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Abstract

Magnons present a promising path for information transfer in emerging areas such as
magnonics and spintronics. Thus, modelling magnons through simulating magnetic sam-
ples with different parameters is a crucial step in understanding and utilizing them. This
thesis delves into the dynamics of magnons and the precessional frequency of magnetic
moments across a spectrum of sample shapes, dimensions, exchange stiffness, and mag-
netic field characteristics. Mumax3 was utilised to run simulations were FEM based
on the LLG equation for modelling micro spins in a magnetic sample. Initial simula-
tions uncovered unexpected trends attributed to experimental setups, particularly shape
anisotropy and the direction of magnetic fields, which deviated from the Kittel formula’s
assumptions. Through systematic adjustments of parameters such as exchange stiffness
and length, this work identifies critical factors influencing precessional frequency, high-
lighting the necessity of increasing exchange stiffness for homogeneity. The investigation
extends to the simulation of thin films and cubic samples, exploring the impact of mag-
netic field strength and uniaxial anisotropy on magnonic behavior. Despite encountering
methodological and computational limitations, the study achieves results within the the-
oretical range of the Kittel formula, with an error margin of 10%, from Ms and Ms,fit
difference. The study aimed to simulate a magnetic crystal with varying anisotropy
constants and found consistent precessional frequencies across two domains, indicating
a homogeneous macrospin influenced by high exchange length value. The study high-
lights potential in adjusting exchange stiffness and anisotropy in two-domain samples,
providing insights into magnetic interactions and material design. Additionally, explor-
ing out-of-plane effective fields in thin films could benefit spintronics research.
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1 Introduction

The study of magnons and the precessional frequency of magnetic moments has a rich history,
tracing back to the early 20th century when scientists first began to unravel the mysteries of
magnetic phenomena at the microscopic level. Magnons, conceptualized as the quanta of spin
waves, have since emerged as a cornerstone in the field of magnetism, offering deep insights
into the behavior of magnetically ordered materials [1].

This area of research has evolved significantly over the years, with advancements in tech-
nology enabling more precise measurements and simulations of magnetic behavior in various
materials [2]. Understanding how magnetic moments precess and interact under different
conditions has been crucial in developing a wide array of magnetic devices, from traditional
storage media like hard drives to cutting-edge applications in the realm of spintronics, where
the spin of electrons, rather than their charge, is harnessed for information processing.

The exploration of how different shapes, dimensions, exchange stiffness, and magnetic field
strengths and directions affect magnons and precessional frequencies is pivotal. Such studies
enriches our fundamental understanding of magnetic dynamics. The aim of this research
is contributing to this body of knowledge by systematically investigating these variables
through simulations. Through this work, we hope to uncover new mechanisms and strategies
for controlling magnetic phenomena, opening doors to novel technologies and materials that
leverage the unique properties of magnons and magnetic moments. Adjusting the parameters
within MuMax3 allows for accurate simulation of the predictions made by the Kittel formula.
The aim is to model a magnetic crystal by having two alternating magnetic samples with
an in-plane external magnetic field, as demonstrated in Figure 1), and then studying the
precessional frequency of each sample macrospin.

Figure 1: Visualization of two alternating samples with different anisotropies and an in-plane
magnetic field. Different colors indicates different crystalline anisotropy constant. Adapted
from [3]
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2 Theory

2.1 Magnons and spin waves

A quasi particle is a concept in physics representing disturbances or excitation in a medium
that behave as if they were particles. These entities can carry energy and momentum, exhibit-
ing particle-like properties such as mass and charge, even though they are not actual particles
in the traditional sense [4]. Magnons, a fascinating example of quasi particles, arise in the
quantum description of magnetically ordered materials. Here, magnons will be explored, how
they relate to spin waves and some of their practical applications [1].

Magnons , also referred to as spin waves, are collective excitation or quasi particles associated
with the quantum-mechanical behavior of spins in a magnetic material [1], as visualised in
Figure 2. In a magnetic solid, the orientation of electron spins tends to align, leading to
magnetic order, primarily due to the quantum mechanical interaction known as the exchange
interaction. This interaction is a consequence of the Pauli exclusion principle, which states
that no two electrons can occupy the same quantum state simultaneously. When electrons are
close to each other, their wave functions overlap, and the system lowers its energy by having
the spins of these electrons align either parallel or antiparallel, depending on the type of
exchange interaction (ferromagnetic or antiferromagnetic, respectively) [5]. Moreover, when
the ordered state of spins within a material is disturbed by external factors like magnetic fields
or thermal fluctuations, the spins may oscillate collectively. These oscillations, quantized
into discrete units known as magnons [6], arise from a coherent precession of spins across
the material. This requires a synchronized, collective movement, manifesting as wave-like
behavior.

Figure 2: The image depicts two rows of spinning electrons with their spin directions repre-
sented by arrows. The top row shows individual electron spins misaligned with their neigh-
boring spins, suggesting localized spin excitations. The bottom row illustrates a coherent
wave-like pattern of electron spins, representing a magnon. Adapted from [7].

