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Abstract: Air pollution and smog carry correlations to numerous pervasive health effects. Given
the risks, foreseeing toxic pollutant levels poses a vital challenge that, upon resolution, enacts
a framework for life-saving decisions. Data-driven deep learning (DL) methods offer a novel
approach to air quality prediction, yet their potential for modelling a combined set of smog-related
pollutants with recurrent neural nets (RNNs) remains unexplored. In this proof-of-concept study,
we conduct multivariate timeseries forecasting of nitrogen dioxide (NO2), ozone (O3), and (fine)
particulate matter (PM10 & PM2.5) with meteorological covariates between two locations in the
Netherlands using various DL architectures, with a focus on RNNs with long short-term memory
(LSTM) and gated recurrent unit (GRU) memory cells. In particular, we propose an integrated,
hierarchical model architecture inspired by air pollution dynamics and atmospheric science that
employs multi-task learning (MTL) and is benchmarked by unidirectional and fully-connected
models. Results demonstrate that, above all, the hierarchical GRU proves itself as a competitive
and efficient method for forecasting smog-related pollutants.

1 Introduction

Air pollution stands as a critical global challenge
to humanity (UN, 2015). The rise of large-scale
combustion and anthropogenic polluting activities
has led to significant increases in air pollutant con-
centrations over the last century, leaving a heavy
burden on human health (Kampa and Castanas,
2008). An unmistakable manifestation of these de-
velopments is the occurrence of smog: a noxious
mixture of air pollutants that obstructs visibility
and severely impairs human health in various ways
(Brunekreef and Holgate, 2002). Given the detri-
mental effects, it is imperative to be able to predict
when harmful pollutant levels might occur.

This research proposes different methods to gain
insight into air pollutant levels through timeseries
forecasting and the application of multiple deep
neural network (DNN) architectures, notably in-
cluding recurrent neural networks (RNNs). The
following subsections will elaborate on the motiva-
tion for the research, the state-of-the-art, and its
contributions.

1.1 Motivation

The presence of hazardous atmospheric chemicals
characterises the phenomenon of air pollution. Al-
though a number of physical activities (volcanoes,
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fire, etc.) may release different pollutants, anthro-
pogenic activities are the head cause of environ-
mental air pollution (Kampa and Castanas, 2008).

Adverse air pollution effects can range from skin
irritation and difficulty in breathing to an increased
risk of cardiac and respiratory illnesses, cancer, and
mortality overall (Brunekreef and Holgate, 2002;
Kampa and Castanas, 2008; Wong et al., 2008;
Orellano et al., 2020). A recent addition is its
direct link to COVID-19 morbidity and severity
(Zorn et al., 2024). Furthermore, as stated in Lim
et al. (2012), air pollution ranks high in the gen-
eral disease burden attributable to environmental
factors, with 3.1 million deaths in 2012 and 3.1%
of disability-adjusted life years worldwide.

Since smog is primarily a form of air pollution
characterised by elevated levels of specific pollu-
tants, it carries comparable dangers, if not height-
ened ones. Moreover, distinctive smog features,
such as reduced visibility and eye irritation, can
exacerbate the risks.

Fundamentally, the air pollution problem and
the extent to which it spreads is evident. Indeed,
the air and its contaminants are everywhere and
will remain inevitably inherent to human-nature
interaction in the future. Positive notions present
themselves, nonetheless: (1) humans, being the
primary polluters, also possess the opportunity to
act as the ”primary purifiers”; and (2) comprehen-
sive fundamental problem knowledge (refer, e.g.,
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to Vallero (2014)) offers positive prospects for fur-
ther advancing research. The subsequent step is to
gather insight into the dynamics in which air pollu-
tion, smog, and their patterns reside: the weather
system.

Despite the notable complexity of the weather
system, (preliminary) insight into its dynamics and
the ability to accurately forecast hazardous sit-
uations would provide a framework for making
impactful decisions. An apparent use of this frame-
work would be to prevent acute health damage
from episodes of, for instance, heavy smog or hur-
ricanes/cyclones. Another compelling goal is to
get to the very source of the problem and deliver a
more systematic policy-based counterforce to pol-
lution hotspots as, e.g., Li et al. (2017b) showed
that air pollution change is heavily policy-driven.
A demonstrative example is a ”congestion tax”,
where air pollution reduction resulted in, among
other successes, a direct decrease in acute asthma
in young children (Johansson et al., 2009)).

This problem motivates the development and ap-
plication of data-driven forecasting models based
on multiple DNN architectures, using contaminant
and meteorological data to simulate and predict air
pollution and smog. In particular, we consider the
modelling of nitrogen dioxide (NO2), ozone (O3),
and (fine) particulate matter (PM10 & PM2.5) with
various meteorological covariates as a first proof-
of-concept (PoC). By employing these weather-
predictive methods, this study aims to contribute
incrementally to understanding air pollution dy-
namics and enhance environmental conditions for
improved public health.

1.2 State-of-the-art

Traditional weather systems have evolved into so-
phisticated models that approximate real-world
weather dynamics with increasing precision (Alley
et al., 2019). The systems apply numerical weather
prediction (NWP), a now ubiquitous, though com-
putationally costly, numerical method grounded on
physical first-principles (Bauer et al., 2015). While
applying purely natural laws as boundary condi-
tions for predictions is theoretically possible, it
presents challenges in practice: the weather system
is everywhere and contains numerous complex pro-
cesses that make it computationally infeasible to
provide these predictions with more than a highly
simplified, parameterised value. Moreover, the non-
linear dynamics, exemplified by the chaotic be-
haviour of turbulent flow, make predictions at high
resolution—spatially, temporally, and/or across
variables—a lasting challenge.

The emergence of data-driven methods presents
a novel approach to abstracting physical processes
embedded in the weather system. Machine learn-

ing (ML) models are adept at recognising complex
patterns within large datasets with unparalleled
efficiency—patterns that, speculatively, may repre-
sent relationships and correlations between atmo-
spheric variables and influences not yet understood
by traditional physics.

A recently undertaken application of large-scale
data-driven deep learning (DL) weather forecasting
is FourCastNet by Pathak et al. (2022). FourCast-
Net generates global forecasts orders of magnitude
faster than traditional NWP with comparable or
better accuracy. It herewith demonstrates the po-
tential of data-driven methods to make significant
progress in weather forecasting without explicitly
considering the underlying (known) physical pro-
cesses and equations. Implications are reducing
costs of the traditional NWP and, more impor-
tantly, reducing the opportunity cost of inaccurate
forecasts.

FourCastNet, specifically, combines the Fourier
neural operator (FNO) learning approach, a vi-
sion transformer (ViT) architecture, and a dataset
consisting of several atmospheric variables into pre-
dictions of precipitation, wind speed, and surface
water vapour (Pathak et al., 2022). In the latter
respect, utilising DL and many variables to predict
few, FourCastNet is consistent with the endeavour
of this study. Its scope does not, however, encom-
pass predicting components directly related to air
pollution or smog.

More closely related state-of-the-art studies (see
Masood and Ahmad (2021) for a review) that dis-
tinctly forecast air pollution are Freeman et al.
(2018) and Tao et al. (2019). The former performs
a forecast of surface O3 levels using an RNN with
long short-term memory (LSTM); its approach
takes as input hourly-sampled meteorological data
and O3 itself, outputting a multivariate 72-hour
horizon forecast. The latter, Tao et al. (2019), re-
spectively, highlights several prediction methods
with a particular emphasis on a new method, a com-
position of 1D convnets and the bidirectional gated
recurrent unit (GRU), for a multivariate short-term
prediction of PM2.5. Both studies are consistent
and relevant to the purpose of this PoC in that
they use RNNs (i.e. an LSTM and GRU architec-
ture), take meteorological covariates as inputs, and
consequently predict air pollution. Nonetheless, as
much as O3 and PM2.5 are influential elements, a
more complete air pollution and smog prediction
requires consideration of a broader and, above all,
combined set of air contaminants.

1.3 Contributions

Acknowledging the recent developments (Masood
and Ahmad, 2021) and state-of-the-art, the LSTM
and GRU establish themselves as the appropriate
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choice for modelling the sequential series of com-
ponents in ambient (polluted) air. This insight
steers us towards contributing an attempt at get-
ting further command of the air pollution problem
through a PoC of smog modelling with LSTM and
GRU models. Specifically, the combined modelling
of contaminants NO2, O3, PM2.5, and PM10 is
considered.

Ultimately, this research addresses the question:
”To what extent are models with the LSTM and
GRU architecture capable of the multivariate time-
series forecasting of smog-related air components?”
It is found that the LSTM and GRU can indeed
accurately forecast smog-related air components,
thus providing an effective method for modelling
and forecasting pollutants.

2 Theoretical framework

The theoretical framework of this study explores
air pollution, timeseries forecasting, and recurrent
neural nets (RNNs), providing a comprehensive per-
spective on smog forecasting through deep learning.

2.1 Air pollution

Since the advent of the industrial revolution, in-
creasing pollutant and trace gas concentrations
have fundamentally changed the air quality (Fowler
et al., 2020). A by-product of growing urban pop-
ulations is spatial areas with a high concentration
of polluting activities (Elsom, 2014), which can
accumulate atmospheric pollution, forming ”clouds
of smog” of either photochemical or sulphurous
kind (Haagen-Smit, 1952; Davis, 2002). The preva-
lence of smog will not subside anytime soon (as,
for instance, estimates predict the world’s urban
population to grow from ±55% in 2018 to ±68%
in 2050 (Ritchie and Roser, 2018)), nor will air
pollution in general. Moreover, the same applies
to the health effects.

2.1.1 Health implications

Besides the aforementioned general adverse health
effects, air components are associated with ad-
verse effects individually. Kampa and Castanas
(2008) list, among others, gaseous pollutants and
respirable Particulate Matter (PM) as two signif-
icant categories of pollutants. Out of these cat-
egories, the health effects of tropospheric ozone
(O3) (Amann, 2008; Malley et al., 2017), nitrogen
dioxide (NO2) (Eisner et al., 2010; Faustini et al.,
2013), and PM with an aerodynamic diameter of
≤ 10 µm (PM10) and ≤ 2.5µm (PM2.5) (Kampa
and Castanas, 2008; Chen and Lippmann, 2009;
Mašková et al., 2015) have been extensively studied
and Appendix A discusses them in more detail.

Table 2.1: World Health Organization (WHO)
air quality guidelines (AQGs) from 2021, where
the AQG levels describe recommendations for
maximum average pollutant concentrations on
different timescales (WHO, 2021).

Averaging time AQG level
(µgm−3)

NO2 24-hour 25
Annual 10

O3 8-hour 100
Peak-seasona 60

PM10 24-hour 45
Annual 15

PM2.5 24-hour 15
Annual 5

aIndicates the average daily maximum 8-hour mean
in the consecutive months with the highest six-
month running average

Following the impacts of the four, together with
the acknowledgement that many components in the
weather system affect air quality and its cleanliness,
the scope of this research will focus specifically on
the contaminants NO2, O3, PM2.5, and PM10.

Furthermore, this enumeration of negative conse-
quences prompts consideration of the threshold at
which concerns should arise. The WHO guidelines
drawn in 2021 are presented in Table 2.1, with the
maximum average air quality guidelines (AQGs),
or exposure limits, enlisted for the four pollutants
at issue. The guidelines, nevertheless, represent
a predominantly practical target; concentrations
fluctuate freely and dynamically and are already
harmful at lower values (WHO, 2021).

2.1.2 Atmospheric interactions

The very reality of contaminant concentrations
changing over time naturally focuses attention on
the question of how these changes originate and
evolve. Whereas the origins and sources of pollu-
tion are reasonably well understood (Vallero, 2014;
Saxena and Naik, 2018), much is still unknown
about its dynamics and how it evolves—hence, the
subject of this research. Especially from a ML per-
spective, understanding the specific relationships
between variables, or features, is critical for efficient
learning (Li et al., 2017a).

