in the same way. This should ensure that the model and
implementation show consistent behavior aligning with the load that is added.
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Timestamp Users RPS mWh CON mWh/RPS
22:23:29 1000 372.8 10.2 0.02736051502

22:18:19 694 260.1 7.07 0.02718185313

22:13:54 429 158.5 7.09 0.0447318612

22:08:44 119 41.5 1.96 0.04722891566

22:07:34 50 15.6 0.885 0.05673076923

22:06:59 15 2.9 0.051 0.0175862069

22:06:59 10 1 0.051 0.051

Table 13: Load Measurement — Locust — Energy consumption per request

5.2.1 Fibonacci Sequence

The first load we will add is a single container that calculates a Fibonacci sequence. This is a Python script that
calculates the numbers and prints them to the console. This is a CPU-intensive task. Besides adding load, this
test will also show that the implementation can detect a new container and start monitoring it.

As we can see in Figure 6 that is in the Appendix B, all the energy consumption is increasing. In the first
Figure 6a, it is clear that the energy goes up when the container is deployed. The line fluctuates a bit around 800
mWh, after the container is deployed, the line increases to 950 mWh and reaches later the max of 1050. Looking
at Figure 6b, we can see that the energy is increasing from around 15 mWh to 30 mWh. This value is doubled.
For the energy of the container, it is interesting to see that the energy is increasing later than the other two. At
its highest point, it has an average of 20 mWh.

Besides the energy consumption, the CPU utilization of the virtual machine is going over 100%. However,
it fluctuates between 100% and 110%. This needs further investigation because in all probability the percentage
of the virtual machine is not normalized. For the container CPU utilization itself, it is going up to 100%, but not
beyond that. Lastly, when looking at the memory in Figure 6f, we can see that the memory is not increasing.
This is because the memory is not used in this task.

Although this test cannot tell us whether the calculations are consistent and correct, it does show that the
energy consumption is increasing when the load is increasing. On top of that, the monitor detects the new
container and starts monitoring it.

5.2.2 Locust Load Test

This section will be responsible for showing the alignment between energy consumption and the incoming
load to a Kubernetes cluster in the form of requests per second. We will use Locust56 to generate the requests
and send them to a cartservice. This cartservice is running in a container and is part of OpenTelemetry
Demo57 microservices application. The cartservice is a simple shopping cart service and is completely
standalone. We can access the container through API requests. Both, GET and POST requests are sent.

With the setup in place, we will send requests to the cartservice and measure the energy consumption
of the container, virtual machine, and bare metal. The Locust load test started at 10:06:49, hit the configured
1000 users at 10:23:29, and ended at 10:27:42. The energy consumption was measured during the entire test.
The results are shown in Figure 7, where the cartservice container and its related virtual machine are shown
in Figure 7a, and the bare metal is shown in Figure 7b.

It becomes clear that all the energy lines go up with the increasing number of requests respectively. The
energy consumption of the container and virtual machine are close to each other, but the container energy
consumption is always lower than the virtual machine where it is running. For each abstraction, it is clear that

56https://locust.io
57https://github.com/open-telemetry/opentelemetry-demo
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the energy consumption drops immediately after the requests are stopped. This is because the CPU is not being
used anymore, and the energy consumption is reduced.

We took some random points in time to calculate the energy consumption per request per second. The
results are shown in Table 13. The results show a trend in mWh/RPS. The energy consumption per request per
second is decreasing when the number of requests per second is increasing. However, there are also some
outliers. The mWh/RPS at 22:06:59 is lower than the one at 22:07:34, but the RPS is higher.

5.3 Summary

The validation process provided insights into the model and its implementation. Through iterative evaluations,
we aimed to refine the reliability and consistency. Each iteration involved validation computations and adjusting
methodologies.

In the initial iterations, discrepancies between the total mWh and mgCO2eq of the bare metal provided directly
by the CCF model and the calculated values based on the known vCPUs were observed. The error rates were
significantly high, indicating the need for adjustments. We introduced new methods for calculating CPU and
memory utilization, which did not yield the desired results. The error rates remained high, suggesting that the
model’s predictions were inconsistent and unreliable.

Further refinements were made in later iterations, including corrections to implementation errors and the
implementation of more precise benchmarks for power consumption. Despite these efforts, the results remained
inconsistent, with error rates fluctuating between iterations. Overall, the validation process provided valuable
insights into the limitations of the model and its implementation. While adjustments were made to improve the
model and implementation, further improvement is needed.
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6 Conclusion

This section will conclude the thesis by summarizing the results and answering the research questions. After
that, a section about the lessons that we learned will be presented, followed by a section on future work.