2.2 Information transportation

Magnons offer a promising avenue for information transportation in emerging fields like
magnonics and spintronics. Magnonics is the study and manipulation of magnons to process
and transmit information in wave-based computing systems [8]. Meanwhile, spintronics in-
volves exploiting the spin of electrons, in addition to their charge, to develop electronic devices
that offer enhanced performance for computing and data storage [9]. The unique quantum
nature of magnons, coupled with their lack of charge and dissipation, presents advantages
over traditional electronic methods. Magnons can propagate through magnetic materials
with minimal energy loss, allowing for efficient information transfer. Manipulating magnons
enables the encoding and transmission of information using spin waves, offering potential ap-
plications in magnonic devices. The ability of magnons to travel over extended distances with-
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out significant loss makes them attractive for developing energy-efficient information trans-
port mechanisms. For instance, multiferroic/ferromagnetic BiFeO3 (BFO)/La0.67Sr0.33MnO3

(LSMO) heterostructures have a decay length of up to one millimetre at room temperature
[10]. They are capable of achieving extremely short wavelengths, reaching into the nanometer
range, even at microwave frequencies [2]. Meanwhile, electromagnetic waves at microwave
frequencies usually have wavelengths ranging from one meter down to one millimeter. This
allows them to interact with a wide variety of other quantum excitations. Furthermore,
their unique gyrotropic dynamics lay the groundwork for significant nonreciprocal behaviors,
enabling directional control and manipulation in various applications.

Researchers are exploring innovative ways to harness magnons in spin-based technologies.
Key to this field are magnonic devices which manipulate magnons through waveguides, guid-
ing signals of specific frequency, wave vector, phase, and amplitude crucial for wave-based
computing [11]. Innovative self-biased waveguides overcomes the limitations of needing a bias
magnetic field for device integration, including exchange-coupled magnetic multi-layers and
dipolar-coupled nanomagnet chains, offering enhanced functionality and enabling bias-free
operations crucial for advancing nano-magnonics and magnonic-electronic hybrid technolo-
gies.

Moreover, magnons utilized in Yttrium Iron Garnet (YIG)-based devices, are applied in creat-
ing combinatorial logic and memory devices by exploiting their unique low magnetic damping
[12]. These devices perform computations by identifying pathways between input and out-
put ports, leveraging the parallel search capability of magnons for enhanced functionality.
This approach demonstrates potential in enhancing computational throughput, potentially
rivalling quantum computers in specific tasks [13], by utilizing the magnon’s ability to navi-
gate through multiple paths efficiently.

2.3 Controlling magnons through electrostatic gates

Electrostatic gates are a fundamental component in the control and manipulation of charge
carriers in semiconductor devices, operating by applying an electric field that modulates the
energy levels within the device, thus controlling the flow of electrons [14]. This principle is
not confined to charge manipulation but extends to the realm of spintronics. In this context,
magnons emerge as pivotal players. Magnons can be influenced by electric fields in materials
where magnetic and electric properties are coupled, a phenomenon that becomes particularly
intriguing when considering a magnetic sample.

The interaction between an electrostatic gate and a magnetic sample can be understood
through the modulation of magnon energies and densities. This is because the electric field
from the gate can affect the magnetic anisotropy and exchange interactions within the mag-
netic sample, thus altering the magnon spectrum [15]. For instance, the use of voltage gates
to control magnon dispersion has been proposed as a mechanism for tunable magnonic de-
vices [16], where the magnon bandwidth and propagation characteristics can be dynamically
adjusted through electrostatic gating.

These advancements underscore the significance of electrostatic gates not just in traditional
electronics but in the burgeoning field of spintronics and magnonics, suggesting a convergence
of disciplines that could redefine information technologies. The ability to control magnonic
currents through electrostatic gating of a magnetic sample represents a promising avenue
for developing novel computational and memory devices that leverage the dual nature of
electrons ,charge and spin, for enhanced performance and functionality.

The electric control of optically-induced magnetization dynamics in the van der Waals ferro-
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magnet Cr2Ge2Te6 (CGT) is modulated through electrostatic gating [17]. By employing top
and bottom gates to independently adjust the charge carrier density and electric displace-
ment field, significant alterations is shown in magnetization precession amplitude and internal
effective fields. This manipulation reveals the substantial impact of coherent opto-magnetic
phenomena beyond previously known thermally-induced mechanisms, indicating a promising
method for tuning magnetic properties and dynamics. The dual-gate setup enables nuanced
control over the CGT’s magnetic parameters, paving the way for advancements in ultra-fast
opto-magnonic devices and highlighting the potential of 2D ferromagnetic semiconductors in
quantum computing and spintronic applications.

2.4 Landau-Lifshitz-Gilbert equation

The Landau-Lifshitz-Gilbert (LLG) equation is a fundamental equation in magnetism that
describes the dynamics of magnetization in ferromagnetic materials. It plays a crucial role
in understanding the precession, damping, and overall motion of magnetic moments or spins
in response to external perturbations.It is extensively used in micromagnetic simulations and
studies of magnetic materials, providing insights into phenomena such as spin precession,
magnetization switching, and the response of magnetic systems to external stimuli. The
equation is foundational in the design and analysis of spintronic devices, magnetic memory
storage, and other technologies where the dynamic behavior of magnetization is crucial. The
LLG equation is given by [18]:

dM

dt
= −γM×Heff + αM× dM

dt
, (1)

where M is the magnetization vector, Heff is the effective magnetic field acting on the mag-
netization, γ is the gyromagnetic ratio and α is the Gilbert damping parameter. The term
−γM×Heff is recognized as the precessional component, influencing the rotational behavior
of the magnetic moment relative to the effective magnetic field Heff. Conversely, the expres-
sion αM× dM

dt contributes to damping, regulating the gradual loss of energy in the magnetic
moment’s motion over time.

Magnetization, denoted as M, encapsulates the density of magnetic moments within a ma-
terial. The effective magnetic field, Heff, integrates the external magnetic field with internal
influences, including anisotropy and the exchange interaction. The gyromagnetic ratio, γ,
characterizes the link between a particle’s magnetic moment and its angular momentum.
Lastly, the Gilbert damping parameter, α, modulates the damping force’s intensity, which
affects how swiftly the magnetization realigns with Heff [18].

