
Incorporating a Distance Metric to Induce Safe

Behavior in Super Mario Bros using Deep

Reinforcement Learning

Bachelor’s Project Thesis

Viktor Milenov, s4310861, v.milenov@student.rug.nl
Supervisors: J.D. Cardenas Cartagena, M.Sc., j.d.cardenas.cartagena@rug.nl

Abstract: Safe Reinforcement Learning (Safe RL) is a sub-branch of machine learning and
data-driven algorithms that strives to guarantee safe performance in a system while optimizing
its performance efficiency. To experiment with such algorithms and models we use video games,
specifically Super Mario Bros, which offer environments where faulty behavior does not lead to
serious real life consequences, allowing for the modification and improvement of such algorithms
and models. We employ the Actor-Critic method because of its effective and stable training
procedure, which permits learning a value function and a policy at the same time and directly
modifies the gradient descent direction to guarantee system safety. Our model consists of an actor
network and an ensemble of critic networks to obtain a more accurate value function approximation.
Furthermore, we incorporate a distance metric that stands for the distance between our agent and
the closest danger in the environment. We compare the performance of this safer model with a
baseline model to assess if the distance metric indirectly induces safe behavior of the agent in the
environment. We are investigating ways to improve an agent’s training to make it more ”safe”.

1 Introduction

Individuals and professionals alike must make de-
cisions every day that could have a big impact.
These choices can have very different possible out-
comes and degrees of importance. Think about a
cybersecurity analyst employed by a major com-
pany, for example. This person must decide how
to react in the event of a potential security breach.
A poor choice here could result in significant data
loss, financial harm, and a decline in the public’s
confidence in the organisation. Decisions have a
varying degree of importance and relevance which
depends on our circumstances. On the other hand,
an appropriate and timely response could prevent
a major crisis. There is a clear contrast between
this situation and decisions we make on a daily ba-
sis, like whether to carry an umbrella. The stakes
are much higher in the context of cybersecurity,
and a bad choice can have far-reaching effects that
could impact thousands or even millions of people
in addition to the individual. These high-stakes
decision-making situations highlight the value of
good judgement and the significant influence that
decisions can have in specific crucial and profes-
sional situations.

Furthermore, the medication given by a doctor
to their patient can impact the patient’s physical
well-being positively or negatively. In this second

example, the consequences are still relevant due to
the fact that an entire life will be affected. There-
fore, we can see that the decisions we make depend
on the situation we are currently in, and that the
consequences of our decisions can lead to unwanted
situations.

Decision-making gets increasingly more complex
when we realise that, normally, there is more than
one specific decision that we could make in any sit-
uation. For instance, the doctor has to be aware of
the positive and negative effects of the medication
that they are going to give to their patient and
then decide which one of them will be the most
beneficial.

To make decisions, we need to use knowledge
about the world, which serves as guidance in our
decision-making process. There are many theo-
ries on how this knowledge is acquired, but we are
going to focus specifically on the trial-and-error
method of learning introduced in the book Animal
Intelligence: An Experimental Study of the Asso-
ciative Processes in Animals by Thorndike (1898).
The trial-and-error method of acquiring knowledge
states that learning occurs when trying out differ-
ent approaches to something until one finds the
most effective one. This method alone can be used
in various domains to test its efficacy and one such
domain is the ever growing paradigm of artificial
intelligence (AI).

1

2 Theoretical Framework

In this section the necessary theory for understand-
ing the goal of this project is presented. Firstly,
we introduce reinforcement learning (RL) as the
underlying branch of machine learning (ML) that
we will be using and give a brief explanation as
to what actor-critic methods are. We then move
onto deep reinforcement learning (DRL) and its
role in video games and present some of the current
achievements obtained. Finally, we introduce safe
reinforcement learning as an extension to RL that
we will be focusing on in this project.

2.1 Reinforcement Learning

A branch of machine learning methods known as
Reinforcement Learning (RL) encapsulates the idea
of trial-and-error learning according to Whitehead
and Ballard (1991). To be consistent, the decision-
maker will be called an agent, the decisions that
an agent can make will be referred to as actions,
and the situations that the agent finds itself in will
be referred to as states. The entire environment
can be thought of as the place that contains all of
these states. It can be represented by a Markov
Decision Process (MDP) introduced by Bellman
(1954) which is a discrete-time stochastic control
process consisting of a 4-tuple (S,A,P,R) where
S is the state-space, a set of all states the agent
can be in; A is the action-space, a set of all the
actions the agent can make in a given state; P(s, s′)
is the transition probability of ending up in state s’
from state s ; and R(s, s′) is the immediate reward
obtained from moving from state s to state s’.
When an agent is in a specific state it will have
the opportunity to select a single action from a
set of possible actions that will bring the most
reward in the future. More concisely, the key idea of
RL is this: while interacting with an environment,
the agent seeks to maximise the total amount of
reward it receives, Sutton and Barto (2018). This
interaction between the agent and the environment
is represented in Fig. 2.1:

Figure 2.1: This diagram shows the interaction
between the agent and the environment where
the agent is constantly acting upon the environ-
ment. These actions obtain some reward and
change the state the agent is currently in.

