
Safe Deep Reinforcement Learning for Super

Mario Bros using Heuristics

Bachelor’s Project Thesis

Amir Abdul Aziz, s4019555, a.abdulaziz@student.rug.nl
Supervisors: J.D. Cárdenas Cartagena

Abstract
This thesis explores the integration of heuristic safety mechanisms within Deep Reinforcement

Learning (Deep RL) frameworks to enhance agent survival in the complex, dynamic environment
of Super Mario Bros. We examine the influence of heuristic-augmented Actor-Critic models on
agent behavior, particularly in terms of safety without compromising learning efficiency. The
study compares various configurations, including separate and shared neural network architectures
and different combinations of frame stacks for the input layer. It quantitatively measures survival
rates, highlighting a significant improvement in avoiding fatal encounters with the most effective
configuration around the 10000th episode mark. However, these safety mechanisms may also
constrain exploration and long-term reward optimization. Despite achieving a stable survival
pattern and a consistent minimum mean loss, a tension between safety and reward maximization
is evident. This work contributes to the domain of Safe RL, emphasizing the nuanced trade-offs
in stochastic gaming environments.

1 Introduction

Reinforcement Learning (RL) embodies a specific
approach within the field of artificial intelligence,
aiming to equip agents with the capability to learn
optimal behaviors through autonomous interaction
with their environment. This learning paradigm,
distinguished by its use of a reward function as a
feedback mechanism, allows agents to choose ac-
tions that maximize cumulative rewards over time.
The significance of RL extends beyond theoretical
interest, finding practical applications in domains
ranging from robotics to complex game environ-
ments (Kober, Bagnell, and Peters (2013)).

Video game environments, exemplified by the
OpenAI Gym interface introduced by Brockman
et al (2016), offer a perfect ground for the appli-
cation and testing of RL algorithms. These simu-
lated settings provide controlled, yet challenging,
arenas where RL agents can be trained, tested,
and optimized without the constraints and unpre-
dictability of real-world environments. The inher-
ent continuous and dynamic nature of such games,
combined with the essential requirement for real-
time decision-making, highlights the critical de-
mand for sophisticated RL strategies tailored to
manage complex, sequential decision-making tasks.
The actor-critic method, while a significant inno-
vation within the RL framework, was not the first
to make impactful strides in video game environ-
ments, such as those represented in the OpenAI

Gym. It was not until 2016, that adaptations
of the actor-critic method, specifically the Asyn-
chronous Advantage Actor-Critic (A2C) algorithm,
began to show promise Mnih, Badia, Mirza, Graves,
Lillicrap, Harley, Silver, and Kavukcuoglu (2016).
These methods were built upon the foundation laid
by DQNs, offering an architecture that integrated
the strengths of both policy-based and value-based
approaches to address the nuanced challenges of
such environments. Therefore, while the actor-
critic approach now stands as a robust framework
for enhancing learning dynamics, it represents a
continuing evolution in the search for more efficient
and nuanced reinforcement learning processes.

The actor-critic architecture, introduced by
Konda and Tsitsiklis (1999) branches the learn-
ing process into two interconnected components:
the actor, responsible for policy execution by se-
lecting actions, and the critic, which evaluates the
actions taken by the actor based on the received
reward signal. This division not only accelerates
the learning process, by using the value function
to adjust the policy directly but also enriches the
agent’s ability to navigate complex decision spaces,
using the critic’s evaluation to identify which ac-
tions lead to better long-term outcomes. The utility
of this method combined with Deep Reinforcement
Learning is particularly shown in environments
characterized by high-dimensional state and ac-
tion spaces, such as those encountered in video
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games, where traditional RL approaches face scal-
ability challenges. However, optimizing long-term
outcomes sets the stage for addressing one of the
most critical challenges in Reinforcement Learning:
ensuring safety in decision-making.

The integration of Safe Reinforcement Learning
(Safe RL) principles, as surveyed by Garcıa and
Fernández in their seminal 2015 work, marks a
pivotal advancement in the field of Reinforcement
Learning, introducing a nuanced layer of safety to
the domain. This safety arises from the funda-
mental requirement that RL agents must not only
strive for optimal performance in their learning
progress but also strictly adhere to a set of safety
constraints. This dual mandate is particularly crit-
ical in applications where the agent’s actions have
real-world consequences, and unforeseen behaviors
can result in adverse or even catastrophic outcomes.
Applications ranging from autonomous vehicular
navigation to robotic surgery and financial trading
systems underscore the imperative of integrating
safety within the RL framework.

The challenge, as Garcıa and Fernández artic-
ulate, lies in maintaining the delicate balance be-
tween exploration and exploitation—an intrinsic
aspect of Reinforcement Learning—while ensuring
that the agent’s actions remain within a safe oper-
ational envelope. This involves the agent learning
to navigate its environment and improve its pol-
icy based on trial and error, without engaging in
actions that could lead to fatal states.

In this research, we focus on the application of
Safe Deep Reinforcement Learning, specifically the
actor-critic algorithm, within the intricate video
game environment of Super Mario Bros. We will
be exploring dual-architecture systems that feature
both separate and integrated networks for the actor
and critic. We aim to enhance learning efficiency
and ensure safe interactions within the game. More-
over, employing heuristics for safety—such as prede-
fined actions when a danger threshold is met—this
research navigates the challenges of integrating
safety constraints within the high-dimensional, dy-
namic task, Super Mario.

1.1 Motivation

The interest behind this research stems from the
inherent complexity and unpredictability of video
game environments, which present significant chal-
lenges for the application of Reinforcement Learn-
ing. Video games, particularly those with intri-
cate dynamics like Super Mario, require agents to
make decisions in real-time within highly variable
contexts (Shaker, Togeliu, et al. (2011)). This un-
predictability necessitates algorithms that can not
only learn and adapt to a wide range of scenarios
but also do so safely.