A quantitative analysis of the oscillation frequency (f) as a function of Hext can be used to
extract the magnetization dynamics parameters of the device [17]. We assume that our data
is well described by the ferromagnetic resonance mode obtained from the LLG equation with
α << 1 and assuming a thin film and in plane magnetic field,

f =
gµBµ0

2πℏ

√
|Heff |(|Heff | −Hint sin

2(θM )), (2)

which introduces, g = 1.89 as the Lande g-factor, µB the Bohr magneton, Heff = Hext +Hint

cos(θM ) Ẑ , with Hint =
2K

µ0Ms
−Ms. Here, Ms the saturation magnetization, and θM the angle

between M and the magnetic sample normal (z-direction). The angle θM is calculated by
minimizing the magnetic energy in the presence of an external field, perpendicular magnetic
anisotropy, and shape anisotropy.
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2.5 Magnetization dynamics parameters

2.5.1 Applying external Magnetic field

When an external magnetic field is applied to a material, the magnetic moments align with
the field direction, minimizing the system’s energy through Zeeman energy [5]. The degree
and manner of alignment depend on the strength and orientation of the applied field, the
material’s magnetic properties, and the temperature.

The Kittel formula provides the conditions for ferromagnetic resonance (FMR), differentiating
between parallel and perpendicular external magnetic fields relative to the thin film’s plane
[19]. For the parallel configuration, the formula is

f =
γ

2π

√
Heff(Heff +Ms) , (3)

This configuration elucidates the combined effects of anisotropy and magnetization on the
resonance frequency. In contrast, the perpendicular configuration is described by

f =
γ

2π
(H⊥ −Ms), (4)

where H⊥ is an external magnetic field, applied out of plane with respect to the thin film.
This highlights the direct influence of the external field and effective magnetization on the
resonance frequency. The parallel configuration emphasizes the role of internal magnetic
properties (anisotropy and effective magnetization) in determining the resonance condition,
while the perpendicular setup focuses on the external field’s modulation of the resonance,
making each configuration suited for probing different aspects of magnetic materials.

2.5.2 Anisotropy

Magnetic anisotropy refers to the dependence of a material’s magnetic properties on the
direction of magnetization [20]. There are two primary types of magnetic anisotropy: Shape
and crystalline. Both shape anisotropy and crystalline anisotropy contribute to the overall
magnetic behavior of materials, influencing their magnetic properties and applications in
various technologies [21].

The influence of anisotropies can be likened to the effect of an extra applied magnetic field;
thus, it is possible to approach it in this manner. Generally, one can calculate an anisotropy
field from the anisotropy energy by using the formula [18]

H⃗ = − 1

|M |
∇Eanis(M⃗), (5)

a) Shape anisotropy

This type of anisotropy arises from the shape of a magnetic material. When a magnetic
material has a particular shape, such as a thin film or a particle, the arrangement of its
magnetic moments tends to align preferentially along a specific axis. The geometry of the
material influences the energy associated with the alignment of magnetic moments, leading
to a preferred orientation or easy axis for magnetization [21].

Shape anisotropy originates from the minimization of magneto static energy associated with
stray fields, also known as demagnetization fields, are magnetic fields that extend outside the
physical boundaries of a magnetic material, they are influenced by the material’s geometry.
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For instance, in thin films, magnetic moments align within the plane to minimize the stray
fields’ extension beyond the material, reducing magneto static energy. Conversely, elongated
particles favor magnetization along their long axis, decreasing the surface area affected by
stray fields and thus the energy cost. This directional preference for magnetization, dictated
by the material’s shape, minimizes the overall energy of the system by reducing the impact
of stray magnetic fields, leading to a preferred orientation or easy axis for magnetization [22].
The shape anisotropy field can be expressed as

H⃗shape = −NM⃗, (6)

Where N =
∑

Nij îĵ is the demagnetization tensor (i, j ∈ x, y, z). Assuming we can obtain
the precession frequency of the magnetization in a sample dominated by shape anisotropy.
Assuming a ferromagnetic thin film, equation 6 can be utilized to get another version of
the Kittel formula which involves the demagnetization factors due to the shape anisotropy,
resulting formula for precession frequency is [18]

f =
γµ0

2π

√
[(Nz −Nx)Ms +HDC

x ][(Ny −Nx)Ms +HDC
x ], (7)

b) Crystalline anisotropy

Crystalline anisotropy is inherent to the crystal structure of a material. The arrangement
of atoms in the crystal lattice can create preferential directions for magnetization. Different
crystallographic axes may have different magnetic properties, and the energy associated with
aligning the magnetic moments along these axes can vary. This type of anisotropy is partic-
ularly relevant in crystalline magnetic materials, where the crystal symmetry determines the
preferred direction for magnetic alignment [21].

For example, Iron’s magnetic characteristics are intricately linked to its crystal structure,
with the orientation of its magnetic moments relative to the crystal axes playing a crucial
role. Magnetic moments align most readily along certain crystallographic directions, known
as the easy axis, due to a lower energy requirement. Some crystallographic directions are
more energetically favorable due to the way unpaired electrons align and interact with each
other within a material’s atomic structure [23].

The uniaxial anisptropy constant is represented by K , seen in equation 2.Quantifying the
energy required to change the orientation of magnetic moments or structural elements along
a preferred axis in a crystal lattice. In the context of magnetic materials, K influences the
stability of magnetic domains, dictating the ease with which the magnetic moments align
parallel or anti parallel to the designated axis. Higher values of K indicate stronger uniaxial
anisotropy, making it more challenging to alter the material’s magnetic alignment [21].

2.5.3 Exchange stiffness

Exchange stiffness, a fundamental parameter in the physics of magnetic materials, quantifies
the resistance of the magnetic moments (or spins) within a material to being reoriented
relative to each other. It is a strength measurement of the exchange interaction, the quantum
mechanical phenomenon that causes spins to align parallel or anti parallel to each other,
depending on whether the interaction is ferromagnetic or antiferromagnetic, respectively [24].