A policy π(s, a) is a mapping from state to action
that tells the agent how to act according to the

given state. Ultimately, we want the agent to select
the best action according to the current state and to
achieve this there are two main approaches: value-
based methods, and policy-gradient methods. The
former utilizes the concept of a value function which
represents the expected cumulative reward that an
agent can achieve by starting from a certain state,
adhering to that policy throughout the agent’s
interactions with the environment, and achieving
that benefit over time. The value function is given
by:

vπ(s) = Eπ[

∞∑
t=0

γkRt+1 | St = s] (2.1)

where Eπ denotes the expectation under policy
π, Rt+1 ∈ R is the reward obtained at time step
t+ 1, and γ ∈ (0, 1] is the discount factor, which
determines the importance of future rewards. The
policy is then updated so that the agent performs
optimally by selecting actions greedily (choose the
action with the maximum value). The other possi-
bility is to use Q functions, which are defined as
the expected cumulative reward that an agent can
achieve by starting from a certain state-action pair.
In simple terms, it is the total expected reward
if we start in a specific state, perform a specific
action and follow our policy then-after:

qπ(s, a) = Eπ[

∞∑
k=0

γkRt+k+1 | St = s,At = a]

(2.2)
where the only difference is the addition of the

action in the equation.
The latter approach updates the policy by directly
optimizing the parameters of the policy network to
maximize the expected cumulative reward from the
environment which is typically done using gradient-
based optimization algorithms where the reward
function is defined as follows:

J(θ) =
∑
s∈S

dπ(s)V π(s) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a | s)Qπ(s, a)

(2.3)
where dπ(s) is the stationary distribution of the

Markov chain for policy πθ, which stands for the
notion that the system will ultimately settle into
a regular pattern of being in each condition over
time, regardless of where you start. The gradient
of equation (2.3) is computed in order to update
the policy:

▽θJ(θ) = Eπ[Q
π(s, a)▽θ lnπθ(a | s)] (2.4)

Furthermore, we will be focusing primarily on a
third type of method which aims to create a bridge

2

between value-based methods and policy-gradient
methods, Konda and Tsitsiklis (1999). Actor-critic
methods, which have their roots in RL, combine
the best features of both techniques: the ’critic’
estimates the value function to evaluate the actions
selected by the ’actor,’ which is the component that
makes decisions (selects actions) based on a policy.
When utilising both approaches simultaneously,
learning can be accomplished more effectively and
steadily than when employing just one. Actor-critic
approaches benefit from both the value-based ap-
proach, in which the optimisation process is guided
by a value function (the critic’s assessment), and
the policy-gradient approach, in which the policy
(the actor’s behaviour) is directly optimised. By
lowering the variance of the policy gradient, the
critic’s evaluation contributes to longer-term learn-
ing that is more stable. Actor-critic approaches
can successfully balance exploration and exploita-
tion, two essential elements in navigating complex
environments, by combining these two features.

RL has advanced significantly thanks to these
techniques, which enable agents to learn the best
courses of action in high-dimensional state and
action spaces. Their efficiency and adaptability
have produced important advances in a variety of
fields, including robotics and gaming.

2.2 Deep Reinforcement Learning
and Video Games

Deep learning (DL) enables the creation of com-
putational models made up of multiple layers that
can learn progressively abstract representations
of data. This breakthrough has significantly ad-
vanced various fields, including speech recognition,
visual object recognition, object detection, and
even domains like drug discovery and genomics,
where it has pushed the boundaries of what was
previously possible, LeCun, Bengio, and Hinton
(2015). Deep Reinforcement Learning (DRL) is the
fusion of reinforcement learning and deep learn-
ing, offering a powerful approach to tackle intricate
decision-making challenges that were once beyond
the capabilities of machines. As a result, this field
has unlocked a myriad of new possibilities in vari-
ous domains, including healthcare, robotics, smart
grids, finance, and more according to Francois-
Lavet, Henderson, Islam, Bellemare, and Pineau
(2018). Furthermore, DRL holds great potential
for advancing medicine, drug development, and
scientific research, as suggested in Arulkumaran,
Deisenroth, Brundage, and Bharath (2017).

Regardless of the many possibilities and benefits
given to us by DRL we need to find a way to test
our methods in a manner that does not endanger
living beings. The concept of video games comes
to mind when we think of such an experimental

environment. The advantage of using video game
environments is that they are easily modifiable and
offer various levels of complexity in their internal
dynamics. The use of DRL in video games is not
something novel and researchers have exploited
different environments to experiment and test nu-
merous DRL methods. Many video games create
complex and engaging challenges for AI agents to
solve, making them perfect for AI research. These
virtual environments are safe and easy to control
for experiments. Plus, they provide endless useful
data for machine learning methods, and can run
much faster than real-life situations, Shao, Tang,
Zhu, Li, and Zhao (2019).

A key highlight is AI’s success in mastering 49
different classic 2D Atari games, achieving human-
level performance as shown in Mnih, Kavukcuoglu,
Silver, Rusu, Veness, Bellemare, Graves, Riedmiller,
Fidjeland, Ostrovski, Petersen, Beattie, Sadik,
Antonoglou, King, Kumaran, Wierstra, Legg, and
Hassabis (2015). This research was groundbreaking,
demonstrating DRL’s capability to tackle a wide
array of gaming challenges, each with its unique
set of rules and dynamics.

Then, there’s the significant progress in more
complex and dynamic gaming environments like
Minecraft, referenced in Tessler, Givony, Zahavy,
Mankowitz, and Mannor (2016) and the work of
Jin, Keutzer, and Levine (2018). These advance-
ments underscore AI’s growing proficiency in navi-
gating and adapting to open-world games, which
are far more unpredictable and varied compared to
more linear games. This leap into intricate gam-
ing worlds is particularly notable for showing how
AI can deal with less structured, real-world-like
scenarios.

Another intriguing study was the application
of a Q-learning model in Super Mario, as cited
in Liao and Yi (2012). This research is fascinat-
ing for its demonstration of how quickly AI can
learn optimal strategies in a classic platform game,
achieving impressive success rates. The efficiency
and adaptability shown by DRL in this context not
only illustrate its potential in gaming but also hint
at broader applications in various complex tasks.

