
Backup policies for safe reinforcement learning

in Mario

Bachelor’s Project Thesis

Naut Folkers, s4377354, n.o.folkers@student.rug.nl
Supervisors: J.D. Cardenas Cartagena

Abstract: Is it possible to make a reinforcement learning agent that does not make dangerous
mistakes when learning? The safe reinforcement learning field aims to enhance safety during
the learning phase of RL algorithms. Experiments are performed on the influence of a backup
policy using a one-step actor-critic algorithm to train on Super Mario Bros (NES). The goal is to
return to a safe state when a critical state is encountered. A backup policy takes over when a
critical state is encountered. This policy has an alternate reward function that prioritizes safety
over level progression. Challenges emerge due to the misfit of the one-step actor-critic and the
Super Mario Bros environment, such as policy collapse and incapacity to learn. Due to the lack
of progression in the learning phase, it is impossible to enclose the effect of backup policies on
the learning phase. However, a distinction can be drawn between safety reward functions in the
backup policy. Rewards based on penalizing proximity to threats show more potential for threat
avoidance when compared to rewards empowering maximum distance to threats.

1 Introduction

Reinforcement learning (RL) is a branch of machine
learning (ML) algorithms that focuses on solving
problems that require decision-making in dynamic
environments. RL works by enforcing desired be-
haviors through rewards. These rewards are a
consequence of the actions taken by an agent. The
agent’s goal is to maximize the reward it attains.
To progress towards this goal, it learns to optimize
the actions taken in given situations guided by
these rewards. Multiple RL algorithms exist that
implement this concept using different strategies,
each with respective properties accommodated to
the environment of deployment as described by
Sutton and Barto (2020).
RL researchers have chosen video games as the

test bed for their algorithms. Video games contain
favorable conditions, such as episodic environments.
Progressing through games presents distinct situa-
tions, such as checkpoints or in-game points, which
are suitable as rewards for an agent. Additionally,
games are repetitive and are optimal for gaining
a large number of samples, which is valuable for
model training.

Super Mario Bros is a 2D platform game for the
NES (a game console created by Nintendo). The
goal is to pass the levels by running towards the
flag. Once the flag is reached, progress continues
at other levels. In the final stage, Mario battles
Bowser, his nemesis. The game has been so popular
that new versions of Mario are still released.

Artificial intelligence (AI) advancements in the
research sector have depended on available hard-
ware’s computational power. The shift to GPU
computing made it viable to utilize deep neural
networks (DNNs) as used in the state-of-the-art
Artificial Intelligence algorithms today (Thompson,
Greenewald, Lee, and Manso, 2022). DNNs are
used in RL to learn more complex tasks that re-
quire more complexity to make decisions. Deep
Q Learning (DQN) is a pioneer in deep reinforce-
ment learning as it was one of the first algorithms
to reach human-like performance in Atari games
(Mnih, Kavukcuoglu, Silver, Rusu, Veness, Belle-
mare, Graves, Riedmiller, Fidjeland, Ostrovski,
et al., 2015).

RL can be tested in various games, such as 2D
single-agent Atari games. Those games are a cat-
egory for which Shao, Tang, Zhu, Li, and Zhao
(2019) compared DRL algorithms against a human
baseline. DQN can perform on a human level for 49
tested games in the ALE environment of Machado,
Bellemare, Talvitie, Veness, Hausknecht, and Bowl-
ing (2017). Alterations have been made to DQN
with the goal to enhance performance or to enhance
sample efficiency. The PAAC algorithm performs
sufficiently in games after a few hours of train-
ing. Results show that Ape-x DQfD bench-marked
the best across 42 games with a mean of 2346%
compared to human performance and a median of
702%. One of the strong points of the survey is
the comparison across multiple games, this gives a

1



comprehensive overview of the algorithm’s ability
to perform in different environments. Compared
to NES games such as Super Mario Bros, the Atari
has limited graphics, meaning smaller DNN inputs.

1.1 Safe Reinforcement Learning

This project revolves around safe RL, which is a
subset of RL. The differentiating factor is that
models are not evaluated on their ability to solve
a task but instead on how safely they can learn it.
Safety is defined in this context as the ability to
not end up in a fatal state. A fatal state is relative
to the task and environment. For Mario, a fatal
state would be to die because of an enemy. For an
autonomous helicopter pilot, a fatal state would be
crashing and destroying the helicopter, and an ad-
ditional effect would be the discontinuation of the
training. The difference between the two examples
is that Mario can respawn, so the consequences are
minimal. Contradictory, the helicopter crash is dan-
gerous for the surrounding environment and would
have significant cost consequences. Therefore, the
philosophy behind safe reinforcement learning is to
design safer algorithms using environments with-
out real-world consequences to minimize the risk
of consequences when employed in real-world envi-
ronments.

Traditional RL algorithms use trial and error
to learn the designated task. But trial and error
comes with a significant risk of ending up in a
fatal state. Minimizing this risk gives hope for RL
algorithms to become a safe option for tackling real-
world problems. An ideal safe RL agent will explore
the possibilities for completing a task without the
occurrence of a fatal state during training. To
accomplish safety we can differentiate between 3
types of states: safe states, critical states and fatal
states. A safe state is a state that poses no threat
to the safety of the agent. A critical state is a state
that can transition into a fatal state but it is still
possible to transition back to a safe state, in short,
the agent is in danger but can avoid elimination. A
fatal state is a state in which there is no transition
possible back to a safe state, and failing due to
the opposing danger is imminent. To guarantee
the agent’s safety, it is necessary to identify when
an agent is in a critical state to avoid the fatal
state and transition back to a safe state (Hans,
Schneegaß, Schäfer, and Udluft, 2008).

