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Abstract

Robust insect climbing and locomotion requires a sense of body inclination relative to the substrate. Most
insects lack dedicated posture sensing organs. Therefore, it is hypothesized that insects integrate high-level
parameters, such as body pitch, from proprioceptive signals (sense of body posture). However, specific details
for the representation of body posture in the central nervous system (CNS) of insects remain unknown. The
objective of this thesis is to address this research gap by mimicking a portion of the stick insect Carausius
morosus’ central nervous and proprioceptive system to estimate body pitch using unrestricted locomotion
and climbing data. An existing spiking neural network (SNN) was modified and extended to simulate tactile
hair proprioceptors, descending interneurons (joint angle/angular-velocity estimators), movement primitive
interneurons (swing/stance classifiers), and posture neurons (body pitch estimator and climbing classifier).
Our findings suggest that the position interneuron performed with an error of approximately 5% Gaussian
noise relative to the ground truth, improved from 10%. The velocity interneuron classification increased in
accuracy from 90.4% to 92.9% for a novel model and to 95.6% for a modified model. A key change is the
ability to increase the firing rate by up to ten times. Primitive neurons were optimized to an average Matthew’s
correlation coefficient (MCC) of 0.56 and were found to efficiently encode for swing, stance, or transition phases.
The posture neuron estimated body pitch with an average error of approximately 28% Gaussian noise and the
climbing classifier achieved a Matthew’s correlation coefficient (MCC) of 0.59. This suggests that proprioceptive
information can be effectively processed using a spiking neural network (SNN) to simulate various stages of the
proprioceptive system, ultimately estimating whole-body inclination relative to the substrate. Therefore, these
results are further evidence that stick insects use proprioceptive feedback to create an internal representation
of higher-order parameters, such as body posture. Furthermore, regarding biomimetic robotics, distributed
proprioception could sense variability in the substrate and improve the robustness of inclination estimates, for
which this thesis could act as a starting point.
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1 Introduction

Knowledge of body orientation (roll, pitch, yaw)1 rela-
tive to the substrate is essential for robust locomotion
and climbing behavior in various animal species. Navi-
gating complex terrain might require an animal to ini-
tiate climbing behavior, correct limb position, or adjust
locomotion velocity. To achieve this, closed postural
feedback loops manipulate motor neurons based on in-
formation sensors located throughout the body. There-
fore, the postural and motor systems must work closely
together [1]. Some high-level control parameters, such
as body pitch, considerably influence the functionality
of these closed-loop systems. Due to the absence of ded-
icated posture measurement organs in stick insects, it is
hypothesized that body posture is calculated using dis-
tributed sensory information from proprioceptive signals
in the body [2]. To test this hypothesis, we combined
computational methods with low-level joint angle data
to mimic a part of the proprioceptive system of the stick
insect Carausius morosus. With the goal of estimating
the insects’ body pitch using a biologically inspired ap-
proach.

Little research has been done on how circuits at dif-
ferent levels represent the body [3]. However, compu-
tational models allow researchers to hypothesize on the
structure of neuron pathways. Several models on in-
sect locomotion [4, 5], interlimb coordination [6, 5], de-
scending interneurons [7] and insect proprioceptors [8, 9]
have been developed. Notably, a compelling model was
developed for mechanosensory neurons known as hair
plates, joint angle measuring proprioceptors, found in
the folds of insect joints [10]. Furthermore, Gollin and
Dürr (2018) [11] used proprioceptive feedback of hair
plates to estimate body pitch of the stick insect with
spike generators and artificial neural networks. Cohen
(2020) [12] expanded on the idea using a spiking neu-
ral network (SNN). SNNs are inspired by the temporal
dynamics of biological neural systems. By encoding in-
formation in the precise timing of discrete spikes and
incorporation neuron and synaptic state, SNNs capture
temporal patterns and exhibit great biological plausibil-
ity [13]. For a recent review of the topic, the reader is
referred to the work of Yamazaki et al. (2022) [14].

Cohen (2020) [12] introduced a SNN comprising of
four distinct layers. In the first layer, neurons emulate
tactile hair dynamics observed by Okada and Toh (2001)
[15] in the American cockroach. Building upon this, the
second layer integrates the generated spike trains into
descending position and velocity interneurons. These
neurons encode joint angles and angular velocities in
their spike rate, respectively. The third layer, coined
the ”movement primitive layer”, serves as an incidence
detector for layer 2. Some neurons within this layer were
identified to encode swing/stance phases or transitions,

while for others, the function was still unknown. How-
ever, the layer functioned poorly and was not sufficiently
understood. Furthermore, the last layer estimated body
pitch using a regression model instead of another spik-
ing neuron layer. Recognizing the limitations in Cohen’s
work (2020) [12], the current thesis objective is to repro-
duce the results and address its shortcomings. Specif-
ically, the aim is to significanly improve the accuracy
of the position, velocity and movement primitive layers.
Another goal is to replace the posture layer with a spik-
ing neuron layer, estimating body pitch. The network
architecture is designed with current biological knowl-
edge in mind. Combined with the inherent biological
nature of SNNs, accurate results would further reinforce
the hypothesis that stick insects use proprioceptive feed-
back to internally represent body posture.

The remainder of this thesis is structured as follows:
Section 2 provides scientific background information in
the form of a brief literary review. Section 3 provides an
introduction to the dataset and a detailed explanation
of the architecture, describing the methodology layer by
layer. In Section 4, the results are outlined for each
layer of the network. Section 5 contains a comparative
analysis with the relevant scientific literature, exploring
the strengths and weaknesses of the proposed network.
The paper concludes with Section 6, offering a summary
of key findings derived from the study.

2 Literary Research

To design a biologically plausible SNN emulating the
proprioceptive system of a stick insect, a thorough un-
derstanding of current scientific knowledge is crucial.
Therefore, the knowledge developed in this section will
form a basis for the design process of the SNN. First, we
explore body pitch estimation in animals, leading to the
hypothesis that stick insects use information gathered
from the proprioceptive system to estimate high-level
parameters. Subsequently, we provide a foundational
understanding of proprioception and narrow the focus to
the hair plate and its dynamics. Finally, we investigate
relevant information regarding descending interneurons.

The method used for body pitch estimation varies
greatly between animal species [18]. Some aquatic in-
vertebrates, such as crustaceans [19] or mollusks [20],
utilize gravity-sensitive receptors (graviceptors) called
statocysts to estimate body pitch. This is particularly
efficient since gravity is an excellent frame of reference
due to its constant strength and direction. In more
complex organisms such as humans, mainly the vestibu-
lar system (inner ear), but also the proprioceptive sys-
tem and the visual system allow a person to maintain
their balance and spatial orientation [21]. In contrast,
insects lack statocysts or a vestibular system. In the

1Pitch involves rotation around the y-axis, which is perpendicular to the body’s movement, while roll and yaw are rotations around
the x and z axes, respectively.
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Figure 1: a. A schematic of a stick insect’s leg. Like other insects, the stick insect possesses six legs characterized
by a common morphological structure, consisting of coxa, trochanter, femur, tibia, and tarsus. Adapted from
Schneider et al. (2005) [16]. b. A cross-sectional schematic of a hair plate. If deflected, the hair applies a force to
the tip of the sensory neuron dendrites, initiating the opening of mechanotransduction channels and subsequently
generating electrical currents. Adapted from Tuthill and Wilson (2016) [17].

fruitfly Drosophila melanogaster, the Johnston‘s organ’s
antenna allows for gravity detection due to deflection.
If the antenna is ablated, the gravitaxis behavior is re-
duced but not stopped, suggesting that other posture
estimation mechanisms are involved [22]. apart from
Drosophila, there is a lack of convincing evidence for
dedicated posture organs in insects. Therefore, it is hy-
pothesized that ants [23] and stick insects [2] rely on
their proprioceptive system to estimate body posture.
In this case, body orientation is inferred from the dis-
tributed activity of the proprioceptive system.

Proprioception is dependent on groups of
mechanosensory neurons spread throughout the body,
known collectively as proprioceptors [24, 17]. The infor-
mation gathered by proprioceptors is sent to the central
nervous system (CNS) to form a comprehensive rep-
resentation of force, self-movement, and body posture
[25]. In the context of locomotion, proprioception rec-
tifies limb targeting driven by rythmic central pattern
generators in response to disturbances2. It also plays
a central role in reflexes [27], ensuring precise timing
during phase transitions, and regulating the activation
timing of individual muscles [24]. Since locomotion is
carried out under highly variable conditions, it usually
relies partially on sensory input. However, the rapid
movements of cockroaches (<20ms), lead to a predom-
inant dependence on central pattern generators, as the
transmission speed of proprioceptive information is in-
sufficient [24]. On the other end of the spectrum, slow
moving stick insects have adequate time for propriocep-
tive feedback to refine locomotion.

Mechanoreceptors can be classified as either rapidly
adapting (phasically firing) or slowly adapting (tonically
firing) neurons [28]. Slowly adapting neurons encode po-

sition, whereas rapidly adapting neurons encode velocity
or acceleration (load). In invertebrates, the chordotonal
organ measures velocity, and the campaniform sensilla
measures load [29, 30]. For a detailed exploration of
these proprioceptors, the reader is referred to Tuthill
and Azim (2018) [24]. The third element of the inver-
tebrate proprioceptive system involves position sensing
performed by hair plates, which will be the primary fo-
cus of investigation in this thesis.

Hair plates are typically situated as clusters of in-
dividual tactile hairs, or bristles, distributed across the
antennae [31], neck [32], and legs [33, 34] of an insect. A
cross-sectional schematic of a hair plate is given in figure
1b. In the case of the legs, a common location for hair
plates is in the cuticle near the proximal joints, such as
the thorax-coxa and coxa-trochanter joints. A schematic
of a stick insect leg is given as a reference in Figure
1a. Tactile hairs can be categorized into two types:
macrochaetes, and microchaetes, which are longer and
shorter in length respectively. Macrochaetes maintain
a consistent number and position between individuals
within a species, whereas microchaetes display more
variability in number, but are generally organized in reg-
ularly spaced rows [17, 35, 36]. A tactile hair consists of
a hollow hair shaft, anchored at its base to the dendritic
tip of a solitary bipolar sensory neuron. If deflected, the
hair functions as a lever and applies forces to the tip
of the sensory neuron dendrites, initiating the opening
of mechanotransduction channels and subsequently gen-
erating electrical currents converted into spikes by the
sensory neuron[17, 37]. Tactile hairs are directionally
selective, and their preferred direction can be predicted
from the orientation of the bristle in the cuticle [17].
The function of hair plates may depend on the joint or

2In the stick insect, it is hypothesized that each leg has a dedicated step pattern generator [26].
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Figure 2: The time courses of spike frequencies for axons of the lateral scapal hair plate in the American cock-
roach with a sample bin width of 0.1. The frequency is dependent on deflection angle and deflection velocity.
a. deflection angle is increased from 12◦ to 60◦ at a fixed deflection velocity of 60.1 ◦ s−1. b. deflection velocity
(24−245 ◦ s−1) was varied at a constant angle of 37◦. Reprinted from Okada and Toh (2001) [15].

orientation. As an example, trochanter hair plates reg-
ulate the animal’s height, a critical factor for climbing,
as suggested by Burrows (1996) [38]. Additionally, re-
search by Gollin and Dürr (2018) [11] revealed that the
middle and hind legs bear greater significance in facil-
itating climbing behavior. Cruse and Dean (1984) [39]
reported that the ventral and dorsal coxal hairplates,
the coxal hair rows and the trochanteral hairplate of
the middle leg send information to the ipsilateral hind
leg to place its tarsus near the tarsus of the middle leg.
Showing that proprioceptive feedback is used for inter-
leg coordination. Additionally, Hair-plates positioned
on the neck (prosternal organ) monitor the head’s po-
sition relative to the thorax, offering sensory feedback
crucial for regulating head posture. In studies involv-
ing the blowfly Calliphora, surgical elimination of the
prosternal organ hairs on one side led to compensatory
head tilting toward the operated side. This suggests the
potential involvement of the prosternal organ in gaze
stabilization [40].

The individual encoding properties of a single hair
were never studied for the stick insect. Electrophysiol-
ogy recordings exist for the wandering spider Cupien-
nius salei [41], locust [42], and the American cockroach
Periplaneta americana [15, 34]. Okada and Toh (2001)
[15] conducted extracellular recordings from represen-
tative sensilla for each subgroup of scapal hair plates.
Their study unveiled the distinctive form of single-unit
impulses generated in response to hair deflection. They
characterized the mechanoreceptor as typically phasic-
tonic. Specifically, they observed that the spike fre-
quency during the transient (dynamic) phase was depen-
dent on both velocity and displacement, whereas, in the
sustained (steady) phase, it was primarily displacement-

dependent. Figure 2 illustrates the time courses of the
averaged spike frequencies corresponding to the deflec-
tion angle (2a) and the deflection velocity (2b) for a sin-
gle hair [15], and will form the basis for individual hairs
in the computational model of this thesis. These results
validate the earlier findings of Pringle (1938) [34] regard-
ing the cockroach trochanter hair plate, except for a sig-
nificantly higher firing rate ranging from 400−700Hz,
in contrast to the 80−240Hz reported by Okada and
Toh (2001).