The integration of safety mechanisms within RL
algorithms is crucial, as it ensures that the agent’s
exploration of its environment does not lead to un-
desirable or fatal outcomes. Such safety measures
are especially pertinent in environments where the
cost of errors or the unpredictability of situations
could significantly impact the learning process or
the outcome. This research aims to address these
challenges by exploring the application of Safe Deep
RL, using the actor-critic method, to navigate the
complexities of dynamic game environments while
ensuring safe interactions. The necessity for this
study is underscored by the potential of Safe RL to
enhance the efficacy and applicability of RL in not
only gaming but also in broader domains where
safety and adaptability are paramount.

1.2 State of the Art in Safe Rein-
forcement Learning

The current state of the art in Safe RL and actor-
critic methods reflects significant advancements
and ongoing challenges in applying these techniques
to dynamic environments, particularly video games.
The actor-critic framework, a cornerstone of mod-
ern RL, synergizes policy-based and value-based ap-
proaches to enable efficient policy improvement and
value function estimation. This dual mechanism
is instrumental in complex decision-making games,
with Fu, Liu, et al. (2021) providing foundational
insights into its operational dynamics. However,
the application in more complex unpredictable envi-
ronments, such as video games, necessitates further
innovations to balance learning efficiency with op-
erational safety.

Another useful example of advancements in safe
RL, detailed by Berkenkamp, Turchetta, et al.
(2017), focuses on ensuring robust performance in
the face of environmental uncertainties, introduc-
ing models that adaptively manage the exploration-
exploitation trade-off while maintaining safety con-
straints.

The development of Soft Actor-Critic (SAC) al-
gorithms by Haarnoja, Zhou, Hartikainen, et al.
(2018) marks a significant leap forward, offering
a framework that optimizes policy performance
with an emphasis on entropy, thus promoting ex-
ploration diversity and improving robustness in
varied settings for Actor-Critic.

Despite these advancements, the integration of
safety mechanisms within RL applications remains
a pressing research gap. The dynamic nature of
games, characterized by rapid changes and un-
predictable elements, poses unique challenges for
RL. Achieving a balance between efficient learning
and ensuring safety in such environments is com-
plex. Achiam, Held, Tamar, and Abbeel (2017)
have made strides in addressing these challenges by
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proposing constrained policy optimization, which
aims to incorporate safety constraints directly into
the RL optimization process. However, the specific
application of these methodologies to video game
environments, where the need for real-time decision-
making and adaptability to sudden changes is
paramount, is still underexplored.

1.3 Contributions of the Thesis

This thesis contributes to the field of Safe Deep
Reinforcement Learning (RL) in several key areas.
This thesis explores dual-architecture systems for
actor-critic methods, comparing separate networks
for policy and value functions against a shared, two-
headed network architecture. This investigation
sheds light on the efficiency and effectiveness of
each approach in complex environments like Super
Mario.

Moreover, the research integrates heuristic safety
mechanisms designed to mitigate risks, enhancing
the agent’s safety without significantly compromis-
ing its learning capability. The heuristic is based
on fine-tuning the safe distance to the danger and
using that as an indicator of a switch from a policy.

Lastly, through empirical analysis, the study of-
fers novel insights into the suitability of actor-critic
methods for navigating a video game, underpinned
by a unique, death-focused success metric. This
metric is more focused on the factor of safety and
therefore would advance our understanding of how
to balance learning efficiency with safety consider-
ations in RL applications.

2 Theoretical Framework

2.1 Reinforcement Learning

The foundational concept of Reinforcement Learn-
ing is framed within the context of Markov Decision
Processes (MDPs), where an agent’s objective is
to maximize cumulative rewards over time. This
cumulative reward is represented by the formula:

Gt =

∞∑
k=0

γkrt+k+1 (2.1)

Where γ denotes the discount factor, balancing the
importance of immediate versus future rewards,
and r represents the reward received after taking
an action at time t and transitioning to the next
state. In this setup, the agent iteratively learns
the optimal actions to take in given states to max-
imize its goal. This theoretical framework not
only establishes the basis for understanding agent-
environment interactions but also sets the stage for
exploring more complex learning algorithms. The
principle of maximizing future discounted rewards
underpins various RL strategies, leading to the

development of sophisticated models designed to
navigate and learn from complex environments, as
actor-critic. This introduction and the gain formula
provide a crucial foundation for the subsequent dis-
cussion on Temporal Difference Learning, a method
pivotal for computing and updating value estimates
based on observed rewards and anticipated future
rewards.

2.2 Temporal Difference and Re-
ward Computing

Building on the foundation of RL, Temporal Differ-
ence (TD) Learning stands out as a crucial mecha-
nism for iteratively updating the value estimates
of states directly from experience. To understand
TD Learning we can start with this formula:

V (st)← V (st)+α(rt+1+γV (st+1)−V (st)), (2.2)

where,

V (st) = E[Gt|St = st] (2.3)

This formula iteratively updates the value func-
tion V (st) of a state st, based on the observed
reward rt+1 for transitioning to the next state and
the estimated value V (st+1) of that subsequent
state. The update is modulated by the learning
rate α and the discount factor γ, facilitating the
agent’s learning about future rewards and enabling
strategy adjustments to optimize long-term gains.
In this context, the value function V (st) is under-
stood as the expected return E[Gt|St = st], where
Gt is conditioned on the random variable St be-
ing in a specific state st, which is the expected
cumulative discounted reward starting from state
st. The application of TD Learning in this study
is instrumental for computing rewards that inform
the agent’s decisions in navigating the Super Mario
environment. By leveraging the TD target to com-
pute rewards, the agent is equipped to assess the
immediate and future benefits of its actions, helping
it to learn the environment that balances explo-
ration with strategic planning. This approach is
not only relevant for enhancing the agent’s perfor-
mance in complex video game scenarios but also
sets the groundwork for understanding actor-critic
methods, where the concept of advantage calcula-
tion plays a critical role in optimizing the policy
and value functions.