One of the challenges of RL is the balance
between learning (exploring) and using what is
learned (exploiting). Exploring consists of taking
actions on a random basis to find which actions
yield the maximum rewards for a given situation.
After the optimal action is found, the agent should
exploit this knowledge to gain maximum rewards
for this situation. When an agent mainly explores,

it results in a lack of progress. On the other hand,
doing too much exploiting will restrain the agent
from performing optimally. This balance becomes
even more critical for safe RL because exploration
can result in unforeseen fatal states. However, be-
ing too cautious of unforeseen fatal states will stale
the agent’s progress. A conservative agent is better
than a curious agent because guaranteeing training
continuation is better than exploring too bold and
resulting in fatal states.

The challenge we set for this project is about
finding a way to improve RL safety during training
through the Super Mario Bros Gym environment
(Kauten, 2018). A safety factor will be induced
into the training of our agent. The experiment
will track the death count of our agent to measure
whether the safety factor has the intended effect.
The experiment draws inspiration from the safe
RL strategies presented by Garcıa and Fernández
(2015). Two categories are presented for improving
safety: alternation of the optimization criterion
and alteration of the exploration process. A reg-
ular RL agent’s optimization criterion would be
maximizing the expected reward. However, in this
category, alterations are made to this criterion
to incorporate risk, uncertainty or constraints to
the policy to influence the learning toward a safer
agent. Alternatively, the exploration process can
also be altered by giving the agent prior knowledge.
This prior knowledge is provided to help an agent
avoid apparent mistakes. The agent is less likely
to reach a fatal state when the exploration actively
avoids dangerous parts of the state space. The
methodology in section 3 will present our exact
implementation of the experiments that include
these strategies.

1.2 Related Work

In Liao, Yi, and Yang (2012) an agent is built using
the Q-learning algorithm in a community adapta-
tion of Super Mario Bros containing AI testing
tools created by Adam Dingle (2012). An overlay
grid is used to determine different zones of the
screen. These different ”windows” act as environ-
ment descriptions to convey to the agent whether
enemies are present in the specified windows. A
replay buffer is used to store states which helps the
agent remember previous states. There is also an
environment variable that tells the agent whether
there is an obstacle in front of him. However, there
is no direct safety directive for the project.

Guo, Yu, Lan, and Jin (2023) experimented with
advantage actor-critic in Mario with the goal of
making RL more interpretable. Research is done
on the effect of a reasoner component that could
classify the progress of Mario during an episode.
A hamming window with the shift theory of 2D

2



Figure 1.1: Mario world 1-1 (NesMaps.com)

DFT is used to find the difference between game
frames with seemingly good results. It is concluded
that a reasoner component added to the actor-
critic improves visual interpretation and progress
classification. It would be relevant to this project to
see the reasoner’s performance in the classification
of critical state avoidance done by an agent.

2 Theoretical Framework

2.1 Reinforcement Learning

Reinforcement learning can be formalized in
Markov Decision Processes (MDP) as described by
Sutton and Barto (2020). It is a mathematical for-
mulation for the agent-environment interaction that
RL problems consist of. In finite MDP’s there is a
finite set of states S containing all possible states in
the environment. A finite set of actions A contains
all actions in the action space. A reward function
R where: R : S×A× S′ → R. And the transition
function P that represents the transition probabil-
ity between states where: P : S × A × S → [0, 1].
The MDP can then be described as a set M = 〈S,
A, R, P〉. In addition to this mathematical for-
malization of the interaction, RL adds a goal for
the agent: maximizing the cumulative reward it
receives. Instead of maximizing immediate reward,
which makes an agent shortsighted, the goal is to
perform well overall, which is why future reward
should also be considered. For this, the discount
factor γ is used where γ → [0, 1]. The discount fac-
tor is used to discount the expected future reward,
this will decrease the value of a future reward when
compared to the immediate reward. Using γ values
closer to 1 will result in greater expected future
reward values. Therefore, future rewards are con-
sidered more valuable in this situation compared
to when γ values closer to 0 are used, which would
decrease the expected future rewards to lower val-
ues. How an agent interacts with the environment
is based on the policy. A policy is responsible for
deciding the action based on the state: π : S→ A,
where π is the policy of the agent.

2.2 Deep Reinforcement Learning

Conventional RL can be extended to use deep learn-
ing techniques to learn more complex tasks. Before

deep learning techniques, RL had difficulty with
large feature inputs such as visual inputs that con-
sist of thousands of pixels. The ability to extract
deeper abstractions from input data as is possible
with DNN’s improves the capabilities of RL. Be-
cause the agent in Mario receives frames as input,
these techniques are required to make abstractions
of the vastly dimensional state space of Super Mario
Bros.