Therefore, by combining DRL and video games
we can achieve behaviour that mimics or surpasses
human-level performance in a multitude of environ-
ments with various dynamics and complexity. The
next step is to ensure that the algorithms tested
take the necessary precautions when faced with
risky or dangerous situations to further prevent
any complications and problems when applying
these algorithms to the real world.

3

2.3 Safe Reinforcement Learning

Safe Reinforcement Learning (SRL) can be defined
as the process of learning policies that maximize
the expectation of the return in problems in which
it is important to ensure reasonable system perfor-
mance and/or respect safety constraints during the
learning and/or deployment processes according to
Garcia and Fernandez (2015). Therefore, we can
combine all of the aforementioned concepts into
one: using reinforcement learning in tandem with
deep neural networks and incorporating safety in
order to maximize performance while at the same
time accounting for risky situations encountered
in video game environments. This combination al-
lows for the testing of various DRL algorithms and
potentially finding ones that can be implemented
in real world applications with a lower risk of mak-
ing the wrong decision in a situation where risk is
involved.

To capture the environment more fully we imple-
mented an ensemble of critics. An ensemble, in this
context, refers to a group of models (critics) that
work together, each providing its own estimation
of the value function. By combining these multiple
estimations, we aim to capture a more accurate and
comprehensive representation of the environment,
leading to a single, better approximation. This
ensemble approach helps in reducing the variance
and improving the reliability of our predictions.

Furthermore, we plan to incorporate a risk signal
that detects enemies in the vicinity of the environ-
ment. This risk signal, coupled with a distance
metric, will provide additional, crucial information
to the model. With this data, the model can learn
to successfully navigate and avoid enemies, enhanc-
ing its ability to make safe decisions.

3 Methods

In this section we present the methodology. We
introduce the environment we used as well as the
agent itself and the learning process that the agent
utilized to gain knowledge. The full source code
can be obtained here: ∗

3.1 Super Mario Bros

Often cited as one of the greatest games of all time
and admired for its accurate controls Super Mario
Bros is a 1985 platform game developed and pub-
lished by Nintendo for the Nintendo Entertainment
System (NES).
The objective of the game is simple. The idea

is to make it from the starting point to the end
which is to the far right of the world. On the way

∗Source code adapted from: https://github.com/

vokifrenik/Bachelor-Thesis.git

to the end Mario can pick up super powers, such
as mushrooms which make Mario bigger so he can
jump over taller obstacles. He can also jump on
platforms and over cliffs. Throughout the world
there are also enemies that Mario can get rid off by
jumping directly on top of them or can just bypass
them by jumping over them as shown in Fig 3.1.

Figure 3.1: A screenshot of the game showing
Mario jumping over/onto a Goomba (a type of
enemy that Mario should avoid) as well as the
boxes marked with question marks that give
Mario super powers if he hits them either from
the top or from the bottom.

The reason we chose this video game for this
project is because of the simplicity and linearity
that the game offers. The action space, when con-
strained, offers Mario only 7 actions to choose from
which is not at all complicated when compared to
other games where there are many more actions
possible in a single situation as it is in games that
operate in 3-dimensional instead of 2-dimensional
environments. Furthermore, it is easy to not get
lost when playing the game since the goal is always
positioned somewhere to the far right which elimi-
nates the necessity for Mario to backtrack in case
he gets lost somewhere in the world. Super Mario
Bros offers a simple environment that offers us
the possibility to explore and exploit reinforcement
learning techniques and test their performance be-
fore applying them to real world applications.

3.2 Environment

Prior to building the actual model we first needed
to set up the necessary environment and ensure
that it is set correctly and that we can obtain valu-
able information, such as the immediate reward
r, the current state s and the subsequent state
s′, the overall score that Mario has achieved, as
well as information related to Mario’s internal state
(dead or alive) from the environment via interaction
with it. To do this we used gym-super-mario-bros
(Kauten (2018)) which is a an OpenAI Gym (Ope-
nAI, 2016) environment for Super Mario Bros. and

4

https://github.com/vokifrenik/Bachelor-Thesis.git
https://github.com/vokifrenik/Bachelor-Thesis.git

Super Mario Bros. 2 (Lost Levels) on The Nintendo
Entertainment System (NES) using the nes-py em-
ulator.
We utilized a SuperMarioBros v0 environment
which is the first world in the game using the gym-
super-mario-bros package. We then made some
minor modifications to the mechanics of the game
specifically the movements that Mario can exhibit.
The mechanics of the game are straightforward, the
complete set of actions consists of twelve moves,
however, for our purposes we have limited Mario’s
movements to just seven distinct actions, seen in Ta-
ble 3.1, by wrapping SIMPLEMOVEMENT which
is a sub-list of actions around the action space in
order to simplify the action selection process using
the JoypadSpace functionality provided to us by
the nes-py emulator:

Code Representation Description

(’NOOP’) Do nothing
(’right’) Walk right

(’right’, ’A’) Jump right
(’right’, ’B’) Sprint to the right

(’right’, ’A’, ’B’) Sprint-jump right
(’A’) Jump
(’left’) Go left

Table 3.1: This table shows the action space
after wrapping SIMPLEMOVEMENT around
the action space. The left column is the action
representation in the code and the right column
describes what that action does.

After setting up the environment we had to pre-
process it so that it can be used in our neural
network. In our case we are feeding the neural
network our current state at each iteration of the
training process. For our purposes we have defined
a state to be represented as a stack of frames that
represents what is currently happening in the en-
vironment. We need multiple frames in order to
determine the direction of motion of the charac-
ters within the environment and a single screenshot
does not provide this information. Furthermore, to
make the processing of the states in the network
easier and less computationally expensive we used
gray-scaling to reduce the number of colour chan-
nels that we are dealing with. To achieve this we
used the GreyScaleObservation function provided
to us by the Gym package so that the screenshots
only contained shades of gray. Then we created a
stack of 4 frames using another one of their func-
tions, namely FrameStack shown in Fig 3.2:

Figure 3.2: The figure on the left shows the
stacking of the individual frames of the envi-
ronment and the figure on the right shows the
numerical values of the frames that are used by
the network. Each stack of frames had the fol-
lowing dimensions: [4, 240, 256] corresponding
to 4 frames of size 240 by 256 pixels.