2.3 Actor Critic

Within the realm of RL, methodologies can be
broadly categorized into value-based and policy-
based methods, with actor-critic methods emerging
as a hybrid approach that combines the strengths
of both. Value-based methods focus on evaluating
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the value of each state or state-action pair, aim-
ing to maximize the expected reward. Conversely,
policy-based methods optimize a parameterized
policy directly. This policy, represented as a pa-
rameterized function, determines the probability
distribution over actions for each state, aiming
to maximize rewards by adjusting its parameters
based on learning outcomes. Actor-critic meth-
ods leverage the advantages of both approaches by
employing two models: the actor, which adjusts
the parameterized policy towards actions that are
expected to yield higher rewards, and the critic,
which evaluates the current policy by estimating
the value function for states or state-action pairs.

In the actor-critic framework, the advantage func-
tion plays a pivotal role by quantifying the relative
benefit of taking a specific action a in a given state
s over the average action. The advantage function
is expressed as:

A(st, at) = rt+1 + γV (st+1)− V (st) (2.4)

Here, V (st) and V (st+1) represent the value func-
tion estimates of the current state st and the next
state st+1, respectively, while rt+1 is the immediate
reward received after taking action at at state st.
This formulation directly incorporates the specific
action at, thereby addressing the relative merit
of this action compared to the typical outcome
expected from the current policy.
The advantage calculation thus measures the

difference between the expected return if action at
is taken at state st and the value predicted by the
critic for just being in state st, focusing on actions
that provide higher-than-expected returns. This
is critical for updating the policy in a way that
pushes the actor to prefer actions that yield better
outcomes.
Updates to the actor model are then guided by

the following actor loss function:

Lactor = −(log(π(at|st)) ·A(st, at)) (2.5)

Here, πθ(s, a) represents the policy function, pa-
rameterized by θ, which dictates the probability of
taking action a in state s. This loss function inte-
grates the logarithm of the probability of selecting
action at given state st—as determined by the ac-
tor’s policy—weighted by the advantage A(st, at).
By doing so, it aligns with the policy gradient
method, which encourages the policy to increase
the likelihood of actions that lead to higher advan-
tage scores, thus steering the agent towards more
rewarding behaviors.
Concurrently, the critic model is updated

through the critic loss function,

Lcritic = (A(st, at))
2 (2.6)

Emphasizing the squared advantage to minimize
the difference between the expected and actual
returns. This approach reflects the foundational
principles of value-based methods, where the goal is
to refine the value function estimate to accurately
predict future rewards.
The important concept to consider is the actor

loss through the policy gradient theorem,

∇θJ(θ) = Eπθ[∇θ log πθ(s, a)A
πθ (s, a)] (2.7)

The policy parameters θ influence both the selec-
tion of actions and their evaluation through the
advantage function Aπθ(s, a). This function mea-
sures the relative benefit of choosing action a over
other possible actions given state s, based on the
current policy πθ.
The objective function J(θ), which needs to be

maximized, represents the expected return when
following policy πθ. It quantifies the overall ef-
fectiveness of a policy parameterized by θ. The
gradient ∇θJ(θ) of this function concerning the
policy parameters θ is calculated by averaging the
product of the logarithm of the policy’s probability
density and the advantage function over all states
and actions as determined by the current policy
πθ.

Figure 2.1: Actor-Critic Overview: The process
above loops continuously as the agent operates
(O’Grady (2024)).

As depicted in Figure 2.1, the actor, dictated by
its policy, determines the course of action given the
state received from the environment. Subsequently,
the environment responds with a new state and
an associated reward. This feedback is assessed by
the critic through a value function, which evalu-
ates the action’s effectiveness based on the received
reward and computes an error signal. This sig-
nal serves as a learning cue for the actor, guiding
policy adjustments aimed at maximizing future re-
wards. The process, marked by a continual loop
of interaction, learning, and adaptation, aims for
convergence to an optimal policy, where the actor’s
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decision-making is improved, and the critic’s value
predictions become increasingly accurate, embody-
ing the essence of the actor-critic methodology in
RL.

In this study, the implementation of actor-critic
methods within discrete spaces, such as the Su-
per Mario game environment, showcases the effi-
cacy of combining direct policy optimization with
value estimation to navigate complex, dynamic
challenges in Super Mario. By incorporating the
advantage function into the actor and critic up-
dates, the methodology fosters a nuanced balance
between exploring new strategies and exploiting
known rewards, underscoring the versatility and
robustness of actor-critic approaches in mastering
intricate video game tasks. The subsequent sec-
tion delves into deep learning techniques, which
further enhance the actor-critic framework, offering
sophisticated tools for representing and solving the
complex states encountered in video games.

2.4 Deep Learning

Integrating deep learning into actor-critic meth-
ods for Reinforcement Learning bridges the gap
between the theoretical framework of RL and prac-
tical, high-dimensional applications such as video
games. Deep learning models, with their capacity
for feature extraction and pattern recognition, are
adept at interpreting the complex, noisy inputs
of a game environment and making decisions that
mirror human-like intelligence.

In the context of this study, deep learning, specif-
ically through the use of neural networks, is impor-
tant for effectively modeling the policy and value
functions within the actor-critic framework. The
policy network, which determines the actions taken
by the agent, and the critic network, which eval-
uates these actions, are constructed using neural
networks. Deep learning’s nonlinearity, provided
by activation functions such as the Rectified Linear
Unit (ReLU),

f(x) = max(0, x) (2.8)

ReLU is particularly advantageous due to its sim-
plicity and efficiency in backpropagation, mitigat-
ing the vanishing gradient problem often encoun-
tered in deep networks.
Similarly, the softmax function

σ(z)i =
ezi∑K
j=1 e

zj
for i = 1, ..., K (2.9)

The softmax function takes as input a vector z of
K real numbers and normalizes it into a probability
distribution consisting of K probabilities propor-
tional to the exponentials of the input numbers.
It is used in the policy output layer to convert

the logits, or the non-normalized predictions from
the network, into a probability distribution over
available actions. This distribution is essential for
the exploration-exploitation trade-off, enabling the
agent to stochastically select actions while still fa-
voring those with higher predicted values.

The two architectural choices for actor-critic net-
works: are separate and shared (two-headed) net-
works. The separate architecture dedicates distinct
networks for the actor and critic, allowing each to
specialize in its task but at the cost of increased
computational resources and potential redundancy
in learning similar features twice. On the other
hand, the shared network architecture uses a com-
mon set of layers for feature extraction, branching
off into two heads for policy and value function out-
puts. This shared approach ensures that both actor
and critic benefit from the same learned representa-
tions, which can lead to more cohesive policy and
value estimations. However, in a complex space
like Super Mario, some features and errors are best
to not be shared, to minimize learning noise.