2.3 Actor-Critic

Actor-Critic is an algorithm that combines Value-
based and Policy-based methods to get the best
of both. The actor is based on a policy gradient
algorithm that utilizes the parameters of a network
to derive a policy directly. The critic utilizes V-
values originating from value-based algorithms to
produce a value estimation of the state (Francois-
Lavet, Henderson, Islam, Bellemare, and Pineau,
2018). As stated by Konda and Tsitsiklis (1999),
policy-based methods are considered actor-only al-
gorithms and value-based methods are considered
critic-only algorithms. Policy gradient methods
suffer from high variance because they lack mem-
ory replay and use a probability distribution for
action selection which adds stochasticity. Critic
algorithms may succeed in learning good approx-
imation functions but these are described as ”in-
direct” because an optimization problem needs to
be solved to derive a policy. These value-based
methods are required to maximize Q-values and
V-values, when an environment contains a large
state space, this optimization problem is difficult
to solve (Sutton and Barto, 2020). An actor-critic
algorithm aims to use the strong points of both of
the algorithms to perform better overall. It uses
a critic to learn an approximation of a value func-
tion, which gives an informed estimation based on
previously encountered states. This value function
is then used to update the actor parameters. The
actor implements the policy directly in its param-
eters to eliminate the indirectness of only using
function approximation.

The actor-critic algorithm used for this project
is the one-step actor-critic algorithm from Sutton
and Barto (2020) as seen in Algorithm 2.1. It is an
online version of actor-critic, so the parameters are
updated for every step. It uses Temporal Difference

3



Algorithm 2.1 One-step Actor-Critic (episodic),
for estimating πθ ≈ π∗, (Sutton and Barto, 2020)

Require: a differentiable policy parameterization
π(a|s, θ)
a differentiable state-value function parameteri-
zation v̂(s, w)
step sizes αθ > 0, αw > 0
Initialized policy parameter θ ∈ Rd′

and state-
value weights w ∈ Rd (e.g., to 0)
for each episode do
Initialize S (first state of the episode)
while S is not terminal (for each time step)
do
A ∼ π(·|S, θ)
Take action A, observe S′, R
δ ← R+γv̂(S′, w)−v̂(S,w) (if S′ is terminal,
then v̂(S′, w) = 0)
w ← w + αwδ∇v̂(S,w)
θ ← θ + αθδ∇ lnπ(A|S, θ)
S ← S′

end while
end for

(TD) to calculate δ, which is used to calculate the
loss of the critic and the actor. This means that
the discounted expected reward is compared to the
actual reward gained to learn the estimation error
from the value function. Different loss calculations
were used for the actor and the critic. The critic
loss was calculated using the mean squared error
of the temporal difference as shown in (2.1).

Losscritic = (v̂w(s)− (r + γv̂w(s
′)))2 (2.1)

Where v̂ is the value function, r is the reward
gained in the last step, s is the current state and s′

is the next state, w is the current parameterization
of the critic and γ is the discount factor. The actor
loss is calculated using the TD, a decay factor, and
the negative logarithmic probability of the action
taken under the current policy as shown in (2.2).

lossactor = −lnπθ(a|s)(v̂w(s)−(r+γv̂w(s
′)) (2.2)

Where r is the reward gained in the last step, θ is
the parameterized policy of the actor, and π is the
current policy. Additionally, there is the shared
loss, which is the sum of the actor loss and the
critic loss.

3 Methodology

3.1 Mario Environment

To run experiments, the Gym Super Mario Bros
environment from Kauten (2018) is used, which is
based on the RL environment library called Gym by
Brockman, Cheung, Pettersson, Schneider, Schul-
man, Tang, and Zaremba (2016). This environment

allows us to run Mario in a controlled step-wise
manner. It implements the Mario game and pro-
vides a way to communicate with the environment.
Several down-sampled versions of the game can
be chosen, ”V2” was used for the experiments be-
cause it allows for enemy detection and is easier
to interpret for a convolutional neural network, as
displayed in Figure 3.1. The experiments were
performed in World 1-1 as this was enough of a
challenge, and switching between worlds or lev-
els during training meant that the colors in the
frames changed, which could make it harder for the
agent to recognize its environment. Tools in the
environment equip the agent with step-wise action
selection. It is equipped with a reward function.
Rewards consisted of:

• Positional reward: the difference in Mario’s
position between steps in pixels to the right is
given.

• Clock reward: the negative difference in clock
reading between steps is given.

• Death penalty: for dying the agent receives a
death penalty of -15.

To clarify, the agent receives a negative reward
for moving to the left, 0 for not moving and a
positive reward for moving to the right. For ev-
ery tick on the clock that goes down in a step,
the agent receives a negative reward, according to
the environment documentation this is to prevent
standing still. The maximal and minimal reward an
agent can receive from the environment is clipped
between (-15, 15). Finally, the relevant status up-
dates received from the environment after taking
a step include: whether Mario finished the level,
the number of lives left, the x-position in the level,
the y-position in the level, the x-position from the
left side of the screen in pixels. The last x-position
is not available in all environment versions but is
easily added by a slight modification in the library.

Mario’s action space is reduced to two inputs.
The set of actions: A = 〈〈Right 〉, 〈Right+ Jump
〉〉. These actions are the two only options required
by the agent to finish the level.

The state space S is defined such that s ∈ S is a
3-dimensional tensor. This tensor has dimensions
4× 84× 84 with a normalized pixel value between
0 and 1. Each state s ∈ [0, 1]4×84×84, where 4
represents the 4 frames stacked together and 84×84
are the height times width of each frame.