How pollutants evolve is partly explicable by
their interaction with their environment. As a
result, a combined modelling of atmospheric vari-
ables can be justified. The following paragraphs
briefly introduce the pollutants’ interconnectivity
and atmospheric interaction.

Foremost, the chemical interrelation of NO2 and
O3. Nitrogen oxides (NOx), a mixture of the colour-
less nitric oxide (NO) and reddish-brown, pungent
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NO2, are (mostly anthropogenically-generated) pri-
mary pollutants. When in the presence of certain
volatile organic compounds (VOCs) or another ini-
tiator or catalyst, NO can oxidate into NO2 (Atkin-
son, 2000). The photodecomposition of NO2

NO2 + hv(λ < 430nm) → NO+O, (2.1)

where h is Planck’s constant and v is the light
frequency ( c

λ ), will, in turn, initiate the sequential
formation of secondary pollutant O3

O+O2
M−→ O3, (2.2)

where M is any third stabilising molecule for the
excited intermediate formed by adding O and O2

(Finlayson-Pitts and Pitts Jr, 1993). It follows that,
by exclusive consideration and assumption of the
presence of photons with adequate energy, NO2

appears to affect the atmospheric quantity of O3

positively.
When no (or less) solar energy is present (e.g.,

at night), NO2 remains stable and reacts with O3

to form nitrate radical (NO3) (Finlayson-Pitts and
Pitts Jr, 1993):

NO2 +O3 −→ NO3 +O2, (2.3)

lowering the concentrations of NO2 and O3 (at least
for now). Therefore, owing to the chemical interde-
pendence of O3 and NOx, the levels of O3 and NO2

are inextricably linked (Clapp, 2001). Besides, we
already observe that one cannot dissociate pollu-
tant concentrations from atmospheric (and cosmic)
influences.
Continuing, PM is either emitted directly into

the atmosphere (primary) or formed later (sec-
ondary) and is subject to air transport, cloud pro-
cessing, and removal from the atmosphere (Seinfeld
and Pandis, 2016). PM10 and PM2.5 are intercon-
nected as seen empirically (Velders et al., 2015) and
naturally (Rhodes and Seville, 2024), given that
their distinction is their size. With its relatively
large size, PM itself experiences negligible chem-
ical reactivity with the atmosphere compared to
minor compounds such as NO2 and O3. Nonethe-
less, noting its susceptibility to transport, PM and
other pollutants alike are responsive to airflow and
dispersion in their ambient air environment—an
environment amidst all meteorological influences,
without yet considering factors such as geology and
topology. Therefore, many, at least implicit, pa-
rameters are required to model PM and other air
components reliably.

In short, NO2, O3, PM10, and PM2.5 are subject
to influences from all dimensions and thus can be
broadly modelled: for modelling pollution move-
ments, pollution can be assumed to behave as air.
Furthermore, pollutants are ”internally” affected
by each other and externally by the atmosphere,
warranting a multivariate, integrated modelling
approach.

2.2 Timeseries forecasting

A timeseries is a series of data points indexed along
the time dimension. In the context of measure-
ments, a timeseries is typically sampled at uniform
intervals, constituting a discretised representation
of a continuous temporal process. Timeseries can
have a finite and infinite length, although they are
finite for ML modelling purposes. Formally, finite
length timeseries are sequences that start at time
n = 0 and run until a maximum time nmax:

(x(n))nmax∈[0,∞] = x(0),x(1), ...,x(nmax), (2.4)

where x(n) is the data point at time n. The finite
sequence can describe an interval of any dynamical
system, thereby potentially communicating mean-
ingful information about the temporal evolution of
such system.

Timeseries analysis involves methods to extract
statistics and characteristics from these sequences.
Examples of uses are dynamical pattern genera-
tion (e.g. automatic music generation), pattern
detection (e.g. nuclear fusion plasma instability de-
tection), system modelling (e.g. aircraft behaviour
modelling), and timeseries forecasting.
In timeseries forecasting, forecasts are made us-

ing timeseries analysis based on data comprising
one or more timeseries. Forecasts can be univariate,
i.e. with one involved data source (a weather sensor,
for example,) or they can be multivariate, where
forecasts of a given variable, or variables, depend,
at least partly, on one or more additional predictor
variables (Chatfield, 2000). Adding exogenous vari-
ables to the modelling problem can theoretically
boost forecasting accuracy by revealing relevant,
previously unknown information about the underly-
ing process. On the other hand, handling the added
complexity requires sufficient flexibility and power
(see Sfetsos and Coonick (2000), for instance).

In data-driven, inductive air pollution forecast-
ing, approaches thus far can be mainly categorised
into statistical methods, shallow ML methods, and
DL methods. Of the former, examples are non-
linear regression (Baker and Foley, 2011), autore-
gressive integrated moving average (ARIMA) mod-
elling (Prybutok et al., 2000; Vlachogianni et al.,
2011), and single exponential smoothing (SES)
(Gardner Jr, 2006). Exemplary is that, SES, with
the inherent delay in its computational mechanism,
cannot conform to irregular non-linear patterns(—
which is also illustrated in Appendix B.4). Like-
wise, purely statistical methods tend to have serious
shortcomings for forecasting the evolution of highly
non-linear complex systems (Cheng et al., 2015).
Shallow ML methods, exemplified by support vec-
tor machines (SVMs) (Chuentawat and Kan-ngan,
2018) and artificial neural networks (ANNs) (Elan-
gasinghe et al., 2014), prove to be more accomo-
dating to the complexity of air pollution data, as
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reviewed in Masood and Ahmad (2021) and Ca-
baneros et al. (2019). Moreover, the authors high-
light DL methods’ ascendency to establishing them-
selves as the best-performing AI-based technique.

This, in conjunction with RNNs generally per-
forming competitively within timeseries forecasting
(Hewamalage et al., 2021), e.g. seen in the win-
ning method of the M4 competition (Makridakis
et al., 2020), consequently brings RNNs to the fore-
front for the application of air pollution timeseries
forecasting.

2.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) host cyclical
connection pathways that, mathematically speak-
ing, represent not functions but dynamical systems
(DSs). RNNs have a network state x(n) allow-
ing some earlier input u(n′) to leave its traces on
output y(n), and, therewith, the current state is
influenced by past states and input. In practical
terms, RNNs are tailored for sequential, fixed order
data, such as timeseries. Illustratively, when data is
fed non-sequentially, e.g. today’s weather prior to
yesterday’s, the internal state becomes confounded.

The fact that RNNs represent, or are, DSs un-
locks the possibility to model the many DSs inher-
ent in reality. RNNs have proven highly adept for
various applications where sequential data, often
temporal in nature, is involved (Salehinejad et al.,
2017; Hewamalage et al., 2021).

Formally, the transition of an RNN network state
is given by the update equations:

x(n) = σ(Wx(n− 1) +W inu(n), (2.5)

y(n) = f(W outx(n)), (2.6)

where n = 0, 1, 2, ..., nmax are the time steps, W
is a matrix containing the connections weights,
W in and W out contain the weights from/to the in-
put/output neurons, σ is a sigmoid function, and f
a function wrapping the readout W outx(n) (Jaeger,
2023b). In particular the activation function σ,
which introduces non-linearity to the evolution of
the internal state (2.5), enables RNNs to capture
(long-term) non-linear dependencies in the data.

RNNs train through backpropagation through
time (BPTT). The idea of BPTT is to unfold the
network through time, identically replicating the
net for each timestep and rewiring the network-
internal connections forward. A consequence is
that with many timesteps, say of depth T , the error
gradient is back-propagated through all those T
unfolded layers. After many derivative passes, this
causes the vanishing gradient problem (Hochreiter,
1998)—a well-known difficulty for effective RNN
training (Pascanu et al., 2013). Since the gradient
vanishes (or explodes) progressively, the probability

of successfully encoding long-term dependencies
decreases rapidly (Bengio et al., 1994).

Long short-term memory (LSTM) networks were
introduced by Hochreiter, Schmidhuber, and Gers
with the intention to solve this problem (Hochre-
iter, 1991; Hochreiter and Schmidhuber, 1997; Gers
et al., 2000). They proposed a self-connected linear
unit, the LSTM memory cell, with a constant error
flow: in the absence of new input or error signals to
the cell, the local error backflow remains constant,
neither growing nor decaying (Gers et al., 2000).
Thus, with the LSTM, the gradient is independent
of T .

Memory cells possess a gating mechanism facili-
tating this. While many variations to this mecha-
nism exist (Greff et al., 2017), it generally contains
the following elements. The foundation is formed
by the cell state and hidden state. Its input and
output are regulated by the input gate and output
gate, respectively, and a linear self-loop is con-
trolled by the forget gate. All the gating units have
a sigmoid non-linearity, while the input unit can
have any squashing non-linearity (Goodfellow et al.,
2016). These elements, along with the introduced
non-linearities, allow for adaptive information flow
modulation, enabling selective processing and long-
term retention of non-linear patterns.

A more recently proposed recurrent unit is the
gated recurrent unit (GRU) by Cho et al. (2014).
The GRU uses a similar approach to solving the
vanishing gradient problem but simpler. It contains
only two gates, the reset gate and update gate,
making it easier to compute (and implement). The
former controls the degree to which the previous
hidden state influences the current, and the latter
combines the LSTM input and forget gate into one.
Its performance has shown to be on par with the
LSTM, and, in some cases, can outperform it in
terms of convergence in CPU time and in terms
of parameter updates and generalisation (Chung
et al., 2014).

Since their introduction, gated RNNs achieved
most RNN breakthroughs (Yu et al., 2019). As seen
in Section 1.2, the gating mechanism also proves
itself in air pollution-related applications (Freeman
et al., 2018; Tao et al., 2019). Still, these studies
predicted one contaminant only, while LSTMs are
proven to be adequate for multivariate data (Che
et al., 2018).

At a higher level, beyond the configurations of
individual gates or neurons, is where discussion of
such multivariate data can begin. A way to strike
a balance between a multivariate forecast and an
individual one is through non-homogeneous hierar-
chical neural circuits and architectures, also called
hierarchical neural nets (HNNs). HNNs consist of
a number of loosely-coupled subnets, arranged in
layers, where each subnet is intended to capture
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specific aspects of the input data (Mavrovouniotis
and Chang, 1992). In HNNs, a priori knowledge can
be embodied in the neuronal arrangement, thereby
steering the model in a preferred direction. Such a
balance lends itself particularly well to air pollution
data, as will be discussed in Section 3.3, continuing
per the methods section discussed next.

3 Methods

In this study, we model pollutants using meteoro-
logical covariates along a one-dimensional spatial
trajectory, or, in other words, we use pollutant and
meteorological data at point A to predict pollu-
tants at point B. The ensuing sections describe
and inspect the data employed, explain the prepro-
cessing, introduce the models, outline the training
process, and present the used evaluations.

3.1 Data

The proposed forecasting experiment uses hourly-
sampled data from 2016 to 2023 (RIVM, 2024;
KNMI, 2024), which is available under an initiative
of the Dutch government and the Dutch national
meteorological service, the Royal Netherlands Me-
teorological Institute (KNMI). The data is accred-
itated under NEN-EN-ISO/IEC 17025 standards
and is technically and substantively validated (and
possibly rejected) before release (KNMI, 2023a).
Where traditional weather prediction methods,

such as NWP, get data from ground sensors, buoys,
air balloons, satellites, weather radars, and even
commercial planes—to name a few—the data for
this experiment is measured solely by automatic
weather stations (AWSs) that make synoptic read-
ings (KNMI, 2023b). By synchronising the read-
ings with respect to time, this approach makes
the data consistent and adequate for spatiotempo-
ral air quality monitoring and analysis. Moreover,
uniformly-discretised data is particularly conve-
nient for timeseries forecasting.

3.1.1 Spatiotemporal context

This experiment involves forecasting with data from
two locations1, a source location (A) and a target
location (B). The source location is in Utrecht, the
Netherlands, and here, pollutant data is combined
with meteorologically related covariates to forecast
pollutant data at the relatively northwestern target
location in Breukelen. Their relative positions are
best illustrated visually; see Figure 3.1.