6.1 Summary

The project initiated by Digital Lab aimed to monitor the carbon emissions of containers in a Kubernetes
environment. Despite efforts to explore methods and tools for calculation and validation, the constraints and
requirements mentioned in Section 3.3 persisted. With most of the limitations, there were options available,
except for the constraint of not having access to the hypervisor. This was the biggest constraint and the main
reason for the challenges we faced. This resulted in our inability to monitor the complete physical server and
its usage, but only the virtual machines that we have access to. Consider it as attempting to estimate the energy
consumption of an entire hotel only by examining the energy usage within the rooms where access is permitted.
This is a major limitation, as we can not see the entire picture and therefore can not make accurate estimates.
When we had access to the hypervisor, we would have a ground truth to compare with, and we could validate
the results more accurately.

This led to the adoption of an exploratory approach, relying solely on known virtual machine metrics to
estimate energy consumption and carbon emissions at the bare metal server level. These estimates were then
used to allocate carbon emissions among the virtual machines and containers.

However, the validation of the results did not demonstrate internal consistency. Section 5.1.5 demonstrated
that the results from different levels of abstraction did not add up correctly. For each level of abstraction, we
converted the total energy to mWh/vCPU. This value at the VM level was higher than at the bare metal server
level, and the value at the container level was much lower than both the VM and BM level. This inconsistency
was an indication that the results were not reliable.

The virtual machine metrics on which the approach relies do not provide sufficient information to estimate
energy consumption at the bare metal level. This limitation arises because a virtual machine operates within
its isolated environment, without considering external factors. Consequently, monitoring carbon emissions
at the container level in a virtualized environment without physical hardware or hypervisor access remains
inconsistent. Access to the hypervisor is crucial to observe the actual utilization of physical hardware and
obtain reliable and accurate results.

6.2 Answers to Research Questions

1. How can the carbon footprint of individual containers be calculated in virtualized environments?
The literature review has revealed various methods and tools for calculating the carbon footprint in virtu-
alized environments. However, most of these methods and tools necessitate access to physical hardware,
hypervisor, or administrative rights on OpenStack.

In particular, when it comes to monitoring energy consumption at the container level in a virtualized
environment there are several tools available. In Section 3.5.2, we discussed impressive tools such as
Scaphandre, Kepler, Containergy, and PowerAPI. These tools come with built-in capabilities for analyz-
ing energy consumption. Nonetheless, they do rely on having access to the hypervisor. In contrast, these
do not need access to the physical hardware or administrative rights on OpenStack.

Given the specific requirements and constraints of our use case listed in Section 3.3, the options were
limited. To address this, we adopted an exploratory approach. This approach relies solely on virtual
machine metrics to estimate energy consumption and carbon emissions at the bare metal server level.
These estimates are then used to allocate carbon emissions among the virtual machines and containers.

While the results from different levels of abstraction roughly correspond to the system’s load, the valida-
tion, unfortunately, did not demonstrate internal consistency, definitely indicating a lack of accuracy. The
virtual machine metrics on which the approach relies do not provide sufficient information to estimate
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energy consumption at the bare metal level. This limitation arises because a virtual machine operates
within its isolated environment, without considering external factors, it is like an island unto itself.

When we had access to the hypervisor, we would have a ground truth to compare with, from there
we could see if the results were accurate. However, we would still have to deal with the challenge
of converting energy consumption and carbon emissions from the bare metal server level to the virtual
machine and container level. This is where most of the inconsistencies arose.

Consequently, monitoring carbon emissions at the container level in a virtualized environment without
physical hardware or hypervisor access remains inconsistent. Access to the hypervisor is crucial to
observe the actual utilization of physical hardware and obtain reliable and accurate results.

2. How can the reliability and precision of carbon emission calculations be assessed and validated to en-
sure consistency and accuracy in results?
Section 5 focused on validating the reliability and precision of the carbon emission calculations that were
introduced in Section 4. The first and most important step was to show consistency when there was no
load on the system. We took data samples at different times from different levels of abstraction and com-
pared the results. These comparisons started with sanity checks, such as ensuring that the results from the
different levels of abstraction add up to the same value. This already showed inconsistencies, as for each
level of abstraction, we converted the total energy to mWh/vCPU, vCPUs/server, and mWh/server. These
values for VM and CON did not add up to the BM level. This indicated that either the the estimation of
the energy consumption at BM level was wrong, or the distribution of the energy consumption from BM
to VM and CON was wrong.

The next step was to compare the results from the different levels of abstraction with the actual load
on the system. This was done by running a load test on the system and comparing the results from the
different levels of abstraction with the actual load. The results from the different levels of abstraction
were consistent with the actual load on the system.