Afferent sensory information is transferred di-
rectly to efferent motor neurons (monosynaptically)
or through descending interneurons (polysynaptically),
called DINs [43]. Their function include the processing
of sensory input, modulation of motor neuron activity,
and relaying sensory or proprioceptive information to
the brain. Gebhardt and Honegger (2001) [44] identified
five DINs in a cricket’s antenna, one exhibiting respon-
siveness to movement and another to the position in the
scape-pedicel joint. In the former case, a linear relation-
ship between joint movement and firing frequency was
observed. Ache and Dürr (2013) [7] discovered that cer-
tain position-sensitive neurons predominantly fire when
the antenna is in a dorsal or ventral position. In partic-
ular, a study by Mamiya et al. (2018) [45] in the fruit
fly Drosophila, demonstrated similar joint position en-
coding, with two DINs firing during flexion or extension
and others encoding for bidirectional movement.

The walking leg of a stick insect can be categorized
into two distinct states: performing a swing movement
or a stance movement. During the stance phase, the
leg is in contact with the ground, providing support to
the body. In the case of forward walking, the leg moves
backward in relation to the body. During the swing

6
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phase, the leg is lifted off the ground and propelled in
the direction of walking, preparing for the next stance
phase. Stance and swing, are mutually exclusive, indi-
cating that a leg cannot be in both swing and stance
simultaneously [46, 47]. In the case of cats [48] and lo-
custs [49], interneurons have been found to fire during
the swing or stance phases, or during the transition from
swing to stance [49]. However, a notable gap in scientific
evidence exists regarding the encoding of body pitch by
DINs.

3 Methods

Having established a foundational understanding with
a detailed exploration of proprioception, hair plate dy-
namics, DINs, and body pitch estimation, we are now
prepared to translate these insights into the design of
the neural network. In this section, we first investigate
the stick insect locomotion and climbing dataset. Sub-
sequently, we provide an overview of the overall network
architecture, before finally examining each layer in de-
tail. This work is an extension on the work by Cohen.
In the remainder of the text, the refererence ”Cohen”
will simply refer to [12] (2020).

3.1 Dataset

The stick insect has gained scientific prominence due to
its slow walking pace, straightforward CNS, and rela-
tively large size. Similar to other insects, the stick in-
sect has six legs characterized by a common morphologi-
cal structure, comprising coxa, trochanter, femur, tibia,
and tarsus. A schematic representation of a stick in-
sect leg is illustrated in Figure 1a. The three pivotal
joints include the thorax-coxa joint, which facilitates
protraction-retraction movements; the coxa-trochanter
joint, which allows levation-depression movements; and
the femur-tibia joint, which governs flexion-extension
movements [11]. Throughout this thesis, these three
joints will be denoted as the α, β, and γ joints, respec-
tively. The front, middle and hind legs are denoted as
1, 2, 3, respectively for the right (R) and left (L) sides.
The database used in this study was originally produced
to study comparative whole-body kinematics of closely
related insect species with different body morphology
[50] and characterization of distinct step classes [51].
Furthermore, this data set was used in the body pitch es-
timation studies of Gollin and Dürr [11] (2018) and Co-
hen. Gollin and Dürr state in their work: ”This dataset
was particularly suitable to investigate body pitch, be-
cause the steps of the set-up required transient, large-
amplitude adjustment of body pitch. Other parameters
could either not be measured accurately (e.g., body roll)
or did not vary very much (e.g., body height)” [11].
For the aforementioned motivations, consistency, and
straightforward comparison of results, the same data set

was chosen for this study.
The data set comprises complete body kinematics from
unrestrained climbing and walking stick insects. Nine
specimens freely walked on a horizontal walking path
measuring 40mm in width 490mm in length. In se-
lected trials, the animals climbed two steps of 48mm,
while others encountered a flat surface. A marker-based
motion capture system was employed, using an infrared
camera (Vicon MX10) that captures 200 frames per sec-
ond, to track markers attached to the antenna, legs, and
thorax of the insect. These marker trajectories facili-
tated the reconstruction of joint angle and body pitch
time courses during the trials. For each of the six legs,
featuring three joints per leg, a total of 18 time courses
per trial were captured. [11, 50, 51].

3.2 Network Architecture

The SSN employed in this thesis was adapted from the
architecture proposed by Cohen, and is illustrated in
Figure 3. The temporal evolution of each joint angle
is transformed into a set of hair deflection angles cor-
responding to the number of hairs in the hair field Nh.
Each hair possesses a unique receptive field arranged
sequentially with its adjacent hairs. Combining all re-
ceptive fields yields sensitivity for the complete angle
range of the joint. Each hair deflection is converted into
a current which flows into a sensory neuron designated
to each hair, subsequently converting the current into
spikes. The spike trains for all sensory neurons in a hair
plate converge into two position and two velocity DINs.
One position interneuron rate encodes joint deflection
in the dorsal (posterior relative to rest) position, while
the other encodes the ventral position (anterior relative
to rest). Similarly, The velocity interneurons encode
movement in the forward (dorsal → ventral) or back-
ward (ventral → dorsal) direction. Each leg of the stick
insect has three joints, contains 3×Nh sensory neurons,
3× 2 = 6 position interneurons, and 3× 2 = 6 velocity
interneurons. The third layer is the movement prim-
itive layer and it consists of 112 primitive movement
neurons, each receiving information from two or three
position and velocity interneurons within the leg, cov-
ering all possible combinations. These neurons function
as incidence detectors, triggering a response whenever
their inputs coincide. The movement primitive layer
is designed to encode leg-specific parameters, captur-
ing aspects like locomotion phases, e.g. when the leg
is in swing or stance. Following the movement primi-
tive layer, two posture neurons combine the spike trains
generated by the movement primitive layer from all six
legs. One posture neuron becomes active during walk-
ing, while the other activates during climbing. The com-
bination of these neurons results in a time course for
body pitch. There is also a dedicated posture neuron
that acts as a binary climbing classifier.

7
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Figure 3: The proposed network architecture consists of
four layers: Joint angles are converted into spike trains
by the hair field layer. Position and movement neu-
rons transform the combined spike trains into position
and movement signals respectively, encoded in the spike
rate. Position and movement spike trains are fed to
the primitive layer, which acts as an incidence detec-
tor. The movement primitive layer combines informa-
tion from the whole leg and information of all legs is in-
tegrated into the climbing classifier, a neuron that fires
during insect climbing. Additionally, The posture neu-
rons encode body pitch through rate encoding.

The proposed architecture was implemented directly
in Python version 3.9. The simulations were performed
on a system with 16 GB RAM and an AMD Ryzen
5600x processor. The differential equations governing
neuron and synaptic dynamics were solved using the
backward difference method over time, using a time step
of dt = 1ms.

3.3 Spike Rate

In SNNs, spikes and no spikes are represented as ones
and zeros, respectively. A spike train is a sequence of
discrete events through time and can be defined as fol-
lows [52]:

ρ(t) =

n∑
i=1

δ(t− ti), (1)

where ρ(t) denotes the spike train, n is the number of
spikes, δ is the Dirac delta function, t represents time,
and ti signifies spike times. SNNs often encode infor-
mation in their firing rates, representing the number of
spikes per second. This is calculated as follows [52]:

r(t) =
1

∆T

∫ t+∆t/2

t−∆t/2

ρ(τ)dτ. (2)

Here, ∆t is a time interval. In the Python code, time is
discretized with a timestep of dt, and Eq. (2) simplifies

to:

n =
∆T

dt
, (3)

r(ti) =
1

∆T

ti+
n
2∑

k=ti−n
2

ρ(tk), (4)

where n represents the number of steps in ∆T . Due
to the nature of the method, edge effects can make re-
sults unreliable within ∆T

2 from the edge. In this thesis,
∆T = 50ms, and all spike rates are estimated with this
method, unless stated otherwise. Notably, this method
diverges from Cohen’s approach, where the author uti-
lized the inverse of inter-spike-interval (ISI) as an esti-
mate for spike rate. In principle, all methods are esti-
mates, and results should be interpreted accordingly.

3.4 Layer One: Hair Field Layer

3.4.1 Hair Angles

The time course of each joint angle is transformed into a
set of hair deflection angles corresponding to the num-
ber of hairs on the hair plate Nh. Each hair features
a distinctive receptive field arranged in sequence with
its neighboring hairs. A receptive field is defined as the
range of joint angles within which the sensilla deflects.
The collective contribution of all hairs spans the entire
possible range of the joint angle. for the sake of simplic-
ity, it was assumed that the receptive field size and the
spacing between hairs are uniform for all hairs within a
given hair plate, deviating from the variation observed
in biological hair plates [34]. However, a degree of over-
lap was assumed to be present between receptive fields.
This assumption is made since it is unlikely that a full
deflection of one hair aligns precisely with the start of
deflection for the next hair. Furthermore, it was as-
sumed that the hair deflection was linearly proportional
to the joint angle and the range was bound to [0◦, 90◦].
If the joint angle falls below or exceeds the proprioceptor
receptive field, the hair angle is considered to be 0◦ or
90◦ (no deflection or full deflection), respectively. This
yields the following relation between joint angle (θ) and
hair angles (ϕ(ij)):

ϕ(ij)(θ) =


0, if θ < θ

(ij)
rf1

90, if θ > θ
(ij)
rf2

90(θ−θ
(ij)
rf1 )

θ
(ij)
rf2 −θ

(ij)
rf1

, otherwise

(5)

where θ
(ij)
rf1 and θ

(ij)
rf2 are the receptive field edges for hair

i and hair row j and are defined as follows:

θ
(ij)
rf1 =

θ
(j)
max − θ

(j)
min

Nh
(i− 1) + θ

(j)
min −

θ
(j)
overlap

2
, (6)

θ
(ij)
rf2 =

θ
(j)
max − θ

(j)
min

Nh
i+ θ

(j)
min +

θ
(j)
overlap

2
, (7)

8
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where θ
(j)
max and θ

(j)
min represent the maximum and min-

imum joint angles for hair row j, respectively. The
receptive fields of the outer hairs are set manually:

θ
(0j)
rf1 = θ

(j)
min and θ

(Nj)
rf2 = θ

(j)
max. θ

(j)
overlap is a parameter

that controls the amount of overlap between receptive
fields.
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Figure 4: Uni-directional hair plate: hair angle as a
function of the joint angle for the hypothetical case
where there is a single hair row, θmin = 0◦, θmax =
180◦, θoverlap = 4◦, and Nh = 10

Figure 4 illustrates the hair angle as a function of
the joint angle in a hypothetical scenario with one hair
row, θmin = 0◦, θmax = 180◦, θoverlap = 4◦, and Nh =
10. Hair angles increase linearly with joint angle, the
shaded region depicts the overlap of neighboring recep-
tive fields.

3.4.2 Sensory Neuron

If a hair is deflected, the mechanotransduction channels
open and generate a current. To reflect this, the hair
angles were multiplied by I/ϕ = 5−37 nA ◦−1, which
resulted in currents in the nA range. This current runs
into a single sensory neuron. To model the sensory neu-
ron, inspiration was drawn from empirical data on the
dynamics of mechanosensory neurons characterized by
Okada and Toh (2001) [15]. These experiments were
conducted on the antenna of the American cockroach
Periplaneta americana. Therefore, the mechanosensory
mechanisms were assumed to be similar between species.
Replicating these nonlinear spiking dynamics (Figure 2)
was possible for multiple neuron models [53]. However,
Cohen opted for the adaptive exponential integrate-and-
fire (AdEx) while carefully considering biological plau-
sibility, implementation costs, and potential spiking dy-
namics [54]. The AdEx model consists of two ordinary

differential equations (ODEs):

C
dV

dt
= I − gl(V − EL) + gl∆T exp(

V − VT

∆T
)− ω, (8)

τω
dω

dt
= a(V − El)− ω, (9)

where V represents the membrane potential, C denotes
the capacitance, I the input current, gl the leak conduc-
tance, EL the leak reversal potential, ∆T is the slope
factor, VT the threshold voltage, ω is the adaptation
variable, a is the adaptation coupling factor, and τω the
adaptation time constant [54]. In a real neuron, an ac-
tion potential (spike event) occurs due to hyperpolariza-
tion. In the AdEx model, when the membrane potential
reaches the threshold voltage, a spike is recorded as tf .
the membrane potential resets to the reset voltage VR

and the adaptation variable increases with constant b:

if t = tf then V → VR and ω → ω + b. (10)

The second term in Eq. (8) on the right-hand side (RHS)
represents the leakage mechanism that allows the mem-
brane voltage to return to EL in the absence of applied
current. In a biological neuron, this leakage term rep-
resents the random diffusion of ions through the mem-
brane. The third term enables the membrane voltage to
exhibit an exponential spike if it surpasses the thresh-
old voltage, leading to depolarization of the membrane
potential. The fourth term in the RHS corresponds to
the adaptation term, which indicates a gradual decrease
over time in the sensitivity of the sensory system to a
sustained stimulus. Consequently, an increase in ω re-
sults in a decrease in the membrane voltage sensitivity
to an input current. The adaptation variable increases
when the membrane voltage exceeds its resting state
(Eq. (9)) or after a spike event (Eq. (10)). In the ab-
sence of spikes, the dynamics described in Eq. (9) facili-
tate the convergence of the adaptation variable back to
zero, resetting the adaptation process.