3.2 Preprocessing

The input the agent receives from the environment
is preprocessed frames from the game. Firstly, the

4



Figure 3.1: A frame displaying the starting
position of Mario in the ”V2” simplified version
of the environment

environment is wrapped to skip frames. It is im-
plemented so that four frames are managed during
a step. The rewards gained during these skipped
and observed frames are summed into one reward
that is returned after each step. The second step of
preprocessing is a grayscale wrapper. This applies
to observations, its colors are mapped to grayscale.
This reduces the color dimensions of the observa-
tion from 3 dimensions to 1 dimension. After this,
the observations are resized to reduce input dimen-
sions. The frame’s dimensions are downscaled from
256×240 to 84×84. During this step, the pixel
values are normalized from a 0-255 range into a 0-1
value range. Finally, the four frames that occurred
during the step are combined into one observation,
from this observation a sense of direction can be ob-
served by the agent. To illustrate, when the agent
jumps, the first frame in the observation would
still display Mario on the ground, while the last
frame would show Mario in the air. An example of
a processed observation from the environment can
be seen in Figure 3.2.

3.3 Model Architecture

The implementation of the network was done in
PyTorch the library from Paszke, Gross, Massa,
Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein,
Antiga, Desmaison, Kopf, Yang, DeVito, Raison,
Tejani, Chilamkurthy, Steiner, Fang, Bai, and
Chintala (2019) using Python 3.10.4. The GPU-
accelerated version of PyTorch was used to run the
network from a GPU to speed up the training. The
model used is a combination of a shared layer part
consisting of convolutional layers and linear layers.
On top of that, there are two separate heads, one
for the critic and one for the actor. Outputs from

the shared layers are forwarded through both of
the heads but the output of both heads does not
influence the other head. Table 3.1 gives a tech-
nical summary of the architecture. A graphical
construction of the network to illustrate the flow
from the shared layers into the individual heads of
the actor and the critic can be seen in Figure 3.3.

Under parts of the network, three parts are con-
sidered: the shared layers, the actor head and the
critic’s head. all parameters of these parts are up-
dated at once using the shared loss. The shared
loss is the sum of the actor’s and critic’s losses.
These losses are optimized by back-propagating
through both heads and the shared layers at the
same time.

3.4 Experimental setup

Safety in RL is the focus of this project, therefore
an experiment was done to see if the learning phase
could be made safer in Mario. There are three ways
the agent (Mario) could die during the level:

• Walking into a Goomba

• Walking into a Turtle

• Falling into a pit

Prior knowledge is induced into the agent by im-
plementing a detector for the Goomba and the pits.
Turtles were not considered for this experiment.
Critical states were marked when the agent was
within a specific ϵ-distance range of an enemy. The
experiment is called backup policies because the
agent would have a policy that was used only when
in a critical state, so near a goomba or a pit. The
idea is to have a normal policy that tries to finish
the level and a policy that tries to keep the agent
away from fatal states. In this distance, the reward
is modified to become a safety reward. Experi-
ments were done with two modified safety rewards,
a positive version and a negative version. The posi-
tive version gives more reward when the distance is
greater within the critical range of ϵ, with the idea
of promoting distance (3.1). The negative version
gives a negative reward proportional to the inverse
distance within the critical range of ϵ, with the
idea of penalizing proximity to threats (3.2).

SRpos = (1− λ)Rnormal + λ ∗Distance (3.1)

SRneg = −ϵ+(1−λ)Rnormal+λ∗Distance (3.2)

SR is the safety reward denoted by pos for the
positive version and neg for the negative version.
λ is a balance factor to balance the ratio between
normal reward and distance as part of the safety
reward. Rnormal is the reward that is gained from
the environment. Distance is the pixel distance

5



Figure 3.2: Example of a preprocessed observation.

Figure 3.3: Model architecture for the Actor-Critic agent

measured by the detectors between the agent and
the closest threat in Euclidean distance:

Distance =
√
(xmario − xthreat)2 + (ymario − ythreat)2

(3.3)

3.5 Enemy & Distance Detection

To identify critical states and initiate a policy
switch, detectors must be used to find and extract a
distance from the environment. Part of the informa-
tion is accessible through the Mario environment.
At every step, info is returned where the y pos and
x left keys are used to extract Mario’s position
in the frame. Because the size of the frames was
reduced these values have to be scaled accordingly,
equations (3.4) and (3.5) are used for this.

yposnew =
yposold − 32

3
(3.4)

xposnew = 2 + xposold ∗ 0.35 (3.5)

In (3.4), the number 32 is subtracted, this value was
found to be added to the vertical position of Mario
as registered in the environment. This was not the
case visually, therefore it had to be accounted for
before scaling the position. For (3.5), the scaling
factor to go from 240 pixels to 84 pixels is 0.35.

When x left value is disabled, it must be acti-
vated manually so that it returns this private mem-
ber through the info function of the environment.
After acquiring Mario’s horizontal and vertical po-
sitions, they are used as Mario’s coordinates for
distance measurement.

3.5.1 Goomba’s

Goomba’s are the first threat that Mario encounters
in the level. To detect them, the frame of the
current state is cut so that only the relevant parts
remain. Therefore, the ground (11 pixels high)
and a part of the sky (24 pixels high) are cut off,
this way the search area is reduced. Analysis of
the frames showed that the feet of the goomba
contain a unique color. The cut frame was masked
so only pixels between the normalized color range
[0.76, 0.77] remained, and all other values were set
to 0. The remaining color is the exact unique color
found on the goomba. To extract coordinates from
the frame the nonzero function from PyTorch was
used. These coordinates are checked to see whether
they have a horizontal neighbor. In case there are
horizontally neighboring coordinates, a goomba
is detected. If there are no neighbors or vertical
neighbors, it is a false detection of an anti-aliased

6



Table 3.1: Pytorch Architecture of the Neural Network

Layer Type Input Output Kernel Size Stride Part
1 Conv2d + ReLU 4×84× 84 32×20× 20 8×8 4 Shared
2 Conv2d + ReLU 32×20× 20 64×9× 9 4×4 2 Shared
3 Conv2d + ReLU 64×9× 9 64×7× 7 3×3 1 Shared
4 Flatten 64×7× 7 3136 Shared
5 Linear + ReLU 3136 512 Shared
6 Actor Linear + Softmax 512 2 Actor
6 Critic Linear 512 1 Critic

Figure 3.4: Processing pipeline for goomba detection. In short, first cut the frame, then mask for
certain pixel values, and lastly, extract coordinates.

piece of the bush from the background. Finally, all
detected goomba’s Euclidean distances to Mario
are compared. The smallest distance is compared
to the ϵ-distance for critical state evaluation. A
visual representation of the process is displayed in
Figure 3.4.