The exchange stiffness, denoted by A, is used in several key equations in magnetism, including
the micro magnetic model which describes the energy of a magnetic system. One of the most
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relevant expressions where A appears is in the formula for the exchange energy density, given
by:

Eexchange = A (∇m)2 , (8)

where m is the unit vector in the direction of magnetization, and ∇m represents the spatial
gradient of m. The unit of exchange stiffness is typically joules per meter (J/m), highlighting
its role as a measure of the energy required to change the spatial orientation of magnetization
over a certain distance [25]. This directly effects M and Heff and thus prevalent in the LLG
equation. Moreover, the exchange stiffness constant is

Aex = S2Jex

a
, (9)

with spin denoted as S, and Jex is the exchange energy, which tends to align the electron
spins/magnetic moments parallel to each other, creating homogeneity in the magnetic sample.
While, a is the atomic distance [26].

Physically, exchange stiffness is a measure of the strength of the coupling between neighboring
magnetic moments. A high value of A indicates strong coupling, making it difficult for the
orientations of the magnetic moments to diverge from each other. This strong coupling
ensures that the magnetic moments tend to align uniformly, maintaining coherence over larger
distances within the material. The exchange stiffness is crucial for the frequency precision of
magnetic moments precessing around an external magnetic field. In the context of frequency
precision, a higher exchange stiffness means that the magnetic moments are more tightly
bound to each other’s orientation, leading to a more coherent and uniform precession across
the material. This uniformity is essential for applications requiring high frequency precision,
such as in spintronics and magnetic resonance technologies, where the precise control and
manipulation of spin dynamics are critical.

2.5.4 Damping

Damping denoted as α in the LLG equation, refers to the dissipation of energy in a magnetic
system, particularly the loss of energy associated with the motion of magnetic moments. It
plays a crucial role in determining the dynamics of magnetization, influencing phenomena
such as the precession of spins and the propagation of spin waves [27].

In the presence of an external magnetic field, the precession of spins—often associated with
the phenomenon of Larmor precession—can be subject to damping effects . Damping intro-
duces a decay in the amplitude of the precession motion over time, leading to the relaxation of
the magnetic system toward equilibrium. Mumax3 (explained in section 2.6) can be utilized
to model this phenomena.

2.5.5 Magnetic exchange length

In micro magnetic modeling, the exchange length (lex) is a foundational concept that estab-
lishes the critical dimension over which the exchange interactions dominate magneto static
influences. Represented mathematically as [28]

lex =

√
Aex

Km
,Km =

1

2
µ0M

2
s , (10)

where Aex stands for the exchange stiffness and MS is the saturation magnetization. The
exchange length informs the minimum scale necessary for accurate simulations of magnetic
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behavior, particularly in soft magnetic materials where domain walls predominantly contain
volume charges.

2.6 MuMax3

MuMax3 is a state-of-the-art open-source software package designed for performing micro
magnetic simulations, particularly focusing on the dynamics and behavior of magnetic mo-
ments within materials [29]. MuMax3 is extensively employed for simulating and analyzing
the behavior of magnetic moments in diverse materials, providing insights into the magnetic
properties of systems at the nano-scale, this is done through solving the LLG equation. Its
applications range from investigating magnetic domain dynamics to studying the response of
magnetic materials under different external conditions.

The software is particularly advantageous for simulating magnetic moments in samples with
specific properties and geometries. Users can define the material characteristics, such as
anisotropy, exchange interactions, and damping coefficients, to accurately represent the phys-
ical properties of the simulated magnetic samples. Additionally, the geometry of the samples
can be customized, allowing for the study of thin films or multilayered structures. MuMax3
facilitates the application of external magnetic fields to the simulated systems, enabling the
exploration of how varying field strengths and orientations influence the magnetic behavior of
the samples. This capability is essential for understanding how magnetic moments respond
to external stimuli, contributing to the broader field of magnetic materials research.
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3 Method

In our study, we embarked on a comprehensive simulation to study the intricate dynamics
of magnetization in varying geometries and physical conditions. The basis code is in section
9.2.1 from which all parameters are changed. Furthermore, MuMax3 generates Output Vector
Field (OVF) files that capture the spatial distribution of magnetic moments and associated
parameters throughout the simulated structures. OVF files are then analysed through the
python code in section 9.3.1. The code processes magnetic moment values from each column,
averages them by file (time point), and appends them to lists for mx, my, and mz. Frequency
is then determined using FFT on these lists, validated through visual comparison.

Initially, our focus was on a cubic magnetic sample to investigate the influence of shape
anisotropy and the exchange length and stiffness on the magnetization dynamics. This in-
volved simulations across a spectrum of magnetic fields, both in the presence and absence of
periodic boundary conditions (PBC). The choice of zero field aimed at isolating the effects
of shape anisotropy. For the exchange stiffness, explored values are Aex = 10−10 J/m and
10−12 J/m. Moreover, for the exchange length here the grid size was changed to explore if
there are any frequency changes, done through changing SetGridsize values. Moreover, when
PBC was set to (2,2,2) to maintain an equal shape anisotropy. This effectively eliminates
edge effects and artificial interactions at the boundaries, ensuring that the magnetic behavior
within the modeled sample is representative of the actual physical system.

The exploration extended to the simulation of a thin film magnetic sample, adhering to the
assumptions of the Kittel formula. This phase of the simulation varied the sample sizes while
maintaining a constant ratio between length and height, finding it by looking at different ratios
and investigating their precissional frequency in order to find the optimal exchange length.
Alongside adjustments in the exchange stiffness constants (Aex) to gauge their impact on the
sample’s homogeneity. Utilizing the advanced capabilities of MuMax3, the simulations were
converted into 3D visualizations via mumax-view, visualizing the orientation of the magnetic
moments in the sample as colored arrows, where different colors represent different orientation
thus helping the visualization when zoomed out.