Given the distinct locations, the key assumption
is that environmental conditions in the different lo-

1The two-site approach was adopted in anticipation of
extending the scope of this study with physics-informed ML,
which is discussed in Section 6.1 on future research.

Figure 3.1: Utrecht area with markers indicat-
ing the AWS locations. Located at the bottom
right, in De Bilt, is the source meteorological
sensor (52°06’06.4”N, 5°10’42.1”E); slightly to
its west, in Utrecht, the source pollutant sensor
(52°06’18.1”N, 5°07’28.1”E). Situated approx.
15 km north-west of those, near Breukelen, is
the target sensor (52°12’05.5”N, 4°59’14.8”E).

cations are related—both for pooling the predictive
data at A and for traversing the approx. 15 km
between A and B. Besides the non-intuitive scale
of weather phenomena, geographical and empirical
arguments can underpin this premise. First, geo-
graphically, the Netherlands has low elevation and
flat topography, thus not confounding the (mod-
elled) airflows; second, analyses, such as Karaca
et al. (2009) and Glavas and Sazakli (2011), show
long-range, international-scale PM, NOx, and O3

travel and influences, thereby illustrating the scales.
Given the large, open scales, however, a flip side is
that a sample of reality from merely one location,
i.e. the sensors at A, cannot, explicitly nor implic-
itly, capture all required information for a complete
forecast (at B). More data from more locations,
e.g. from sensors surrounding B, could theoreti-
cally narrow this disparity, but this is beyond the
scope of this PoC.

As for the more immediate surroundings of A and
B, they are located around a city with relatively
fruitful surrounding nature and little industry. Pol-
lutant sensor A, however, is located in a densely
populated district right next to a four-lane access
road, and pollutant sensor B is located right next
to the ten-lane A2-motorway (see Figure 3.1), a
crowded connector between Utrecht and Amster-
dam. For both locations, this inevitably means
that anthropogenic patterns, such as morning and
evening commutes, will show in the data.

In addition to where to sample, there is a choice
of when. Recent years proved relatively turbulent
with accelerating climate change and a pandemic,
implying that atmospheric distributions may shift
from year to year. An uncontested example is
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Table 3.1: Predictive variables and initially con-
sidered meteorological variables (in alphabetic
order). Some units are multiplied by 0.1 for
simplification without losing significance.

Variable Unit

Nitrogen dioxide (NO2) µgm−3

Ozone (O3) µgm−3

PM ≤ 10 µm (PM10) µgm−3

PM ≤ 2.5 µm (PM2.5) µgm−3

Air pressure (AP) 0.1 hPa
Dew point temperature (DPT) 0.1 °C
Global radiation (GR) J cm−2

Maximum wind gust (MWG) 0.1m s−1

Mean wind direction (MWD) 0− 360°
Mean wind speed (MWS) 0.1m s−1

Precipitation amount (PA) 0.1mm
Precipitation duration (PD) 0.1 h
Sunshine duration (SD) 0.1 h
Temperature (T) 0.1 °C

the COVID-19 outbreak in the Spring of 2020,
where the initial severe lockdown measures led to
a significant reduction in Dutch NO2, O3, PM10,
and PM2.5 concentrations (Velders et al., 2021).
Another more regular anomaly is New Year’s, as
seen in Appendix B.4, Figure B.2. Accordingly, any
such factor or outlier should be considered in data
selection. As such, New Year’s data is preemptively
discarded, as are, unavoidably, data around the
pandemic outbreak, including the other years for
seasonal uniformity: only August to December
will be considered. The following section expands
on this narrowing and selection of the dataset by
inspection.

3.1.2 Inspection

Table 3.1 details the predictive variables used in
this experiment, along with the initially consid-
ered meteorological parameters. The rationale and
relevance of the meteorological parameters in the
context of pollution prediction are discussed in
Appendix B.1, coupled with an inspection. The
listed meteorological variables were—except some
individual disputes—available for all years.

Unfortunately, this did not hold for the pollutant
variables, which were either wholly unmeasured or
rejected for some years. Bijma (2012) clarifies the
missing data: single values can be rejected in case of
equipment failure and certain sensor-unfavourable
weather conditions such as condensation in PM-
sensors, and, crucially, whole years can be rejected
during the yearly validation prior to release. As a
result, O3 showed absent for 2016 and 2019—and
these years, in turn, are excluded.

To get an impression of the to-be-forecasted data,
the four predictive variables are plotted over one
week in Figure 3.2. Foremost, referencing Table 2.1,
we can conclude that AGQs are not always met,
even here. Furthermore, noteworthy atmospheric
interactions can be discerned in the plot.

It is apparent that PM concentrations are at
times negative (and can be even more negative, see
Table 3.2). This can be explained by measurement
inaccuracies depending on varying environmental
factors (e.g. condensation in PM equipment), inter-
nal variations in the measurement apparatus, and
variations in the calibrators (KNMI, 2023a). Thus,
all readings are equally correct and negative values
are left uncorrected to avoid a positive bias.

Secondly, a pattern shows for NO2 and O3.
The conditions and interactions discussed in Sec-
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Figure 3.2: The pollutants in µgm−3 as a function of time, for a week in October in Utrecht.
Time-axis markers indicate start-of-day, midnight. Crossings of the horizontal dashed lines indicate
negative observations. The PMs do not exhibit obvious patterns. O3 shows a diurnal pattern
with midday peaks. Less obvious and apparent every weekday, starting on Monday, are slight
NO2-morning-peaks preceding the O3-midday-peaks, both indicated by vertical dashed lines.
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tion 2.1.2 and 3.1.1 are reflected in the graph on
working days: NO2 concentrations rise with morn-
ing commute (Shi et al., 2018), photodisassocia-
tion occurs, and the formation of O3 is initiated
(Finlayson-Pitts and Pitts Jr, 1993). In this sense,
although data points such as traffic volume, indus-
try volume, and irregularities like Saharan dust are
not explicitly included in the data, they can be
implicitly reflected nonetheless, serving the practi-
cal purpose and, in parallel, the simplicity of the
model.

Aside from a visual representation of the data,
an intrinsically essential part of modelling is the
data’s distributions. In a training-validation-test
split, each of the distributions should be reasonably
mutually consistent for a sound test of a modelling
technique (see, e.g., Duan et al. (2023)). A classic
indicator of this is the stationarity of the data, and
a temporal shift in case of violation thereof.

Where values in nature will naturally evolve
around equilibria (think of diffusion or entropy),
this is not guaranteed over shorter timescales. With
recent accelerating climate change (Lee et al., 2023),
it is a fair bet that year-to-year distributions will
undergo a temporal shift. Kernel density estimates
(KDEs) for NO2, O3, PM10, and PM2.5 over the
years 2017, 2018, 2020, 2021, 2022, and 2023 are
presented Figure 3.3 to investigate this further.

Figure 3.3a shows that year-on-year, NO2 ex-
hibits an on-average negative trend, i.e. increasing
air quality. For O3, in Figure 3.3b, the contrary can
be seen: the values are increasing on average. The
PMs in Figures 3.3c and 3.3d appear reasonably
stable. The most apparent temporal shifts—those
for NO2 and O3—are not readily explained. For
the purpose of modelling, it remains true that it is
wise to capture varied distributions in the training
validation, and testing set.

From this, one may also conclude that the uni-
versal principle of more data being favourable cer-
tainly holds in this matter as well: a data sample
of merely a few years would make the dissimilari-
ties too significant and hamper modelling. Ideally,
training, validation, and testing sets should cover
multiple (time)points to mitigate disparities caused
by shifts, and thereby improve modelling potential.
Now, we will look at how the inspected data is
prepared for modelling.

3.2 Preprocessing

Preprocessing starts with tidying the raw data,
followed by a train-validation-test split, feature en-
gineering, normalisation, and ends with generating
(input, output)-pairs.

Firstly, the raw data was cleaned to make it
utilisable, for example by solving erronous (split)
rows and columns, converting encodings, extracting
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(a) KDEs of NO2-concentrations. Concentrations at
the higher end show a downward trend, where the low
2023 peak is exemplary of the overall downward trend.
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(b) KDEs of O3-concentrations. The mean seems to
drift rightward, with values distinctly peaking in 2023.
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(c) KDEs of PM10-concentrations. Its values remain
approximately stable over the years and seem normally
distributed.
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(d) KDEs of PM2.5-concentrations. Values seem stable
over time, although a peak is visible in 2023.

Figure 3.3: Ridge kernel density estimation
(KDE) plots for the concentrations (µgm−3)
of, from top to bottom, NO2, O3, PM10 and
PM2.5 in Utrecht from August 1st to December
30th for the years 2017 to 2023, excluding 2019.
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metadata, and the exclusion of data disqualified in
previous the section (i.e., the years 2016 and 2019,
and New Year’s days). Next, there were missing
values (Table B.2). These were assumed to be
missing completely at random (MCAR) and were
imputed by linear interpolation

y = y0 + (x− x0)
y1 − y0
x1 − x0

, (3.1)

where x and y lie in the intervals (x0, x1) and
(y0, y1), respectively.

Secondly, the tidy data is split into a training,
validation, and testing set. Granting the hetero-
geneous nature of the data from year to year, but
also the fact that forecasting the future using in-
formation from the future is fallacious, a sampling
balance has to be struck. This is where each year’s
five-month cut/interval comes in handy: the vali-
dation and testing sets can be safely sampled from
multiple years, resulting in the following train-
ing/validation/testing distribution.

Training set. August 1st up to and including
December 30th of 2017, 2018, and 2020, and August
1st up to and including November 18th of 2021 and
2022.

Validation set. November 19th up to and in-
cluding December 9th of 2021 and 2022, and August
1st up to including October 2nd of 2023.

Testing set. December 9th up to and including
December 30th of 2021 and 2022, and October 3rd
up to and including December 4th of 2023.

By percentage: [76.3%/11.9%/11.9%]. By tak-
ing the validation and testing set from multiple
years, and by including earlier months from 2023,
a balanced dataset is created, taking into account
both month-on-month and year-on-year changes.
Now, the validation set is stashed away until train-
ing, and the testing set until evaluation.
Thirdly, the newly acquired training set under-

goes feature selection. As described in Hall (1999),
good feature sets contain features that are highly
correlated with the class, yet uncorrelated with
each other. Thus, to assess the features—the pol-
lutants and meteorological parameters listed in
Table 3.1—their intercorrelations are assessed and
compared to a treshold rth using the absolute value
Pearson correlation coefficient rxy:

rxy =

∣∣∣∣∣
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

∣∣∣∣∣ , (3.2)

where, given paired data (xi, yi)
n
i=1, n is the sam-

ple size, and x̄, ȳ are their sample means. It must
be noted, however, that the calculation assumes
linear relationships, heteroskedasticity, and a Gaus-
sian distribution—all of which are not necessarily
accounted for in the present data (see Figure 3.3,
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Figure 3.4: Coefficient matrix for the initially
considered features. A threshold rth for the
absolute Pearson coefficient is set at rth = 0.15.
When not met, the entry remains white.

for instance). In the future, alternate methods
could be investigated. For now, the correlations
are plotted in Figure 3.4(—for their exact numeri-
cal coefficients, see Table B.1).

As for the pollutants, the matrix expectedly re-
veals interconnections both amid the gaseous pol-
lutants and amid the PMs, as suggested in Sec-
tion 2.1, as well as between both groups—which is
not surprising since they mostly emanate from the
same sources. Also, several meteorological variables
show strong interrelations, such as rPA,PD = 0.60,
rSD,GR = 0.79, rMWS,MWG = 0.94. The features
precipitation amount and duration, besides being
mutually correlated, show correlations that fail to
meet rth = 0.15, explicable by the fact that, in
the data, it is dry 85.94% of the time (see Fig-
ure B.1 for an impression), and so the values are
often zero, distorting the calculation. Nevertheless,
these features are excluded. The second pair, sun-
shine duration and global radiation, as expected
also show strong correlation. Since both generally
do not correlate strongly with the pollutants, only
sunshine duration was chosen to remain because of
its linkage with O3. At last, in view of MWG’s high
intercorrelation with MWS, rMWS,MWG = 0.94, the
former is excluded.