For the Super Mario game environment tackled
in this study, the decision between separate and
shared architectures is not trivial. It involves con-
sidering factors such as computational resources,
the complexity of the game environment, and the
potential benefits of specialized versus shared learn-
ing processes. This trade-off will be further ex-
plored in this research.

2.5 Hyperparameters

2.5.1 Optimization Technique

In Safe RL, optimization techniques are pivotal for
fine-tuning the parameters of both actor and critic
networks to minimize loss functions effectively, thus
enhancing the agent’s performance. The Adam
optimizer is utilized in this study, following the
update rule

θt+1 = θt −
η√

v̂t + ϵ
m̂t (2.10)

Where θt represents the parameters at time t, η is
the learning rate, m̂t is the first-moment estimate,
v̂t is the second-moment estimate, and ϵ is a small
scalar used to prevent division by zero.

The Adam optimizer, a widely adopted algorithm
in machine learning, is favored for its adaptive learn-
ing rate capabilities, which allow for larger updates
for infrequent parameters and smaller updates for
frequent ones. This adaptability is crucial in the
context of Safe RL, where the learning algorithm
must navigate complex, high-dimensional spaces
with efficiency and precision.
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2.5.2 Exploration vs. Exploitation

In the realm of RL, the delicate balance between
exploration and exploitation is pivotal to an agent’s
learning and decision-making process.

The actions within this study are sampled from
the policy πθ parameterized by θ, given the current
state st. The policy outputs a probability distribu-
tion over all possible actions, which quantifies the
likelihood of each action being optimal given the
state st. This distribution is formulated as follows:

at ∼ πθ(st) (2.11)

This probabilistic approach to action selection in-
herently incorporates both exploration and ex-
ploitation; actions with higher estimated rewards
are more likely to be chosen, yet there is always
a chance of selecting less-favored actions, allowing
for exploration.
During the initial phases, methods such as

epsilon-greedy were tested to increase exploration.
In epsilon-greedy, the agent predominantly exploits
the best-known action, but with probability ϵ, it
will explore random actions instead. However, it
was found that directly sampling from the policy
distribution provided a sufficient balance, implicitly
promoting exploration without the need for addi-
tional mechanisms such as the epsilon parameter.
Entropy maximization was also considered,

which encourages the policy to be more uncertain
and thus explore more diverse actions. High en-
tropy in the policy distribution implies a more
uniform distribution of action probabilities, which
can be beneficial in highly stochastic environments
where the agent requires a broader experience to
learn effectively. However, this approach interfered
with later implemented Safe aspects of RL as we
would want to pursue safe paths and explore con-
trollably.

For this study, the final approach settled on sam-
pling actions from the policy distribution, which
was deemed adequate for the complexity of the
Super Mario environment. The next section will
discuss the implementation of Safe Reinforcement
Learning heuristics, which are integral to ensuring
that the agent’s exploration does not lead to unsafe
or undesired outcomes.

2.6 Safe Reinforcement Learning

Safe Reinforcement Learning (Safe RL) introduces
the concept of incorporating safety within the RL
paradigm, especially when the agent interacts with
an environment where certain states or actions
can lead to negative consequences. This study em-
ploys heuristic rules to ensure the RL agent’s safety
within the Super Mario game. The heuristics serve
as predefined rules or conditions that trigger spe-
cific actions when certain criteria are met, acting as

a safeguard against potentially dangerous decisions
that could arise from the agent’s exploration.

In the context of Super Mario, state types can
be broadly categorized into safe, dangerous, and
fatal. Safe states are those in which Mario can
navigate without immediate risk of losing a life;
these typically involve stable ground. Dangerous
states are characterized by the presence of potential
threats, such as nearby enemies, or pits, where
missteps could lead to death, often allowing for
quick corrective action. Fatal states, on the other
hand, are scenarios where Mario encounters an
unavoidable danger that results in losing a life,
such as falling into a pit or directly colliding with
an enemy.

The code for this study, therefore, integrates
these heuristics by scanning the environment for
predefined danger cues, such as proximity to ene-
mies or harmful obstacles, and therefore identifying
danger states. These heuristics utilize a template-
matching algorithm, a method in computer vision
that identifies and locates a template image within
a larger image. The process compares the template
to all regions in the larger image, searching for
matches using pixel intensity patterns. When a
match that surpasses a specified threshold of sim-
ilarity is found, signaling imminent danger, the
system initiates a ’hard action.’ This action, prede-
termined and deemed safe, such as jumping away
or shifting direction, supersedes the policy-based
action the agent would typically execute. This safe-
guard allows the agent to explore and learn the
dynamics of the game environment with a reduced
likelihood of entering into states that could lead to
unsafe outcomes or failures.

By using heuristic safety rules, the agent is
equipped with an immediate response to danger
that supplements the learning process. This ap-
proach enables the agent to explore and exploit
the game environment more safely, reducing the
likelihood of engaging in actions that would lead
to the termination of an episode due to unsafe
interactions.

3 Methodology

3.1 Problem Statement and Hy-
potheses

Continuing from the established importance of Re-
inforcement Learning in dynamic game environ-
ments, we now narrow our focus to a specific prob-
lem within the Super Mario game environment.
The challenge we address here is the development
of an RL agent that not only navigates the envi-
ronment effectively but does so with an emphasis
on safety.
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To formalize this, we are tasked with construct-
ing an agent that employs an actor-critic algorithm
where the ’actor’ is responsible for selecting actions,
while the ’critic’ assesses these actions based on a re-
ward signal. The uniqueness of our approach lies in
the introduction of a safety mechanism: the agent
is designed to switch to a heuristic solution when
it encounters imminent danger. This dual strat-
egy aims to mitigate fatalities caused by common
in-game hazards, such as the infamous Goombas,
while also ensuring that the agent remains capable
of learning and exploration.
We aim to investigate whether such an integra-

tion can effectively reduce agent fatalities without
compromising the efficiency of learning and explo-
ration. We will further delve into the methodology
and empirical analysis to test the stated hypothesis.