3.3 Agent

The agent in this case is Mario who is acting upon
the environment in order to maximize the reward
he receives. The agent’s internal workings are com-
prised of two networks that share most of their ar-
chitecture with some discrepancies when it comes to
the final output layers. We are using an actor-critic
approach, and therefore, require two networks: one
for the actor and one for the critic. Both networks
receive a state as input which has the dimensions
[4, 240, 256] which means that there are 4 lazy
frames that have the size 240x256 pixels, but as an
output the actor returns the mean and variance for
the action probability distribution, while the critic
returns the expected value of the state in question.
Therefore, the actor network has an output dimen-
sion of 2, whereas the critic network has an output
dimension of 1. In our case we are using one actor
model and an ensemble consisting of three critic
models which allow us to better estimate the pre-
dicted state values by the critics. Furthermore, this
configuration introduces benefits when it comes to
dealing with uncertainty in the environment and
in the model itself.
Since we are dealing with images as input the
networks are comprised of a sequence of convolu-
tional layers and pooling layers connected through a
ReLU activation function to introduce non-linearity.
The overall architecture of the neural network can
be seen in Fig. 3.3.

Figure 3.3: A diagram showing the architecture
of the neural network.

We use the convolutional layers since they are
designed to handle grid-like data in a way that pre-
serves translational invariance and captures local

5

dependencies. The use of pooling layers helps us
reduce the amount of relevant features by either
picking the maximum feature value out of a neigh-
bourhood of feature values or by computing the
average of the feature values to reduce the com-
putational complexity and time spent processing
the information from the states. Specifically, the
actor and critic network both share two convolu-
tional layers and two pooling layers as well as two
ReLU activation functions. Followed is a shared
fully connected dense layer that flattens the input
passed on by the convolutional and pooling layers,
so it can be used during learning. Finally, our
network architecture contains two output heads,
one actor head for the mean and variance that are
used to define the action probability distribution,
and a critic head that returns the estimated value
function. Both these heads are comprised of fully-
connected dense layers.
Furthermore, the agent takes various parameters
during initialization that affect the network archi-
tecture and the performance of the learning process.
The first two parameters are the α and β learning
rates. The former is used in the actor network
and the latter is used in the critic network. The
learning rate defines the step size at each iteration
while moving toward a minimum of a loss function
during the training of a model. It influences how
much we are adjusting the weights of our network
with respect to the loss gradient. We have kept
constrained both of these parameters to small val-
ues since it can lead to a more stable convergence
even if it requires more epochs to train.
The next parameter we had was the discount factor,
γ, that balances between immediate and future
rewards. We have set this parameter’s value to
slightly below 1 in order to raise the importance
of future distant rewards compared to immediate
rewards.
The final two parameters that we have defined
are simply the number of neurons that the layers
should have which defines the architecture of our
networks.

3.4 Learning Process

The learning process consists of a for loop in which
the agent chooses what action to take in the given
situation by calling the choose action() function.
This function retrieves the mean and variance of
the action probability distribution from the forward
pass of the actor network. It uses this mean and
variance to construct a probability distribution and
samples an action from this distribution that has
the greatest value. This sample is used for calcu-
lating the log probabilities of the actions, which
are used in the policy gradient update to guide the
learning process of the actor network. Actions that

result in higher rewards are encouraged by adjust-
ing the policy parameters, while actions leading
to lower rewards are discouraged. In the context
of the learned policy, the log probabilities offer a
means to quantify the likelihood of the selected
actions.
To ensure that the agent is exploring new possi-
ble actions while also exploiting the learned knowl-
edge we have implemented a Boltzmann exploration
strategy. It is generally used for discrete action
spaces and assumes that each action in the action
space has a Q-value associated to it. It uses a
softmax function to convert these values into a
probability over the actions and then samples an
action from that distribution. This strategy utilizes
a temperature parameter τ that controls the level
of exploration. The following equation describes
the Boltzmann exploration process:

P (a) =
e

Q(a)
τ∑

i e
Q(i)
τ

(3.1)

where P(a) is the probability of selecting action
a, Q(a) is the estimated value of action a and τ
is the temperature parameter. Higher values for
τ enable a wider range of actions to be taken into
consideration because the softmax function assigns
more comparable probabilities to various actions.
Due to the fact that actions with lower Q-values
still have a chance of being chosen, this leads to a
more exploratory behaviour. On the other hand,
decreasing the temperature promotes exploitation,
sharpening the distribution and supporting actions
with higher Q-values. In our implementation the
Q-values are represented by the mean, µ, of the
action distribution.
After the action has been chosen, we take a step
in the environment using this action to obtain the
next state, and an indicator telling us if the agent
has died or not. This information is sent through
to the learn function that the agent uses to im-
prove its performance. In the learn function the
agent retrieves the estimated values for the current
state and the next state given the action that was
selected from the forward pass of the critic net-
work. This information is then used to compute
the temporal difference δ,

δ = R+ γv̂ (S′, w)− v̂ (S,w) (3.2)

which refers to the advantage which is defined
as: how much better this current action is that the
usual action taken in this state. It is formally de-
fined as the difference between the Q function and
the value function where R is the immediate reward
received when performing the chosen action, γ is
the discount factor, v̂ (S′, w) is the value function
starting from the successive state and v̂ (S,w) is
the value function starting from the current state.