Further, there are mean wind direction and air
pressure. The naturally noisy mean wind direc-
tion is poorly correlated but can be kept thanks
to denoising applied through the 24-hour moving
average. Finally, air pressure is also lowly corre-
lated but stays with an eye on an upcoming project
extension; see Section 6.1. In conclusion, precipi-
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Table 3.2: Minimum and maximum pollutant
concentrations in the training set, used for min-
max normalisation. Minima reach below zero
due to measuring uncertainties (Bijma, 2012).

Minimum
(µgm−3)

Maximum
(µgm−3)

NO2 −0.28 107.45
O3 −2.22 180.51
PM10 −19.89 379.47
PM2.5 −4.93 79.71

tation amount and duration, global radiation, and
maximum wind gust are discarded in the feature
selection. These adjustments are incorporated into
the datasets, and 10 suitable features are available.
Fourth, normalisation. Normalising promotes

generalisation, stabilises gradients and the learn-
ing process, and can produce faster convergence
(Ioffe and Szegedy, 2015). The selected features are
normalised to a range of [0, 1] with min-maxscaling

x′ =
x− xmin

xmax − xmin
, (3.3)

where xmin and xmax are the minimum and max-
imum value for each feature in the training set.
Table 3.2 shows the extremes. Interestingly, the
values extend to (well) below zero, and also above
those observable in Figure 3.3. Yet, as mentioned
earlier in Section 3.1, the values have already been
checked for outliers prior to publishing.
Fiftly, and lastly in preparing the data for

the models, pair generation. In order to obtain
static input-output pairs from a discretised hourly-
sampled temporal training sequence, one segments
the input timeseries (u(n))n∈[0,Nu] for Utrecht, and
input timeseries (y(n))n∈[0,Ny ] for Breukelen with
Nu = Ny, into sliding windows of length lin = 72
and h = 24, respectively, obtaining input-output
pairs (ui,yi)i=1,...,P consisting of input

ui = (u(ni), ..., (u(ni + lin)), (3.4)

and output

yi = (y(ni + δ), ..., (y(ni + δ + h)), (3.5)

where ni represents the starting index of the i-th
pair, P denotes the number of pairs as defined
by P =

⌊
Nu+1
∆n

⌋
with sampling step size ∆n, and

δ is defined as δ = lin − 24 + 1, meaning yi’s
output is considered from the 48th hour on, plus a
1-hour window for the spatial prediction from ui

to yi. To expand on the latter, and as seen in (2.5)
and (2.6), RNNs process values one-by-one, which
for this case means for lin iterations—δ, however,
selects only the last 24 readouts for predicting and,
thus, learning (facilitated by the loss function (3.6)

discussed in Section 3.4). Step size ∆n is set at
∆n = 24 for computational efficiency, and because
trial-and-error testing showed no or minor upside
to a smaller ∆n.

Essentially, this means that for each pair, an hour
of pollutant concentrations at B will be predicted
24 times in sequence, with the preceding hours of
A available as the ground for prediction. Thus,
the data sets the models up to learn to model the
pollutants using their covariates for the spatial
prediction task from Utrecht to Breukelen.
Prior to generation of (u,y)-pairs, the training

set contained 676 days of data, which after sam-
pling yielded P = 656 pairs (less than 676 due to
∆n = 24 and boundary conditions), equivalent to
535,296 data points in each forward pass of the
models during training—models described in the
following section. (For more data statistics, see
Appendix B.5).

3.3 Model architecture

The multivariate one-dimensional forecasting task
of smog clouds, i.e., modelling the four pollutants
from Utrecht to Breukelen, is taken on using six
models: an ordinary multi-layer perceptron (MLP),
a hierarchical MLP (HMLP), an LSTM and GRU,
and, as main contenders, a hierarchical LSTM
(HLSTM) and GRU (HGRU). This section will
outline the modelling types and set-ups, followed
by their hyperparameter optimization procedure.

3.3.1 Types

To begin with, as the implementation of the
somewhat non-traditional hierarchical neural nets
(HNNs) in high-level Python libraries akin to Ten-
sorFlow (Abadi et al., 2016) is not necessarily ac-
cessible (Fontenot et al., 2022), the models are
implemented with PyTorch (Paszke et al., 2019).

Then, as touched upon in Section 2.3, the MLP
models approximate not DSs but functions. Where
RNNs have a state x(n) allowing some earlier
input u(n′) to leave its traces on output y(n),
MLPs learn to approximate a (nonlinear) func-

tion f : RL0 → RLk

, where L0 and Lk represent
the neurons in the input- and output layer, and
lack an explicit mechanism for retaining sequences
over extended periods. In practice, they cannot
utilise the sequence-spanning BPTT; they propa-
gate errors solely through the network. Hence, the
MLP and HMLP are less suited for this task than
RNNs and serve as benchmarks.

In terms of their specific architecture, the input
and output layer are of size L0 = 10 (ten features)
and Lk = 4 (four predictive variables). Unidirec-
tional layers knit these together. For the MLP,
these are standard fully-connected layers. Its coun-
terpart, the HMLP, is of the type of hierarchical
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models—a term introduced in Section 2.3 which
describes non-homogeneous, modular neural cir-
cuits. HNNs can, depending on the task, perform
multi-task learning (MTL), a method whose prin-
ciple goal is to improve generalisation performance
(Caruana, 1997).

Furthermore, with HNNs, the hierarchical or-
ganisational structure is in hands of the model
designer and offers an opening for a priori knowl-
edge to be embodied in the neuronal arrangement
as inductive bias or regularising factor, guiding the
model in a preferred direction. In the context of
this study, we aim to predict the four pollutants,
each of which can be regarded as a distinct sub-
task. Recognising both the intercorrelations of the
pollutants (as depicted, for example, in Figure 3.4)
and the fact that they all live a life of their own, it
seems reasonable to mirror this reality in a model’s
architecture. To achieve this, we employ one shared
layer to establish shared representation and subse-
quently partition the network flow into a modular
branch per subtask to reduce the interference be-
tween tasks. This design, including this nuanced
regularising factor, confers HNNs a hypothetical
advantage over fully-connected nets, which neglect
an explicit internal-external balance.

Next are the RNNs. The RNNs use the PyTorch
implementation of LSTM and GRU memory cells
introduced in Section 2.3. The fully-connected
RNNs are similar to the MLP, except for their
gating mechanisms and recurrent synaptic connec-
tions, and vice versa for the hierarchical RNNs in
relation to the HMLP.

Following up on identifying model types, hyper-
parameters reveal in more detail how these types
are shaped into complete architectures. The follow-
ing sections discuss how they are established.

3.3.2 Hyperparameter optimization

Hyperparameters can be used to control the be-
haviour of a learning algorithm and are not adapted
by the algorithm itself (Goodfellow et al., 2016).
For the DL models at hand, examples are the num-
ber of hidden layers and hidden units, the learning
rate, choice of optimizer, and the regularisation
term. An overview of the used hyperparameters
per model can be found in Appendix D—this sec-
tion will chiefly explore the methodology behind
their selection.
To determine their values, a hyperparameter

search procedure consisting of a grid search and
cross-validation (CV) schemes is used. This pro-
cedure aims to find a hyperparameter configura-
tion c with a minimised loss, while also testing
c’s generalisation capabilities. The loss is calcu-
lated on distinct validation sets generated by CV
from all available training data, i.e. a concate-
nation of the training and validation set, to test

Table 3.3: List of the hyperparameters included
in the grid search. They include: number of
hidden units and hidden layers, learning rate
for the fully-connected nets, learning rates for
the shared and branched parts of the modular
nets, and the weight decay. Values per model
are presented in Appendix D, Table D.1.

Hyperparameter Symbol

Hidden layers k
Hidden units Lκ

Learning rate µ
Learning rate, shared µshared

Learning rate, branches µbranch

Weight decay λ

this generalisation performance and prevent overfit-
ting. Nested within the hyperparameter search and
within the CV scheme, is the models’ training al-
gorithm, which, together with the loss, is specified
in the next subsection, Section 3.4.

Continuing, the traditional grid search was used
because of its ease suiting this PoC; it essentially
does a brute-force search through the parameter
space H. Here, H is defined as the Cartesian prod-
uct of the finite sets S containing possible values for
each parameter. Because H grows exponentially, a
large S is not feasible, and smaller S are already
computationally expensive. Hence, as measures,
some initial trial runs were executed to get a feel
of which options to include and the many models
were computed on an HPC cluster.

Then, CV is run for each c, where c is a unique
configuration within H. For the stateless MLPs,
regular k-fold cross-validation, with k = 5, is used—
with the perk of maximal data usage. RNNs, con-
versely, do have a state and allow memory trace of
past sequences, as aforementioned in Section 2.3.
A variation of k-fold CV, called sliding window
CV, accommodates this: it samples training and
validation sets—with, in contrast to pair gener-
ation, superposition of intervals—using a sliding
window approach, thus not allowing validation of
trained models with out-of-sample data directly
from the past. One drawback of this scheme is
that not all data is available during each iteration.
Another scheme, expanding-window CV, would
partly solve this, but was found biased due to dis-
tribution changes over time (see Figure 3.3) and
consequently abandoned. And so, for every fold, a
model is trained and validated using different data
and the average validation risk is calculated.

With these schemes, grid search with k-fold CV
for the MLPs and sliding-window CV for the RNNs,
values for the hyperparameters listed in Table 3.3
were determined—forging the model types into ar-
chitectures. (Appendix D presents complete model
architecture summaries.)
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3.4 Training

In this section, we explain the training procedure
used during hyperparameter optimization and the
final training itself by defining the optimization
goal and method, followed by some anti-overfitting
measures. The final models are trained using the
training and validation set created in Section 3.2.
To approximate a model mθ parametrised by

tuneable parameters collected in a vector θ, given
a search space θ ∈ Θ of target models Θ within the
same architecture; training pairs (ui,yi)i=1,...,P ;
and a loss function L defined as

L = MSE =
1

n

n∑
i=1

(yi − ŷi)
2 + λθ2, (3.6)

where MSE denotes mean squared error, n denotes
sample amount, y the ground truth, and ŷ the
prediction—one has to solve the optimization prob-
lem

θopt = argmin
θ∈Θ

1

P

∑
i=1,...,P

L(mθ(xi), yi), (3.7)

where θopt denotes a model with a minimised empir-
ical risk (Jaeger, 2023a,b). MSE punishes extreme
values quadratically more, suiting the context of air
pollution where extremes are of greater concern.
With an initial model θ(0), initialised by the

PyTorch-default Kaiming initialisation (He et al.,
2015), optimization of θ(n) is performed by the
Adam (ADAptive Momentum) optimizer (Kingma
and Ba, 2014). Adam differentiates itself from,
e.g., stochastic gradient descent (SGD) by using
momentum (Sutskever et al., 2013) and adaptive
learning rates per parameter while only requiring
first-order gradients and little memory (Kingma
and Ba, 2014). This study uses its implementation
in PyTorch. An implemented, assisting add-on is a
scheduler: it reduces the learning rate by a factor
of 0.1 when the validation loss stagnates for a set
number of epochs (defined per model in Table D.2).
Adam does its work everytime a batch B of 16

(u,y)-pairs is passed. |B| = 16 was plainly adopted
from Masters and Luschi (2018), who found smaller
batch sizes (2 ≤ |B| ≤ 32) to provide benefits
in terms of convergence stability and overall test
performance for a given number of epochs. Batches
are randomly sampled (while in sequence order)
from the available pairs, introducing stochasticity
(and efficiency over, e.g., one-by-one calculation).
Internally, this adds the batch dimension to the
pairs, creating the tensors [|B|, lin, L0] for u and
[|B|, h, Lk] for y. When u is fed, the models spit
out forecasts y′ in the form of such tensor, which
is subsequently compared to the ground truth y
yielding the loss withwhich θ can be updated.

