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1 Introduction

In a paper [3] by Jaap Top, a certain tower of quadratic extensions of fields

F2(x) ⊂ K1 ⊂ K2 ⊂ K3 ⊂ K4

is constructed, with F2(x) denoting the field of rational functions over the
field F2 of cardinality 2, and such that K4 ⊃ K1 is a Galois extension with
Galois group Gal(K4/K1) ∼= Z/2Z× Z/2Z× Z/2Z.

A goal of the present thesis is to show that the total extensionK4 ⊃ F2(x)
is not Galois, and to describe the normal closure N of this extension and its
Galois group over F2(x). Moreover, we consider intermediate fields and we
use examples of those for constructing error correcting codes, as explained,
for example, in Chapter 2 of H. Stichtenoth’s textbook [2] and in less detail
at the end of this text.

2 Preliminaries

First we recall the explicit definition of the fields mentioned in Section 1 and
we discuss the Galois group Gal(K4/K1).

The first extension is

F2(x) ⊂ K1 = F2(x, y)

where y solves
T 2 + T = x3 + x.

We claim that this extension has degree 2. This is equivalent to the statement
that

T 2 + T + x3 + x ∈ F2(x)[T ]

is irreducible, i.e. has no zero in F2(x).

To verify that indeed no such zero exists, note that it would look like some

f(x)

g(x)
with f, g ∈ F2[x] satisfying gcd(f, g) = 1.

Being a zero of T 2 + T + x3 + x implies

f(x)2 = f(x)g(x) + (x3 + x)g(x)2,

hence
g(x)|f(x)2.
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Since
gcd(f, g) = 1,

this implies
g(x) = 1

leaving
f(x)2 + f(x) = (x3 + x).

Comparing degrees now shows that no such f exists. Hence the polynomial
T 2 + T + x3 + x is irreducible in F2(x)[T ] and the degree of the extension
F2(x) ⊂ K1 = F2(x, y) is therefore as claimed equal to 2.

(We have checked throughout this text the degrees of extensions like this
by finding irreducibly of polynomials using Magma but I have also included
a few examples like the above to show how this is done manually).

Now we add w1, namely

K1 = F2(x, y) ⊂ F2(x, y, w1) = K2

where w1 solves

(x7 + x+ 1)(T 2 + T ) = (x5 + x)y + x2 + x.

Again, this extension has degree 2 over F2(x, y); in other words, the poly-
nomial T 2 + T + in F2(x, y)[T ] is irreducibe. This is checked, using the
computer algebra system Magma (see [1]) as follows.

K0<x>:=FunctionField(GF(2));

P0<T>:=PolynomialRing(K0);

K1<y>:=ext<K0 | T^2+T+x^3+x>;

P1<T>:=PolynomialRing(K1);

IsIrreducible( T^2+T+((x^5+x)*y+x^2+x)/(x^7+x+1) );

We now present a direct proof of this irreducibility, without using Magma.
Write the given polynomial as

T 2 + T + r(x) + s(x)y

where r(x) = x2+x
x7+x+1

and s(x) = x5+x
x7+x+1

. If it were reducible in K1[T ] =
F2(x, y)[T ], it would have zeroes

α, (α + 1)
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where
α = a+ by ∈ F2(x, y).

Comparing the constant term we see

r(x) + s(x)y = α(α + 1).

Since
α(α + 1) = (a+ by)(a+ by + 1) = a2 + b2y2 + a+ by

which, using
y2 = x3 + x+ y

implies

α(α + 1) = a2 + a+ by + b2(x3 + x+ y) = a2 + a+ b2x3 + b2x+ (b+ b2)y,

one concludes
s(x) = b+ b2.

We claim that no b ∈ F2(x) exists satisfying b
2 + b = s(x) := x5+x

x7+x+1
.

Firstly, note if b ∈ F2(x) this means

b =
f

g
f, g ∈ F2[x], gcd(f, g) = 1

f 2

g2
+
f

g
=

x5 + x

x7 + x+ 1

f 2(x7 + x+ 1) + fg(x7 + x+ 1) = g2(x5 + x)

which implies the following:

f |g2(x5 + x)

as gcd(f, g) = 1 then
f |(x5 + x)

and similarly,
g|(x7 + x+ 1)

but x7 + x+ 1 is irreducible so

g = x7 + x+ 1 or g = 1.