6

The temporal difference is then used to compute
the actor and the critic loss respectively which are
then backpropagated to obtain the gradients for
the actor and critic network parameters. These
gradients are then used to update the weights of
the two networks.
The entire agent’s learning process can be sum-
marized in the pseudo-code provided in Algorithm
3.1.

Algorithm 3.1 Actor-Critic Algorithm

1: Initialize policy parameters θ and value func-
tion parameters w

2: Initialize environment state s
3: while not converged do
4: Choose action a from policy π(a|s, θ)
5: Take action a, observe reward r and next

state s′

6: δ ← r + γV (s′, w)− V (s, w)
7: w ← w + αwδ∇wV (s, w)
8: θ ← θ + αθδ∇θ lnπ(a|s, θ)
9: s← s′

10: end while

This algorithm takes two inputs: a policy π(a |
s; θ) that decides actions and a value function
V (s, w) that evaluates states. Both are adjustable
and use parameters θ and w. We also set two step
sizes, αθ and αw.
We start by giving random small values or zeros
to the policy parameters θ and state-value weights
w. Then, we repeatedly run the algorithm until
the policy stops changing much. In each cycle, we
do the following: pick an action using the policy
π(a | s; θ), act in the environment to get a reward
r and the next state s′. We use this new info to ad-
just our calculations (the δ) and update the weights
w and θ. Finally, we move to the new state and
repeat the process.

3.5 Uncertainty Quantification

In real-life scenarios, the level of uncertainty varies.
Some situations are less predictable, requiring more
thoughtful decision-making to handle potential sur-
prises. In the context of our agent and model,
methods for uncertainty quantification (UQ) are
key. They help reduce the impact of uncertainties
in optimization and decision-making processes Ab-
dar, Pourpanah, Hussain, Rezazadegan, and Liu
(2021). Moreover, uncertainty exists both in the
agents playing video games and within the games
themselves. To develop effective deep learning
agents, we must address and integrate this uncer-
tainty. While there has been considerable progress
in understanding and managing uncertainty, the
research on uncertainty-aware deep reinforcement
learning is not as advanced as in supervised learn-

ing. The interactive nature of gaming environments
introduces extra sources of uncertainty, although
many challenges common to neural networks in
supervised learning also apply to reinforcement
learning Lockwood and Si (2022).
As noted before, our model features one actor and
an ensemble of three critic models. Each critic in
the ensemble estimates a state value, and these
three estimates are merged to form a more accu-
rate single state value. This averaging method
should yield a state value closer to its true value
by leveraging the diverse perspectives of the three
critics. Each critic has a unique loss, calculated to
enable backpropagation through the networks and
facilitate weight updates in the models.
The uncertainty in the critic loss is indicative of
the variations in state value estimations. To ad-
dress this, we calculate the variance using the three
critics’ estimates. This variance is multiplied by
a specific weight to determine its impact relative
to the original loss. This step ensures that the
model accounts for the variability in the critics’
assessments, fine-tuning the learning process. The
resulting value, after multiplication, is then added
to the original critic loss.
Similarly, the uncertainty in the actor loss relates to
the fluctuation in log probabilities of the chosen ac-
tions. We use the variance of the log probability as
an uncertainty measure for the actor model. This
variance is multiplied by a weight to scale its sig-
nificance alongside the standard loss. Adding this
product to the original actor loss helps in adjusting
the learning process to account for the variability
and uncertainty in the actions chosen by the actor
model.
We include uncertainty in the loss function for sev-
eral key reasons. It helps make the training process
more stable and robust, acting like a check to pre-
vent the model from overfitting, especially in com-
plex situations. In real-world cases, where data can
be noisy or uncertain, it is important to consider
this uncertainty. Understanding how uncertain our
model’s estimates are can make the model easier to
interpret and lets us use adaptive learning methods
by showing us how confident the model is in its
predictions. In reinforcement learning, this uncer-
tainty plays a role in balancing exploration (trying
new things) and exploitation (using known strate-
gies), guiding the model to focus on areas where it’s
less certain. Also, when adjusted correctly, models
that are aware of uncertainty can give predictions
that closely match the actual uncertainty present
in the data.

3.6 Risk Classifier

So far our agent has the capacity to try out different
actions, improve on the selection of these actions

7

in the states given enough training time and has
some ability to recognize how certain it is in its
estimation of the values of the states. This is a solid
start, however, we need to incorporate perception
which the agent can use to detect potential danger
in its current state. To achieve this awareness we
implemented a detector that detects danger in the
environment. For instance, in the game there is a
creature that goes by the name ”Goomba”, shwon
in Fig.3.4, that instantly kills Mario if he comes in
contact with it without jumping on its head. So, if
such a Goomba is present in the current state our
agent must be able to detect it and act accordingly
to the danger at hand.

For this purpose we used the template matching
functionality offered to us by Bradski (2000). The
premise is simple; we have two images that are
converted to numpy arrays. One of the images
is a representation of the current state by taking
the first frame from the stack of frames that make
up the full embodiment of the state. The second
image is a reference image that is used to detect the
Goomba in the state image that has been reduced
in size so as to match the size of the Goomba within
the state image (the environment).

Figure 3.4: This image is the reference image
for the Goomba used in the classifier.

The template matching is done by comparing the
numerical values that represent the pixel colour in
the numpy arrays. We have defined a threshold pa-
rameter set to 0.4, so that whenever the similarity
metric from the template matching is greater than
this threshold parameter we get the coordinates of
the Goomba in the state image. If the similarity
metric is smaller than the threshold, then the clas-
sifier returns ”None” signifying the absence of a
Goomba in the current state.
In addition, the risk classifier is equipped with a
distance function that calculates the distance be-
tween our agent and the nearest visible Goomba.