Diving deeper, the investigation into the thin film sample was further enriched by altering
the magnetic field strengths, including the scenario of zero magnetic field to accentuate the
shape anisotropy effects. This meticulous analysis was carried out under varying conditions
of magnetic anisotropy constant (K), exploring values of K0 = 0 J/m3, K1 = 0.345 · 105
J/m3, chosen from [30] and K2 = 2 · K1 = 0.69 · 105 J/m3, to understand the uniaxial
anisotropy’s impact on the magnetic order within the sample. K2 is chosen to be twice as
K1 to have a measurable impact on the oscillation frequencies of the magnetic moments in
the sample. PBC was set to (1,1,0) maintaining same shape anisotropy and eliminating edge
effects. Furthermore, after investigating two samples with different anisotropies separately,
it is time to put them next to each other, and examine the precissional frequencies. The
magnetic sample length is to remain constant while the first half are set to K1 while the
second half is K2. Mumax3 script shown in section 9.2.2.

The oscillation frequency (f) of the sample’s macrospin can be calculated in two different
way. Firstly, as it was previously measured, where the entire sample’s magnetic moments
vectors are averaged in every file (so each time point) then looking at the frequency using the
FFT python function. Contrary, examining each half frequency on its own. This is done by
only looking at each half (each with different anisotropy) then calculating the precessional
frequency, code seen in the section 9.3.2. This allows us to measure f for each half with a
different anisotropy constant.
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4 Results

4.1 Initial simulations

First, a simulation of a cuboid magnetic sample was created in order to study how the
magnetic moments in it behaves with various magnetic fields. The sample has dimensions of
500x10x50 cells while each cell is 1 nm in size. The geometry is visualized in Figure 4 and
the magnetic moments are all initialised in the x-direction.

It was anticipated that applying both the external magnetic field (B = 0.1 T) and uniaxial
anisotropy (K = 0.34 · 105 J/m3) in the z-direction would produce a specific outcome: two
out-of-phase, decaying sinusoidal waves with constant frequencies for < mx > and < my >
(average magnetic moment in x and y direction respectively), along with an increase of
< mz > to 1, reflecting the orientation of the B and K fields. However, as Figure 3 demon-
strates, the actual results diverged from these expectations. This deviation is attributed to
the influence of shape anisotropy, an overlooked factor that exerts an additional force on
each magnetic moment, leading to the observed discrepancy. Where the decaying waves are
irregular with non-constant frequencies. Meanwhile, around 0.4-0.5 ns a regular oscillation
of my and mx is seen and by 1 ns the amplitude of my is shown to decrease, indicating
damping.

Figure 3: Magnetic sample with dimensions (500x10x50) with an initial magnetic moment in
x-direction, and apply an external magnetic field (0,0,0.1 T). The figure shows the average
magnetic moments’ evolution over time.

Figure 4: 3D visualization of a magnetic
sample, with dimensions of 500 nm x 10 nm
x 50 nm. Done through mumax-view [31]

Figure 5: Cuboid magnetic sample, zoomed
in. The red arrows are in the x-direction,
each indicating a magnetic moment with di-
mensions of 1 nm,1 nm, 1 nm.
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4.2 Cubic magnetic sample

4.2.1 Anisotropy and Kittel formula

A cubic magnetic sample was made in order to avoid the shape anisotroy, with sides of 50 nm,
visualised in Figure 6. To see this, a simulation was ran yet with B = K = 0. As expected,
every magnetic moment stayed stationary in every direction over time.

Figure 6: Visualization of a 3D cube, filled with magnetic moments. Green indicates they
are pointing the y-direction.

Additionally, the external magnetic field was increased in increments of 0.1 T to 0.6 T in
the y-direction. Note that due to the shape, the field direction does not matter as long
as it is not the same as the initialized magnetic moment, assuming K = 0 or in the same
direction as B. Fore each magnetic field the precissional frequency was estimates using the
FFT function as shown in the python code in section 9.3.1. As seen in Figure 7 the first
frequency coincides with the Kittel formula, however, the gap between the Kittel formula
frequencies and cube frequencies increases with the magnetic field. Note that only frequency
of mx was plotted, since it is the same as the others. This does not match the Kittel formula,
since in the Kittel formula’s derivation, the shape is assumed to be a thin film. Hence, a thin
film should be simulated and compare their results with the theory from Kittel formula. In
a cubic sample, the magnetic moments can align more freely along different crystallographic
directions, leading to a higher precessional frequency. In contrast, thin films have a preferred
magnetization directions due to shape anisotropy and surface effects, limiting the freedom of
magnetic moment alignment and resulting in a lower precessional frequency.
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Figure 8: Visualizing the cubic magnetic sample at t = 1 ns for (a) Aex = 10−12 J/m, and
(b) Aex = 10−10 J/m. Where, colors represent different moment directions as seen through
Figure 15.

Figure 7: Investigating mx,my precissional frequencies around increasing magnetic field, with
K = 0. For a cubic magnetic sample. The blue dots represent the extracted frequencies using
the FFT function ,seen in the python code in section 9.3.1, of the Mumax3 simulation. While,
the red line is the theoretical frequency values using the Kittel formula, equation 2.

4.2.2 Exchange stiffness

In order to gain a deeper understanding of the magnetic moments evolution, a feature in
Mumax3 was utilized to convert each file (point in time) to a 2D image. Figure 8.a shows the
cube magnetic moments at t = 1 ns, the figure illustrates the in-homogeneity of the magnetic
sample over time with Aex = 10−12 J/m . This phenomenon is attributed to the exchange
stiffness: an increase in this parameter enhances the interaction between magnetic moments,
promoting homogeneity, as illustrated in Figure 8.b, where Aex = 10−10 J/m.
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4.3 Thin film

4.3.1 Grid size and exchange stiffness

A thin film is created through grid dimensions of 40x40x10, visualized in Figure 9.