Case 1: g = 1
f 2

g2
+
f

g
=

x5 + x

x7 + x+ 1
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f 2 + f =
(x5 + x)

(x7 + x+ 1)

which is clearly untrue as f is not a fraction and lies in F2[x].

Next case: g = (x7 + x+ 1)

f 2 + f = (x7 + x+ 1)(x5 + x)

as (x7 + x+ 1) is irreducible

f |(x5 + x)

but the f 2 term will never have degree 12 if f |(x5 + x) so this situation is
also impossible proving the claim.

As a consequence, K2 has degree 2 · 2 = 4 over F2(x). The next step is

K2 = F2(x, y, w1) ⊂ F2(x, y, w1.w2) = K3

where w2 solves

(x7 + x+ 1)(T 2 + T ) = (x5 + x4 + x3 + x) · y + x6 + x4.

The fact that [K3 : K2] = 2 is verified using Magma, see below.

K2<w1>:=ext<K1 | T^2+T+((x^5+x)*y+x^2+x)/(x^7+x+1) >;

P2<T>:=PolynomialRing(K2);

pol3:=T^2+T+((x^5+x^4+x^3+x)*y+x^6+x^5)/(x^7+x+1);

IsIrreducible(pol3);

K3<w2>:=ext<K2 | pol3>;

P3<T>:=PolynomialRing(K3);

pol4:=T^2+T+((x^6+x^5)*y+x^(10)+x^6+x^2+x)/(x^(14)+x^2+1);

IsIrreducible(pol4);

K4<w3>:=ext<K3 | pol4>;

The last few lines here verify that

K3 = F2(x, y, w1, w2) ⊂ F2(x, y, w1, w2, w3) = K4

where w3 solves

(x14 + x2 + 1)(T 2 + T ) = (x6 + x5)y + x10 + x6 + x2 + x,

defines a quadratic extension as well.

5



In total we now have a degree 16 extension over F2(x) where all consecutive
steps have degree 2:

F2(x) ⊂ F2(x, y) ⊂ F2(x, y, w1) ⊂ F2(x, y, w1, w2) ⊂ F2(x, y, w1, w2, w3).

Notice that over a field K of characteristic 2 a field extension by some α
which has minimal polynomial

f := T 2 + T + a ∈ K[T ],

one has f(α) = 0 and also

f(α + 1) = (α + 1)2 + (α + 1)) + a
= (α2 + 2α + 1 + (α + 1)) + a
= (α2 + 2α + 2 + α) + a
= α2 + α + a = 0.

Hence α+1 is the other root of the polynomial so all our quadratic extensions
are normal. Moreover, the total extension is separable as each individual
extension is the splitting field of a separable polynomial. The extension
K4 ⊃ K1 = F2(x, y) is Galois since it is the compositum of three separable
quadratic extensions of F2(x, y). Moreover

Gal(K4/K1) ∼= Z/2Z× Z/2Z× Z/2Z

since any automorphism permutes each of the three sets {wj, wj + 1} and
this can be done independently.

3 Are the given extensions F2(x) ⊂ F2(x, y, wi)

normal and therefore Galois?

In this section we will discover that the aforementioned extensions are not
normal. To show the extensions are not normal we will do the case for w1 in
detail. The others, we have checked using Magma are also not normal.

First we prove a small aside claim that possibly could be useful for further
investigations into the subject. We claim:

F2(x,w1) = F2(x, y, w1).

This is easily shown. Rewrite

(x7 + x+ 1)(w2
1 + w1) = (x5 + x)y + x2 + x
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in terms of y as

y =
(x7 + x+ 1)(w2

1 + w1)− (x2 + x)

(x5 + x)
∈ F2(x,w1)

showing the inclusion

F2(x, y, w1) ⊂ F2(x,w1).

The reverse inclusion is trivial so indeed

F2(x,w1) = F2(x,w1, y).

Now let’s see if adjoining a wi to F2(x) makes a normal extension. Again
we will simply look at one case in detail then do the following similar cases
using Magma.