Updating θ, however, proceeds quite differently
for the two main types of models. Whilst for the

fully-connected models, this proceeds as usual with
one optimizer updating θ, the modular models
require a different approach. As they essentially
consist of multiple core components (one shared
layer, four branches) with different search spaces
and convergence qualities, the process capitalises on
this: all five components have their own optimizer
and matched scheduler. In addition, they have two
separate (initial) learning rates, as seen in Table 3.3
and Table D.1. Distributing the learning tasks
helps each model part stably reach an optimum.
Lighting this in terms of implementation, the

shared and branched parts do epochs in turns, see-
ing all the batches separately while the other is
frozen. Frozen, as in, the parameters cannot up-
date but can infer. A con here is efficiency: the
batches are passed through the model once more
for every epoch.

When zooming out and looking at when learning
should finalise, early stopping comes in: it finishes
training when for some number of epochs (defined
in Table D.2) the validation loss does not decrease
by ≥ 1e−5 (not zero to prevent endless minor
updates). Another anti-overfitting measure, or reg-
ulariser, is the L2-norm added to (3.6). As effect,
larger weights are penalised and smaller weights
are encouraged, preventing some set of weights
dominating the model.

In summary, the training process seeks to find an
optimal set of model weights θopt, and to regularise,
the learning process early stops, the batches intro-
duce stochasticity, the regularisation term balances
weight values, and the hierarchical nets incorpo-
rate MTL. With these regularisation steps, the
training procedure should yield models fulfilling
the ultimate objective of generalisation, tested in
next section.

3.5 Evaluation

For evaluation of the models, the held-out test
set is used. The test set is unseen by the models
before evaluation to properly assess their gener-
alisation capabilities. The predictions were first
post-processed using inverse minmax-scaling and
the extremes in Table 3.2, sampled in batches with-
out shuffling to eliminate any randomness, and
then evaluated using the root mean squared er-
ror (RMSE) and symmetric mean percentage error
(sMAPE) metric, which both serve a different in-
terpretation of model performance. In addition,
the inference speed of each model is evaluated, as
this is one of the unique advantages of data-driven
methods over first-principle methods like NWP.

The RMSE, defined as

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (3.8)
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provides a measure of the average magnitude of
the error with, due to its squaring operation, larger
errors getting penalised more. This fits the con-
text of smog modelling, where higher values are
especially harmful.
The other metric, the sMAPE:

sMAPE =
2

n

n∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|)

× 100, (3.9)

is an accuracy measure based on percentage (or
relative) errors, providing a scale-independent, well-
interpretable metric. The sMAPE complements
the RMSE by taking into account the individual
and different distributions of the pollutants—which
can be visually seen in Figure 3.3. Therefore, the
metric allows for a fair relative comparison of the
models’ performance.
Finally, it is worth emphasising that, generally

speaking, the RMSE serves a practical purpose be-
cause it tells about the deviation in µgm−3 and has
a quadratically progressive penalty. The sMAPE
mainly fulfils a ”scientific” purpose due to the possi-
bility of comparing models, though the two metrics
are not mutually exclusive. This idea acts as a
guide to interpret the results meaningfully.

4 Results

Following training, the models are evaluated on
out-of-sample data. It is found that the models
provide an effective method for the modelling and
forecasting of the pollutants. Quantitative results
by RMSE and sMAPE are listed in Table 4.1.

Considering the subtask-specific lowest sMAPE
values, NO2 is predicted most accurately. Follow-
ing NO2 is O3, then PM2.5, and the models were
least successful in predicting PM10. (Discussion of
possible explanations for this is held in next section,
Section 5.) Nonetheless, the lowest sMAPEs, as
well as the RMSEs—which are primarily generated
by the HGRU—confirm the models’ suitability for
forecasting the pollutants at B using data at A.
Meanwhile, the models also differed in performance.
Consistent with expectation, the MLPs achieve

the highest errors on average. Measured by RMSE,
the non-hierarchical fully-connected RNNs perform
predominantly better than the MLPs, but also
utilise many parameters to do so. Measured by
sMAPE, they do too, despite HMLP’s sMAPE
(M = 46.274, SD = 45.344) being slightly inferior
to the LSTM’s (M = 46.321, SD = 46.515): a
paired t-test with α < .05 suggests there is no
sufficient evidence to reject the null hypothesis of
no difference, t(8927) = 1.011, p = 3.12e−1. Worth
mentioning is that this is the only metric-model-
model combination found not to be statistically
significant, see Appendix E, Table E.1, E.2, E.3.

Furthermore, the GRU yields the lowest errors
of the non-hierarchical RNN models. The HLSTM
ranks second, and, as per RMSE and sMAPE, the
HGRU performs best, establishing the hierarchical
models as the top performers. A paired t-test con-
firms the HGRU’s (MRMSE = 5.468, SDRMSE =
4.906,MsMAPE = 44.519, SDsMAPE = 44.519)
significant predictive ability on the testing set
over the HLSTM (MRMSE = 5.633, SDRMSE =
4.935,MsMAPE = 44.981, SDsMAPE = 45.850) both
by RMSE (t(8927) = −5.922, p = 3.30e−9) and
sMAPE (t(8927) = −2.855, p = 4.32e−3), as well
as on the other models (see Appendix E). Moreover,
for all individual pollutant subtasks by RMSE, and
most by sMAPE, the HGRU exhibits the high-
est predictive precision, where it is only surpassed
repeatedly with the sMAPE of the PM2.5-subtask.

A visual comparison of predicted and observed
concentrations for all pollutants is shown in Fig-
ure 4.1(—in Appendix E, Figure E.9, E.10, E.11,
and E.12, non-combined depictions are presented).
Interestingly, all models show a negative bias. Sim-
ilarly here, the HGRU shows the least deviation
from the diagonal, reflecting a closer agreement
between forecast and ground truth. Its superiority
is seen, for example, in the upper-right of the sub-
plots, among the higher-concentration data points.
Here, the MLP (taken for contrast) consistently un-
derestimates all, while the HGRU is tighter on the
diagonal, showing its flexibility. Above all, however,
is its relative performance in Figure E.11.

A most natural representation of the HGRU’s
forecasts is with a lineplot, shown in Figure 4.2.
Consistent with the numerical interpretation of
the RMSE and sMAPE, the patterns of NO2 and
O3 seem to be most closely captured. The PMs
show more short-term fluctuations, which are infre-
quently caught. This proves the most challenging
with PM10. Altogether, it can be stated that the
HGRU is well equipped to use data at A for fore-
casting at B. Additional forecasts are presented
in Appendix E: a 24-hour combined forecast (Fig-
ure E.1), two-week combined (Figure E.2), and
individual (Figure E.3, E.4, E.5, E.6, E.7, E.8).

Furthermore, in terms of efficiency, the inference
speed tinf of the models, as also seen in Table 4.1,
shows that efficiency is high: a 24-hour prediction
is generated with negligible delay on a relatively
inefficient processor. Counterintuitively, the model
with the most parameters is the quickest, though
the margins are small. As also discussed in Pathak
et al. (2022) and Section 1.2, the speeds, apart
from the initial training cost, highlight the (oper-
ational) advantage of DL models over traditional
first-principle methods: they are orders of mag-
nitude faster and more efficient. Last to note on
efficiency is that the best-performing models, the
HLSTM and HGRU, require significantly fewer pa-
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Table 4.1: Results of each model, evaluated and compared on performance (RMSE and sMAPE)
and efficiency (inference speed and parameter count). The error metrics are calculated per pollutant
and combined, with the lowest error bolded. Inference speed tinf is the time for one inference of one
24-hour lead time prediction (processed on an Intel Core i7-8565U CPU, 8GB RAM, 64-bit OS).

Models Performance Efficiency
RMSE (µgm−3) sMAPE (%) tinf (s) Param #

NO2 O3 PM10 PM2.5 Total NO2 O3 PM10 PM2.5 Total

MLP 6.63 7.53 7.82 4.85 6.71 35.89 41.90 65.24 53.15 49.04 0.0272 17 604
HMLP 5.99 6.83 7.95 4.62 6.35 31.84 39.44 65.42 48.00 46.27 0.1352 15 620

LSTM 5.97 6.39 7.48 4.32 6.04 32.09 38.09 63.40 51.70 46.32 0.0144 572 640
HLSTM 5.36 6.57 6.60 4.00 5.63 28.53 38.83 60.80 51.76 44.98 0.0187 72 244

GRU 6.01 6.18 6.84 3.94 5.74 32.62 38.46 61.15 49.67 45.47 0.0479 363 360
HGRU 5.35 6.01 6.59 3.92 5.47 28.78 36.97 59.92 52.40 44.52 0.0774 74 948
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Figure 4.1: Each datapoint for all pollutants in the evaluation set scattered, with the ground truth
as x and the prediction as y. Precisely correct predictions are along the diagonal. The maroon trend
line gives a visual indication of performance. As indicated by the red line, the HGRU performs
optimally. A non-combined depiction per pollutant is shown in Figure E.9, E.10, E.11, and E.12.
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Figure 4.2: Hierarchical GRU (HGRU) forecasts for NO2, O3, PM10, and PM2.5 taken for a week
(= seven 24-hour forecasts) from the evaluation set. Black indicates the ground truth and maroon
the forecasts. Dashed lines indicate zero. More (HGRU) forecasts are presented in Appendix E.
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rameters (due to reduced parameter sharing) than
the non-hierarchical RNNs as well.

5 Discussion

This section discusses interpretations of the results,
the project’s limitations, and implications.

5.1 Interpretations

First and with a practical purpose, comparing the
optimal RMSEs with Table 2.1 reveals that the
guidelines are multiple times higher. The forecasts
can, thus, already be deemed theoretically func-
tional if deployed for the signalling of guideline
exceedances.
In the context of sMAPE scores, gaseous pollu-

tants outperform PM, with NO2 being the most ac-
curately predicted. As for the difference in sMAPE
between primary pollutant NO2 and secondary pol-
lutant O3, Lee et al. (2014) suggest that ambient
primary pollutants depend primarily on their re-
spective source emissions whilst secondary pollu-
tants depend not only on the primary emissions
but also on the availability of atmospheric oxidants.
Consequently, the prediction of NO2 is inherently
more tractable than that of O3. The sMAPE scores
of NO2 of O3 reflect this difference in predictability.

Furthermore, the sMAPEs may appear high but
require a more nuanced interpretation. A look at
Figure 4.2 (and at the forecasts in Appendix E)
gives away that forecasts and ground truths of
the gaseous pollutants synchronise to a fair degree.
For the PMs, however, the graphed forecasts are
more indicative of an average, showing a lack of
retrieval of sharply non-linear patterns, which is
especially noticeable for peaks in PM10. The higher
errors of the PMs can be explained by their more
”jagged,” more frequently fluctuating temporal evo-
lution being more challenging to capture—see, e.g.,
Figure E.1 and E.2 for the PMs versus the gaseous
pollutants on different timescales. These issues are
less evident for the smoother NO2 and O3.
Also, Figure 4.1 showed that all models suffer

a negative bias on the testing set. Despite pre-
cautionary measures, the data shifts illustrated in
Figure 3.3 hinder the models’ performance here.
Figure E.11 and E.12, for instance, where the
RNNs outperform the MLPs and the hierarchi-
cal RNNs particularly excel, would support this
by pointing out that the RNNs’ long-term mem-
ory traces and the hierarchical models’ nuanced
regularisation make them more robust against a
data shift—as opposed to the vanilla MLP. Possi-
ble future refinements to accommodate this prob-
lem include diversifying the training date through
data augmentation, which was recently applied to
weather forecasting by Cheon et al. (2024) and

generally has been shown to improve robustness
and generalisation (Bengio et al., 2011), or by in-
corporating models that carry more inductive bias.

Nonetheless, given that the discussed forecasts
are performed from 15 km away over one dimen-
sion within a three-dimensional complex system,
but also given measurement inaccuracies (KNMI,
2023a) and imprecisely interpolated percentages
shown in Appendix B.3—that both render the data
more impure and complicate predictions, the scores
evince a compelling degree of accuracy.