3.5.2 Pits

Pits are the second obstacle found in the game,
and it is difficult for an agent to avoid falling to its
death. To detect pits the frame is cut so that only
the two top pixels of the ground remain (counted
from the bottom the 10th & 11th pixel). Only the
pixels containing higher x-coordinates than Mario
are considered. Mario can only move right so
considering passed pits is unnecessary, so the left
side is omitted. The ground in the environment
always has the same color value. Therefore, that
normalized color is subtracted from the cut frame:
Frame− 0.4863. If all pixels are now 0, which is
black, then it means there is only ground in this
part of the frame, so there is no pit. If there are
nonzero pixels, there is a pit, and the coordinates
can be extracted again using the nonzero function
as used before for the goomba’s. The closest part
of the pit is extracted first, so no comparison has
to be made between the pixels’ distances to Mario.
From this first coordinate, the Euclidean distance
is compared to the ϵ-distance for critical state
evaluation. Figure 3.5 displays a visual summary

of this process.

Once either a pit or a goomba is within ϵ-distance
of Mario, a flag is raised that switches to the safety
policy. The agent does not receive the input as a
feature but due to the policy switch, the rewards
are guiding the agent to avoid threats instead of
level completion.

3.6 Hyperparameters

It is essential to tune hyperparameters to maximize
the results of an agent. A lot of tuning was done
and the hyperparameter values used for our exper-
iments are presented in Table 3.2. The learning
rate was adjusted manually by checking the train-
ing data on test runs. Due to the computationally
heavy aspect of this project, it was not manageable
to run a grid search across hyperparameter space.
The main criterion for tuning the learning rate was
avoiding policy collapse. Using greater learning
rates caused the policy to collapse more often and
also earlier. Taking a smaller learning rate means
slower learning times, and since this project suffers
from a lack of learning ability, it was questionable to
pick such a small learning rate. However, a greater
learning rate (0.0001) with more episodes (40000)
did also not show the ability to learn, therefore it
was decided to minimize collapses. The discount
factor (γ) was also hand-picked, different values

7



Figure 3.5: Processing pipeline for pit detection. In short, first cut the frame, then subtract ground
pixel values and lastly, extract coordinates.

Table 3.2: Hyperparameters

Hyperparameter Value
Learning rate 0.00000001
discount factor (γ) 0.99
ϵ-distance 20 pixels
safety reward balance factor (λ) 0.99
Environment V2
Level 1-1
Action Space [[right + jump], [right]]
Frame skips 4
Lifes 3 (standard)
episodes 15000

ranging between 0.85 and 1 were tested and it was
found that the agent would get stuck earlier in the
level for lower values. Therefore 0.99 was chosen,
this value is used in the field often. A requirement
for the ϵ-distance is that the safety agent always has
enough time to avoid threats. To find this range
a heuristic of prerecorded inputs was created that
maneuvers around the threats from the moment it
was activated. Then, the ϵ-distance was tuned up-
wards from a value of 7 pixels until the point where
it would never fail to avoid the threat in time, this
distance is 20 pixels in Euclidean distance. For the
balancing factor of the safety reward (λ), it was
found that an increased influence of the safety re-
ward caused more change in behavior by the agent.
Environment ”V2” was picked because ”V0” and
”v1” were slower to run and ”V3” was simplified
to a point where no goomba detections were pos-
sible. Level 1-1 was used because goomba’s were
distinguishable and it is easier than other levels.
15000 episodes were used because this was around
24 hours of training time. The parameters required
a lot of testing which is not manageable to do when
an experiment takes four days to run, tests were
done on longer experiments but the trends did not
change much in the last 20000 episodes of a 40000
episode experiment, except for sudden collapses.

4 Results

The experiments were intended to test whether a
switch in policies made the learning phase safer
in terms of fatal states. However, the agent did
not show an upward trend in reward for any of
the situations tested. The configurations were as
follows:

• An agent with only a normal policy.

• An agent with only a safety policy that took
over from a random agent.

• An agent with both a safety and a normal
policy that switches depending on the state
status.

The active policy depends on the agent’s distance
from a threat. When Mario is within ϵ-distance
of a threat then the safety policy is active. When
Mario is outside ϵ-distance to a threat, the normal
or random policy is active depending on which
configuration is running.