Let’s find the normal closure of F2(x) ⊂ F2(x,w1) or equivalently the nor-
mal closure of F2(x) ⊂ F2(x, y, w1). To do this we need all the roots of w1’s
minimal polynomial over F2(x). Note that one F2(x) linear automorphism
of F2(x, y, w1) can be constructed by extending the automorphism ϕ of ex-
tension F2(x) ⊂ F2(x, y) that sends y to y + 1. Then ϕ changes the minimal
polynomial of w1 over F2(x, y) to a new polynomial. Explicitly, ϕ acts on our
polynomial

(x7 + x+ 1)(T 2 + T ) + (x5 + x)y + x2 + x

changing it to

(x7 + x+ 1)(T 2 + T ) + (x5 + x)(y + 1) + x2 + x.

Hence any extension of ϕ to the normal closure of F2(x) ⊂ F2(x,w1) needs
to map w1 to a zero of the latter polynomial. Using Magma, it turns out
that this polynomial is irreducible, even over K4 = F2(x,w1, w2, w3). So to
obtain the normal closure, we need to adjoin the roots α and α + 1 of the
latter polynomial to K4. Then w1, w1 + 1, α, α+ 1 are the zeros of

(x7+x+1)(T 2+T )+(x5+x)y+x2+x)((x7+x+1)(T 2+T )+(x5+x)(y+1)+x2+x

=

(x14 + x2 + 1)T 4 + (x1 + x12 + x8 + x6 + x5 + x+ 1)T 2

+(x12 + x8 + x6 + x5 + x2 + x)T + x13 + x11 + x7 + x6 + x5 + x4.
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Similarly, using Magma we discover that taking further extensions including
w2 and w3 and including the roots that we obtain again by using the auto-
morphism that sends y to y+1 for each of the equations that w2 w3 solve call
these roots α2 and α3 consecutively we get two further normal extensions of
degree 4. So from our first normal extension

F2(x) ⊂ F2(x,w1, α1)

we take two consecutive normal extensions one which is

F2(x,w1, α1) ⊂ F2(x,w1, α1, w2, α2)

which is degree 4. Then,

F2(x,w1, α1, w2, α2) ⊂ F2(x,w1, α1, w2, α2, w3, α3)

which is also degree 4 i.e. adding in a wi and αi never gives us the other wi’s
or αi’s . By using the tower law we see we have extensions of degrees 8, 4
and 4 so the total normal closure

F2(x) ⊂ F2(x,w1, α1, w2, α2, w3, α3)

has degree
8 · 4 · 4 = 128

For the Magma code below: Please be aware that doing the degree 128
extension will not run as it is too large. Instead you can look at individual
extensions if you wish.

K0<x>:=FunctionField(GF(2));

P0<T>:=PolynomialRing(K0);

K1<y>:=ext<K0 | T^2+T+x^3+x>;

P1<T>:=PolynomialRing(K1);

IsIrreducible( T^2+T+((x^5+x)*y+x^2+x)/(x^7+x+1) );

Kw1<w1>:=ext<K1 | T^2+T+((x^5+x)*y+x^2+x)/(x^7+x+1) >;

P2<T>:=PolynomialRing(Kw1);

IsIrreducible( T^2+T+((x^5+x)*(y+1)+x^2+x)/(x^7+x+1) );

Ka1<a1>:=ext<Kw1 | T^2+T+((x^5+x)*(y+1)+x^2+x)/(x^7+x+1)>;

P3<T>:=PolynomialRing(Ka1);

pw2:=T^2+T+((x^5 +x^4+x^3+x)*y + x^6 + x^4)/(x^7 + x + 1));

IsIrreducible(pw2);

Kw2<w2>:=ext<Ka1 | pw2 >;

P4<T>:=PolynomialRing(Kw2);

pa2:=T^2+T+((x^5+x^4+x^3+x)*(y+1)+x^6+x^4)/(x^7+x+1));
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IsIrreducible(pa2);

Ka2<a2>:=ext<Kw2 | pa2 >;

P5<T>:=PolynomialRing(Ka2);

pw3:=(x^(14)+x^2+1)*(T^2+T)+(x^6+x^5)*y+x^(10)+x^6+x^2+x;

IsIrreducible(pw3);

Kw3<w3>:=ext<Ka2 | pw3 >;

P6<T>:=PolynomialRing(Kw3);

pa3:=(x^(14)+x^2+1)*(T^2+T)+(x^6+x^5)*(y+1)+x^(10)+x^6+x^2+x;

IsIrreducible(pa3);

Ka3<a3>:=ext<Kw3 | pa3 >;

3.1 What is the Galois Group of our normal closure
F2(x) ⊂ F2(x,w1, α1, w2, α2, w3, α3)

To find the Galois group, we first consider the smaller Galois extensions
F2(x) ⊂ F2(x,w1, α1), F2(x) ⊂ F2(x,w2, α2) and F2(x) ⊂ F2(x,w3, α3) and
their Galois groups . Magma tells us that these extensions all have Galois
group equivalent to the dihedral group of 8 elements. Let’s take a small
detour to understand why this is true.