3.4.3 Replicating Tactile Hair Dynamics

The objective of the AdEx neuron is to replicate the
electrophysiological dynamics observed by Okada and
Toh (2001) [15], as shown in Figure 2. Cohen utilized the
procedures conducted by Okada and Toh (2001) [15] to
assess the accuracy of the proposed method. However,
these dynamics assume extremely slow angular veloci-
ties for the hairs, This lead to a τω = 600ms in the work
of Cohen. A high value for the time constant leads to
significant delays in the velocity and position interneu-
rons, adaptation is still active when it is not desired.
Therefore, in this thesis the time constant is is set as
τω = 50ms and the angular velocities in the procedure
are quadrupeled and total time divided by four. With
this approach, general dynamics can still be replicated,
just not exact timings of the spike rate. The procedures
is therefore are as follows [15, 12]:
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1. A ramp function was used to linearly increase the
deflection of hair sensilla, ranging from 0◦ to a
maximum deflection angle of 37◦. The deflection
velocity varied with values of 980 ◦ s−1, 604 ◦ s−1,
352 ◦ s−1, 188 ◦ s−1, and 96 ◦ s−1.

2. A ramp function that increases linearly at a con-
stant velocity of 240.4 ◦ s−1 from 0◦ to varying end
angles: 60◦, 46◦, 34◦, 23◦, 15◦.

The AdEx parameters were initially taken from Cohen’s
work. A grid search method was employed to vary the
values of I/ϕ and b within the ranges of 5 nA ◦−1 to
37 nA ◦−1 and 50 pV to 350 pV respectively, with a to-
tal of 8 steps. In each iteration of the grid search cal-
culation, an error metric was computed to measure the
deviation from the dynamics observed in the study by
Okada and Toh (2001) [15] for key spike rates (peak and
plateau). The error metric is defined as follows:

E =

10∑
i

(| x̂(i)
plat − x

(i)
plat | + | x̂(i)

max − x(i)
max |), (11)

In the equation above, i represents one of the 10 ramp

function trials. x
(i)
plat refers to the spike rate at the

plateau, x
(i)
max represents the maximum spike rate, and

the notation x̂(i) indicates values for the AdEx model.
On the other hand, the values of x(i) are extracted from
the dynamics shown in Figure 2.

3.5 Layer Two: Position Layer

3.5.1 Modified Hair Plate

There is substantial evidence for position encoding in
interneurons [7, 45]. To achieve this with SNNs, Cohen,
theorized: ”the overall activity of the hair row could be
decoded as the joint angle time course by an interneu-
ron that receives information from all proprioceptors in
the hair field.” Two distinct methods were employed
for this purpose. Initially, a unidirectional method inte-
grated information from a hair row oriented in one di-
rection. However, the bidirectional (second) approach,
quickly demonstrated its advantages. Consequently, the
focus of this thesis is exclusively on the bidirectional
method, which aligns more closely with biological con-
straints by considering the morphology of the propri-
oceptive hair field system in stick insects. Unlike the
unidirectional hair plate, the bidirectional hair plate fea-
tured two subpopulations of hair fields, with opposing
directional sensitivity. Each hair field was linked to its
respective interneuron, encoding the joint angle for dif-
ferent segments of the joint range and distinct movement
directions. The midpoint of the joint range was estab-
lished as the ”resting” angle, wherein minimal spiking
activity was elicited from either the hair field or their
corresponding interneurons. To allow the hairs to be

oriented in both directions, Eq (5) has to be modified
as follows:

ϕ(ij)(θ) =


90, if θ < θ

(ij)
rf1

0, if θ > θ
(ij)
rf2

90

(
1− θ−θ

(ij)
rf1

θ
(ij)
rf2 −θ

(ij)
rf1

)
. otherwise

(12)

The receptive field edges calculated using Eq. (6) and
Eq. (7) are flipped, meaning that the calculations for

θ
(ij)
rf1 and θ

(ij)
rf2 are interchanged.
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Figure 5: Bidirectional hair plate: Hair angle as a func-
tion of the joint angle for the hypothetical scenario

where θ
(2)
min = 88◦, θ

(2)
max = 180◦, θ

(2)
overlap = 4◦, and

N
(2)
h = 5 (ventral position in dashed blue) and θ

(1)
min =

0◦, θ
(1)
max = 92◦, θ

(1)
overlap = 4◦, and N

(1)
h = 5 (dorsal posi-

tion in solid red). The ventral and dorsal oriented hairs
are calculated using Eq (5) and Eq (12) respectively.

Figure 5 shows hair angles as a function of the joint
angles for a hypothetical scenario to serve as a visual ex-
ample. The parameters for the ventral position hair field

(dashed blue) are θ
(2)
min = 88◦, θ

(2)
max = 180◦, θ

(1)
overlap = 4◦,

and N
(2)
h = 5. The parameters for dorsal position hair

field (solid red) are θ
(1)
min = 0◦, θ

(1)
max = 92◦, θ

(1)
overlap = 4◦,

and N
(1)
h = 5. The calculations for ventral and dorsal

oriented hairs are determined using Eq. (5) and Eq. (12),
respectively. The ventral oriented hair field is sensitive
from 88◦ → 180◦ while the dorsal oriented hair field is
sensitive from 92◦ → 0◦. Incorporating an overlap into
the hair plate was intended to maintain low but non-zero
spike rates at the resting position for the hair field and
consequently the interneurons. The overlap between the
hair fields (θohf) at the resting position (90◦ in the hy-
pothetical scenario) is defined as follows:

θohf = θ(1)max − θ
(2)
min = 92◦ − 88◦ = 4◦. (13)

10



University of Groningen Master Thesis

3.5.2 Position Interneurons

Due to the nature of the bidirectional hair plate, two
interneurons were necessary. The ventral interneuron
was connected to the ventral hair field and the dor-
sal interneuron was connected to the dorsal hair field.
Each connection was a synapse, converting sensory spike
trains into electrical currents. Cohen chose a synap-
tic model to mirror the phenomenon observed in the
nervous system, whereby a pre-synaptic spike induces
depolarization of the post-synaptic neuron’s membrane
potential. This phenomenon, known as excitatory post-
synaptic potential (EPSP), manifests as a swift onset
of depolarization reaching a peak, succeeded by a grad-
ual decay. Similar to patterns observed by Sayer et al.
[55] (1990). To achieve these dynamics, the synapse is
governed by two ODEs [12]:

dW

dt
=

−W

τw
, (14)

dEPSPi

dt
=

W − EPSPi

τEPSP
, (15)

where τw and τEPSP are time constants. After a pre-
synaptic spike, a fixed value c is added to W :

if t = tf then W → W + c. (16)

After a pre-synaptic spike, the parameter W under-
goes an instantaneous increase followed by immediate
decay. Consequently, the excitatory postsynaptic po-
tential (EPSPi) rapidly ascends until W = EPSPi,
after which it gradually diminishes. All the synapses
of a hair field converge at the interneuron, yielding a
combined EPSP :

EPSP =

Nh∑
i=1

EPSPi. (17)

EPSP is added to the membrane potential of a modified
leaky integrate-and-fire (LIF) model. Like the AdEx
model, the LIF model incorporates a ”leaky” term, in
contrast to its ideal counterpart, the non-LIF model.
Apart from the leakage term, the model is extremely
simple. It is one of the most popular neuron models
available, dating back to Lapicque in 1907 before the
generation of neuron action potentials was even under-
stood [56]. Cohen chose the LIF model due to its sim-
plicity and small parameter set, the dynamics emerge
from a single equation:

dV

dt
=

EPSP − (V − VR)

τ
, (18)

where V is the neuron membrane potential and τ is the
time constant. Like in the AdEx model, if the mem-
brane voltage is greater than the threshold voltage VT ,
it is reset:

if t = tf then V → VR (19)

3.5.3 Optimization

The objective of the position interneuron is to encode
the joint angle time course in its spike rate. To quantify
accuracy, an appropriate statistical method is necessary
to estimate similarity in time series. dynamic time warp-
ing (DTW) is a powerful technique designed to compare
two (temporal) sequences, particularly when they lack
perfect synchronization. DTW operates by iteratively
computing the Euclidean distance between the corre-
sponding points in two temporal arrays. frequently im-
plemented in diverse fields such as speech recognition,
data mining, and financial analysis, its utility is well
established. For a more comprehensive explanation of
DTW methodology, the reader is referred to a review by
Senin (2008) [57].

The dataset is sampled at 200Hz, corresponding to
a timestep of dt = 5ms, whereas the SNN network op-
erates with a timestep of dt = 1ms. Hence, the ex-
perimental time series need to be interpolated to match
the finer timestep. Furthermore, prior to integration
into the proprioceptive system, the interpolated time
series undergo Gaussian filtering. The time course of
the dorsal position interneuron is subtracted from that
of the ventral neuron. This methodology diverges from
that of Cohen, who solely compared the time course of
a single interneuron. Subsequently, the time series are
Z-normalized before the DTW procedure. Given the
relativistic interpretation of the DTW scores, the initial
results are compared against the DTW value between
the experimental data and itself with 1%, 5% and 10%
Gaussian noise added.

Two synaptic parameters were varied using a grid
search approach to minimize the DTW score. The pa-
rameters τW and b were chosen due to their distinct
roles in synaptic decay and strength, respectively. τW
was swept across a range from 3ms to 18ms, while b
ranged from 1mV to 16mV, each with 4 steps. This
method enabled the optimization and verification of net-
work performance by exploring the parameter space.

3.6 Layer Two: Movement Layer

There is scientific evidence for joint movement encoding
interneurons [44], and they are crucial in the propriocep-
tive system. Therefore, the objective of this layer was
to construct dependable interneurons capable of con-
veying accurate information regarding the direction of
joint movement. To create such a neuron, certain condi-
tions had to be met. First, the rate at which the neuron
fired could not be negative, in the case of backward joint
movement. To solve this, two velocity interneurons were
needed: one connected to the ventral-oriented hair row
(dorsal → ventral) and the other to the dorsal-oriented
hair row (ventral → dorsal). Moreover, if the joint angle
was constant, the neurons should not fire. Lastly, the
firing rate should increase linearly with the joint veloc-
ity. These conditions were already stated by Cohen.
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However, this thesis introduced another requirement:
the firing rate should be adjustable regardless of the
number of sensory hairs. This was necessary for layer
three (movement primitive layer) to function properly.
With these requirements in mind, consulting Izhikevich
(2004) [53] led to the adoption of an integrate-and-fire-
or-burst (IFB) neuron model instead of the LIF sug-
gested by Cohen. Combined with inhibitory synapses,
the velocity interneurons fired a preset amount of times
whenever the joint angle moved from a receptive field to
the next, satisfying all the requirements. Furthermore,
another model was proposed featuring a contrasting ap-
proach. In this model, each sensory neuron was linked
to a high-pass filter, selectively firing only during the
phasic response. Subsequently, the filtered spikes from
all sensory neurons were combined and encoded joint
velocity through their combined spike rate.
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Figure 6: Hair angles as a function of the joint angle.
The hypothetical case is modified from Figure 5 as fol-

lows: N
(1)
hairs = N

(2)
hairs = 10, θ

(1)
max = 180◦ and θ

(2)
min = 0◦,

overlap surfaces have been omitted for clarity

3.6.1 Modified Hair plate

Similarly to the position interneuron layer, the move-
ment layer features two velocity interneurons per joint.
However, both neurons require sensitivity throughout
the range of the whole joint to function properly. Con-
sequently, the hypothetical scenario outlined in Section
3.5.2 was updated by introducing 5 additional hairs and

expanding the joint range for both hair fields: N
(1)
h =

N
(2)
h = 10, θ

(1)
max = 180◦, and θ

(2)
max = 0◦. This modifi-

cation results in the (final) hair plate depicted in figure
6, overlap surfaces have been omitted for clarity. The
hair field includes all hairs from Figure 5, with the in-
clusion of 5 additional hairs. Notably, these added hairs
were not linked to the position interneuron. There ex-
ists no experimental basis for their presence, these hairs
are added out of necessity for the movement layer to
operate effectively.

3.6.2 Modified Model

The velocity interneuron encodes changes in joint angle
by firing whenever the joint angle moves from one recep-
tive field to another. However, sensory neurons operat-
ing at lower joint angles continue to fire at their max-
imum rate because their corresponding hairs are still
deflected maximally. This implies that the connection
between a sensory neuron and a velocity interneuron
should be suppressed after a single spike, requiring self-
suppressive synapses. Therefore, each synapse between
proprioceptive sensory neuron and velocity interneuron
was governed by the following equation:

dG

dt
=

Gr −G

τG
, (20)

where G is the synaptic weight, Gr is the maximum
synaptic strength and τG is the synaptic time constant.
At each presynaptic spike, the postsynaptic membrane
voltage V is increased by the synaptic weight G and the
synaptic weight is inhibited as follows:

V = V +G, (21)

G = pG, (22)

where p is the inhibition rate. If p is low, inhibition is
strong and the membrane voltage is increased very little
after the initial presynaptic spike.