Figure 9: 3D visualization of the thin film/cuboid with magnetic moments initialized in the
y-direction, indicated through the green arrows.

The frequency is influenced through both the grid size and the exchange stiffness. However,
these parameters are computationally expensive to increase, thus a series of simulation was
ran to see the most optimal parameters. Moreover, a series of simulations was also done
to examine which factor between the length and height produces a frequency closest to
the theoretical frequency from Kittel, this is examining the exchange length. The found
ratio was 4, where after the frequency stayed constant. Aspect ratio is defined here to be
the ratio between the length, and height of the sample, where SetGridSize has variables of
(Length,Width,Height). Meanwhile, the width is set to be equal to the length to have equal
shape anisotropies in the x and y direction. Hence from question 7, Nx = Ny = 1, Nz = 0.

Through the results summarized in Table 4.3.1 it can be seen that the measured frequency
is close to the theoretical model from Kittel when either the grid size increases (yet the ratio
of 4 stays the same) or the exchange stiffness increases. However, increasing both does not
decrease the difference between the simulated and the theory. The exchange stiffness was
chosen to be increased to Aex = 10−10 J/m, since increasing the size is more computationally
heavy.

Grid Size [x,y,z] (nm) Aex(J/m) f(GHz) lex(nm)

[200, 200, 50] 10−12 6.93 2.5

[40, 40, 10] 10−12 5.88 2.5

[40, 40, 10] 10−10 6.93 25

[40, 40, 10] 10−10 6.93 25

[200, 200, 50] 10−10 6.93 25

[4, 4, 1] 10−10 6.93 25

Table 1: Summary of SetGridsize, exchange stiffness (Aex) and length configurations and
results. In each simulation, m = (1, 0, 0), B = (0, 0.1, 0), where frequency obtained from
Kittel equation is fkittel = 7.5 GHz.

4.3.2 K0

After optimising the grid size, dimensions, exchange stiffness and external magnetic field
direction with respect to the magnetic moments, thin film is simulated with different B field
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values and we measure each precissional frequency. Here we apply no uniaxial anisotropy,
K0 = 0 J/m3. It is seen from Figure 10 that the simulation is closer to the theoretical model,
using Equation 2, than the cube as. This is expected since the Kittel formula is based on thin
films. Moreover, both γ and Ms where fitted and found to be Ms,fit = (451.58± 0.001) · 103
A/m3 and γfit = (1.6127 ± 0.0001) · 1011 MHz/T , while the actual values are 500 · 103
A/m3 and 1.76 · 1011 MHz/T respectively. The difference between the measured Ms and the
inputted value arises from shape anisotropy. While the Kittel formula considers only Ms, it
doesn’t account for the effective saturation magnetization (Meff), which incorporates shape
anisotropy. Therefore, the measured value is not Ms, but rather Meff.

Figure 10: Investigating mx,my precissional frequency around in-
creasing magnetic field. For a magnetic sample, with a geometry
of a thin film and no anisotropy. This is for K = 0.

Figure 11: Average magnetic moments in x,y,z directions over
time, with an applied field of 0.5 T x̂, K = 0 and m = (0,1,0)
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4.3.3 K1,K2

In addition, instead of K = 0 J/m3x̂, two different constants are set. The values are K1 =
0.345 ·103 J/m3x̂ and K2 = 2 ·K1 J/m3x̂. As seen from Figure 12, data shows an increase in
precessional frequency with an increase in uniaxial anisotropy and magnetic field, note that
f values for K2 are consistently higher than K1. This is predicted from the Kittel formula,
where an increase in anistropy causes an increase in the effective field and thus a higher
precissional frequency value.

Figure 12: Investigating mx,my precissional frequency around increasing magnetic field. For
a magnetic sample, with a geometry of a thin film with grid size of 40x40x10 cells, 1 nm each.
For K1 = 0.345 · 105 J/m3x̂ , K2 = 2 ·K1 J/m3x̂.

4.4 Two domains

Finally, the magnetic sample is split into two connected parts, visualized in Figure 13. Each
part has a separate anisotropy of K1,K2. The size and geometry of the sample is still the
same as the previous simulations with one anisotropy constant, however, using the Mumax3
script in section 9.2.2 we set the first 20 cells with K1 and second 20 cells with K2. This
represents if two different samples with different anisotropy constants would be stacked next
to each other in the x-direction. Which represents the initial goal of having a magnetic crystal
of alternating magnetic anisotropy constants as seen in Figure 1. Done through electrostatic
gating, where you have an alternating voltage gates of V1 and V2, creating samples of K1 and
K2. The simulation is run with m = (0,1,0) and the anisotropies and magnetic field are both
applied in the x-direction.
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Figure 13: Visualization of two domain magnetic sample, with two connected parts with
different anisotropies, K1,K2.