Regarding the models individually, a few points
stood out. Firstly, the LSTMs across many training
runs proved markedly more resistant to initiating
and completing convergence. Both Table D.1 and
the total required epochs for the HLSTM in Fig-
ure C.1 highlight this. This is consistent with the
theory in Section 2.3: the GRUs indeed converge
faster than the LSTMs—not to mention the lower
errors achieved by the GRUs. Secondly, it stood
out that MLPs are performing above expectations,
considering they do not have access to long-term
pattern retention. Their accuracy may suggest
that the significance of long-term dependencies is
overestimated or that the instantaneous nature of
weather dynamics is underestimated. Nonetheless,
precisely the improvements that move away from
mostly ”averaging” forecasts; see the PM predic-
tions in Figure E.3 and Figure E.4 for example, are
the most difficult and demanding.

5.2 Limitations and implications

This research’s limitations are summarised by sim-
plifying measures to keep it within a scope ap-
propriate for a PoC and by conceptually inherent
limitations. Simplifications provide openings for
easy improvements and are discussed in Section 6.1.
Notable inherent limitations of this study include:
the data being limited to merely two sensors, which
fails to honour the complexity (e.g. the multidimen-
sionality, emission sources, geographical features)
of the modelled system; the non-stationarity of
the data not being explicitly taken into account
neither in preprocessing nor in model design; and
modelling at a location where the air pollution and
smog clouds problem is almost absent, thus limiting
the direct impact.

Following are implications. Recurrent deep ar-
chitectures offer a promising addition or augmen-
tation to traditional NWP, given their adequacy
and efficiency. Additionally, the dataset’s minimal
transformation makes real-time and continuous pre-
dictions possible. Moreover, this study provides
a basis for further exploration into DL’s potential
in pollution forecasting and its PIML-expansion-
tuned design for extending the project with PIML.
Both are explained in more detail in Section 6.1.
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6 Conclusions

In this paper, multivariate timeseries forecasting of
smog clouds, represented by NO2, O3, PM10, and
PM2.5 concentrations, using RNNs is conducted.
Specifically, meteorological and pollution data at
A is used to forecast air pollution levels at B.
The most sophisticated models, the HLSTM and
HGRU, are benchmarked with unidirectional and
fully-connected DL architectures.

The research question, ”To what extent are mod-
els with the LSTM and GRU architecture capable
of the multivariate timeseries forecasting of smog-
related air components?” is answered by the fact
that the models are indeed highly adequate. Re-
sults demonstrate that, above all, the HGRU is
suitable and competitive at this task. Reasons in-
clude the sequence-processing prowess of RNNs, a
GRU’s simplicity, and an integrated design stream-
lined to the very nature of the pollutants.

To sum up, our study contributes a PoC of smog
cloud modelling using RNNs, providing a basis for
advancements in pollution and weather forecasting
to improve future public health.

6.1 Future research

This study opens up possibilities for numerous fu-
ture adaptations, firstly due to its proof-of-concept
nature and secondly because of the anticipatory
design choices made for the extension to physics-
informed neural nets (PINNs) with methods from
PIML. This section discusses them in that order.
Improvements omitted for the sake of simplic-

ity in the realm of data include: a refined inter-
polation method more fitting (see Figure E.2 for
an illustration) to non-linear data such as polyno-
mial or sinusoidal regression (Freeman et al. (2018)
employs an advanced example); adding a signifi-
cant constituent to sulphurous smog (Davis, 2002),
sulphur dioxide (SO2), as a predictive variable;
utilising data from regions with more volatile pollu-
tion spectra and persistent smog, such as Medelĺın,
Colombia (Peláez et al., 2020) and Beijing, China
(Li et al., 2017b), to assess the models’ compati-
bility there and to amplify the popultation health
impacts; and consideration of stationarity.
If the data is non-stationary, data decomposi-

tion with a trend and seasonal component can
transform the data to stationarity and additionally
shift the models’ focus towards more ”buried” pat-
terns, possibly previously obscured by the removed
components. Another motive to do this is that sea-
sonality and trends are inherently present precisely
in nature, amplifying the effect.

Besides, while data decomposition may not nec-
essarily solve the problem of the data shifts, it can
help mitigate it (Hyndman and Athanasopoulos,
2018). Another way to make the models more

robust to unseen data is via data augmentation
or simply by acquiring more data from additional
years or sensors. When scaling to more sensors
or locations, the prediction domain becomes two-
dimensional, the data can be represented as a graph,
and graph neural networks (GNNs) (Scarselli et al.,
2008) can be employed as well, aiming to enhance
accuracy by leveraging spatial relationships in the
data, while also aligning better with real-world
conditions.

6.1.1 Physics-informed ML

PIML, where both scientific knowledge and ML are
integrated in a synergistic manner (Karniadakis
et al., 2021; Willard et al., 2022), is gaining increas-
ing popularity within computational fluid dynamics
(CFD) because of its data efficiency and stabler
predictions over purely data-driven, inductive mod-
elling (Kochkov et al., 2021; Sharma et al., 2023).
Particularly relevant to this study are PINNs, neu-
ral networks trained to solve supervised learning
tasks while respecting any given laws of physics
described by general nonlinear partial differential
equations (PDEs), as introduced by Raissi et al.
(2019). Several anticipatory design choices made
during the project have prepared for a prospect
extension to PINNs, which will be explained briefly.
Qualities of PIML attractive to the modelling

problem include greater physical consistency, im-
proved data efficiency, and better generalisation
(Kashinath et al., 2021). Because of first principles’
invariance to distributions, an injection of such prin-
ciples would help combat the in Figure 3.3 seen
data shifts present in pollution data and also to
help the nets, which in plain form are known to be
poorly calibrated for out-of-distribution data (Guo
et al., 2017), generalise to unseen situations, such
as locations unseen in the data, or literal unseen sit-
uations caused by e.g., accelerating climate change
(Lee et al., 2023). In addition, considering the pos-
sible high-stake environments pollution forecasting
might be used for, O’Driscoll et al. (2019) prove,
based on mean-variance portfolio theory and bias-
variance trade-off analysis, that hybridised models
have reduced model risk, increasing user trust and
helping in model adaptation, the overarching goal.
When viewing ML and traditional workflow as

a spectrum, a balance has to be struck between
their pros and cons. On the ML side—where this
study provides a start—a relatively non-invasive
yet influential addition is adding a physics term to
the loss function, combining (3.6) and a prediction
by a one-dimensional depiction of the Navier-Stokes
equations

ρ(
∂c

∂t
+ v

∂c

∂x
) = −∂p

∂x
, (6.1)

where c denotes concentration and x denotes along
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the (perhaps, discretised for computational feasi-
bility) spatial axis between A and B. Assumptions
include the airflow (which contains the pollutants)
to be Newtonian, incompressible, isothermal, etc.
This method leaves the architectures unchanged
and encodes the physics directly into the loss func-
tion, giving an accessible yet effective method for
hybridising the strengths of data-driven and first-
principle modelling.
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A Air pollution: individual health implications

This section goes into more detail on the health implications caused and carried by air pollution, providing
a brief expansion and overview of the discussion introduced in Sections 1.1 and 2.1.1. Specifically, discussed
is further problem contextualisation, individual health effects attributable to the modelled pollutants, and
how those connect back to the project’s motivation.

Context. Over the last century, pollutant and trace gas concentrations have increased substantially,
fundamentally changing the air quality (Fowler et al., 2020). Major drivers of these increases are the
arrival of industrialisation, large-scale fossil fuel combustion, and further urbanisation. The acceleration
and expansion of production processes, coupled with the combustion of natural gases, acted as a catalyst
for the interaction between different components and their concentrations in ambient air, effectively
moving them from underground to the atmosphere. A by-product of urbanisation is spatial areas with a
high concentration of polluting activities (Elsom, 2014), which can accumulate atmospheric pollution,
forming ”clouds of smog” of either sulphurous or photochemical kind (Davis, 2002; Haagen-Smit, 1952).
The prevalence of smog will not subside anytime soon (as, for instance, estimates predict the world’s
urban population to grow from ±55% in 2018 to ±68% in 2050 (Ritchie and Roser, 2018)), nor will air
pollution in general. Moreover, the same applies to the consequential health effects.

Implications. In continuation of the general descriptions of adverse health effects touched upon in the
introduction, Section 1, individual air components are also associated with health effects. Kampa and
Castanas (2008) list, among others, gaseous pollutants and respirable PM as two significant categories of
air pollutants.

Of the gaseous pollutants category, O3 annually accounts for 21,000 premature deaths in Europe (Amann,
2008) and more than 1.1 million deaths worldwide—that is more than 20% of all deaths attributed to
respiratory diseases (Malley et al., 2017). For another prevalent gaseous pollutant, NO2, analyses, such
as Eisner et al. (2010) and Faustini et al. (2013), found NO2 to play a causal role in mortality and
development of chronic respiratory diseases.
The other category, PM, describes a group of pollutants consisting of an intricate and heterogeneous

mix of tiny particles and droplets suspended in breathing air with an aerodynamic diameter of ≤ 10 µm
or, even smaller, ≤ 2.5 µm for PM10 and PM2.5, respectively (Mašková et al., 2015). Some particles are
visible without any aid, such as dust, dirt, soot, or smoke, while others are too small to be seen and
require an electron microscope for their detection. With their tiny sizes, they can reach deep into the
respiratory system, all the way to the alveoli, and inflict substantial harm there (Kampa and Castanas,
2008)—harm caused by, for example, (heavy) metals present in the PM (Chen and Lippmann, 2009).

Another illustratory example is Orioli et al. (2018). They found that the gaseous pollutants nitrogen
dioxide (NO2) and O3, and the PM-types PM10 and PM2.5, all show a positive association with diabetes—a
link that at first glance, one might not anticipate. Moreover, in some cases, smog can even cause harm
to agricultural crops, as seen with a particular variety of intense smog that left a metallic sheen on the
leaves of spinach, sugar beets, and endive (Haagen-Smit, 1952).

Motivation. Following the aforementioned impacts of all four components, together with the acknowl-
edgement that many components in the weather system affect air quality and its cleanliness, the scope of
this research focused specifically on the contaminants NO2, O3, PM2.5, and PM10. The motivation for
modelling the four pollutants NO2, O3, PM10, and PM2.5 thus consisted of both their contribution to the
formation of smog and their pervasive health effects.
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B Data insights

This Appendix section provides some additional insight into the data by exploring the meteorogical
variables and discussing the correlations of all features. In addition, an overview of the data availabilities
is displayed, some data statistics are presented, and an extraordinary outlier is visualised.

B.1 Exploration of meteorological data

This subsection provides a visual overview of all the initially considered meteorological variables (Figure
B.1), accompanied by an explanation of why these variables might be helpful for modelling smog clouds,
i.e. the pollutants NO2, O3, PM10, PM2.5. Important to emphasise is that not all of these rationales have
held up in feature selection (or, worded differently, showed in the data).
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Figure B.1: Plots of all initially considered meteorological variables, before any preprocessing.
From top to bottom, in alphabetic order: air pressure (0.1 hPa), dew point temperature (0.1 °C),
precipitation sum (0.1mm), precipitation duration (0.1 h), radiation (J cm−2), sunshine (0.1 h),
temperature (0.1 °C), wind direction (0 − 360°), wind speed (0.1m s−1), and wind speed maximum
(0.1m s−1). For reference, these are also listed in Table 3.1.

It is important to stress that besides the individual characteristics of the pollutants, they are located in
the tropospheric sky, and have such a low mass they can be assumed to behave as air in terms of their
interaction with large-scale meteorological processes. We will go through the variables from top to bottom
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to explain their relevance:

• Air pressure can indicate dispersion and transport of large air currents, for example by low and
high-pressure areas, and thus also influence the air currents of pollutants (Holton and Hakim, 2012).