In their work, Smith et al. (2000) [58] introduced
a new variation of the traditional integrate-and-fire dy-
namics. They incorporated a gating variable, denoted as
h, which represents the presence of a slow Ca2+ current.
This slow current, also known as the T-channel current,
influences the generation of impulse bursts in cells that
are recovering from hyperpolarization [59]. Thalamic
cells that reach a sufficient level of depolarization do
not exhibit bursting behavior, but instead display the
typical integration-and-fire behavior when subjected to
a depolarizing current. These characteristics have been
integrated into the IFB model, which extends the sim-
plified LIF model proposed by Cohen. [12, 58]:

dV

dt
= − (V − VR)

τl
− m∞h(V − VT)

τb
(23)

where the τl and τb are the leak and burst time con-
stants respectively, h is the gating variable and m∞(V )
is an activation function for the Ca2+ channels, and is
defined as follows [58]:

m∞(V ) = H(V − Vh) =

{
1, if (V ≥ Vh)

0, if (V < Vh)
(24)

where H is the Heaviside step function. The parameter
Vh divides the V axis into two segments: a hyperpo-
larizing segment (where V < Vh), which is marked by
the presence of a deinactivated calcium current. And
a non-hyperpolarizing segment (where V > Vh), where
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the calcium current is inactivated [60]. The gating vari-
able dynamics are given in the IFB model by [58]:− h

τ−
h

, if (V > Vh)

1−h
τ+
h

, if (V < Vh)
(25)

the gating variable h tends to converge toward zero or
one. The time scale τ−h determines how long a burst
event lasts, while τ+h controls the rate at which inacti-
vation occurs [60].

If a postsynaptic spike occurs, the membrane voltage
resets to Vh, not Vr:

if t = tf then V → Vh. (26)

If the membrane voltage resets to Vh, Eq. (24) remains
equal to one. The neuron will continue to fire until the
gating voltage dynamics described by Eq. (25) bring the
value of h below a critical threshold, at which point
bursting stops.

Figure 7: Tactile hair response to a ramp and hold func-
tion, a phasic-tonic response. When the signal under-
goes high-pass filtering, low frequencies (tonic, red) are
attenuated, leaving the high frequencies (phasic, green)
intact. In this example, fc = 90Hz. Adapted from
Okada and Toh (2001) [15]

3.6.3 Novel Model

The second model exploited the phasic-tonic behavior of
the sensory neuron. Figure 7 illustrated the dynamics of
the sensory neuron in response to a ramp and hold input.
The spike rate peaked and reached a steady state due to
adaptation. In the model, the maximum hair deflection
angle was always 90◦, ensuring that the steady-state fir-
ing rate remained constant. By connecting the sensory
neuron to a high-pass filter, the steady-state spikes were
attenuated while the peak spikes passed through. Fig-
ure 7 depicts the attenuated and non-attenuated spikes
in red and green respectively, the high pass filter attenu-
ated spikes occuring under 90Hz. In this way, the high-
pass filter only spiked whenever adaptation was low, in-
dicating movement from one receptive field to the next.

By combining the spikes of all high-pass filters, a joint
angle velocity time course could be constructed.

A high-pass filter is simply constructed from a LIF
neuron. A pre-synaptic spike from layer two increased
the post-synaptic membrane voltage of the movement
primitive neuron by a weight ω:

if t = tpre then V = V + ω. (27)

The dynamics of the simplified LIF was as follows:

dV

dt
= − (V − Vr)

τ
. (28)

If the voltage V was larger than the threshold voltage,
a spike was recorded as tf and the voltage was reset to
VR:

if t = tf then V → VR, (29)

by tuning ω, fc can be set to the desired value.

3.6.4 Optimization

For the movement layer, various parameters must be
configured for both the synaptic and neuron model. Due
to several constraints, many of these parameters can
be reasonably set using logical arguments, which will
be detailed in Section 4.3. To gauge the precision of
the model, we assume that the system functions as a
binary classifier. The forward oriented movement neu-
ron spikes during forward and backward movements (in-
creasing and decreasing joint angles) are denoted as true
positive (TP) and false positive (FP), respectively. Sim-
ilarly, backward neuron spikes during forward and back-
ward movements are labeled as false negative (FN) and
true negative (TN), respectively. Since the number of
Positive (P) and Negative (N) occurences is expected
to be fairly balanced and symmetric, a simple accuracy
calculation suffices:

TPR =
TP

TP + FN
,

TNR =
TN

TN + FP
,

ACC =
TPR+ TNR

2
,

(30)

where the true positive rate (TPR) is the sensitivity and
the true negative rate (TNR) is the specificity. An ac-
curacy of zero indicates that all spikes are at the wrong
time, and an accuracy of one implies that all spikes oc-
cur at the correct timing.

As spikes occur during the transition between sen-
sory receptive fields, the quantity of receptive fields, and
consequently, the number of hairs Nh in the hair field,
has a direct impact on the spike rate. It is anticipated
that the spike rate will have a linear increase with the
number of hairs. Additionally, the parameter τ−h dic-
tates the duration of a burst event, thereby influencing
the spike rate. For the novel velocity model, the param-
eter ω shifts the cutoff frequency fc up or down, con-
trolling spike rate. Given the importance of spike rate
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control for the subsequent layer, we will experimentally
assess the linearity of the spike rate as a function of joint
velocity. In addition, the parameters Nh, τ

+
h (modified

model) and ω (novel model) are varied to observe their
effects on the spike rate.

Finally, the velocity time courses of the movement
layer are compared to the velocity time course of the
simulations. The discrete joint velocity (θ̇) at timestep
ti is calculated as follows:

θ̇(ti) =
θ(ti+1)− θ(ti)

dt
. (31)

3.7 Layer Three: Movement Primitive
Layer

3.7.1 Synapse Connections

Layer two consisted of two position interneurons and
two velocity interneurons per joint. Each leg had three
joints, so 12 interneurons per leg. The design of layer
three was based on the concept that different combina-
tions of information from the interneurons of different
joints could encode various leg actions, e.g. swing and
stance phases. Therefore, layer three acted as an inci-
dence detector, each neuron fires only when inputs from
two or three joints coincide. This design ensures activa-
tion only when there is temporal alignment between the
relevant interneurons in the second layer.

Each movement primitive neuron is supplied with
input from two or three joints. Specifically, each joint
contributes input from one of the layer two interneurons,
including the ventral position interneuron (pos+), dorsal
position interneuron (pos−), forward velocity interneu-
ron (vel+) and backward velocity interneuron (vel−) or
none (no connection). The previously mentioned in-
terneurons can be combined in a set, e.g. for joint α:
A = {posα+, posα−, velα+, velα−, None} and analogously
for joints β and γ as B and C, respectively. To get
all possible combinations we perform a 3-fold Cartesian
product (denoted by ×) of the sets A, B, and C. This
results in a set of ordered pairs (a, b, c), where a, b,
and c are in A, B, and C respectively, expressed in set
builder notation as [61]:

D = A×B×C = {(a, b, c) | a ∈ A, b ∈ B, c ∈ C}. (32)

This procedure produces a set of 53 = 125 ordered pairs
that represent all the possible connections between lay-
ers two and three. pairs with more than one None are
excluded, (only ordered pairs with two or more active
connections are valid), resulting in a final count of 112
ordered pairs in set D. The set naturally groups into
seven subsets; the first five were present in the work of
Cohen, the last two were added in this thesis:

– E1 = {a | a ∈ D : 2× pos, 1×None},

– E2 = {a | a ∈ D : 2× vel, 1×None},

– E3 = {a | a ∈ D : 1× pos, 1× vel, 1×None},

– E4 = {a | a ∈ D : 2× pos, 1× vel},

– E5 = {a | a ∈ D : 2× vel, 1× pos},

– E6 = {a | a ∈ D : 3× pos},

– E7 = {a | a ∈ D : 3× vel},

pos represents either pos− or pos+, and similarly, vel
represents vel− or vel+. In an ordered pair, the first
element corresponds to the contribution of joint α, the
second to joint β, and so forth. Therefore, the angle
superscripts (e.g. ()α) are omitted. As an example, the
subset E3 includes the ordered pair (pos+, vel+, None)
or (None, pos−, vel+), where joint α has no contribu-
tion, joint β contributes spikes from the dorsal interneu-
ron, and joint γ contributes spikes from the forward
velocity interneuron. The subsets E1 through E7 are
represented by: p-p, v-v, p-v, p-p-v, v-v-p, p-p-p and
v-v-v, respectively. For each ordered pair, there is a
corresponding movement primitive neuron. Therefore,
there is a total of 672 neurons in total, 112 neurons for
six legs.

3.7.2 Synaptic and Neuron Model

In the preceding section, the connections between layer
two and layer three were defined. It was clarified that
a movement primitive neuron fired whenever the input
spikes overlapped closely in time. To achieve this, the
neuron functioned as an incidence detector. With this
objective in mind, a simplified LIF and simple synapse
were found to be sufficient. A pre-synaptic spike from
layer two increased the post-synaptic membrane voltage
of the movement primitive neuron by a weight ω:

if t = tf then V = V + ω. (33)

The dynamics of the simplified LIF was as follows:

dV

dt
= − (V − VR)

τ
. (34)

If the voltage V was larger than the threshold voltage,
a spike was recorded as tf and the voltage was reset to
VR:

if t = tf then V → VR. (35)

3.7.3 Parameter Optimization

The parameter τ dictated the duration during which the
incoming spikes were considered to be in close proximity.
Setting τ relatively high could result in spikes that were
distant in time triggering a response, potentially leading
to a loss of accuracy. On the contrary, if τ was too low,
fewer overlapping spikes occurred within the designated
time frame, resulting in a lower spike rate for the move-
ment primitive neuron, potentially causing it to not fire
when it should. Therefore, optimizing the time constant
τ was necessary to achieve maximum accuracy.
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Another optimized parameter was the synaptic
weight ω, which determined the strength of the synapse.
If the synaptic weight was too low, no spikes occurred.
On the contrary, if the weight was too high, subsequent
spikes from one input might trigger a response. Ideally,
a spike from one input would set the membrane volt-
age close to the threshold. Then, when another spike
arrived close in time, the membrane voltage would sur-
pass the threshold voltage. Another aspect considered
was the disparity in spiking dynamics between the posi-
tion and velocity interneurons. Cohen observed that the
spiking rate of the position interneuron was significantly
higher than that of the velocity interneuron. To ad-
dress this discrepancy, the author adjusted the synaptic
weights of the position to the primitive neuron (ωtextpos)
to be lower than those of the velocity to primitive neu-
ron (ωvel). In this work, the velocity interneuron was
modified or completely replaced to allow flexibility in
the spike rate. However, the dynamics were still not
equal, so it was useful to separately optimize the synap-
tic weights (ωtextpos) and (ωtextvel). Additionally, dif-
ferent combinations of velocity and position interneu-
rons might have varying optimal weight requirements.
Especially in the case between two and three inputs.
When the weights of two inputs were applied to the sit-
uation with three inputs, the primitive neuron spiked
when only two inputs overlapped instead of all three.
Consequently, for three inputs, the optimal weights are
lower than in the case of two inputs.

To account for these multiple variables, the synaptic
weights ωtextpos and ωtextvel were individually optimized
for the subsets E1 through E7, outlined in Section 3.7.1.
The accuracy was assessed for each subset while vary-
ing ωtextpos, ωtextvel and τ . Consequently, each subset
had its unique optimal values for ωtextpos and ωtextvel

at different values of τ .

For accuracy evaluation, all primitive neuron time
courses (predicted condition) were split into 100 uni-
formly spaced bins. A bin was labeled as predicted pos-
itive (PP) if the primitive neuron spiked at least once
during the bin, and predicted negative (PN) if no spike
occurred. To compare these results, the real joint an-
gles (actual condition) underwent preprocessing to align
with the network’s framework: pos+ and vel+ were cat-
egorized as P if the joint was in the ventral position
or moving in the forward direction respectively, and N
when they were not. Analogous categorization was ap-
plied to pos− and vel− for dorsal positions and backward
motion. Similarly to the predicted condition, these re-
sults were binned in 100 equally sized bins.