π(at|st) =

{
πnormal(at|st) distance > ϵ

πsafety(at|st) distance <= ϵ

In this equation, π is the active policy. a is an
action such that a ∈ A, s is a state such that s ∈
S. Lastly, t denoted the current time step. When
the safety policy is used together with a random
agent, this random agent replaces the domain of
the normal policy.
Figure 4.1 shows an overview of these different

configurations. Both policies that use a backup pol-
icy were tested on a negative and a positive safety
reward function. The only signs of improvement in
policy were found in the normal + negative safety
policy agent and the normal-only agent. However,
these signs are observed as a trend in the logged

8



Figure 4.1: An overview of the three combinations of policies used in the experiments.

data but did not show an improvement in the abil-
ity to play the game. For the normal agent, it is
observed that it starts with a base reward level.
Later it unlearns to acquire this reward level, and
then relearn its previous base level again. There-
fore, it could be stated that there was a form of
learning but not an improvement in ability. The
reward is observed to decrease for the normal +
negative safe agent. However, it is the only exper-
iment run where there is an improvement in the
survival rate of critical states. Adding to this ob-
servation, it must be stated that the level at which
it learns to survive critical states is similar but
higher than the base level of other agents. These
other agents did not show to have learned this but
might have had favorable initial runs in which they
managed to survive by almost random action. An
experiment was run on a completely random agent
and it showed to be unexpectedly good. Because
the action space only contains a form of running
or running and jumping simultaneously, the ran-
dom agent jumps about half the time, which is
a good strategy for Mario. It can be speculated
that this partially explains problems encountered
during other runs of the experiment.

Figure 4.2: Average reward per episode com-
pared by agent configuration.

The agent seemed to have trouble with improve-
ment, but other problems were observed as well.

Figure 4.3: Average critical state survivals per
episode compared by agent configuration.

Figure 4.4: Average Safety reward per episode
compared by agent configuration.

When the experiment runs were extended with
more episodes there were either two outcomes. Out-
come one: the agent did not improve and did also
not recede, progress in terms of reward was hor-
izontal. Outcome two: the agent had horizontal
progress, until the sudden collapse into a bad pol-
icy. In the second case, the evaluation of the model
shows that the agent gets stuck at the first or second
green pipe. The probability distribution has shifted
towards one of the two inputs. The other action
has a probability of around π(a|s) = 1.212× 10−10

to be selected. In the case where right + jump

9



was the action chosen all the time, it would cause
an inability to jump. This is because after landing
a jump it is required to let go of the jump but-
ton first to be able to jump again. If no pause
in jumping occurs, the effect of right + jump af-
ter the first jump is the same as right. In the
other case of right, the agent is guaranteed to
die or get stuck on the next obstacle. Efforts to
prevent these outcomes include: tuning the learn-
ing rate up and down, tuning the discount factor
up and down, switching between model optimizing
methods, trying SmoothL1Loss for the critic, using
xavier uniform algorithms for the initialization
of the network parameters, freezing shared layer
parameters, using different action spaces, using
a different down-sampled version of the environ-
ment, enabling and disabling the discount factor
(I from Algorithm 2.1) and prolonged experiments.
An interesting observation shown in Figure 4.6 is
that the total death count between the agents was
identical except for the normal + safety (negative)
agent. This agent learned to get stuck on a pipe, it
can be argued that this is the result of a negative
reward when a threat is encountered further in the
level. Its behavior is to jump over the first goomba
and then run against a pipe until the timer runs
out.

Figure 4.5: Collapsing policy problem.

Figure 4.6: Total deaths compared to episodes.
The normal + safety (negative) agent avoids
death by getting stuck and running out of time.

Tuning the learning rate down delayed policy
collapse or resulted in outcome one. This can be
explained because it takes more wrong steps dur-
ing back-propagation to reach another policy as
opposed to a higher learning rate where a smaller
amount of updates could result in a model with
a collapsed policy. Freezing shared layer parame-
ters had the same effect but reservoir computing
(Lukoševičius and Jaeger, 2009) was not intended
to be part of the project but rather an experiment
on whether it affected learning. An explanation
for this is that the shared layers are a large part
of the architecture, if learning is disabled in these
parameters the collapse would take longer to arise
from only updating the parameters of the heads.
The other efforts showed no notable effects, policy
collapse occurred even earlier or outcome one or
two was observed. Another potential explanation
for the policy collapse is the balance between actor
loss and critic loss. Konda and Tsitsiklis (1999)
stated that the actor parameters might need to
be updated on a slower time scale than the critic
parameters in case problems arise. Two methods of
model optimization were tested, one in separation
and one over all the parameters at once. When
the parameters are all updated at once, there is
no control over the learning rate of the individ-
ual heads. Secondly, tuning the balance of their
respective learning rates tends to be complicated.
Analysis of the logged data from the experiments
shows that the critic loss is way higher than the
actor loss which means that most of the layers are
only updated on the loss of the critic, the actor
loss is too small to impact the total loss.

These results conclude that this implementation
of actor-critic is not a good fit for the assigned task.
Its instability during learning makes it difficult to
get reliable results on the intended backup policy
experiment. When an agent cannot learn the task,
it has to be taken into account that this could
also be the case for the safety task. Unfortunately,
because of the inconsistent and unstable learning
behavior that is observed, it is difficult to test the
cause of the issue. In some cases, two experiments
with the same agent configuration and hyperpa-
rameters differ a lot in the resulting policy. The
only consistent result observed was that there was
no experiment run where the agent made progress
toward earning more rewards.