• Dew point temperature, precipitation sum, and precipitation amount are indicators of
atmospheric moisture content levels. These levels can say something about, for example, the rate
of condensation (which, via nucleation, can lead to the formation of fine aerosols (PM) (Gelbard
and Seinfeld, 1979)), any scavenging and cleansing of the air by rainfall (lowering the pollutant
concentrations) (Vallero, 2014), and the formation of acid rain (where acidic gases SO2 and NOx that
are (related to) the predictive variables, get washed out, thus lowering the concentrations (Irwin and
Williams, 1988)).

• Global radiation and sunshine, which signify the presence of solar energy in the form of photons,
serve as fundamental drivers of low-entropy energy input on Earth. One direct way where this is
observed, is in the photochemical processes discussed in Section 2.1.2.

• Temperature is an essential factor in chemical processes seen by its role as accelerator in the
formation of secondary pollutants. In addition, temperature plays a role in atmospheric stability,
with, for example, (suddenly) high temperatures signifying increased convective activity. Furthermore,
temperature influences state changes, and is also tightly connected with global radiation and sunshine,
therewith also indirectly contributing to their effects. For more context on atmospheric chemistry
and physics, refer to the extensive Seinfeld and Pandis (2016).

• Mean wind direction, mean wind speed, and maximum wind gust all tell about the wind’s
properties, which in turn carries the pollutants through the atmosphere. In context of the experiment,
wind direction, for example, tells about the relative directional relationship between A and B. Out of
the pollutants, the wind especially plays a role for the PMs, as they have a bigger surface.

B.2 Feature correlations

In Table B.1, the exact (and non-absolute) coefficients—in accordance to the correlation matrix Figure 3.4
discussed in Section 3.2—are shown for each pair of features.

Table B.1: Diagonal correlation matrix for the initially considered variables, that is, before any
feature selection. The non-absolute pearson correlation coefficient is shown for: nitrogen dioxide
(NO2), ozone (O3), particulate matter ≤ 10 µm (PM10), particulate matter ≤ 2.5 µm (PM2.5),
air pressure (AP), dew point temperature (DPT), global radiation (GR), maximum wind gust
(MWG), mean wind direction (MWD), mean wind speed (MWS), precipitation amount (PA),
precipitation duration (PD), sunshine duration (SD), and temperature (T), which are all also listed
in Table 3.1 with their respective units. During preprocessing, the bolded GR, MWG, PA, and PD
were discarded, and MWG was augmented with its 24-hour moving average. The preprocessing
steps are explained in Section 3.2. The bolded entries correspond to coefficients named in the text.
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A introductory general notion is that the correlations are not necessarily high. There are various reasons
for this. Firstly, the values—to speak in the context of modelling—have not yet been processed and are
(still) noisy, thus distorting the calculation. This noise can be caused, for example, by inconsistencies
in the measurement equipment, such as fluctuating calibration, or simply disturbing factors, such as
condensation on PM sensors (KNMI, 2023b; Bijma, 2012). Second, the calculation itself is not entirely
sound. The Pearson correlation coefficient (defined as (3.2)) makes a number of assumptions, such as
linear relationships, heteroskedasticity, and normally distributed data, all of which do not necessarily apply
to the highly non-linear and possibly turbulent weather data. Thirdly, the variables merely represent a
small part of the dynamical system they are part of, and their interdependencies cannot be captured by
simply a number. Theoretically, with infinite data, and therefore infinite variables, the interrelationships
should be captured. However, this is beyond the practical possibilities(—see Wolfram and Gad-el Hak
(2003) for a further discussion of this topic). Having said this, it is worth highlighting a few individual
coefficients:

• A first coefficient is rO3,NO2 = −0.59, which shows a negative correlation. Section 2.1.2 discussed
atmospheric interactions, including the interaction between these two components. During the day,
when the sun rises, NO2 photodisassociates, thereby triggering the sequential formation of O3. (This
also translates into the coefficient of temperature with O3, rO3,T = 0.60). This inversely related
interaction—see Figure 3.2—explains the negative correlation in this case. A sidenote here is, for the
sake of completeness, that many more processes cooperate in the creation of this number.

• Another particularly important one to highlight is the coefficient between subjects of this study PM10

and PM2.5, rPM10,PM2.5 = 0.64. This is high because the definitions of both PMs, separated by their
size, are parallel. They otherwise come from roughly the same sources and, apart from a definition
shift due to agglomeration and fragmentation of particles, will exhibit similar behaviour.

• Additionally, some peculiarly high coefficients can be observed. Evidently, this is because these
variables are very similar. Take for instance rT,DPT = 0.88, both of which describe temperature
in minimally different ways, apart from an influence of humidity. Indeed, there are several more
where the same pattern—a pattern of intrinsic similarities—inflate the coefficient: mean wind speed
with maximum wind gust rMWS,MWG = 0.94, precipitation amount with precipitation duration
rPA,PD = 0.60, sunshine duration with global radiation rSD,GR = 0.79, or temperature with global
radiation rT,GR = 0.58, all of which can be explained intuitively. However, the opposite is also true:
most data points have little to do with each other and therefore show weak correlation.

Altogether, it can be said from an ML perspective that the correlations present between predictive
variables and covariates are naturally favourable for accurate prediction of pollutants, as are low correlations
between the covariates themselves (Hall, 1999). For this reason, a number of features were selected for
final modelling, as discussed in Section 3.2.

B.3 Data availability

Here is a short summary of the availability of the data used in the experiment. Missing data was
interpolated with linear interpolation, (3.1).

Table B.2: Data availability percentage for the modelled pollutants for each year. The meteorological
abbrevations are defined in Table 3.1. The meteorological data was completely available for all
years—for the pollutants, it was not. Given the strict procedures by the KNMI (KNMI, 2023a),
this is no surprise.

NO2 O3 PM10 PM2.5 AP DP MWD MWS SD T

2017 97.64% 96.85% 97.62% 99.10% 100% 100% 100% 100% 100% 100%
2018 99.67% 98.52% 97.70% 99.29% 100% 100% 100% 100% 100% 100%
2020 98.60% 98.05% 99.34% 99.31% 100% 100% 100% 100% 100% 100%
2021 99.67% 98.55% 98.88% 99.29% 100% 100% 100% 100% 100% 100%
2022 96.90% 97.62% 95.56% 99.62% 100% 100% 100% 100% 100% 100%
2023 98.60% 97.15% 98.46% 97.97% 100% 100% 100% 100% 100% 100%
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B.4 An outlier visualised

Shown is a plot illustrating two points. Firstly, that New Year’s is an outlier and should be excluded.
Secondly, that SES (Gardner Jr, 2006):

ft+1 = αyt + (1− α)ft, (B.1)

where α is a smoothing factor determining the balance between observed value yt and the previous forecast
ft, carries an inherent delay in its computational mechanism, underpinning the notion made in Section 2.2.
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Figure B.2: Plot of hourly-sampled PM2.5-concentration (µgm−3) as a function of time and its
24-hour single exponential smoothing (SES) average, over a period around New Year’s 2019. Notable
is the striking—or, perhaps, concerning—peak around the 31st and 1st, when the fireworks and
the concentrations take their flight. SES exhibits a delayed response to the abrupt peak.

B.5 Data allocation and quantity

This section provides transparency on how much data was used and in what proportions. Table B.3 shows
the number of hours of data before pair generation, and Table B.4 the data after pair generation.

Table B.3: Hours of data for each feature per year in the training, validation, and testing sets
before pair generation, illustrating the data balance between the different sets, and their amounts.
Divide these by 24 for the amount of days. (Meteorological abbrevations are defined in Table 3.1).

NO2 O3 PM10 PM2.5 AP DP MWD MWS SD T

Train ’17 3648 3648 3648 3648 3648 3648 3648 3648 3648 3648
Train ’18 3648 3648 3648 3648 3648 3648 3648 3648 3648 3648
Train ’20 3648 3648 3648 3648 3648 3648 3648 3648 3648 3648
Train ’21 2640 2640 2640 2640 2640 2640 2640 2640 2640 2640
Train ’22 2640 2640 2640 2640 2640 2640 2640 2640 2640 2640

Validation ’21 504 504 504 504 504 504 504 504 504 504
Validation ’22 504 504 504 504 504 504 504 504 504 504
Validation ’23 1512 1512 1512 1512 1512 1512 1512 1512 1512 1512

Test ’21 504 504 504 504 504 504 504 504 504 504
Test ’22 504 504 504 504 504 504 504 504 504 504
Test ’23 1512 1512 1512 1512 1512 1512 1512 1512 1512 1512

Table B.4: Table with numerical descriptions of the used datasets, after pair generation performed
in Section 3.2 (with a ∆n of only 24 hours). Due to the overlapping nature of the pair generation
algorithm, ”more” usable data was generated compared to the original data. The amount of pairs
P is displayed, the total amount of hours, total datapoints, datapoints passed through the model
as input u, and the ground truth y datapoints used for the loss function during training, giving
an indication of the amount of computations needed for one training epoch. (With the ”optimal”
∆n = 1, the training set would grow to the impractical amount of 12,847,104 datapoints.)

P hrstotal ntotal nu ny

Training set 656 47 232 535 296 472 320 62 976
Validation set 93 6696 75 888 66 960 8928
Testing set 93 6696 75 888 66 960 8928
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C Training insights

The subplots in Figure C.1 show the training and validation loss development during final training of the
six models. Figure C.2 shows how both the shared and branched part of the HLSTM contributed to its
training loss. See Table D.6 for the HLSTM’s architecture summary.
Training the models took an hour maximum, using the hyperparameters listed in Table D.1 and D.2

and processed locally on an Intel Core i7-8565U CPU, 8GB RAM, 64-bit OS.
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Figure C.1: Loss plots for all models, showing the training versus validation losses over epochs.
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Figure C.2: Training loss plotted of the shared and branched part of the HLSTM. For illustrative
purposes, the first epoch is left out from the plot. Both model parts have different complexities
(see Section 3.3), causing their learning process to be different as well. The branches were more
complex, causing its learning process to be less stable, visible by the small ”bumps” in its descend.
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D Architecture details

This Appendix section provides some additional detail on the employed architectures by specifying the
used hyperparameters and model parameters. In all of the model summaries, pass size denotes the size of
a forward/backward pass in megabytes (MB). All activation functions employed are ReLU, including the
readout. The high number of parameters for the RNNs are caused by the BPTT procedure, with the
number being less for the hierarchical recurrent nets due to reduced parameter sharing.

Table D.1: Overview of the hyperparameters that were determined through grid search and
consequently used in the models. Their abbrevations are listed in Table 3.3. Also, note that the
fully-connected models have just one learning rate, while the hierarchical models have two: one
for their shared layer and one for the optimizers of each of their branches. Another thing to note
here is that the ratio between these two, µshared and µbranch, is equivalent to k. This was done,
after lots of test runs, with the idea of a ”power ratio” between the two: the branches needed
a higher µ to let them converge in harmony with the shared layer. Another reason was that by
interlinking the two, H was significantly reduced. A last thing to note is λ of the HLSTM being
zero. During training, the HLSTM struggled to get momentum and to start learning, resulting in
the hyperparameter search choosing a model with optimal flexibility—a regularisation term of zero.

k Lκ µ µshared µbranch λ

MLP 4 64 1e−5 1e−5
HMLP 7 64 1e−4 7e−4 1e−5
LSTM 6 112 1e−3 1e−6
HLSTM 7 48 1e−4 7e−4 0
GRU 4 128 1e−3 1e−5
HGRU 4 64 1e−3 4e−3 1e−7

Table D.2: Overview of other training settings (or ”hyperparameters”) that were determined
through trial-and-error (and not through exhaustive search). All models used the Adam optimizer,
reduced their learning rates when the validation loss reached a plateau (ReduceLROnPlateau), had
a batch size (|B|) of 16, and used k = 5 in their k-fold cross-validation schemes. The MLPs had a
patience of 6 and the RNNs of 15 to accomodate for their differences in convergence speed.

optimizer µscheduler patience |B| kfolds

MLP Adam ReduceLROnPlateau 6 16 5
HMLP Adam ReduceLROnPlateau 6 16 5
LSTM Adam ReduceLROnPlateau 15 16 5
HLSTM Adam ReduceLROnPlateau 15 16 5
GRU Adam ReduceLROnPlateau 15 16 5
HGRU Adam ReduceLROnPlateau 15 16 5
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Table D.3: MLP architecture summary.