In addition to the inconsistencies, we cannot confirm the accuracy of the results. There was no possibility
to validate the results on accuracy since we did not have any ground truth to compare with.

3. How to monitor and visually represent carbon emissions at various levels of abstraction and raise users’
awareness?
Section 4.3.2 explains and demonstrates the implementation of the dashboard. The dashboard was struc-
tured to see the usage at different levels of abstraction. In one real-time dashboard, the user can see the
carbon emissions at the bare metal server level, the virtual machine level, and the container level. The
dashboard updates every 15 seconds, this is aligned with the implementation of the model that updates
every 15 seconds.

The dashboard was designed to be user-friendly and intuitive. Users can view carbon emissions in grams
of CO2 emitted and energy consumption in kWh. Observing these amounts helps with understanding
the impact of actions on the environment. It encourages consideration of ways to consume less energy
and hence reduce the carbon footprint, benefiting the planet. For cloud computing, it assists in making
informed decisions regarding application design and deployment.

6.3 Lessons Learned

Despite our best efforts, we faced several limitations throughout this project. We tried various formula alterna-
tives to translate from known vCPUs to the physical CPU, but did not achieve the desired success. We could
have explored other energy models, such as standalone ones found in our literature review, but due to time
constraints, this was not an option. Furthermore, it came to our attention that the total vCPU utilization values
of virtual machines might not undergo normalization, potentially impacting the reliability of our results. This is
because all the vCPUs within a virtual machine are aggregated. The absence of normalization in the total vCPU
utilization of virtual machines could significantly influence the entire procedure. Given that we rely on VM



Chapter 6 CONCLUSION 57

CPU utilization to approximate energy consumption at the bare-metal server level and subsequently allocate it
to the VM and container level, inaccuracies may arise as a consequence.

Unfortunately, due to time limitations, we could not investigate this further. However, we believe that even
with alternative energy models, our challenge persists because we only have access to a fraction of the physical
server.

Even if our results were consistent, we could not validate their accuracy due to the lack of ground truth for
comparison, representing another major limitation. Moreover, there are still factors that we did not take into
account. One example is that we did not include energy consumption related to fans, storage, and network.
Although these resources are not major contributors to energy consumption, they still contribute to overall
energy consumption. Previous studies, such as the work by Westin [22], also pointed out difficulties in achieving
high accuracy in their proof of concept. The main reason for uncertainty stemmed from their simulation not
being in a controlled environment. They also utilized a virtual machine environment, similar to our approach.
This further emphasizes the complexity of the problem.

Our model is built on several assumptions, assuming that unknown vCPUs are either half utilized or share
the same utilization as known vCPUs, leading to a cascade of assumptions. Despite these assumptions, our
results can still be used as rough estimates. By using minimum and maximum watt values as input, our energy
model ensures that results remain within the boundaries of physical server energy consumption. This can
be valuable, particularly in scenarios where hypervisor and hardware access is restricted, like cloud hosting,
providing a rough idea of the carbon footprint.

A key lesson learned is the necessity of hypervisor access to address this problem, as concluded in the
previous section. Despite our exhaustive efforts, unfortunately, success was not achieved. Nevertheless, the
insights gained from this project contribute to the ongoing discussion on energy-efficient computing, empha-
sizing the need for further research in this field. We hope that our findings will inspire future research to explore
alternative methods.

6.4 Future Work

Several areas could benefit from further research. This section will delve into potential future enhancements
for the project.

The first crucial step involves investigating the consistency of the results. It is essential to stabilize this
aspect before delving into ensuring result accuracy. Going over the entire process and identifying potential
sources of inconsistency would be a good starting point. This could involve revisiting the vCPU normalization
of virtual machines, as previously noted in Section 6.3. This issue can be addressed by looking at how the
various vCPU utilization values of virtual machines are aggregated, considering that a virtual machine may
possess multiple vCPUs.

Since the number of vCPUs per CPU is arbitrary, it would be interesting to explore the possibility of using
a variable number of vCPUs in the energy model to calculate the energy consumption of the bare metal server.
With this variable number of vCPUs, we can explore using different minimum and maximum watt values for
varying numbers of vCPUs. By examining the SPECpower ssj2008 database there are records with different
setups. The records can have the same CPU but different numbers of vCPUs. Aligning our number of vCPUs
with the records that have the same number of vCPUs, we can utilize the average watt values of those records
as input in the energy model.

At the end of this thesis, a new pre-trained model was introduced that can be used for Kepler. This model is
also based on the SPECpower ssj2008 benchmark and is available on the Kepler Model Database repository58.
Unfortunately, we did not have time to test this model, but this shows potential to use Kepler without needing
hypervisor access. Therefore, we recommend testing this model in the future.