5 Discussion

This research should conclude whether a backup
policy makes the training of a RL agent safer. To
derive an accurate answer, it is necessary to com-
pare the learning of an agent with a backup policy
and the learning of an agent without a backup pol-
icy. This is not what the results show, the results

10



show that the agent is not capable of improving
its policy under the conditions used during the
experiments. Concluding the research question is
not possible, but differences are observed during
the experiments. Positive safety reward functions
do not show differences when compared to non-
backup-policy agents in the used setup. The agent
with a negative safety reward function shows more
potential for further research because a distinct
pattern was observed from the training data. It
showed an improvement in average critical state
survivals. The learning instability made it hard
to get consistent results for hyperparameter tun-
ing. Because this environment was computationally
heavy to run, performing an automatic grid search
over hyperparameter space with the resources at
hand was impossible. Issues with server availability
have made it increasingly challenging to conduct
experiments to improve learning ability. When an
agent updated a policy such that it got stuck at
someplace in the level, it increased episode times.
These increased episode times resulted in the early
termination of the experiment due to server limita-
tions. This also explains the inconsistent episode
count of the graphs 4.2, 4.3 and 4.4, shown in the
results section.

Due to the unforeseen learning implications, it
is now more important to analyze what caused the
instability during learning. As mentioned earlier,
the balance between actor and critic learning rates
is a concern for the problem. Comparison between
the actor loss and the critic loss shows that the
actor loss is virtually not contributing to the total
loss. Actor loss starts in a range from -4 to 8 and
converges to a range between -1 and 1. Critic loss
starts in the range from 0 to 200 and explodes to a
range between 0 to 4000, depicted in Appendix A
(Figures: A.1, A.2 and A.3). This tells us that the
critic is contributing massively to the parameter
updates of the model. This could further destabilize
the learning when the gradient descent overshoots
the desired direction. The learning rate used was
small to mitigate the effects of this phenomenon.
This resulted in delayed or complete avoidance of
policy collapse. However, a small learning rate
greatly affects the sample amount needed to learn
and the signs of mitigated learning combined with
a small learning rate are not ideal.

Using only an individual environment to learn
from also makes learning unstable. This is why
the A3C algorithm updates the policy based on
the performance of multiple environments (Mnih,
Badia, Mirza, Graves, Lillicrap, Harley, Silver, and
Kavukcuoglu, 2016). In their paper, it is stated
that online RL algorithms are unstable without
utilizing batched inputs. To make the algorithm
online without experience replays, a collection of
asynchronous environments is used to learn from.

The distribution of experience over multiple sce-
narios makes the weight updates more robust. Our
problems would benefit from this idea because the
policy collapses after a series of bad updates. These
bad updates are based on the rewards obtained
from only one environment. By basing the algo-
rithm for Mario on a more stable algorithm it is
easier to see the full effect of a backup policy when
it is not hindered by the stochastic outcomes of
only one environment, averaging multiple stochas-
tic outcomes brings the policy to a better-suited
update. Li, Bing, and Yang (2018) also states that
the correlation of the sequential data is a cause of
instability for on-policy actor-critic algorithms.

The shared layers in the network architecture
have the purpose of learning patterns in the visual
input data. However, the agent seems to learn a
policy too fast to have a grasp of the environment
(policy collapse), or it shows no learning at all. The
balance between actor and critic could be an im-
portant factor that does not work for the particular
setup presented. Additionally, the balance in the
learning rate of the shared layers compared to the
actor and critic heads could also be a factor in the
problem. The reservoir computing experiment at
evaluation was observed to dodge obstacles such
as pipes. This is done without adapting the shared
layers responsible for visual pattern recognition.
This shows that the two heads were able to select
action without adapting the patterns in the CNN’s
to the environment. A question that arises from
these observations is whether the learning rate of
the visual patterns in the data is too slow or too
fast compared to the learning rate of the two heads
of the actor-critic algorithm. Li et al. (2018) states
that shared architectures for actor-critics perform
better than separate architectures. However, when
the imbalance between the learning rates of the
components is a problem, it is easier to tune two
separate networks.

5.1 Future Research

The experimental setup used has not utilized aware-
ness of obstacles as a feature. Liao et al. (2012)
uses a feature that gives the agent more informa-
tion about its surroundings and the proximity of
game elements. An agent that shows no learning
could potentially benefit from more information
regarding its surroundings.

Utilizing a stabler RL algorithm to do exper-
iments on backup policies can give more insight
into its influence during the learning phase. Fur-
thermore, backup policies could be implemented in
different ways. An experiment about implementing
it as a feature in the network could be interest-
ing. During this project, the backup policy was
trained during the training of the normal agent. It

11



would be interesting to see what the effects of a
pre-trained safety policy would have on the training
of a normal policy.

The reward function of the backup policy showed
different results. Punishing the proximity to a
threat seems to have more potential compared to re-
wards that reward maximizing distance to a threat.
Currently, no advanced methods are utilized to
reward the agent for successfully evading a threat.
However, generating an advanced safety reward
system could be more effective than the proposed
methods.

6 Conclusion

This study focused on the effect of a backup policy
takeover to promote safety during training using
an actor-critic algorithm. Results show no benefits
of training a safety policy that rewards keeping dis-
tance from threats during the training of a normal
policy in Super Mario Bros. There are hints in
the observed training data that punishing proxim-
ity to threats using an alternate reward function
could improve safety during training, but further
steps are required to provide closure. The one-step
actor-critic algorithm is not well suited to use as
a base for experiments in the Super Mario Bros
environment. The unstable learning that results
in policy collapse makes it impossible to provide
reliable data for exploring safety options during
training. Furthermore, often before policy collapse
or when policy collapse was not an issue, no signs
of learning were observed from the data. Further
Research needs to be done on an agent that shows
learning to attain conclusive results on the effect
of backup policies during the learning phase.