With both the model estimation and the ground
truth binned, predicted and actual conditions were com-
pared by constructing a confusion matrix: counting the
TPs, TNs, FPs and FNs. Due to an expected imbalance
between P and N occurrences, the traditional accuracy
estimation (Eq. (30)) was deemed unreliable. A more
suitable metric was found to be the Matthew’s correla-

tion coefficient (MCC), a measure of the quality of bi-
nary (two-class) classifications [62]. Chicco and Jurman
(2020) [63] found that MCC was a more reliable statisti-
cal measure than the F1 score and accuracy, producing
a high score only if the prediction achieved good results
in all four categories of the confusion matrix (TP, FN,
TN and FP), proportionally to both the size of positive
elements and the size of negative elements in the data
set. Its interpretation was closely related to Pearson’s
correlation coefficient: −1 indicated total negative cor-
relation, 0 did not indicate correlation, and 1 indicated
total positive correlation [64]. The MCC was given by
[62]:

N = TP + TN + FP + FN,

S =
TP + TN

N
,

P =
FP + FN

N
,

MCC =
TP/N − S × P√
PS(1− S)(1− P )

,

(36)

where N is total number of observations, S is the ratio
of true observations and P is the ratio of false observa-
tions, S + P = 1.

3.7.4 Neuron Functions

During locomotion, a stick insect’s leg is in one of two
mutually exclusive phases: stance, where it supports
the body on the ground and moves backward during
forward walking. And swing, where the leg is lifted off
the ground, and propelled in the walking direction [65].
In cats and locusts, it was found that some interneu-
rons fire during swing, stance, or the transition between
swing and stance [48, 49]. Since the movement primi-
tive neurons combine information from all joints in the
leg, it was hypothesized that some movement primitive
neurons encode for swing, stance, or transitions between
them.

In the dataset, the labeled leg-specific swing and
stance phases were binned into 20 bins. Neuron spike
events within these bins were tallied, and the likelihood
of spiking during each bin was measured to construct
a peri-stimulus time histogram (PSTH). This method-
ology proved useful for identifying phase encoding in
specific primitive neurons.

To reveal general trends, a dimensionless number
was assigned to each movement primitive neuron. the
ratio between swing and stance spikes:

rsw/st =
Nswing

Nstance
, (37)

where Nswing and Nstance are the number of spikes that
occur during the swing and stance phases, respectively.
If rsw/st = 1 or rsw/st = 0, the movement primitive neu-
ron exclusively fires during the swing or stance phase,
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respectively. This ratio was calculated for each neu-
ron, categorized by joint, leg, and input neuron type
(e.g. vel+ or None). For a broader analysis, primitive
neurons with the same input neuron were grouped in a
separate plot.

Figure 8: Stick insect body pitch over time, grey shad-
ing highlights intervals where body pitch angles exceed
10◦, approximating climbing on a stair. Adapted from
Gollin and Dürr [11]

3.8 Layer Four: Posture Layer

It was hypothesized that distributed proprioceptive in-
formation is processed to generate a three-dimensional
representation of body posture in the stick insect [2, 11,
12]. In the proposed network, layer three introduced 672
unique primitive movement neurons, with 112 neurons
dedicated to each of the six legs. Layer four aimed to
utilize this information and estimate the insects’ body
pitch. in the work of Cohen, a simple regression model
was used to generate a body pitch time course. To im-
prove on this approach, the regression model was re-
placed by a spiking neuron layer: two neurons connected
to movement primitive neurons of the preceding layer.
The neurons spike during periods of high and low body
pitch, respectively. The difference in the spike rate be-
tween these neurons served as the body pitch estimate.
Additionally, a simpler model, the climbing classifier,
was constructed. This was a singular neuron, that only
fired during climbing.

3.8.1 Walking and Climbing Biases

During trials, the stick insect alternated between walk-
ing and climbing up steps. During walking, the body
pitch exhibited slight fluctuations around zero (indi-
cating the thorax parallel to the substrate). However,
upon encountering a stair, the body pitch jumped to
angles exceeding 10◦, as illustrated in Figure 8. Con-
sequently, a clear differentiation in body pitch between
climbing and walking phases was observed. To lever-
age these phases, the neurons in the movement primi-
tive layer (layer three) were investigated for their spiking
bias during climbing and walking. Specifically, all spikes
of the primitive neuron i were counted as a climbing
spike (N climb

i ) if the body pitch exceeded 10◦ during a
spike and as a walking spike (Nwalk

i ) if the body pitch
remained below 10◦ during a spike. The ratio between

climbing and walking spikes was defined as follows:

ri =
N climb

i

Nwalk
i

. (38)

If ri > 1 or ri < 1, the primitive neuron exhibited a bias
for spiking during climbing or walking, respectively. The
greater the deviation from 1, the more pronounced the
bias.

3.8.2 Climbing Classifier Neuron

The climbing classifier neuron (CCN) was designed to
spike when the body pitch exceeded 10◦. To achieve
this, the simplified LIF model applied in layer three
proved adequate, with neuron and synaptic dynamics
governed by Eqs. (33), (34), and (35). Primitive neu-
rons exhibiting a significant climbing bias (ri > 2)
were connected to the CCN through excitatory synapses
with weight ωexc, whereas those biased toward walking
(ri < 1

2 ) were connected through inhibitory synapses
with weight ωinh. Primitive neurons outside this range
were not connected.

The body pitch time courses were segmented into
50 equally sized bins. For each bin, it was deter-
mined whether a spike occurred (predicted condition)
and whether the body pitch exceeded 10◦ (actual condi-
tion). Subsequently, a confusion matrix was constructed
following the methodology outlined in the last para-
graph of Section 3.7.3. In the confusion matrix, climb-
ing was designated as the positive condition and walking
as the negative condition. The accuracy of the model
was assessed using the MCC metric calculated using
Eq. (36) while varying the strengths of the excitatory
and inhibitory synapses. The ri values were extracted
from nine trials separate from the two trials used for
optimization and estimation. With this approach, the
model was ”trained” on a dataset separate from testing.

3.8.3 Posture Neurons

The posture neurons’ objective is to encode body pitch
through spike rate over time. The architecture resem-
bles that of the climbing classifier neuron described
in Section 3.8.2. However, in this setup, two distinct
neurons are employed. Climbing-biased primitive neu-
rons are connected through excitatory synapses (ωup)
to one neuron, while walking-biased primitive neurons
are connected through excitatory synapses to the other
(ωdown). This arrangement results in two distinct spike
rates, with one neuron exhibiting higher activity dur-
ing climbing and the other during walking. Subtract-
ing the walking neuron’s spike rate from the climbing
neuron’s yields a combined spike rate resembling body
pitch. This spiking pattern is expected to be noisy. By
setting ∆T = 3 s in Eq. (4), a running average can be
plotted, smoothing out fluctuations. Subsequently, the
firing rate and real body pitch are Z-normalized. They
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Figure 9: Firing frequency (Hz) as a function of time (s) for a sensory neuron stimulated by a ramp function. (A)
The ramp function increases linearly at a constant velocity of 60.1 ◦ s−1 from 0◦ to varying end angles θ. (B) The
ramp function increases linearly from 0◦ to 37◦ with varying angular velocities ω. Parameters were optimized to
resemble the dynamics of axons from the lateral scapal hair plate in the American cockrach obtained by Okada
and Toh (2001) [15].

are compared using the DTW method clarified in Sec-
tion 3.5.3, providing an error estimate. To minimize er-
ror (DTW score), the bias ratio (r) for climbing neurons
(ri > r) and walking neurons (ri <

1
r ) was varied within

the range 1.3 to 3.5 with 6 equidistantly spaced steps.
Additionally, the synaptic weights (ωup and ωdown) were
varied from 0mV to 20mV with 15 equidistantly spaced
steps.

4 Results

This section highlights the results obtained using the
methodology outlined in the preceding section. Similar
to the methods Section, this Section examines the re-
sults layer by layer. Trials conducted on a flat substrate
(without steps) were employed for layers one through
three. If not stated otherwise, results are averaged for
78 trials. In the case of layer four, the trials involved two
steps of 48mm, with 12 functional trials. This section
does not include detailed findings related to the effects
of the model’s parameters on neuron dynamics if already
performed by Cohen. Interested readers are referred to
Cohen’s work (2020) [12] for further exploration of this
aspect.

4.1 Layer One: Hair Field Layer

Table 1: Initial parameters for the AdEx model.

C gl EL VT ∆T
200 pF 2 nS −70mV −50mV 2mV

a τω b VR

2 nS 50ms 50-350 pA 58mV

The initial AdEx parameters were adopted from Naud
et al. (2008) [66] and subsequently adjusted by Cohen.
Specifically, the leak conductance (gl) was decreased
from 12 nS to 2 nS. This modification resulted in a re-
duction of the rheobase current, which is the minimum
current required to evoke an action potential. This al-
lows the sensory neuron to fire at low input currents,
and therefore at low hair deflections [12]. Additionally,
the time constant τω was lowered to 50ms for quicker
responses further down the network. the initial param-
eters for the AdEx model are given by Table 1.

50 92 135 178 221 264 307 350
b (pV)

5
9

14
18

23
27

32
37

I  (n
A°

1 )

600 486 399 338 289 252 217 192

299 232 184 148 120 98 80 65

158 115 84 61 43 31 26 22

102 68 44 29 24 21 21 23

59 34 24 20 20 26 31 35

36 24 20 21 28 34 39 44

25 20 22 30 37 43 47 51

21 21 31 39 45 50 54 57

MSE

Figure 10: A heatmap depicting the error E, computed
using Eq. (11), for a single sensory neuron. I/ϕ and b
are varied from 5.0 nA ◦−1 to 37.0 nA ◦−1 and 50 pV to
350 pV, respectively.

A single tactile hair was subjected to stimulation us-
ing a ramp and hold function, following the procedure
outlined in Section 3.4.3. The error E from Eq. (11)
was computed at each iteration of a parameter sweep
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involving I/ϕ and b. The corresponding results are il-
lustrated in the heat map in Figure 10. A minimum
error of 20 is observed for several results. The values
I/ϕ = 18.0 nA ◦−1 and b = 307 pV were randomly cho-
sen from these results, these values will be adopted for
the remainder of the thesis.

The time courses for both experiments are illustrated
in Figure 9. The Figure depicts spiking dynamics over
time for a sensory neuron that is stimulated by a ramp
and hold function. The ramp function varies its end
angle (A) or its angular velocity (B). Time courses can
be compared directly to spiking dynamics outlined in
Okada and Toh’s study (2001) [15], illustrated in Fig-
ure 2. However, the angular velocities were quadrupeled
and the total simulation time was divided by four as de-
scribed in Section 3.4.3. It is clear from the Figures
that the sensory neuron has similar general dynamics
as the experimental values. During the ramp phase of
the input, the firing frequency rapidly rises to a peak
as the ramp transitions into a constant input. After
the peak, the firing rate converges to a steady state.
As the input ramps back to zero, the firing rate follows
suit, linearly decreasing until it reaches zero. However,
differences can be found in the details. there is consid-
erable noise in the experimental data. In contrast, the
simulated model is devoid of any noise, since none were
introduced. Furthermore, the model reaches a steady
state within a few seconds, whereas the experimental
data displays a continuous decay throughout the entire
duration of the experiment.

The firing frequency peaks at constant angular ve-
locities (Figures 9A and 2A) are around 110% of the
steady-state conditions in the model. However, in the
experimental data, these peaks are approximately 150%
of the steady-state firing rate. Moreover, in the experi-
mental data, the low-end deflection angles (e.g. θ = 15◦)
only produce a response during the onset of the ramp
function, not during the steady state. This behavior is
not observed in the simulated model, where low deflec-
tion angles do provoke a response in the neuron. Addi-
tionally, the steady-state frequencies in the simulation
align closely with experimental results.

The dynamics for constant end angles (depicted in
Figures 9B and 2B) display a higher degree of similar-
ity. the steady-state spike rate of the model is inside
the noise range of the experimental data. However, The
peaks are slightly lower: 98Hz - 150Hz for the model
compared to 118Hz - 166Hz for the experiment.

Table 2: Initial parameters for the position interneuron.

EL VT τ τω τepsp
−70mV −50mV 25ms 3-18ms 6ms

b VR

1-16mV −70mV

4.2 Layer Two: Position Layer

the parameters for the position interneuron were ini-
tially adopted from the research by Cohen, which are
tabulated in Table 2. The synaptic parameters b and τω
will undergo optimization in section 4.2.2.

4.2.1 Binary Hair Field

With the sensory neuron optimized, 100 hairs were or-
ganized at each joint, forming two hair fields of 50 hairs

each (N
(1)
h = N

(2)
h = 50). The joint angle range θ

(j)
max

and θ
(j)
min are defined as the maxima and mimima of the

joint angle time course. For the position interneurons,
half of the hairs are connected, as was clarified in Sec-
tion 3.5.1 and Figure 5. On the right axis, Figure 11A
depicts a 10-second time course for the α joint (thorax-
coxa) of the right anterior leg in black. The dotted line
highlights the division between ventral and dorsal posi-
tions. The left axis shows a hair field raster plot, where
each blue or red dot signifies a ventral or dorsal spike
for tactile hair i, respectively. Due to the large number
of spikes, the dots coalesce into a continuous line.