As seen through Figure 14 both domains have the same frequency and wave pattern in
every magnetic moment direction. The calculation is performed to evaluate the precessional
frequency of magnetic moments in each half of the sample separately using the python script
in section 9.3.2. Moreover, when the total average frequency is taken as before through script
in 9.3.1, for the whole sample, the frequency is still approximately the same as measuring
it in each sample separately. This shows that the macrospin of each part has an equal
precessional frequency to the macrospin of the total sample. Indicating a homogeneous
macrospin throughout the entire sample, which is due to the high exchange stiffness (Aex =
10−10 J/m) hence exchange length (lex = 25 nm) values. In addition, increasing the ratio,
K2
K1

lead to an approximate increase in frequency by 0.5 GHz.
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(a)

(b)

(c)

Figure 14: Average magnetic moments over time, for both parts of the sample. (a) magnetic
moment in x-direction over time, while (b) is the y-direction and (c) is the z-direction. Done
for B = 0.3 T x̂ and K1 = 0.345 · 105 J/m3x̂ , K2 = 2 ·K1 J/m3x̂. Where both 1st and 2nd
part average magnetic moments overlap for all directions.
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5 Discussion

The behavior of magnetic moments and their precissional frequencies were investigated, in
each direction, while varying the magnetic field strength and direction, and the anisotropy
constant value. Moreover, investigating these frequencies with different sample parameters
such as the exchange length, aspect ratio and grid size. Optimizing these parameters to
get closer to the theoretical model with the least computational power. In the simulation,
the sample dimensions were set to 500x10x50 cells, where each cell is 1 nm, emphasizing
shape anisotropy predominantly in the x-direction due to it being the largest axis. Moreover,
as seen in Figure 5, the magnetic moments are initialized in the x-direction. It was found
through simulating a magnetic cube sample, that exchange length needs to be increased
through increasing the exchange stiffness constant in the Mumax3 script, in order to maintain
homogeneity.

A thin film with dimensions of 40x40x10, was explored. The film’s initial magnetic moments
were oriented in the y-direction, and simulations were conducted across varying strengths of
in-plane magnetic fields in the x-direction. Three distinct uniaxial anisotropies were tested,
all of which yielded results within the range predicted by the Kittel formula, as depicted in
Figures 10 and 12. For K0 = 0, the simulation-derived frequencies were matched to the Kittel
formula (Equation 2) using fitted values for Ms and γ. The fitted γfit closely approximates
the input value, but the Ms is higher than the fitted Ms,fit. This discrepancy arises from
shape anisotropy, as the Kittel formula considers Ms rather than Meff, which is influenced
by shape anisotropy. The error percentage calculated through the discrepancy between Ms

and Ms,fit is 10%. In addition, Figure 12 shows that since that the effective field is increased
through the anisptropy constant, just like increasing the magnetic field it creates a faster
oscillation frequency.

The primary objective was to simulate a magnetic crystal with a variable anisotropy constant.
The study revealed consistent precessional frequencies and wave patterns across two distinct
domains within the magnetic sample, as illustrated in Figure 14. Utilizing Python scripts for
calculations, it was found that the frequencies of individual domains closely aligned with the
average frequency of the entire sample. This uniformity indicates a homogeneous macrospin
across the sample, which can be attributed to high exchange stiffness (Aex = 10−10 J/m) and
exchange length (lex = 25 nm) values. An increase in the ratio K2

K1
increased the frequency

by 0.5GHz.

An error lies in Mumax3, the exchange length and the grid size were all optimised with
respect to each other to minimize computational time and power. Since, when it took too
long the terminal terminated the job. Increasing the exchange length and stiffness leads to
more accurate results. On the other hand, these simulations might be unnecessary since in
practice these dimensions simulated are realistic.

Future research could explore the simulation further, focusing on a magnetic sample com-
posed of two distinct parts with different uniaxial anisotropies. Additional simulations could
examine how the exchange length affects this setup. As the exchange length decreases, each
part’s frequency is expected to become more distinct due to reduced magnetic moment inter-
actions, leading to less homogeneity. Increasing the ratio between the sample’s anisotropies
elevates the overall frequency. An intriguing approach would be to vary K2 by n and K1 by
1/n, progressively increasing n to maintain a consistent ratio while amplifying the anisotropy
difference. Furthermore, Applying an out-of-plane effective field, could be performed. Equa-
tion 3 could be fitted to the resulting values for both the single and dual uniaxial anisotropy
samples to analyze separate and overall oscillation frequencies.
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6 Conclusion

In conclusion, the initial simulations in section 4.1 revealed an unusual trend attributed
to the experimental setup, particularly due to the shape anisotropy being largest in the x-
direction and the application of the magnetic field and uniaxial anisotropy in the z-direction,
not aligning with the Kittel formula’s assumptions. Adjustments to parameters such as ex-
change stiffness and aspect ratio (length/height) were explored to understand their effects on
precessional frequency, finding that increasing exchange stiffness is necessary for maintaining
homogeneity, and an aspect ratio of 4 is sufficient for thin films. Despite achieving results
within the Kittel formula range, notable errors were identified, primarily due to constraints
within Mumax3 for computational efficiency. These findings suggest that simulations can
closely replicate theoretical predictions with an error of 10%, which is calculated through
the discrepancy between Ms and Ms,fit. However, practical experiments may still diverge
due to inherent experimental variables. The study successfully simulated a magnetic crystal
with a variable anisotropy constant, revealing consistent precessional frequencies across two
domains, indicative of a homogeneous macrospin. This uniformity was attributed to high
exchange stiffness and length values, with frequency increasing proportionally to the ratio
of anisotropy constants. In future research on the two-domain sample, it would be valuable
to explore the impact of varying exchange length on individual domain frequencies and to
examine the effects of anisotropy differences while maintaining a constant ratio. Addition-
ally, investigating the influence of an out-of-plane external magnetic field on thin films with
both single and dual domains, and comparing the results with theoretical predictions from
Equation 3, could provide further insights.
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9 Appendix

9.1 Extra images

Figure 15: Visualization of each direction colour in Mumax3.