3.2 Experimental Design

Transitioning from the theoretical framework to
practical implementation, our experimental design
is tailored to test the hypotheses outlined in the
preceding section. The Super Mario game envi-
ronment serves as the experimental playground
wherein the intricacies of the proposed RL agent
are examined. This environment is a simulation of
the original Super Mario Bros. game by Miyamoto
and Tezuka (1985), presenting a two-dimensional
grid where the agent, Mario, must navigate through
levels filled with platforms, obstacles, and enemies,
passing through the challenges of the game.

Within this environment, the RL agent’s task is
to move from the left side of the level to the right,
effectively reaching the goal post, while maximiz-
ing the cumulative reward. To assess the agent’s
performance comprehensively, we employ multiple
metrics for success:

• Survival Rate: The proportion of trials where
the agent avoids fatal encounters.

• Cumulative Reward: The average total reward
obtained across trials, accounting for progress,
enemy defeats, and coin collection.

These metrics serve as indicators of not just the
agent’s ability to survive but also its efficiency and
effectiveness in navigating the environment.
Before the agent can interact with the environ-

ment, preprocessing steps are necessary to trans-
form the game data into a format conducive to
learning. This includes:

• State Simplification: SuperMarioBros-v2 is
the version of Super Mario that was used.
It has the raw pixel data which reduces the
amount of information to process.

• SkipFrame: Designed to reduce the temporal
resolution of the environment by returning

only every 4-th frame. Helps in reducing the
computational load.

• GrayScaleObservation: Reducing the observa-
tion space from three color channels (RGB) to
a single grayscale channel, significantly lowers
the dimensionality of the input data.

• ResizeObservation: Transforming the obser-
vations into smaller images, decreases the
amount of information the model has to pro-
cess.

• FrameStack: Observations from several con-
secutive frames are stacked together to form
the input to the model. This technique al-
lows the agent to perceive motion and make
more informed decisions based on the recent
sequence of observations.

Figure 3.1 shows the resulting state after prepro-
cessing. It is crucial to preprocess as it allows the
agent to learn more efficiently by focusing on the
game aspects most relevant to the action selection.

Figure 3.1: Super Mario Bros States: before vs.
after the preprocessing.

Within Super Mario, the action space is discrete,
meaning the agent’s possible actions at any given
state are finite and distinct. This is a critical aspect
as it dictates the decision-making process and the
complexity of the policy the agent must learn. The
RL agent interacts with the Super Mario environ-
ment via a set of RIGHT ONLY predefined actions
such as going right, jumping, jumping right, and
no action. The action space’s discreteness allows
for a clear evaluation of each action’s consequences,
essential for both the Actor and Critic components
in our Actor-Critic framework. The Actor is re-
sponsible for choosing actions, whereas the Critic
evaluates their potential based on the current pol-
icy.
To effectively train the Actor-Critic model, we

calculate the loss for both the Actor and Critic
components. The Actor’s loss (2.5) is formulated
to measure the difference between the expected
reward and the obtained reward, as formerly ex-
plained. The Critic’s loss (2.6), on the other hand,
assesses the temporal difference error, reflecting the
discrepancy between the predicted and the actual
rewards following an action.
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The ‘Advantage‘ in the Actor loss represents the
difference between the reward of the action taken
and the average reward for that state, pushing the
Actor to favor actions that perform better than
average.

The default reward function R(s, a) is a com-
posite of various elements that reflect the agent’s
performance:

• rposition: This component rewards the agent
for moving towards the goal.

• rclock: This penalizes the agent for taking too
much time, incentivizing efficient play.

• rfatal state: A penalty is given for dying.

When the agent was training without the use of
heuristics, it would resort to instantly killing itself
by the hand of an enemy to avoid the time penalty.
To counteract this behavior, a modification was in-
troduced to the reward function, imposing a more
significant penalty for fatal states by an enemy
(goomba, pit). This adjustment aimed to discour-
age the agent from seeking a fatal state as a viable
strategy, thereby promoting longer play durations
and exploration. This is crucial as Mario is more
favored to avoid fatal states than running out of
time.

• renemy: Penalty is given when the agent dies
by the hand of an enemy.

This reward function is pivotal to the RL process
as it directly influences the policy gradient and
shapes the learning trajectory of the agent. It
is the compass by which the agent navigates the
landscape of the game environment, learning to
prioritize actions that align with the overarching
goal of avoiding progressing while avoiding fatal
states.

The experimental design is constructed to facili-
tate an evaluation of the Actor-Critic agent with
integrated heuristic safety mechanisms within the
rich and varied Super Mario game environment. In
the next section, we will explore the implementa-
tion of the Actor-Critic framework and the heuristic
safety measures integration.

3.3 Implementation Details

3.3.1 Neural Network Architecture

The neural network architecture for both the Actor
and Critic components is designed to process the
state inputs from the game and output actionable
insights. Here’s a practical overview:

• Input Layer: Accepts a flattened array of the
game state.

• Hidden Layers: Comprises several fully con-
nected layers. The architecture includes two
hidden layers with ReLU activation to intro-
duce non-linearity and one feature flattening
linear layer.

• Output Layer (Actor): Produces a probability
distribution over possible actions, with a soft-
max activation function to ensure the output
values sum up to 1, representing probabilities.

• Output Layer (Critic): Outputs a single value
representing the estimated value of the current
state.

The number and the type of layers do not change
between Separate and Shared Architecture (see
Appendix A.1).

3.3.2 Heuristics Integration

Figure 3.2: Grid Search for the Distance to the
Danger Threshold.