Figure 11A perfectly highlights the directional sensi-
tivity of the hair field, with mirrored encoding observed
in the ventral and dorsal domains. In the ventral do-
main, increasing joint angles prompt additional neurons
to activate, whereas in the dorsal domain, reduced joint
angles activate more neurons. If the joint was at rest,
only the initial ventral and dorsal neurons fired, due to
the predefined overlap. The tactile hair activity closely
tracks the joint angle time course, demonstrating a near-
perfect alignment.

Figure 12: DTW scores for position interneurons dis-
played with median values (black dot), 50% range
(black whiskers), and maximum/minimum results (grey
whiskers), for different parameters and three noise val-
ues.
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Figure 11: A 10-second time course for the α joint (thorax-coxa) of the right anterior leg is depicted in black. (A)
The dotted line delineates the division between ventral and dorsal positions. The left axis displays a hair field
raster plot, where each blue or red dot represents a ventral or dorsal spike for tactile hair i, respectively. The
large number of spikes causes the dots to merge into a continuous line. (B) Firing frequency time course for the
ventral and dorsal neurons.

4.2.2 Position Encoding Optimization

Figure 12 depicts the DTW score between the model
prediction and ground truth averaged over 71 trials and
18 joint angles. The simulations with τω = 3ms and
b = 16mV yielded the best performance, achieving a
DTW score slightly above 5% Gaussian noise. These
parameter values were used for the remaining portion of
the thesis. Figure 11B illustrates a three-second joint
angle time course and spike rates of ventral and dorsal
neurons for the α joint (thorax-coxa) of the right an-
terior leg in black. The ventral neuron fired when the
joint angle was larger than the rest angle (dotted line),
while the dorsal neuron fired when the joint angle was
lower. Spike rates fluctuated between 0 and 500Hz and
roughly followed the joint angle. However, finer details
were lost.

4.3 Layer Two: Movement Layer

Table 3: Initial parameters for the adapted velocity in-
terneuron.

τG τl τ−h τ+h τb
5ms 1ms 1−3ms 1ms 1ms

p VT VR Vh GR

0.01 −50mV −70mV −53mV 17mV

Table 3 summarizes the parameter values for the
adapted velocity interneuron. When the first presy-
naptic spike reached the synapse, the synaptic strength
reached its maximum (GR = 17mV), causing the volt-
age to increase from VR to Vh. As the voltage matched
the gating voltage, bursting initiated, leading to a re-
duction of GR to 1% of its initial strength (p = 0.01)

due to strong self-inhibition. The modification of τ−h de-
termined the number of spikes during a bursting event
and will be optimized in the next section on spike rate
control. τ+h was set equal to the simulation time step,
allowing quick initiation of a new bursting event after
the end of the previous event. Setting τG to a low value
allowed the synapse to transmit spikes after a short in-
active period (e.g., rapid velocity changes) while ensur-
ing sufficient time to suppress spikes during the same
deflection event. The other time constant values were
kept relatively low, minimizing inertia in the neuron.
However, adjusting these parameter values had minimal
impact on performance.

Table 4: Initial parameters for the novel velocity in-
terneuron.

τ VT VR ω
5ms −50mV −70mV 10.5-11.5mV

In contrast to the adapted velocity interneuron,
the parameters of the novel velocity interneuron are
straightforward (see Table 4). Similar to other neu-
rons, the threshold and reset voltages adhere to their
standard values. The cutoff frequency, denoted fc, is a
function of τ and ω. Setting the time constant to a low
value ensured good accuracy. the optimal range for ω
was 10.5-11.5mV, determined through trial and error.
This range will be employed in the subsequent section
to investigate spike rate control.

4.3.1 Spike Rate Control

Figure 13 depicts the spike rate response of a velocity
interneuron as a function of joint angle velocity for, (A)
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Figure 13: Firing frequency plotted against angular velocity for (A) the modified model and (B) the novel model.
model parameters τ− and ω and the number of hairs Nh are varied.

the modified model and, (B) the novel model. In both
scenarios, doubling the number of hairs from 25 to 50
doubled the spike rate and firing frequency increased
linearly with angular velocity for both models. How-
ever, the linearity of the novel model (B) was imper-
fect, particularly at small angular velocities. As antic-
ipated, variables τ−h and ω contributed to the increase
in spike rate. The IFB neuron allowed great variability
in the spike rate, demonstrating an increase of approxi-
mately 750% or more if required. In contrast, the novel
model allowed a variability of around 200%, but its ini-
tial spike rate (ω = 10.5mV) substantially exceeded
the baseline of the modified model. The spike rate of
the novel model cannot increase indefinitely. At a cer-
tain synaptic weight, the cutoff frequency matches the
steady-state frequency and velocity encoding ceases. For
both models, parameter values that yielded higher spike
rates were adopted for the rest of the thesis, namely
τ−h = 3ms and ω = 11.5mV.

Table 5: Confusion matrix and accuracy parameters for
the adapted velocity interneuron

Act.
Positive Negative Total

Pred.
Positive 684550 35541 720091
Negative 34271 837439 871710
Total 718821 872980 1591801

Accuracy TPR TNR
0.956 0.951 0.960

Table 6: Confusion matrix and accuracy parameters for
the novel velocity interneuron

Act.
Positive Negative Total

Pred.
Positive 581345 46339 627684
Negative 47663 643021 690684
Total 629008 689360 131368

Accuracy TPR TNR
0.929 0.924 0.933

4.3.2 Spiking Dynamics

Figures 14A and B depict individual spikes for forward
and backward direction neurons in the adapted and
novel model, respectively. In Figure 14A, the burst-
ing nature of the IFB neuron is evident, with additional
spikes occurring shortly after the initial one. However,
these spikes tend to cluster together, resulting in alter-
nating periods of spike clusters and no spikes. In con-
trast, Figure 14B shows that spikes are distributed uni-
formly for the novel model. However, at t = 4 s− 4.5 s,
the model practically does not encode small changes in
velocity, similarly to Figure 14B.

Tables 5 and 6 show the confusion matrix for the
adapted and novel models, respectively. The confusion
matrix was determined based on 79 trials, which in-
volved 2 velocity interneurons at each of the 18 joints.
From the confusion matrix, the accuracy, TPR and the
TNR were computed using Eq. (30). The positives and
negatives were balanced, confirming the suitibility of the
simple accuracy score. TPR and TNR were relatively
similar, indicating a balance between the firing rate of
forward and backward neurons. Both models perform
accurately. However, the modified model accuracy is
2.7% higher than the novel model.

In Figure 14C and D, black traces illustrate a one-
second time course of the velocity of the α joint (thorax-
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Figure 14: (A&B) Black traces represent a 4-second time course of the α joint (thorax-coxa) for the right anterior
leg. Scatter plots overlay individual spikes on the joint angle time course for the modified model (A) and the
novel model (B).1 secondBlack traces depict a 1-second time course of the α joint velocity (thorax-coxa) for the
right anterior leg. Spike rates are plotted for the ventral and dorsal direction velocity interneurons in the modified
model (C) and the novel model (D).

coxa) for the right anterior leg in addition to spike rates
for the ventral and dorsal direction velocity interneu-
rons. Both methods exhibit firing at appropriate times,
such as the forward direction velocity interneuron fir-
ing when the velocity is positive. However, finer details
are lost for both models. In particular, clustering of
spikes for the modified model (Figure 14C) leads to a
discretized spike rate and a loss of sensitivity to small
changes in velocities.

4.4 Layer Three: Movement Primitive
Layer

Table 7: Initial parameters for the movement primitive
neurons.

τ VT VR ωpos & ωvel

0.5-3.5ms −50mV −70mV 3-18mV

Table 7 features the parameters for the movement

primitive layer. While the threshold and reset voltages
adhere to standard values, the parameters τ , ωpos, and
ωvel considerably influenced model performance and un-
derwent optimization.

4.4.1 Optimization

Figure 15A shows the MCC versus the τ for seven sub-
sets of movement primitive neurons, detailed in Section
3.7.1. The synaptic weights of position (ωpos) and veloc-
ity interneurons (ωvel) were individually adjusted (using
the grid method) from 3mV to 18mV, with increments
of 1.5mV. The Figure highlights inconsistent perfor-
mance across subsets, with those featuring more posi-
tion interneurons generally outperforming those with ve-
locity interneurons. Furthermore, subsets with three in-
puts had improved performance compared to those with
only two inputs. The mean MCC peaked at 0.56.
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Figure 15: A. MCC as a function of the time constant τ , considering seven subsets detailed in Section 3.7.1, along
with the mean for optimal synaptic weight values. B. optimal weights ωpos and ωvel for several values of the time
constant τ for the same seven subsets

Table 8: Optimal weights for the movement primitive
neurons, extracted from Figure 15B.

p-p v-v p-v p-p-v v-v-p
ωpos (mV) 16.5 - 16.5 15.0 16.5
ωvel (mV) - 10.5 12.0 3.0 7.5

p-p-p v-v-v
ωpos (mV) 9.0 -
ωvel (mV) - 10.5

Figure 15B highlights the weights corresponding to
the optimal MCC value for each subset at each time
constant. Generally, the optimal ωpos is higher than
ωvel, and both decrease as the time constant increases
for time constants higher than the timestep dt = 1ms.
Some exceptions include the high ωvel value for the v−v
subset at high time constants and p−v at τ = 1ms. Ta-
ble 8 lists the optimal weights for the movement primi-
tive neuron at the best mean MCC value for the optimal
time constant (τ = 1.5ms).

4.4.2 Swing and Stance Encoding

Figure 16A illustrates the swing-to-stance spikes ra-
tio (rsw/st) for all 672 movement primitive neurons,
with color coding for extracting the specific neurons
associated with swing or stance phases. As an exam-
ple, in the anterior right leg, the (vel+, None, vel+)
primitive neuron strongly encodes swing, while the
(pos+, pos+, pos−) primitive neuron strongly encodes
stance. Figure 17A and B depict the likelihood of spik-
ing during swing and stance bins for these primitive
movement neurons, respectively. Swing encoding (Fig-
ure 17A) is strongest in the middle of the swing phase,
while the stance encoding (Figure 17B) also peaks, al-
beit with an irregular structure. There are countless
examples of regular and irregular swing and stance en-
coding for other movement primitive neurons.

Figure 16B combines data points of Figure 16A for
the input parameters (vel+, pos+, etc.), None is omit-
ted. Combining data points allows for easier compari-
son between joints, legs and input parameters. As an
additional aid, Tables 9 and 10 tabulate the scores of
a paired t-test between vel−-vel+ and pos−-pos+, re-
spectively. The critical values for a two-sided test with
a sample size n of 24 are provided for significance lev-
els of 0.1% (red), 1% (blue), and 5% (green) as 3.792
(p < 0.001), 2.819 (p < 0.01), and 2.074 (p < 0.05), re-
spectively. These critical values serve as thresholds for
hypothesis testing, with the associated p-values indicat-
ing the level of statistical significance. A test statistic
exceeding the critical value leads to the rejection of the
null hypothesis, and smaller p-values suggest stronger
evidence against the null hypothesis [67].

Strong encoding (red, p < 0.001) for swing and
stance is symmetric for both sides of the body. Re-
garding the velocity input parameter (Table 9), the α
joint serves as a robust indicator for all legs, consistently
encoding for forward movement during the swing phase.
For the β joint, backward movement weakly encodes the
swing phase in the front legs, no encoding is observed
in the middle leg, and strong encoding occurs in the
hind leg during forward movement. The γ joint, on the
other hand, displays good encoding indicators in both
the front and hind legs, with reversed directions. For
the position input parameter (Table 10), weak encod-
ing (blue, green, black, p > 0.001) is not symmetrical
on both sides, but strong encoding remains symmetri-
cal. Whenever encoding is present, the swing phase is
consistently encoded by the ventral position interneu-
ron. Specifically, the γ joint strongly encodes for swing
with the ventral position, the β joint shows encoding ex-
clusively in the middle and hind legs, while the α joint
exhibits only weak, or no encoding.
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Figure 16: A. Ratio of spikes during swing and during stance for all 672 movement primitive neurons, divided by
joint and leg (three joints and six legs). B. The datapoints from A grouped into velocity and position interneurons
for the three joints and six legs. The black line represents the median value, the box encompasses the first 50
percent, and within the whiskers are the first 90 percent

Table 9: paired t-test scores between vel− and vel+ for six
legs and three joints. p < 0.001, p < 0.01, and p < 0.05
are denoted as red, blue and green, respectively.

R1 R2 R3 L1 L2 L3
α -7.53 -8.76 -7.94 -7.53 -9.22 -7.56
β 3.68 -1.61 -4.58 3.07 -1.23 -4.20
γ -7.14 1.97 6.93 -7.84 -0.33 6.33

Table 10: paired t-test scores between pos− and pos+
for six legs and three joints. p < 0.001, p < 0.01, and
p < 0.05 are denoted as red, blue and green, respectively.