# Type Output shape Param #

Input 0
1 Linear [16, 64] 704

ReLU [16, 64] –
2 Linear [16, 64] 4,160

ReLU [16, 64] –
3 Linear [16, 64] 4,160

ReLU [16, 64] –
4 Linear [16, 64] 4,160

ReLU [16, 64] –
5 Linear [16, 64] 4,160

ReLU [16, 64] –
6 Linear [16, 4] 260∑

17,604

Input size 0.00 MB
Pass size 0.04 MB
Params size 0.02 MB

Table D.4: Hierarchical MLP architecture summary. At 3-1, the branches start, indicated by ’*4’.

# Type Output shape Param #

Input 0
1 Linear [16, 64] 704

ReLU [16, 64] –
2 Linear [16, 64] 4,160

ReLU [16, 64] –
3-1 * 4 —Linear [16, 16] 1040 * 4

—ReLU [16, 16] –
3-2 * 4 —Linear [16, 16] 272 * 4

—ReLU [16, 16] –
3-3 * 4 —Linear [16, 16] 272 * 4

—ReLU [16, 16] –
3-4 * 4 —Linear [16, 16] 272 * 4

—ReLU [16, 16] –
3-5 * 4 —Linear [16, 16] 272 * 4

—ReLU [16, 16] –
3-6 * 4 —Linear [16, 16] 272 * 4

—ReLU [16, 16] –
3-7 * 4 —Linear [16, 1] 17 * 4∑

15,620

Input size 0.00 MB
Pass size 1.12 MB
Params size 0.06 MB
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Table D.5: LSTM architecture summary. The high amount of parameters is caused by the unfolding
of the network over 72 timesteps.

# Type Output shape Param #

Input 0
LSTM [16, 24, 4] –

1-1 —LSTM [16, 72, 112] 561,792
1-2 * 24 —Linear [16, 4] 452 * 24∑

572,640

Input size 0.05 MB
Pass size 1.04 MB
Params size 2.25 MB

Table D.6: Hierarchical LSTM architecture summary. At 3-1, the branches start, indicated by ’*4’.

# Type Output shape Param #

Input 0
LSTM [16, 24, 1] –

1 —LSTM [16, 72, 48] 11,520
2 —LSTM [16, 72, 48] 18,816
3-1 * 4 ——LSTM [16, 24, 1] 10,477 * 4∑

72,244

Input size 0.05 MB
Pass size 1.19 MB
Params size 0.29 MB

Table D.7: GRU architecture summary.

# Type Output shape Param #

Input 0
GRU [16, 24, 4] –

1-1 —GRU [16, 72, 128] 350,976
1-2 * 24 —Linear [16, 4] 516 * 24∑

363,360

Input size 0.05 MB
Pass size 1.19 MB
Params size 1.41 MB

Table D.8: Hierarchical GRU architecture summary. At 3-1, the branches start, indicated by ’*4’.

# Type Output shape Param #

Input 0
GRU [16, 24, 1] –

1 —GRU [16, 72, 64] 14,592
2 —GRU [16, 72, 64] 24,960
3-1 * 4 ——GRU [16, 24, 1] 8,849 * 4∑

74,948

Input size 0.05 MB
Pass size 1.59 MB
Params size 0.30 MB
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E Additional results

This section visualises the models’ pollutant forecasting capabilities on out-of-sample data by:

• one pure 24-hour forecast of all models;

• one combined plot for two weeks, i.e. fourteen concatenated 24-hour forecasts, with all models;

• six individual plots, to further clarify each model’s distinct performance; and

• four scatterplots giving an overview of each model’s performance on the four subtasks.

In addition, paired t-tests are used to determine significant differences in the models’ performance
metrics (which can be found in Section 4, Table 4.1).
A thing to point out is that in the two-week plots for NO2, a linearly interpolated part of the testing

data is visible starting around a week into the plot, at December 16th, 2019.
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Figure E.1: Forecast for one day (December 29th, 2021) taken from the evaluation set for all models.
Black indicates the ground truth and each colour, see the legend, the forecasts. A two-week forecast
of all models is depicted in Figure E.2, individual forecasts are presented in Figure E.3, E.4, E.5,
E.6, E.7, and E.8, and the corresponding numerical metrics are visible in Table 4.1.

32



0

30

61 NO2

MLP

LSTM

GRU

HMLP

HLSTM

HGRU

0

32

64 O3

0

28

56 PM10

2021-12-09 2021-12-23

0

21

42 PM2.5

Figure E.2: Forecasts for two weeks (= fourteen 24-hour windows) from the evaluation set, for
all models. Black indicates the ground truth and each colour, see the legend, a forecast. Around
the middle of the NO2 ground truth, a linearly interpolated part of the data is visible. Individual
forecasts are presented in Figure E.3, E.4, E.5, E.6, E.7, and E.8, and the corresponding numerical
metrics are visible in Table 4.1.
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Figure E.3: MLP forecasts for NO2, O3, PM10, and PM2.5. Black indicates the ground truth and
maroon the forecasts. The MLP visibly underperforms with PM, showing a bland line.
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Figure E.4: HMLP forecasts for the pollutants. Black indicates ground truths and maroon forecasts.
According to the numbers in Table 4.1, the HMLP performs best, comparatively seen, on PM2.5.
This is contrary to what is observed in this sample, where the forecast fails to grasp the pattern.
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Figure E.5: LSTM forecasts for NO2, O3, PM10, and PM2.5 taken for two weeks (= fourteen 24-hour
windows) from the evaluation set. Black indicates the ground truth and maroon the corresponding
forecasts for each. It follows the ground truth to a fair degree with most, and seems to have the
most trouble with PM10.

0

30

61
NO2

0

32

64
O3

0

28

56
PM10

2021-12-09 2021-12-23

0

21

42
PM2.5

Figure E.6: HLSTM forecasts for NO2, O3, PM10, and PM2.5 taken for two weeks (= fourteen
24-hour windows) from the evaluation set. Black indicates the ground truth and maroon the
corresponding forecasts for each. The HLSTM’s runner-up performance, see Table 4.1, shows. Of
all the RNNs, it used the least amount of parameters (72,244). It performed best with NO2.
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Figure E.7: GRU forecasts for NO2, O3, PM10, and PM2.5 taken for two weeks (= fourteen 24-hour
windows) from the evaluation set. Black indicates the ground truth and maroon the corresponding
forecasts for each. It performs generally well. Figure 4.1 showed how all models have a slight
negative bias. Here, although not obvious, the NO2 prediction resembles that notion.
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Figure E.8: HGRU forecasts for NO2, O3, PM10, and PM2.5 taken for two weeks (= fourteen
24-hour windows) from the evaluation set. Black indicates the ground truth and maroon the
corresponding forecasts for each. Another HGRU forecast is depicted in Figure 4.2. Of the six
considered models, the HGRU achieved the lowest average RMSE and sMAPE, see Table 4.1.
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Figure E.9: NO2’s forecasts versus actual observations scattered. Precisely correct predictions are
along the diagonal. The maroon trend line gives a visual indication of performance. As indicated
by the red line, the HGRU performs optimally.
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Figure E.10: O3’s forecasts versus actual observations scattered. Precisely correct predictions are
along the diagonal. The maroon trend line gives a visual indication of performance. As indicated
by the red line, the HGRU performs optimally.
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Figure E.11: PM10’s forecasts versus actual observations scattered. The maroon trend line gives
a visual indication of performance. As indicated by the red line, the HGRU performs optimally.
PM10 predictions are off the most of the four pollutants, see Table 4.1 and Figure E.9, E.10, E.12.
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Figure E.12: PM2.5’s forecasts versus actual observations scattered. Precisely correct predictions
are along the diagonal. The maroon trend line gives a visual indication of performance. As indicated
by the red line, the HGRU performs optimally. The contrast between models is most evident here.
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Table E.1: Mean (M) and standard deviation (SD) of each model’s RMSE and sMAPE based on
the testing set, relevant for the paired t-tests conducted and shown in Table E.2 and E.3.

MLP HMLP LSTM HLSTM GRU HGRU

RMSE M 6.709 6.348 6.040 5.633 5.743 5.468
SD 5.668 5.559 5.250 4.935 5.004 4.906

sMAPE M 49.044 46.274 46.321 44.981 45.474 44.519
SD 46.160 45.344 46.515 45.850 46.969 46.453

Table E.2: Results of paired t-tests assessing statistical significance between RMSE scores for the
six models. (Description and definition of RMSE is detailed in Section 3.5, its results in Table 4.1,
and its mean and standard deviation in Table E.1). The sample size, degrees of freedom, or n, is
equal to 8927 (hours) for all. All p-values are below the significance level of α = .05, leading to
rejection of the null hypothesis in all cases. Notably, the combination of MLP and HGRU, the
benchmark model and best performing model (see Section 4), yields the smallest p-value, suggesting
more pronounced evidence to reject the null hypothesis of no difference in performance (based on
RMSE) between the pair compared to the others—which is consistent with the expectations.

MLP HMLP LSTM HLSTM GRU HGRU

MLP t(n) = 13.270 14.223 19.762 21.838 22.863
p = 8.35e−40 2.09e−45 4.32e−85 5.17e−103 1.91e−112

HMLP t(n) = −13.270 5.985 13.036 13.617 16.483
p = 8.35e−40 2.25e−9 1.73e−38 8.38e−42 3.84e−60

LSTM t(n) = −14.223 −5.985 11.392 9.235 16.035
p = 2.09e−45 2.25e−9 7.41e−30 3.18e−20 4.63e−57

HLSTM t(n) = −19.762 −13.036 −11.392 −4.177 5.922
p = 4.32e−85 1.73e−38 7.41e−30 2.98e−5 3.30e−9

GRU t(n) = −21.838 −13.617 −9.235 4.177 9.389
p = 5.17e−103 8.38e−42 3.18e−20 2.98e−5 7.60e−21

HGRU t(n) = −22.863 −16.483 −16.035 −5.922 −9.389
p = 1.91e−112 3.84e−60 4.63e−57 3.30e−9 7.60e−21

Table E.3: Results of paired t-tests assessing statistical significance between sMAPE scores for the
six models. (sMAPE is defined as (3.9), results are in Table 4.1, and its mean and std can be found
in Table E.1). The degrees of freedom n is equal to 8927 (hours) for all. All p-values, except for
one, are below the significance level of α = .05. The combination of HMLP and LSTM sMAPE
scores did not yield sufficient evidence to reject the null hypothesis. Similar to the paired t-test
results for RMSE in Table E.2, the lowest p-value is observed for the combination of the benchmark
and best performing model, the MLP and HGRU.

MLP HMLP LSTM HLSTM GRU HGRU

MLP t(n) = 12.775 11.888 17.919 13.313 19.845
p = 4.81e−37 2.41e−32 1.47e−70 4.71e−40 8.79e−86

HMLP t(n) = −12.775 1.011 8.666 3.302 10.619
p = 4.81e−37 3.12e−1 5.28e−18 9.65e−4 3.49e−26

LSTM t(n) = −11.888 −1.011 9.721 3.126 12.346
p = 2.41e−32 3.12e−1 3.18e−22 1.78e−3 9.86e−35

HLSTM t(n) = −17.919 −8.666 −9.721 −5.854 2.855
p = 1.47e−70 5.28e−18 3.18e−22 4.97e−9 4.32e−3

GRU t(n) = −13.313 −3.302 −3.126 5.854 9.298
p = 4.71e−40 9.65e−4 1.78e−3 4.97e−9 1.77e−20

HGRU t(n) = −19.845 −10.619 −12.346 −2.855 −9.298
p = 8.79e−86 3.49e−26 9.86e−35 4.32e−3 1.77e−20
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