The integration of heuristic safety mechanisms
plays a pivotal role in the model’s ability to navi-
gate the game environment safely. The integration
is based on a sliding window of the image of danger
across the state image and when the threshold of
them being matched is surpassed the area is indi-
cated to be dangerous. For this experiment, we
used only one enemy, goomba, as it seemed suffi-
cient to judge the efficiency of our approach and to
reduce the complexity. When the distance between
the agent and the danger area is below the thresh-
old, the Actor switches to heuristic action (Jump
Right) and therefore avoids the danger. To cor-
rectly estimate the distance threshold, a grid search
was conducted (see Figure 3.2). 1000 episodes for
each distance was used to see the number of fatal
states, the 7.5 distance seemed to produce the best
result. These heuristics are designed to directly
influence the rfatal state component of the reward
function. Pseudocode 3.1 illustrating the integra-
tion of a heuristic for enemy avoidance:
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Algorithm 3.1 Heuristic Integration for Environ-
ment Navigation

π ← Model(current state) {get the categorical
distribution from the actor model for the current
state}
frame ← ExtractFrame(current state)
{preprocessing steps described in section
3.2}
danger ← DetectDanger(frame) {based on the
danger distance, see section 3.3.2}
action ← SampleAction(π) {see equation 2.11}
if danger ≤ threshold then
PerformAction(predefined action)

else
PerformAction(action)

end if
reward← ReceiveReward() {based on the reward
function described in section 3.2}
UpdatePolicy(π, action, reward, next state)
{based on the fig. 2.1}

This approach ensures that the RL agent not
only pursues the objective of level completion but
does so with an emphasis on survival, balancing
aggressive progression with cautious tactics when
necessary.

3.4 Training Process

The training process involves 20.000 iterative
episodes where the agent interacts with the game
environment, executing actions based on its cur-
rent policy and receiving feedback in the form of
rewards. These rewards are critical for adjusting
the agent’s policy to improve its performance over
time. The steps include:

• Initialization: The agent, composed of both
Actor and Critic components, starts with a
randomly initialized policy.

• Episode Execution: Each episode represents a
full game playthrough, where the agent makes
action decisions at each timestep.

• Reward Accumulation: After executing an ac-
tion, the agent receives a reward signal based
on the outcome. It is designed to reflect the
agent’s performance.

• Policy Update: The Actor and Critic networks
are updated to refine the agent’s policy. The
Actor learns to choose better actions, while
the Critic estimates the value of state-action
pairs more accurately.

• Repeat: Steps 2-4 repeat across 20.000
episodes, with the agent improving its abil-
ity to navigate the game successfully.

Here are the additional hyperparameters that
were used for all the trials of this research:

• Learning rate: 0.0001. It was fine-tuned by
observing the dynamics of the agent’s learning
and estimation.

• Discount Factor: 0.99. The aim was to priori-
tize future rewards and 0.99 was observed to
be a good choice for this.

fatal state within the game serves as a significant
learning signal. It directly affects the rfatal state
component of the reward function, imposing a
penalty that encourages the agent to develop strate-
gies to avoid fatal mistakes. The inclusion of the
fatal state as a metric necessitates a nuanced ap-
proach to learning, where the agent must weigh the
benefits of aggressive exploration against the po-
tential risks. This dynamic is critical for adapting
the agent’s behavior to prioritize survival alongside
task completion.
The agent’s performance is continuously mon-

itored using a metric logger, focusing on critical
indicators such as the frequency of fatal states, cu-
mulative rewards, episode length, and loss. This
evaluation framework aligns with the actor-critic
methodology, emphasizing the importance of reduc-
ing fatal state penalties and enhancing cumulative
rewards as indicators of learning and adaptation.
This comprehensive training process, based on

an adjusted reward signal and a balance between
safe exploration and exploitation, enables the RL
agent to progressively improve its performance. By
placing a significant emphasis on learning from
the fatal state as a metric, the agent develops a
nuanced understanding of the game environment,
leading to more sophisticated decision-making and
enhanced adaptability.

4 Results

This section aims to dissect the results obtained
from various training phases and configurations,
providing a comprehensive analysis of the agent’s
learning behavior, adaptation strategies, and per-
formance metrics. The examination of various per-
formance metrics such as mean episode length, cu-
mulative reward, mean loss, and death rate over
episodes offers insights into the efficacy of the im-
plemented reinforcement learning algorithms. For
instance, a longer mean episode length is generally
preferable, it suggests that the agent is capable of
sustaining gameplay for extended periods, thereby
indicating better learning and adaptation to the
environment. Or, the ’deaths over episodes’ graph
provides a direct measure of the agent’s progression
towards safer operational strategies. A decreasing
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trend in this graph would illustrate an improve-
ment in the agent’s ability to evade or manage
life-threatening situations effectively, thus learning
to maximize survival through enhanced policy ad-
justments. This trend is aligning with the goals
of Safe Reinforcement Learning to balance explo-
ration with survival.

Figure 4.1: Comparison graph of mean episode
length over 20,000 episodes between two RL
agents: one utilizing heuristics (shown in red)
and one without heuristics (shown in green).

This graph (Figure 4.1) compares the mean du-
ration of an episode of two RL agents—one with
heuristic safety measures and one without. The
y-axis represents the mean length, indicative of the
mean duration of an episode. The x-axis shows
the episode count over the agent’s training period,
which spans 20,000 episodes. From the graph, it is
evident that the agent with heuristics outperforms
the one without heuristics by a significant margin.
The agent without heuristics maintains a relatively
low and stable mean length, suggesting it does
not improve much over time. The observed perfor-
mance was that the RL agent tended to exploit a
loophole in the reward system by moving the fatal
states on purpose in-game suicide, as evidenced by
the mean length over episodes graph convergence
(see green line in Figure 4.1). This behavior was
attributed to the agent’s discovery that death by
enemy hands avoided the time penalty associated
with the reward function, inadvertently incentiviz-
ing the premature termination of the game.

In contrast, the agent with heuristics shows a dra-
matic increase in mean length after approximately
8,000 episodes (see red line in Figure 4.1), main-
taining this high performance for the rest of the
training period. This suggests that after a certain
point in its training, the heuristic-enabled agent
learned to navigate the environment much more
effectively, possibly avoiding dangers that would
prematurely end the episode.