As discussed in the related work section, Scaphandre has potential plans for employing an alternative ap-
proach without requiring hypervisor access. This potential approach may involve utilizing a look-up database

58https://github.com/sustainable-computing-io/kepler-model-db/tree/main/models/v0.7
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with the energy consumption of different workloads, similar to the SPECpower ssj2008 benchmark mentioned
in this thesis. This is a development worth monitoring closely to determine its applicability in the future.

We demonstrated that Scaphandre only operates when paired with an Intel CPU, primarily due to its re-
liance on the Intel RAPL tool. Interestingly, during our research, we encountered an existing Intel RAPL driver
tailored for AMD CPUs59. The availability of this driver raises the possibility of resolving compatibility con-
cerns with AMD CPUs. Nonetheless, it is essential to note that Scaphandre is not designed to work on a virtual
machine only. Despite this limitation, it is worth exploring whether Scaphandre can be used to monitor energy
consumption on a virtual machine in combination with this driver.

Advancing further, incorporating energy consumption monitoring at the cluster level emerges as a logical
progression in this study. Although it does not directly address the consistency issue, integrating this aspect
would enhance the project. By doing so, we can effectively track separate clusters, as applications often utilize
different clusters for various functionalities. Themis, for example, where one cluster handles code submissions
while another has the pipelines to support this. This approach enables us to detect areas where optimizations are
feasible. Additionally, when a single cluster operates on a physical server, it is impractical to attribute the entire
server’s energy consumption to the cluster due to inherent overhead utilization that may not directly correlate
to the cluster’s activities.

Further development of the dashboard is also a potential area for future work. Adding comparison graphs to
the dashboard would be a good addition to the dashboard to compare the grams of CO2 emitted with something
that the user can relate to. For example, compare the grams of CO2 emitted with the number of trees that would
be needed to absorb the CO2. Or compare the grams of CO2 emitted with the number of kilometers driven
by an electric car. This would make the results more understandable and relatable to the user. Eventually,
integrating the dashboard with Themis to display the carbon footprint of individual code submissions to users
could be explored.

59https://github.com/amd/amd_energy
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in microservices architectures: A systematic literature review,” 2023.
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Appendices

A Energy consumption per server, VM and container with different number of vCPUs

CPU
MEDIAN

MEM
AVG vCPUs Level CPU (%) MEM (GB) mWh mWh/

vCPU
vCPUs/
server

mWh/
server

True True
256 server 7.4 92.770 820.222 3.204 256 820.222
7 vms 46.230 6.604 124 1690.696
7 containers 6.732 0.962 853 246.191

True True
224 server 7.4 92.770 820.229 3.662 224 820.229
7 vms 46.230 6.604 124 1479.372
7 containers 6.732 0.962 853 215.417

True True
192 server 7.4 92.770 820.239 4.272 192 820.239
7 vms 46.231 6.604 124 1268.048
7 containers 7.666 1.095 749 210.260

True True
160 server 7.4 92.770 820.253 5.127 160 820.253
7 vms 46.232 6.605 124 1056.724
7 containers 7.662 1.095 749 175.124

True True
128 server 7.4 92.770 820.273 6.408 128 820.273
7 vms 50.075 7.154 115 915.665
7 containers 8.142 1.163 705 148.879

False True
256 server 48.8 92.694 1795.956 7.015 256 1795.956
7 vms 101.225 14.461 124 3701.944
7 containers 19.662 2.809 639 719.062

False True
224 server 48.8 92.694 1792.009 8.000 224 1792.009
7 vms 101.003 14.429 124 3232.082
7 containers 19.611 2.802 640 627.544

False True
192 server 48.8 92.694 1786.747 9.306 192 1786.747
7 vms 100.706 14.387 124 2762.221
7 containers 19.546 2.792 640 536.114

False True
160 server 48.8 92.694 1779.380 11.121 160 1779.380
7 vms 100.291 14.327 124 2292.360
7 containers 19.459 2.780 640 444.770

False True
128 server 48.8 92.694 1768.329 13.815 128 1768.329
7 vms 99.668 14.238 124 1822.498
7 containers 19.331 2.762 640 353.482

Table 14: Iteration Five — Energy consumption per server, VM and container with different number of vCPUs
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B Fibonacci Load Measurement

(a) Bare Metal kWh (b) Virtual machines kWh

(c) Container kWh (d) Virtual machines CPU utilization

(e) Container CPU utilization (f) Virtual machines memory utilization

Figure 6: Load Measurement — Fibonacci Sequence



APPENDICES 63

C Locust Load Measurement

(a) Container & Virtual Machine

(b) Bare Metal

Figure 7: Load Measurement — Locust — Energy Consumption and Requests per Second