The calculation of the distance is only based on
the x-axis coordinate:

distance = |xagent− xgoomba| (3.3)

where xagent refers to the x-coordinate of the
agent and xgoomba refers to the x-coordinate of
the seen Goomba. This value is then fed into the
shared dense layer of the network so that the actor
and the critic can use it as extra information from
the environment, and take it into consideration
when updating their respective weights.

3.7 Training and Testing the Model

We performed three individual experiments. The
first model we trained was the base actor critic
model without using an ensemble of critics and
with no safety mechanisms implemented. The sec-
ond model we trained was an actor critic with a
critic ensemble but without the safety mechanisms.
Finally, we trained an actor critic model with both
an ensemble of critics and the risk signal in combi-
nation with the distance metric.
We investigated whether or not the addition of
an ensemble will improve the performance of the
model, and if that will further be improved by the
risk signal and distance metric. Specifically, we
are going to be comparing the scores per episode
obtained by the model and the total number of
deaths that occurred during the training process.

4 Results

During the training of the models we recorded the
scores per episode and the total number of deaths
and saved them to a text file that we then used to
plot the results. Due to the computational com-
plexity of the model we decided to end the current
episode if the agent’s score has not increased in the
past one hundred moves. This allows for the model
to run through more episodes during the allocated
time of the training process. One thing to keep
in mind is that if the agent gets stuck somewhere
stopping the episodes and moving onto the next
one is not counted as a death. A death in our
case is Mario getting killed by a Goomba, turtle or
falling down a cliff.
After training the base actor critic model and plot-
ting the moving average scores per episode we ob-
served the following pattern:

8

Figure 4.1: Moving average score per episode
for the no ensemble actor critic model during
training. The light gray areas correspond to the
variance of the scores.

From Fig 4.1 we can deduce the behavior of the
model. Firstly, we can see that the base model’s
performance seems to greatly fluctuate across the
different episodes. There are periods where Mario’s
score is quite high and remains that way for a while
before reaching these sharp drops in performance
where Mario seems to struggle. The performance
of the base actor critic model is not as stable and
consistent as we would like it to be.
Afterwards, we investigated the results obtained
from training the ensemble actor critic model which
are presented in Fig 4.2:

Figure 4.2: Moving average score per episode
for the base actor critic model during training.
The light gray areas correspond to the variance
of the scores.

From the plot presented above we can see that
the overall score performance of the ensemble ac-
tor critic model seems to be more stable across
the episodes. This increased stability in the score
can be due to the ensemble of critics used to ap-
proximate the value function of the different states.
Combining the predictions of the value function
from three individual critics seems to provide the
model with a more accurate representation of the
states and the environment compared to the base
actor critic model as we can see in the more con-
sistent score values across the training episodes.
However, the performance of this model is still not
perfect, there are moments where the score is neg-
ative, but for the most part we can deduce that
the ensemble model seems to be performing better

than the base model.
Finally, we plotted the results from the safe actor
critic model which has the ensemble of critics and
the risk signal and distance metric functionality.
The moving average score obtained per episode is
shown in Fig 4.3:

Figure 4.3: Moving average score per episode
for the safe actor critic model during training.
The light gray areas correspond to the variance
of the scores.

As we can see from the graph above, the safe
actor critic model has the most interesting pattern
of behavior. The score performance of the model
starts similarly to the performance of the ensemble
actor critic model which is to be expected since
the safe model also utilizes an ensemble of crit-
ics. The surprising part, however, is that a few
hundred episodes before the 2,000th episode the
performance drops drastically and remains low for
the entirety of the training process. This is espe-
cially intriguing when we take a look at the total
death per model plot shown in Fig. 4.4:

Figure 4.4: Total deaths per model excluding
timeouts (restarting the episode).

As can be seen from the above graph the base
actor critic model obtained over 500 deaths dur-
ing training. The ensemble actor critic and the
safe actor critic model performed better in this
domain with 70 and 13 deaths respectively. The
decrease in deaths between the base actor critic
and the ensemble actor critic can be because of
the ensemble of critics. The ensemble provides the
model with a better value function representation
of the environment so the model can pick which

9

actions to take more accordingly. The safe actor
critic model had only 13 deaths during the 10,000
episodes of training which suggests that the risk
signal and distance metric have some effect on the
model’s performance. We cannot say if this effect
is positive or negative since on the one hand we
have a worse score performance of the model but
at the same time this model has experienced death
less times than both the base actor critic and the
ensemble actor critic models.

5 Discussion

As previously mentioned it appears that using
an ensemble of critics instead of a single critic
to estimate the value function of the states in
the environment results in a more stable and
consistent score performance. In the Mario
environment as in many other virtual and real life
environments, there is always some uncertainty
about the various states. For instance, when we
compare the predictions of the value function for
a state given by two different critics we can see
that their predictions vary ever so slightly. This
variance in the estimations is directly related
to the uncertainty that the model has about
its environment and by using multiple critics
and combining their predictions we can obtain
a more realistic and useful representation of the
environment. The decrease in deaths can also
be associated with this better representation of
the environment since Mario can select more
appropriate states to move to.
Furthermore, the decrease in performance in
the safe actor critic model can be linked to the
nature of the distance metric that we are using.
Currently it is only a numerical value that is
fed into the shared dense layer of the model
without any additional information informing the
model what this value actually represents in the
environment. This lack of information can hinder
the model’s performance. When a Goomba is
present the distance metric is ever changing since
Mario and the Goomba are both moving either
towards each other or away from one another, so
the model can potentially learn what this distance
metric is related to. On the other hand, when
a Goomba is not present the distance metric is
replaced by a huge value that represents that a
Goomba is very far away in this specific instant.
In this situation the model has nothing in the
environment to associate this distance metric with
because the value of it will not be changed unless
a Goomba is detected in the environment and then
this placeholder value is replaced by the actual
x-axis distance between Mario and the Goomba.
It is possible to provide more context for the risk
signal by directly modifying the reward function,

however, this is beyond the scope of this project.
Another possibility is that the model successfully
learns how to avoid the initial Goomba in the
environment and after that gets stuck somewhere
and this process is repeated over the following
episodes. This is plausible because as we already
saw the safe actor critic model has the least
amount of deaths which leads us to believe that
the model, even though under performing in the
score department, has some ability to reduce the
amount of times that Mario dies even though
it may not be consistent throughout the entire
environment.