R1 R2 R3 L1 L2 L3
α -0.54 -2.72 -2.13 -1.97 -1.03 -3.50
β 0.34 -7.47 -5.35 -2.87 -5.15 -7.97
γ -19.75 -17.04 -5.25 -9.60 -11.73 -4.66

Movement primitive neurons also encode other
phases than purely swing and stance. Figure 17C is a
PSTH plot for the (vel−, vel−, pos−) movement prim-
itive neuron for the left middle leg. The neuron en-
codes the transition from swing to stance and stance to
swing. Figure 17D shows the (vel+, None, pos+) prim-
itive interneuron of the left posterior leg. This neuron
has strong beginning of swing encoding and a weak end
of stance encoding.

4.5 Layer Four: Posture Layer

In this section, the network is tasked to estimate climb-
ing and body pitch. To facilitate this, significant
changes in body pitch are necessary. Therefore, the net-
work receives information of 11 unrestrained climbing
trials with steps of 48mm.

Table 11: Initial parameters for the climbing classifier
(top) and body pitch estimation neurons (bottom).

τ VT VR ωinh ωexc

50ms −50mV −70mV 0-0.2mV 0-0.13mV

τ VT VR ωup ωdown

50ms −50mV −70mV 0-20mV 0-20mV

Table 11 outlines the parameters of the climbing clas-
sifier neuron and body pitch estimation neurons. The
time constants, threshold voltages, and reset voltages
were held constant. For the climbing classifier, the exci-
tatory (ωexc) and inhibitory weights (ωinh) were varied
to optimize performance. For the body pitch estimator,
ωup and ωdown were varied.

4.6 Climbing Classifier

In this work, climbing is defined as the metathorax in-
clination of more than 10◦ relative to the experimen-
tal substrate. The climbing classifier is tasked to fire
whenever the insect is climbing. Figure 18A shows the
MCC of the climbing classifier while varying the exci-
tatory weight ωexc from 0.05mV to 0.13mV and the
inhibitory weight ωinh from 0.0mV to 0.2mV. The neu-
ron is most accurate (MCC = 0.59) for ωexc = 0.085mV
and ωinh = 0.04mV. Figure 18B illustrates the activity
of the climbing classifier for a single climbing trial. The
climbing classifier mainly spikes during climbing, espe-
cially at higher body pitch angles. At angles closer to
10◦, the spike rate is significantly lower. There are six
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Figure 17: Likelihood of a neuron to spike in the swing or stance phase. The swing and stance phases are binned in
20 bins each. A. Right anterior leg, (vel+, None, vel+) primitive interneuron, swing encoding. B. Right anterior
leg, (pos+, pos+, pos−) primitive interneuron, stance encoding. C. left middle leg, (vel−, vel−, pos−) primitive
interneuron, transition encoding. D. left posterior leg, (vel+, None, pos+) primitive interneuron, strong begin-
ning of swing and weak end of stance encoding.

spikes at body pitch angles below 10◦. Table 12 indi-
cates the participation of neurons in climbing (Nn) per
leg. The data reveals that the front and middle legs
contribute more compared to the hind legs. Moreover,
there is nearly equal participation on the left and right
sides of the body.

Table 12: The number of neurons that contribute to the
climbing classifier (Nn), per leg.

Leg R1 R2 R3 L1 L2 L3
Nn 52 52 35 50 54 32

4.7 Posture Estimation

The posture neuron was designed to generate a time
course of body pitch. In Figure 18C, the DTW score
for body pitch estimation is plotted against the ground
truth while varying ω (both ωdown and ωup) and rsw/st.
For most values of rsw/st, the optimal synaptic strength
was slightly above or just below 10mV. Beyond

10mV, increasing the synaptic weight did not impact
the model’s accuracy. The selection of the appropriate
rsw/st value was crucial for achieving optimal accuracy.
The best-performing parameter set was ω = 7.2mV and
rsw/st = 3.06, yielding a DTW score of 51, equivalent
to the ground truth with and added Gaussian noise of
28.5%.

Figure 18D displays the body pitch ground truth,
model estimation (∆T = 0.2 s), and a moving average
(∆T = 3 s) over time. Two trials are concatenated,
each consisting of two steps. The model response cap-
tures significant swings in body pitch accurately but is
affected by noise. The moving average mitigates the
noise. Although the moving average aligns with major
body pitch swings at the correct times, it doesn’t include
exact peak timings and finer details.
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Figure 18: A. MCC of the climbing classifier while varying ωexc and ωinh B. Time-dependent plot of body pitch,
with climbing classifier spikes superimposed using ωexc = 0.085mV and ωinh = 0.04mV. A bin is flagged if at
least one spike occurs within the bin. C. MCC of the body pitch neurons with varying ω (ωup and ωdown) and
rsw/st. A DTW score of 51 corresponds to the ground truth with 28.5% Gaussian noise. D. Body pitch ground
truth, model prediction, and moving average over time. Two trials are concatenated, plotted for optimal values
obtained in C (rsw/st = 3.06 and ω = 7.2mV).

5 Discussion

5.1 Layer One: Hair Field Layer

The hair field layer was designed to replicate the spik-
ing dynamics of the axons in the lateral scapal hair
plate of the American cockroach (Figure 2) [15] using
an AdEx model (Figure 9). The adaptation term in the
AdEx model allowed for a combined phasic and tonic re-
sponse, and therefore copied the essential features of the
observed experimental spike dynamics. Despite chal-
lenges such as the absence of inherent neuronal noise,
spike rate mismatch, low angle encoding, and differing
adaptation strengths, these dynamics provided a solid
foundation for the rest of the network. The phasic and
tonic responses in the sensory model were exploited by
the velocity and position interneurons, respectively. In
fact, intentionally shortening the time scale of the dy-
namics resulted in a reduced DTW score for the position

interneuron, improving from 10% Gaussian noise in Co-
hen’s results to 5% Gaussian noise in the results of the
current work.

At the time scales suggested by the experimental re-
sults, τω had to be in the range of 500ms. This led
to adaptation long after the direction of the joint an-
gle changed, resulting in unnecessary delays in subse-
quent layers. However, slow adaptation is required to
produce prolonged phasic behavior (as observed in the
broad peak in Figures 2A and B). To address this, re-
ducing the timescales allowed for phasic behavior while
reducing τω, thus improving performance in subsequent
layers. The author believes that exercising this creative
freedom is warranted since the dynamics were not de-
rived from a stick insect, and specific spike rates are
known to vary between species, individual insects or
even different hair plates in the body [15]. Addition-
ally, the main features of the dynamics were conserved.

Previous research has addressed the issue of model-
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ing sensilla responses using abstract computational ap-
proaches, such as a Poisson spike generator [10, 11].
However, this method does not take into account the
non-linear transform function that occurs between the
the stimulus (i.e., deflection of the hair) and the re-
sponse of the neuron. In contrast, the AdEx model ap-
plied in this study takes a raw input of joint angles with-
out any pre-processing through high-pass and low-pass
filters. The only pre-processing involved was converting
the angles into deflection angles and then converting
those angles into input current.

The model design was based on Cohen’s work, with
minor adjustments such as reducing the time scale and
optimizing the hair row structure. A major change was
transitioning from 40 hairs to 100 hairs (50 per hair
row), this increased sensitivity significantly. While in-
creasing the number of hairs indefinitely could further
increase sensitivity, a biologically realistic amount of 50
hairs per hair row was chosen [34]. The current work
also includes assumptions that Cohen made when de-
signing the hair plate. These assumptions were made
to simplify the problem. For example, it was assumed
that tactile hairs were the same length, although there
is evidence of variations in length [34, 68]. Another
assumption was that the hair angle increased linearly
with the joint angle. However, the morphology of the
sensilla implies that linearity is correct [34]. The final
assumption was that the hairs were arranged in an or-
derly manner in their receptive fields and slightly over-
lapped each other. However, research suggests that tac-
tile hairs are actually arranged at regular intervals [17,
35, 36], lending some truth to this assumption. For
further investigation, these assumptions could be over-
come by accounting for differences in hair length, ex-
amining nonlinearities in hair angle, or optimizing hair
distribution. As Cohen clarified in his work, an inter-
esting approach would be the efficient coding hypothesis
[69]. The hypothesis assumes that sensory systems are
structured to efficiently represent the dynamic sensory
stimuli that the animal encounters in its environment.
Consequently, these systems are likely not organized in
a perfectly linear structure, but rather are arranged to
maximize coding for the most common stimulus sets en-
countered by the animal. This idea can also be extended
to the structure of hair field rows, suggesting that hairs
may have different receptive fields based on the proba-
bility distribution of joint positions.

5.2 Layer Two: Position Layer

The position layer was designed to integrate informa-
tion from the hair field layer to encode joint position.
This design draws inspiration from biological examples
of position-encoding DINs [44, 7, 10], particularly the
segregation of position interneurons into dorsal and ven-
tral activated neurons [45, 7]. In alignment with the
findings of Ache and Dürr (2015) [10], it is established

that employing two hair fields (ventral and dorsal) is
adequate for accurately estimating joint position in the
presence of a natural stimulus.

In Figure 12, there is no DTW score available for
the parameters τW = 3.0mV and b = 1.0mV. These
synaptic parameters prove too low to facilitate postsy-
naptic spikes. Consequently, no DTW score is measur-
able. In scenarios with (too) high synaptic weights, fir-
ing frequency reaches the limit (1000Hz) imposed by
the timestep (dt = 0.1ms), resulting in the loss of finer
details. This loss of detail contributes to an increased
DTW score. The optimal parameter configuration leads
to an improved precision of position estimation, reduc-
ing Gaussian noise from 10% (as observed in Cohen’s
work) to slightly over 5% (see Figure 12). Since the op-
timization for the position interneuron remained consis-
tent, this improvement in accuracy can be attributed to
the acceleration of tactile hair temporal dynamics in the
preceding layer. Tactile hair dynamics were manually
changed to the dynamics observed by Cohen, and per-
formance was reduced to 10% Gaussian noise, validating
the previous claim. The remaining disparity between
the actual joint angle and neuron estimation is largely
ascribed to the inherent smoothness of the estimated
time course (Figure 11B). The methodology for calcu-
lating firing frequency (Eq. 3) tends to smooth out finer
details, and there may be further enhancements pos-
sible by reducing the simulation timestep. Ultimately,
the estimation proved to be accurate enough for subse-
quent layers. Therefore, employing a simple LIF as the
position interneuron is suitable.

5.3 Layer Two: Movement Layer

The velocity interneurons in the movement layer were
designed to spike whenever the joint angle changed. In-
spiration was drawn from evidence for a ON-type veloc-
ity sensitive encoding DINs in the stick insect antenna
[7, 10, 70]. There is also evidence for velocity encod-
ing DINs in the crickets’ antenna [44] and the fruitfly
[45]. However, the ON-type DINs found in the antenna
were not directionally sensitive. Ache and Dürr (2015)
[10] investigated three possible neuronal circuits that
would achieve non-directionality: a post-inhibitory re-
bound system, an elaborate subsystem of excitatory and
inhibitory DINs between the hair field and ON-type neu-
ron, or another set of afferents with opposite directional
sensitivity and only phasic components innervating the
ON-type neuron. The first two options were deemed
unlikely because post-inhibitory mechanisms were not
observed in the neuron’s spiking behavior and because
of the short latency (∼11ms) between the layers [12].
Therefore, the last possibility was partly incorporated
into the architecture of the network. However, there is
no direct evidence that the current implementation is bi-
ologically accurate. Firstly, the ventral and dorsal hair
fields had to be extended to account for the sensitivity
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range of the velocity interneurons. And as clarified ear-
lier, the ON-type neuron was not direction sensitive like
the proposed velocity interneurons [10]. Lastly, The cur-
rent thesis only uses hair plate information to feed into
the DINs. In insects, information from the chordotonal
organ contributes velocity information to the proprio-
ceptive system [30, 29, 24]. However, the current work
shows that the phasic-tonic behaviour of the tactile hair
can be exploited to extract both position and velocity
information.

During the research phase, it was apparant that the
spike rates of the velocity interneuron in Cohen’s work
was inherently tied to the number of tactile hairs. Ad-
ditionally, the spike rate was found to be extremely low,
40Hz at a joint velocity of 190 ◦ s−1. To get sufficient
overlap possibility in the subsequent (movement primi-
tive) layer, these spike rates had to be significantly in-
creased. To achieve sufficient spike rates, the number
of tactile hairs had to be increased tenfold. However,
the number of hairs would be biologically inaccurate.
Therefore, the spike rate had to be increased indepen-
dently from the number of hairs. Two models were
proposed, the first added a bursting current (modified
model) and the second exploited the phasic properties
of the tactile hair (novel model). The modified model
was slightly more accurate than the novel model, but
both were more accurate than Cohen’s model. The ac-
curacy was improved from 0.904 to 0.956 for the modi-
fied model and 0.929 for the novel model. Additionally,
both models allowed for a substantial increase in the
spike rate, 400Hz for the modified model, 340Hz for
the novel model relative to 40Hz for Cohen’s model at
203 ◦ s−1. Since the number of hairs was multiplied by
2.5, both models inherently increased the spike rate by
3-4 times. The modified model could increase the spike
rate even more by increasing τ−h , at the risk of more
spikes occurring at the wrong time. The novel neuron
spike rate could be improved further by increasing the
phasic peak of the sensory neuron (Figure 9), but ω can
not be increased to improve the spike rate. In case of the
modified neuron, additional spikes occur after the initial
spike independent from the joint direction. Therefore,
each spike that is added has a chance of occurring af-
ter the velocity has changed direction, spiking at the
wrong time. Moreover, clustering of spikes (Figure 14A)
yields a staircase effect in the spike rate (Figure 14B),
removing sensitivity to detail. To achieve a bursting
event, several time constants had to be set incredibly
low (equal to the timestep). And according to the lit-
erature: τ+h >> τ−h , which is not true for the current
model [58]. Even though accuracy and spike rates are
slightly higher for the modified model, the novel model
was chosen as superior due to the aforementioned rea-
sons. Additionally, The novel model is extremely simple
compared to the modified model, and the spikes are uni-
formly distributed. And phasic neurons encode velocity
[28], just like the novel model, making it more biologi-

cally accurate. However, At slow joint movements, the
phasic response of the sensory neuron decreases (Fig-
ure 9B), and the novel model will not fire. This effect is
observed in Figure 14B, and is a limitation of the model.