The spikes and dips in the mean length of the

agent with heuristics may indicate episodes where
the agent encountered particularly challenging sec-
tions of the game or where the heuristic rules may
have had varying levels of impact on its perfor-
mance. The overall trend, however, clearly demon-
strates the benefit of incorporating heuristic safety
measures into the RL training process.

Figure 4.2: Comparison graph of mean episode
loss over 20,000 episodes between two RL agents:
one utilizing heuristics (shown in red) and one
without heuristics (shown in green).

The graph (see Figure 4.2) shows the mean
loss of two Reinforcement Learning agents—with
and without heuristic safety measures—over 20,000
episodes. The y-axis indicates the mean loss, which
is a quantitative measure of how far off the agent’s
policy is from the actual outcomes. The x-axis is
the same as for the Figure 4.2.

Without heuristics, the agent experiences low
loss values, and as training progresses, there are no
signs of divergence (Figure 4.2). The agent without
heuristics shows a stable loss, indicating preferred
action dominance over time, but with considerable
fluctuation. This variability could stem from the
agent’s trial-and-error learning process without the
guidance of safety heuristics.

On the other hand, the agent with heuristics
demonstrates a more dramatic initial reduction in
loss, followed by a stabilization at a lower level of
mean loss compared to the agent without heuristics.
This rapid decrease suggests that the heuristics
provide valuable guidance that helps the agent
more quickly converge to a better policy by avoiding
costly mistakes. The relatively stable and low loss
after around 7,500 episodes indicates the agent with
heuristics consistently applies what it has learned
to make more accurate decisions.

Overall, the graph suggests that incorporating
heuristics not only improves safety but also con-
tributes to a more stable and efficient learning
progression, as evidenced by a lower and more con-
sistent mean loss over time.
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Figure 4.3: Comparison graph of mean episode
reward over 20,000 episodes between two RL
agents: one utilizing heuristics (shown in red)
and one without heuristics (shown in green).

The graph (Figure 4.3) compares the average
rewards earned per episode by two agents: one with
heuristic safety measures and one without, over the
course of 20,000 episodes in the game environment.
The y-axis measures the mean reward.

Observing the agent without heuristics, there is
a notable variability in the mean reward, with a
possible general upward trend. This suggests that
while the agent is possibly learning and improving,
its performance is still inconsistent. The fluctu-
ations may indicate that the agent is exploring
various strategies and learning from a wide range
of experiences, including mistakes.

However, the agent with heuristics shows a sig-
nificantly different pattern. Initially, the mean
reward is high, which could indicate that the ac-
tion selection probability distribution is even and
a lot of exploring is happening, therefore causing
the agent to be overly exploring, potentially riskier
situations. However, there is a sharp decrease to
a stable minimum mean reward at around 10.000
episodes into the training. This pattern suggests
that initially explores all sorts of outcomes, thus
earning a high reward, but as training progresses,
these safety measures could be limiting the agent’s
ability to explore and capitalize on lower-reward
survival behavior, resulting in a plateau of lower
mean reward.

In conclusion, while the inclusion of heuristics
appears to lead to safer and more consistent per-
formance initially, it may also inhibit exploration
and the attainment of higher rewards in the later
stages of training. This introduces an interesting
dynamic between the safety and reward maximiza-
tion objectives in RL.

The ”Deaths Over Episodes” graph (see Fig-
ure 4.4), when analyzed comprehensively, reveals
insightful trends about the learning process and

Figure 4.4: Comparison graph of deaths over
20,000 episodes between four RL agents: one
with no Heuristics, 4 Frame Stack, and Sepa-
rate Architecture, one with Heuristics, 4 Frame
Stack, and Separate Architecture, one with
Heuristics, 8 Frame Stack, and Separate Ar-
chitecture, and one with Heuristics, 4 Frame
Stack, and Shared Architecture

survivability of the RL agent with different config-
urations. In the context of the study, the metric
of deaths per episode can be seen as the reflection
of the implemented strategies. This metric not
only reflects the agent’s ability to survive longer
by making safer decisions but also serves as a cru-
cial indicator of the trade-offs between pursuing
higher rewards and maintaining safety. This graph
provides the most crucial metric for this thesis, as
the Safe aspect is the priority in the conducted
research.

• Without Heuristics, 4 Frame Stack, Separate
Architecture: Shows a continuous linear in-
crease in deaths, suggesting that the agent
fails to learn from its mistakes or that the
complexity of the game exceeds the agent’s
capacity to learn survival strategies without
additional guidance.

• With Heuristics, 4 Frame Stack, Separate Ar-
chitecture: The trend indicates an initial sharp
increase in deaths, which then plateaus around
the 10000th episode. This early plateau signi-
fies the effectiveness of heuristics in aiding the
agent to identify and avoid risks, thus stabi-
lizing its performance quicker than the other
configurations.

• With Heuristics, 8 Frame Stack, Separate Ar-
chitecture: A steady increase in deaths is ob-
served, though less steep than without heuris-
tics. The 8-frame stack may provide more
information for decision-making but does not
seem to offer the same level of improvement in
survival as the 4-frame stack with heuristics.
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• With Heuristics, 4 Frame Stack, Shared Archi-
tecture: This configuration shows a plateauing
of deaths and a less steep convergence com-
pared to separate architecture, but only af-
ter about 12500 episodes. Despite eventually
reaching stability, the agent takes longer to
adapt compared to a separate architecture.

In conclusion, the use of heuristics significantly
impacts the agent’s learning curve and survival
rate, the use of a shared architecture slows down
learning and an increase in the frame stack doesn’t
improve our heuristics approach.

5 Conclusions

5.1 Discussion

The most effective configuration, which pairs heuris-
tics with a 4-frame stack in a separate architecture,
illustrates a critical finding: heuristic rules can sig-
nificantly expedite the learning process by enabling
the agent to identify and avoid risks sooner, which
in this case happens around the 1000th episode
mark.

The early plateau in this configuration suggests
that the agent quickly integrates the feedback from
its interactions with the environment, adjusted by
heuristic-driven safety measures. This rapid learn-
ing curve is beneficial for training agents in complex
domains where early proficiency is desirable, reduc-
ing the computational cost and time associated
with training.