6 Conclusions

In this section we are going to briefly summarize
the results we observed and the performance of the
three individual models.

• The base actor critic model had the most fluc-
tuating score performance and the highest
number of deaths. This was to be expected
since it does not use an ensemble of critics to
estimate the value function of the states and
it does not utilize the risk signal in tandem
with the distance metric.

• The ensemble actor critic model had a
more stable and consistent score performance
throughout the episodes and had a lower num-
ber of deaths than the base actor critic model.
This increase in performance can be associated
with the better representation of the environ-
ment due to the ensemble of critics providing
a more accurate value function approximation
for the different states.

• The safe actor critic model’s score performance
in the beginning of the training was similar to
that of the ensemble actor critic model, how-
ever, there was a massive drop in performance
at around the 2,000 episode mark, but had the
least amount of deaths out of all the models
trained. The drop in score performance can
be associated to the distance metric not being
explicit enough in what it actually stands for
and so the model can be getting confused how
to use this additional information. Still, the
number of deaths suggests that the safety sig-
nal in combination with the distance metric
have some effect on the model’s behavior when
it encounters a state involving risk.

• An actor critic model that utilizes an ensemble
of critics and a more refined distance metric
that offers further information to the model
could improve upon the results we have seen
in this study.

10

7 Future Research

Incorporating Safe RL in video game scenarios,
such as Super Mario Bros, is an exciting avenue for
research. The field is ripe for a myriad of experi-
ments and uncharted explorations. An interesting
angle for future studies is to play around with dif-
ferent distance metrics. For instance, shifting from
a simple x-axis distance to a more comprehensive
Euclidean distance could offer new insights. More
crucially, the introduction of a safety signal that
encompasses a range of environmental risks – like
turtles, cliffs, and groups of Goombas – could be
a game-changer. This risk signal, acting as a key
motivator in our research, could potentially guide
Mario through a safer, yet challenging, journey, of-
fering a richer understanding of the game dynamics
under varied risk factors.

8 Acknowledgments

I would like to express my profound gratitude to
my supervisor who helped along this journey and
offered assistance whenever it was required. This
project would not have been finished without their
knowledge on the topic and their support.

References

Moloud Abdar, Farhad Pourpanah, Sadiq
Hussain, Dana Rezazadegan, and Li Liu.
A review of uncertainty quantification in
deep learning: Techniques, applications and
challenges. Information Fusion, 76(Y):243–
297, 2021. doi:10.1016/j.inffus.2021.05.008.
URL https://linkinghub.elsevier.com/

retrieve/pii/S1566253521001081.

Kai Arulkumaran, Marc Peter Deisenroth, Miles
Brundage, and Anil Anthony Bharath. A
brief survey of deep reinforcement learning.
IEEE Signal Process. Mag., 34(6):26–38, 2017.
doi:10.1109/MSP.2017.2743240. URL http://

arxiv.org/abs/1708.05866.

Richard Bellman. The theory of dynamic
programming. Bulletin of the American
Mathematical Society, 60(6):503–515, 1954.
doi:10.1090/S0002-9904-1954-09848-8. URL
https://www.ams.org/bull/1954-60-06/

S0002-9904-1954-09848-8/.

G. Bradski. The OpenCV Library. Dr. Dobb’s
Journal of Software Tools, 2000.

Vincent Francois-Lavet, Peter Henderson, Riashat
Islam, Marc G. Bellemare, and Joelle Pineau.

An introduction to deep reinforcement learn-
ing. FNT in Machine Learning, 11(3-4):219–
354, 2018. doi:10.1561/2200000071. URL http:

//arxiv.org/abs/1811.12560.

Javier Garcia and Fernando Fernandez. A com-
prehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(Y):
1437–1480, 2015. doi:DOI. URL URL.

Peter Jin, Kurt Keutzer, and Sergey Levine. Re-
gret minimization for partially observable deep
reinforcement learning, 2018.

Christian Kauten. Super Mario Bros for OpenAI
Gym. GitHub, 2018. URL https://github.

com/Kautenja/gym-super-mario-bros.

Vijay Konda and John Tsitsiklis. Actor-
critic algorithms. In S. Solla, T. Leen, and
K. Müller, editors, Advances in Neural Infor-
mation Processing Systems, volume 12. MIT
Press, 1999. URL https://proceedings.

neurips.cc/paper_files/paper/1999/file/

6449f44a102fde848669bdd9eb6b76fa-Paper.

pdf.

Yann LeCun, Yoshua Bengio, and Geoffrey Hin-
ton. Deep learning. Nature, 521(7553):436–444,
2015. doi:10.1038/nature14539. URL https:

//www.nature.com/articles/nature14539.

Yizheng Liao and Kun Yi. Cs 229 final re-
port reinforcement learning to play mario.
2012. URL https://api.semanticscholar.

org/CorpusID:16591185.