The author believes that the existing movement layer
is optimal given the current number of tactile hairs in
the hair plate. Increasing the number of hairs could en-
hance sensitivity, and therefore accuracy. This would al-
low the interneuron to sense smaller changes in velocity.
Another approach is adding a dedicated velocity-sensing
mechanoreceptor (e.g. chordotonal organ), which could
greatly increase sensitivity and accuracy if done cor-
rectly.

5.4 Layer Three: Movement Primitive
Layer

Based on the hypothesis that motor movements consist
of elementary units of motor reflexes known as ”move-
ment primitives” [71], the movement primitive neuron
was devised to gather information from two or three of
the joints and convey the spatio-temporal state of the
entire leg. Movement primitives find their application
in humanoid robots [72], and have been studied for ex-
ecuting motor behavior in both invertebrates and ver-
tebrates across behavioral, muscular, and neural levels.
Research into human reaching movements has revealed
their organization into distinct movement blocks, each
exhibiting similar spatio-temporal characteristics [71].
Inspired by the concept of movement primitives, Cohen
postulated the existence of a corresponding sensory cir-
cuit closely interacting with motor primitive neurons.
In this thesis, the movement primitive layer acts as this
sensory circuit.

The movement primitive layer in Cohen’s work had
a high TPR but also a comparatively high false positive
rate (FPR) [12]. Consequently, Cohen suggested that
the movement primitives functioned as sub-optimal clas-
sifiers. Cohen proposes that either a more refined tuning
scheme or an alternative neural/synaptic model may be
necessary. The current author agrees with the former
proposition. Throughout the research, it became evi-
dent that the inadequate performance of the movement
primitive layer primarily stems from low spike rates
in the preceding layers, poor optimization of synap-
tic/neural parameters within the movement primitive
layer itself, and suboptimal accuracy of the preceding
layers, in descending order of significance. Enhance-
ments in accuracy and spike rate were investigated in
preceding sections. Merging these accuracy improve-
ments with synaptic and neuron optimization (see Fig-
ure 15) led to enhanced results for primitive neuron ac-
curacy. Nevertheless, certain subsets outperformed oth-
ers (see Figure 15A). Subsets that received information
from position interneurons achieved enhanced accuracy
in contrast to those incorporating velocity interneurons.
This discrepancy can be attributed to better accuracy
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and a higher spike frequency of the position interneu-
ron. Position interneurons sustain constant spiking for
extended periods when joint angles are high, whereas ve-
locity interneurons exhibit shorter spike peaks. Despite
similar spike peak rates, position interneurons there-
fore yield a higher total spike count. This hypothesis
was tested by substantially increasing the number of
hairs. This change significantly improved the accuracy
of movement primitive neurons that received informa-
tion from velocity interneurons, while those receiving in-
formation from position interneurons showed no signif-
icant improvement. Furthermore, position interneurons
maintain sensitivity across the entire receptive field of a
tactile hair, unlike velocity interneurons whose sensitiv-
ity is closely linked to the number of hairs in a hair plate,
only firing during the onset of a complete hair deflec-
tion. Generally, subsets with two inputs outperformed
those with three inputs. This discrepancy arises from
the fact that three inputs require overlapping, which is
less probable than with two inputs, consequently reduc-
ing the MCC.

A significant fraction of movement primitive neu-
rons show swing or stance encoding. Firing predom-
inantly during either the swing or stance phase (Fig-
ure 17A and B), similar to interneurons observed in lo-
custs or cats [57, 49]. These neurons are used as an
internal representation of swing and stance phases for
each leg, which is a critical parameter of insect loco-
motion [73, 74]. Moreover, the proposed method allows
for finer encoding, such as the beginning of the swing
phase (Figure 17D). Another significant application is
the requirement of phase information from other legs
for swing/stance initiating motor neurons, particularly
evident during phase transitions, which are pivotal for
leg coordination [5, 6]. As an example, Figure 17C de-
picts a neuron that spikes during each phase transition.

The encoding of swing/stance phases is facilitated
by interneurons supplying information to the movement
primitive neurons. Analysis of Figure 16B and Tables 9
and 10 reveals that the α joint (protraction-retraction)
strongly encodes for swing during forward movement, a
finding corroborated by existing literature [6, 26]. This
observation aligns with the biomechanics of leg move-
ment, as during the swing phase, the entire leg moves
forward while the α joint transitions from retraction to
protraction. Therefore, during swing the α joint moves
from ventral to dorsal position, leading to negligible
swing or stance encoding by the α position interneu-
ron. Additionally, the results suggest that the β joint
(levation-depression) assumes a ventral position during
the swing phase, reflecting the need for leg elevation dur-
ing this phase. This effect is particularly pronounced in
the middle and hind legs compared to the front legs.
This could be explained by searching behavior in the
front legs, keeping the tarsus close to the substrate [75].
Another significant indicator is the position of the γ
joint (flexion-extension), which assumes a ventral po-

sition during the swing phase, indicating the forward
extension of the tibia in preparation for a touchdown,
increasing reach and elevating the tarsus from the sub-
strate. Conversely, during stance, the tibia is pointed
down, since the tarsus has to be planted firmly in the
substrate for maximum grip. According to Tables 9 and
10, this pattern holds for all legs but is less pronounced
in the hind legs. Moreover, the γ joint angle increases
during swing in the front legs while decreasing in the
hind legs, with no specific encoding observed in the mid-
dle legs. This effect is similar but inverted for the β
joint.

5.5 Layer Four: Posture Layer

The posture layer was designed to serve two primary
functions: one, to host an interneuron that spikes dur-
ing climbing, and another to estimate body pitch. This
layer received input from the movement primitive neu-
rons of all six legs. The current work improves on Co-
hen’s work by constructing the layer with spiking neu-
rons rather than a deep neural network.

The performance of the climbing classifier is reduced
significantly by just a few occasional spikes that fire at
the wrong time (Figure 18B). This is a consequence of
how the bins were counted. The MCC of 0.59 was there-
fore lower than realistic. During periods of high body
pitch, the number of spikes increased rapidly, poten-
tially making the climbing classifier a reliable indicator
for climbing in the stick insect. However, a similar re-
sult could be obtained from attaching a high pass filter
to the body pitch estimator neuron. Table 12 shows
that the the front and middle legs contribute more to
the climbing classifier, contrary to the findings of Gollin
and Dürr (2018) [11], where the middle and hind legs
were reported to have the greatest influence on body
pitch. This result does confirm the suspicions raised by
Cohen regarding the front legs in the discussion section
of his thesis: ”It would be interesting to identify the con-
tribution weight of different legs. The front legs might be
thought to propagate more important information, since
they are the first to be used during the climbing behav-
ior.”

The body pitch estimator exhibited an error equiv-
alent to the original body pitch when subjected to 28%
Gaussian noise. This corroborates findings from previ-
ous studies, suggesting the feasibility of estimating body
pitch from proprioceptive information [11, 12]. More-
over, it adds the premise that body pitch estimation
is achievable using only spiking neurons, thereby fur-
ther reinforcing the idea that neural circuits in the stick
insect can represent body pitch without a dedicated or-
gan. The remarkable accuracy of this result is note-
worthy given that the proprioceptive information passed
through three spiking layers, compounding errors along
the way. Additionally, the simplicity of constructing
the neuron by observing spike behavior from the pre-
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ceding layer and selecting for spike biases underscores
the potential efficiency of such a method. However, de-
spite these advancements, the error remains significant
and can be attributed to the aforementioned factors.
Furthermore, in a real stick insect, additional informa-
tion is gathered from the campaniform sensilla, chordo-
tonal organs, or possibly from other sources besides the
joints. This supplementary information may be essen-
tial, as even with a DNN, previous research has failed to
achieve perfect body pitch estimation solely using tactile
hair proprioceptors [11, 12].

5.6 Future Scope

The present thesis represents an enhancement and ex-
pansion of the SNN initially proposed by Cohen. These
enhancements stem from suggestions by Cohen, further
research, and trial and error. However, there remain
several areas where further enhancements are possible.
Firstly, noise is an inherent aspect of all biological neu-
ronal systems. It is present in every level of the CNS,
from sensory to motor levels. Noise could come from
external vibrations in the tactile hairs or stochastic in-
trinsic electrical fluctuations within the neural network
[76]. Introducing noise into the system could enhance
the claim of biological plausibility of the computational
model. Another point is the sensitivity of the tactile
hairs. The current author believes that the network
performance is compromised by the velocity interneu-
rons due to their limited sensitivity. As these interneu-
rons respond solely during transitions from one receptive
field to the next, their sensitivity is inherently linked to
the number of hairs in the hair plate. Due to the bi-
ologically imposed constraint on the number of tactile
hairs, sensitivity is limited. Therefore, including mod-
els of other types of proprioceptors (e.g. the chordo-
tonal organ) may potentially improve velocity estima-
tion. While the current thesis suggests that the phasic
response of tactile hair can be utilized for velocity esti-
mation, other more specialized proprioceptors might be
more appropriate.

There is also potential for expansion of the proposed
SNN. For instance, the dataset could be modified to
incorporate kinematics data encompassing whole-body
turning. This adjustment would enable the application
of movement-primitive neurons to encode natural turn-
ing, encompassing yaw, and pitch rotations as the ani-
mal maneuvers around a pole. Another extension could
involve spatial transfer of limb information. Dürr and
Schilling (2018) [77] introduced the idea of an affordance
space: ”which is that part of peripersonal space within
which contact-induced spatial estimates lie within the
action ranges of more than one limb. Because the ac-
tion volumes of limbs overlap in this affordance space,
spatial information from one limb can be used to con-
trol the movement of another limb. Thus, it gives rise
to an affordance as known for contact-induced reaching

movements and spatial coordination of footfall patterns
in stick insects” [77]. Integrating this concept into the
SNN could synergize with the movement primitive neu-
rons responsible for encoding phase transitions. For in-
stance, these neurons might signal the optimal timing
for the middle leg to transmit information to the ip-
silateral hind leg, directing it to position its tarsus in
proximity to the middle leg’s current tarsus location.
This would extend the network to include inter-leg co-
ordination.

6 Conclusion

In conclusion, this thesis has successfully illustrated the
feasibility of estimating the body pitch of a stick insect
using distributed proprioceptive information through a
SNN. The biological plausibility of the network corrob-
orates the hypothesis that stick insects rely on proprio-
ceptive cues to estimate body posture without the need
for a dedicated organ. An existing SNN was modified
and extended to simulate tactile hair proprioceptors, de-
scending interneurons (joint angle/angular-velocity es-
timators), primitive interneurons (swing/stance classi-
fiers), and posture neurons (body pitch estimation and
a climbing classifier). Our findings suggest that the po-
sition interneuron performed with an error of approxi-
mately 5% Gaussian noise relative to the ground truth,
improved from 10%. The velocity interneuron’s clas-
sification increased in accuracy from 90.4% to 9.29%
for a novel model and 95.6% for a modified model. A
key change is the ability to increase the firing rate up
to four times. Primitive neurons were optimized to an
average MCC of 0.56 and were found to efficiently en-
code for swing/stance or transition phases. The posture
neuron estimated the body pitch with an average error
of approximately 28% Gaussian noise and the climbing
classifier achieved an MCC of 0.59.

To further strengthen the hypothesis, introducing
noise to the system, inherent in real biological neural
circuits, could be explored. Additionally, expanding
the dataset to include stick insects maneuvering around
a pole would enable the study of movement-primitive
neurons encoding natural turning, including yaw and
pitch rotations. Moreover, exploring the potential for
transition-signaling movement primitive neurons to as-
sist in inter-leg coordination could provide insights into
leg targeting influenced by neighboring legs.

This research holds potential applications in
biomimetic robotics, where distributed proprioception
could enhance substrate variability sensing and improve
inclination estimates, with this thesis serving as a foun-
dational reference. Overall, the findings outlined in this
thesis contribute to our understanding of proprioceptive
mechanisms in stick insects and pave the way for future
investigations in this field.
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