On the other hand, it can be argued that even
though a shared architecture, demonstrates a de-
layed response to safety, a lower cumulative death
count before plateauing is a positive sign. Delayed
convergence could be due to the shared features
that heavily complement and at the same time
badly influence the actor and the critic. So a trade-
off of convergence time and fewer cumulative deaths
can be seen here and therefore further explored.
In general, the study’s core revelation—that

heuristic safety measures markedly improved the
safety of RL agents navigating the environ-
ment—resonates with contemporary RL research.
This aligns with the growing consensus that heuris-
tic approaches can bridge the gap between generic
RL algorithms and their application in specific,
real-world scenarios, emphasizing safety.
Whereas, the observed fluctuations in mean re-

ward and length across episodes highlight a crit-
ical challenge in RL: managing the exploration-
exploitation trade-off within stochastic environ-
ments. The challenge of fostering effective explo-
ration without resorting to stagnant behaviors re-
quired a reevaluation of the exploration strategies.
None of the tested methods, i.e. epsilon greedy
or adding entropy in the reward function, helped

the exploration, prompting a reliance on extended
trial runs in the hope of spontaneous exploration
driven by the policy distribution. These fluctua-
tions suggest that while heuristics enhance safety
by mitigating risks, they may also inadvertently
constrain the agent’s ability to discover and exploit
novel strategies, potentially capping the achievable
performance.

The research contributes to the academic dis-
course by illustrating the nuanced impact of heuris-
tics on learning dynamics within RL. It invites a
reevaluation of how heuristic rules are designed
and integrated, advocating for a balance that max-
imizes learning efficiency without overly restricting
the agent’s ability to explore and adapt.

This study underscores the importance of contex-
tual and environmental understanding in RL appli-
cations. It suggests that future research should not
only focus on refining heuristic measures but also
on exploring the underlying mechanisms through
which these measures interact with the agent’s
learning process.

5.2 Conclusion

The conclusion of this research contains the signifi-
cant strides made in understanding and enhancing
Reinforcement Learning through heuristic safety
measures within the Super Mario Bros environ-
ment. This study has established that the strategic
integration of heuristic rules even though ensures
a safer learning trajectory, ends up negatively af-
fecting not only the performance of the RL agent
but possibly also in navigating through the game’s
challenges.

By analyzing the impact of these measures across
various performance metrics—episode length, loss,
reward, and death rate—the research provides
compelling evidence of their heuristics influence.
Notably, the improved safety capabilities and re-
duced fatalities highlight the critical role of domain-
specific knowledge, encoded as heuristics, in refin-
ing the agent’s decision-making processes.

In conclusion, it is important to shed light on
the inherent challenges faced by the Actor-Critic
model in mastering such a dynamic environment.
For instance, the implementation of advanced algo-
rithms like Proximal Policy Optimization (PPO)
or Asynchronous Advantage Actor-Critic (A3C)
could substantially benefit the agent. PPO, with
its objective function designed to prevent large
policy updates, ensures a stable and steady im-
provement, mitigating the risk of destructive large
policy swings. A3C, on the other hand, introduces
asynchronous update capabilities, enabling mul-
tiple agents to explore and learn from different
instances of the environment simultaneously. This
not only expedites the learning process but also
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encourages a diverse set of experiences, preventing
the agent from overfitting to a narrow range of
states which can often lead to instability in train-
ing. Overfitting was usually encountered on the
least favorable optimal solutions, e.g. dying imme-
diately. Both PPO and A3C inherently promote
experience variety and can be effective in prevent-
ing the kind of training instability that might arise
from correlated states.

In synthesizing these findings, the research not
only contributes valuable insights to the academic
discourse on RL but also sets a foundation for
future exploration. Through this work, the nuanced
interplay between heuristic integration and learning
efficiency in RL has been brought to the forefront,
marking a significant step forward in the quest
to have the full potential of AI in navigating and
mastering complex environments.

5.3 Further Research

In the realm of Reinforcement Learning, the in-
tersection with heuristic safety measures within
complex environments uncovers pivotal insights yet
also reveals several pathways for future research.

Building on the initial implementation of heuris-
tic safety mechanisms, future iterations will aim
to improve the precision of danger detection and
the agent’s responsive actions. This includes re-
fining the heuristic rules and implementing more
sophisticated machine learning algorithms that can
learn and adapt danger thresholds dynamically. As
the agent progresses in its learning journey, these
adaptive thresholds will be fine-tuned to provide
a balance between the necessary caution and the
boldness required to optimize exploration and ex-
ploitation strategies within the game.

Given the observed fluctuations in agent perfor-
mance, further investigation into the mechanisms
governing the exploration-exploitation trade-off is
an interesting aspect. Research could aim to de-
velop more sophisticated strategies that enable
agents to navigate effectively, potentially through
adaptive learning rates or context-aware explo-
ration policies.

Moreover, the results from the 8-stack configura-
tion, show that yes, it is unable to converge (see
Figure 4.4). However, We can observe that there
is a slow decline in deaths, so it could potentially
mean that with a significantly bigger input, it takes
longer to learn, and may just require many more
episodes to converge. It would be interesting to
explore how alternating frame stack influences the
learning for safety and exploration.

Reflecting on the observation that simplification
might yield greater insights than complexity, future
research should consider studies that systematically
reduce the complexity of RL systems to understand

the core principles governing learning and adap-
tation. Or quite the opposite, further exploring
the challenges encountered with the Actor-Critic
model that highlights the need for architectural
innovations. Future research might explore alterna-
tive models or improvements to existing ones, such
as A3C or PPO, to better manage the complexities
of stochastic environments. If that proves to be
inefficient, researching into environments of lower
complexity levels, is a good path to start with.

The exploration of these paths could significantly
advance the understanding of RL, particularly in
how heuristic safety measures can be leveraged to
enhance learning efficiency and navigate complex
environments. As the field of RL continues to
evolve, these research directions offer promising
opportunities to address some of the most pressing
challenges in developing intelligent, adaptive, and
safe autonomous systems.
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A Appendix

Figure A.1: Neural Network Visualization: a)
Shared Architecture; b) Separate Architecture
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