Owen Lockwood and Mei Si. A review of uncer-
tainty for deep reinforcement learning. AIIDE, 18
(1):155–162, 2022. doi:10.1609/aiide.v18i1.21959.
URL https://ojs.aaai.org/index.php/

AIIDE/article/view/21959.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Andrei Rusu, Joel Veness, Marc Bellemare,
Alex Graves, Martin Riedmiller, Andreas Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles
Beattie, Amir Sadik, Ioannis Antonoglou, He-
len King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level
control through deep reinforcement learning. Na-
ture, 518(7540):529–533, February 2015.

Kun Shao, Zhentao Tang, Yuanheng Zhu, Nan-
nan Li, and Dongbin Zhao. A survey of deep
reinforcement learning in video games, 2019.

Richard S. Sutton and Andrew G. Barto. Rein-
forcement Learning: An Introduction. A Brad-
ford Book, Cambridge, MA, USA, 2018. ISBN
0262039249.

11

https://doi.org/10.1016/j.inffus.2021.05.008
https://linkinghub.elsevier.com/retrieve/pii/S1566253521001081
https://linkinghub.elsevier.com/retrieve/pii/S1566253521001081
https://doi.org/10.1109/MSP.2017.2743240
http://arxiv.org/abs/1708.05866
http://arxiv.org/abs/1708.05866
https://doi.org/10.1090/S0002-9904-1954-09848-8
https://www.ams.org/bull/1954-60-06/S0002-9904-1954-09848-8/
https://www.ams.org/bull/1954-60-06/S0002-9904-1954-09848-8/
https://doi.org/10.1561/2200000071
http://arxiv.org/abs/1811.12560
http://arxiv.org/abs/1811.12560
https://doi.org/DOI
URL
https://github.com/Kautenja/gym-super-mario-bros
https://github.com/Kautenja/gym-super-mario-bros
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.1038/nature14539
https://www.nature.com/articles/nature14539
https://www.nature.com/articles/nature14539
https://api.semanticscholar.org/CorpusID:16591185
https://api.semanticscholar.org/CorpusID:16591185
https://doi.org/10.1609/aiide.v18i1.21959
https://ojs.aaai.org/index.php/AIIDE/article/view/21959
https://ojs.aaai.org/index.php/AIIDE/article/view/21959

Chen Tessler, Shahar Givony, Tom Zahavy,
Daniel J. Mankowitz, and Shie Mannor. A
deep hierarchical approach to lifelong learning
in minecraft, 2016.

Edward L Thorndike. Animal intelligence: An
experimental study of the associative pro-
cesses in animals. The Psychological Re-
view: Monograph Supplements, 2(4):i–109, 1898.
doi:10.1037/h0092987.

Steven D. Whitehead and Dana H. Bal-
lard. Learning to perceive and act by trial
and error. Mach Learn, 7(1):45–83, 1991.
doi:10.1007/BF00058926. URL http://link.

springer.com/10.1007/BF00058926.

12

https://doi.org/10.1037/h0092987
https://doi.org/10.1007/BF00058926
http://link.springer.com/10.1007/BF00058926
http://link.springer.com/10.1007/BF00058926

A Appendix: Parameters and
Configurations in environ-
ment.py

Environment Setup and Preprocess-
ing

• Game Environment: Super Mario Bros (Ver-
sion: SuperMarioBros-v0)

• Movement Control: SIMPLE MOVEMENT

• Observation Preprocessing:

– Grayscale Observation

– Frame Stacking with 4 frames

Agent Configuration

• Learning Rate (Actor): 0.0000005

• Learning Rate (Critic): 0.0000001

• Discount Factor (Gamma): 0.95

• Number of Actions (n actions): 7

• Layer Sizes: layer1 size = 64, layer2 size = 64

• Input Size: Derived from the environment’s
observation space

Training Process

• Number of Episodes: 15000

• Maximum Steps Without Score Increase: 100

• Model Save Frequency: Every 20 episodes

• Model Checkpoint File: ’checkpoint base.pth’

Data Recording and Analysis

• Score History: Recorded per episode

• Death History: Recorded per episode

• Aggregated Scores and Deaths: Recorded ev-
ery 100 episodes

• Output File: ’results.txt’

B Appendix: Parameters
and Configurations in ac-
tor critic.py

General Parameters

• Device: CUDA

• Image Path: ’GuillaumeGoomb.PNG’

• Threshold for Template Matching: 0.4

GeneralNetwork Class Parameters

• Learning Rate (lr): Specified at initialization

• Input Dimensions (input dims): Specified at
initialization

• First Layer Dimensions (fc1 dims): Specified
at initialization

• Second Layer Dimensions (fc2 dims): Specified
at initialization

• Output Dimensions (output dims): Specified
at initialization

• Convolutional Layers: Conv2d with kernel
sizes 3 and 5

• Pooling Layers: MaxPool2d with kernel size 2

• Fully Connected Layer: Linear with input size
3477 and output size fc1 dims

• Actor Head: Linear layers for mu and
log sigma

• Critic Head: Linear layer for value function

Agent Class Parameters

• Alpha (learning rate for the actor network):
Specified at initialization

• Beta (learning rate for the critic networks):
Specified at initialization

• Gamma (discount factor): 0.90

• Number of Actions (n actions): 7

• Layer Sizes: layer1 size = 64, layer2 size = 64

• Temperature Decay Rate: 0.9999

Model Training Parameters

• Gradient Clipping Norm: 0.5

• Uncertainty Weights: Actor 0.01, Critic 0.01

13

	Introduction
	Theoretical Framework
	Reinforcement Learning
	Deep Reinforcement Learning and Video Games
	Safe Reinforcement Learning

	Methods
	Super Mario Bros
	Environment
	Agent
	Learning Process
	Uncertainty Quantification
	Risk Classifier
	Training and Testing the Model

	Results
	Discussion
	Conclusions
	Future Research
	Acknowledgments
	Appendix: Parameters and Configurations in environment.py
	Appendix: Parameters and Configurations in actor_critic.py