References

Ugur Doga Sezgin Jan Jones Adam Dingle,
Jakub Gemrot. Github - medovina/marioai:
Super mario implementation for experimenting
with ai algorithms in java. https://github.

com/medovina/MarioAI, 2012. (Accessed on
03/19/2024).

Greg Brockman, Vicki Cheung, Ludwig Petters-
son, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.
URL http://arxiv.org/abs/1606.01540. cite
arxiv:1606.01540.

Vincent Francois-Lavet, Peter Henderson, Riashat
Islam, Marc G. Bellemare, and Joelle Pineau. An
Introduction to Deep Reinforcement Learning.
Foundations and Trends® in Machine Learning,
11(3-4):219–354, 2018. ISSN 1935-8237, 1935-
8245. doi:10.1561/2200000071. URL http://

arxiv.org/abs/1811.12560. arXiv:1811.12560
[cs, stat].

Javier Garcıa and Fernando Fernández. A com-
prehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):
1437–1480, 2015.

Muzhe Guo, Feixu Yu, Tian Lan, and Fang Jin. Ad-
vantage Actor-Critic with Reasoner: Explaining
the Agent’s Behavior from an Exploratory Per-
spective, September 2023. URL http://arxiv.

org/abs/2309.04707. arXiv:2309.04707 [cs].

Alexander Hans, Daniel Schneegaß, Anton Maximil-
ian Schäfer, and Steffen Udluft. Safe exploration
for reinforcement learning. In ESANN, pages
143–148, 2008.

Christian Kauten. Super Mario Bros for OpenAI
Gym. GitHub, 2018. URL https://github.

com/Kautenja/gym-super-mario-bros.

Vijay Konda and John Tsitsiklis. Actor-critic algo-
rithms. Advances in neural information process-
ing systems, 12, 1999.

Shangda Li, Selina Bing, and Steven Yang. Distri-
butional advantage actor-critic, 2018.

Yizheng Liao, Kun Yi, and Zhe Yang. CS229 Final
Report Reinforcement Learning to Play Mario.
2012.

Mantas Lukoševičius and Herbert Jaeger. Reser-
voir computing approaches to recurrent neural
network training. Computer science review, 3(3):
127–149, 2009.

Marlos C. Machado, Marc G. Bellemare, Erik
Talvitie, Joel Veness, Matthew J. Hausknecht,
and Michael Bowling. Revisiting the arcade
learning environment: Evaluation protocols
and open problems for general agents. CoRR,
abs/1709.06009, 2017. URL http://arxiv.org/

abs/1709.06009.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement
learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adrià Puigdomènech Badia,
Mehdi Mirza, Alex Graves, Timothy P. Lill-
icrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep
reinforcement learning, 2016.

NesMaps.com. Super mario brothers -
world 1-1 nintendo nes map. https:

//nesmaps.com/maps/SuperMarioBrothers/

12

https://github.com/medovina/MarioAI
https://github.com/medovina/MarioAI
http://arxiv.org/abs/1606.01540
https://doi.org/10.1561/2200000071
http://arxiv.org/abs/1811.12560
http://arxiv.org/abs/1811.12560
http://arxiv.org/abs/2309.04707
http://arxiv.org/abs/2309.04707
https://github.com/Kautenja/gym-super-mario-bros
https://github.com/Kautenja/gym-super-mario-bros
http://arxiv.org/abs/1709.06009
http://arxiv.org/abs/1709.06009
https://nesmaps.com/maps/SuperMarioBrothers/SuperMarioBrosWorld1-1Map.html
https://nesmaps.com/maps/SuperMarioBrothers/SuperMarioBrosWorld1-1Map.html
https://nesmaps.com/maps/SuperMarioBrothers/SuperMarioBrosWorld1-1Map.html


SuperMarioBrosWorld1-1Map.html. (Accessed
on 02/15/2024).

Adam Paszke, Sam Gross, Francisco Massa,
Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances
in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.
URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan
Li, and Dongbin Zhao. A Survey of Deep Re-
inforcement Learning in Video Games, Decem-
ber 2019. URL http://arxiv.org/abs/1912.

10944. arXiv:1912.10944 [cs].

Richard S. Sutton and Andrew Barto. Reinforce-
ment learning: an introduction. Adaptive com-
putation and machine learning. The MIT Press,
Cambridge, Massachusetts London, England, sec-
ond edition edition, 2020. ISBN 978-0-262-03924-
6.

Neil C. Thompson, Kristjan Greenewald, Kee-
heon Lee, and Gabriel F. Manso. The
Computational Limits of Deep Learning, July
2022. URL http://arxiv.org/abs/2007.

05558. arXiv:2007.05558 [cs, stat].

13

https://nesmaps.com/maps/SuperMarioBrothers/SuperMarioBrosWorld1-1Map.html
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1912.10944
http://arxiv.org/abs/1912.10944
http://arxiv.org/abs/2007.05558
http://arxiv.org/abs/2007.05558


A Appendix

Figure A.1: The actor loss compared for the
different agent configurations.

Figure A.2: The critic loss compared for the
different agent configurations.

Figure A.3: The shared loss compared for the
different agent configurations.

14


	Introduction
	Safe Reinforcement Learning
	Related Work

	Theoretical Framework
	Reinforcement Learning
	Deep Reinforcement Learning
	Actor-Critic

	Methodology
	Mario Environment
	Preprocessing
	Model Architecture
	Experimental setup
	Enemy & Distance Detection 
	Goomba's
	Pits

	Hyperparameters

	Results
	Discussion
	Future Research

	Conclusion
	Appendix