9.2 Mumax3 script

9.2.1 One domain

Magnetic cube sample is simulated through this script. // are comments, explaining what
each line does.

setPBC(2, 2, 2) //Periodic boundary conditions
SetGridsize(50, 50, 50) //Grid size in cell number
SetCellsize(1e-9, 1e-9, 1e-9) //cell size in m
Msat = 500e3 // saturation magnetization
alpha = 0.02 // damping factor
m = uniform(0, 1, 0) // Initial magnetic moment directions
relax()
autosave(m, 10e-12)
tableautosave(10e-12)
B_ext = vector(400e-3, 0, 0) // External magnetic field direction and strength in T
OutputFormat = OVF2_TEXT
run(1e-9) //Running time in s

9.2.2 Two domains

Here the sample is split, where each half is set to a different K value.

SetPBC(1, 1, 0)
SetGridSize(40, 40, 10)
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SetCellSize(1e-9, 1e-9, 1e-9)
Msat = 500e3
Aex = 1e-10
alpha = 0.02
defregion(1, xrange(0, 20e-9))
defregion(2, xrange(20e-9, 40e-9))
Ku1.setregion(1, 0.34e5)
anisU.setRegion(1, vector(1, 0, 0))
Ku1.setregion(2, 2*0.34e5)
anisU.setRegion(2, vector(1, 0, 0))
m.setRegion(1, uniform(0, 1, 0))
m.setRegion(2, uniform(0, 1, 0))
relax()
B_ext = vector(200e-3, 0, 0)
autosave(m, 10e-12)
tableautosave(10e-12)
OutputFormat = OVF2_TEXT
run(1e-9)

9.3 Python scripts

9.3.1 One domain

def parse_ovf_file(file_path):
mx_list, my_list, mz_list = [], [], []

with open(file_path, ’r’) as file:
for line in file:

if line.startswith(’#’):
continue

match = re.match(r’(\S+)\s+(\S+)\s+(\S+)’, line)
if match:

mx, my, mz = map(float, match.groups())
mx_list.append(mx)
my_list.append(my)
mz_list.append(mz)

avg_mx = sum(mx_list) / len(mx_list)
avg_my = sum(my_list) / len(my_list)
avg_mz = sum(mz_list) / len(mz_list)

return avg_mx, avg_my, avg_mz

def extract_and_calculate_averages(folder_path):
avg_mx_list, avg_my_list, avg_mz_list = [], [], []
time_values = []

for file_index, filename in enumerate(os.listdir(folder_path)):
file_path = os.path.join(folder_path, filename)
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if os.path.isfile(file_path) and filename.endswith(’.ovf’):
avg_mx, avg_my, avg_mz = parse_ovf_file(file_path)

avg_mx_list.append(avg_mx)
avg_my_list.append(avg_my)
avg_mz_list.append(avg_mz)

# Convert file index to time value (assuming 10e-12 s per file index)
time_values.append(file_index * 10e-12)

return time_values, avg_mx_list, avg_my_list, avg_mz_list

def calculate_frequency(time_values, avg_values):
# Perform Fast Fourier Transform (FFT)
fft_values = np.fft.fft(avg_values)
fft_freq = np.fft.fftfreq(len(time_values), time_values[1] - time_values[0])
max_index = np.argmax(np.abs(fft_values))
frequency = np.abs(fft_freq[max_index])

return frequency

9.3.2 Two domains

def parse_ovf_file_2(file_path):
mx_list_half1, my_list_half1, mz_list_half1 = [], [], []
mx_list_half2, my_list_half2, mz_list_half2 = [], [], []

with open(file_path, ’r’) as file:
for line_index, line in enumerate(file):

if line.startswith(’#’):
continue

match = re.match(r’(\S+)\s+(\S+)\s+(\S+)’, line)
if match:

mx, my, mz = map(float, match.groups())
if line_index % 40 < 20: # First, third, fifth, etc., 20 lines

mx_list_half1.append(mx)
my_list_half1.append(my)
mz_list_half1.append(mz)

else: # Second, fourth, sixth, etc., 20 lines
mx_list_half2.append(mx)
my_list_half2.append(my)
mz_list_half2.append(mz)

avg_mx_half1 = sum(mx_list_half1) / len(mx_list_half1)
avg_my_half1 = sum(my_list_half1) / len(my_list_half1)
avg_mz_half1 = sum(mz_list_half1) / len(mz_list_half1)
avg_mx_half2 = sum(mx_list_half2) / len(mx_list_half2)
avg_my_half2 = sum(my_list_half2) / len(my_list_half2)
avg_mz_half2 = sum(mz_list_half2) / len(mz_list_half2)
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return (avg_mx_half1, avg_my_half1, avg_mz_half1),

(avg_mx_half2, avg_my_half2, avg_mz_half2)

def extract_and_calculate_averages_2(folder_path):
avg_mx_list_half1, avg_my_list_half1, avg_mz_list_half1 = [], [], []

avg_mx_list_half2, avg_my_list_half2, avg_mz_list_half2 = [], [], []
time_values = []

for file_index, filename in enumerate(sorted(os.listdir(folder_path),

key=lambda x: os.path.getmtime(os.path.join(folder_path, x)))):
file_path = os.path.join(folder_path, filename)

if os.path.isfile(file_path) and filename.endswith(’.ovf’):
(avg_mx_half1, avg_my_half1, avg_mz_half1),

(avg_mx_half2, avg_my_half2, avg_mz_half2) = parse_ovf_file_2(file_path)

avg_mx_list_half1.append(avg_mx_half1)
avg_my_list_half1.append(avg_my_half1)
avg_mz_list_half1.append(avg_mz_half1)
avg_mx_list_half2.append(avg_mx_half2)
avg_my_list_half2.append(avg_my_half2)
avg_mz_list_half2.append(avg_mz_half2)

time_values.append(file_index * 10e-12)

return time_values, (avg_mx_list_half1, avg_my_list_half1, avg_mz_list_half1),

(avg_mx_list_half2, avg_my_list_half2, avg_mz_list_half2)
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