We restrict our attention to

F2(x) ⊂ F2(x,w1, α)

as all other cases are analogous. We know that any automorphism permutes
the roots α, α+1, w1, w1+1 of the minimal polynomial of w1 over F2(x), and
is in fact determined by this. We now construct the possible automorphisms
by considering the possible extensions of automorphisms on the intermediate
field

F2(x) ⊂ F2(x, y) ⊂ F2(x,w1, α1).

There are two automorphisms of the intermediate field, namely the identity
and the automorphism that sends y to y + 1.

Lets look a bit deeper at the two cases. First we take any of the automor-
phisms that fixes y. Since the minimal polynomials of w1 and of α1 over
F2(x, y) are the quadratic polynomials we saw earlier, the only possible ex-
tensions of the identity on y are the maps that send w1 to either w1 or w1+1,
and similarly α1 to one of α1, α1 + 1. In total this gives 4 extensions of the
identity.

Now consider possible extensions of an automorphism that sends y to
y+1, hence that interchanges the minimal polynomials of w1 and of α1 over
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F2(x, y). Such an extension must send w1 to α1 or α1+1 and similarly α1 to
one of w1, w1 +1. This gives 4 posibilities. In total we have now described 8
possible automorphisms of F2(x,w1, α1) over F2(x). As this number equals
the degree of the field extension, each of the possibilities indeed occurs and
we found the Galois group. Explicitly, consider τ given by

τ : y 7→ y + 1 and w1 7→ α1 7→ w1 + 1 7→ α1 + 1.

It is easy to see that τ has order 4. This is our ”rotation”. Similarly, we can
pick

σ : y 7→ y and w1 7→ w1 + 1 and α 7→ α.

This is our ‘reflection’; it clearly has order two. It is easily verified that
στσ−1 = τ−1, by checking what both maps do to the generators y, w1, α1.
This shows that σ, τ generate the dihedral group of order 8. Any element of
the Galois group then is some

τn · σm, n ∈ {0, 1, 2, 3}, m ∈ {0, 1}.

We checked using Magma this is not just true for F2(x,w1, α1) but also for
F2(x,w2, α2) and F2(x,w3, α3). With this knowledge we now take a look at
the bigger Galois extension:

F2(x) ⊂ F2(x,w1, α1, w2, α2, w3, α3).

Restricting elements in the big Galois group G to the subfields F2(x,wj, αj)
(since these fields are Galois over F2(x), restriction yields automorphisms of
the smaller fields), I claim and will prove one obtains an injective homor-
morphism to D8×D8×D8 which more importantly means for our group the
following:

G := Gal(F2(x,w1, α1, w2, α2, w3, α3)/F2(x)) ⊂ D8 ×D8 ×D8.

Let’s see why the map given by these three restrictions is injective. It is
given as

ϕ : σ 7→ (a1, a2, a3)

where σ ∈ Gal(F2(x,w1, α1, w2, α2, w3, α3)/F2(x)) is mapped to the triple
with aj = σ|F2(x,wj ,αj)

∈ Gal(F2(x,wj, αj)/F2(x)) ∼= D8.

What is the kernel of ϕ. Well it must be maps σ that when restricted to each
individual extension give the identity,

ϕ(σ) = (Id, Id, Id).
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This means therefore that our σ fixes each of w1, α1, w2, α2, w3, α3. Hence
σ is the identity automorphism which means the kernel of the map ϕ is the
identity and hence the map ϕ is injective.

To summarize: the injectivity of ϕ means the Galois group G of the big
extension must be some subgroup of D8×D8×D8. This subgroup has order
128 because the order equals the degree of the extension

F2(x,w1, α1, w2, α2, w3, α3) ⊃ F2(x).

Note that D8 × D8 × D8 has order 83 = 512. The question is therefore:
which subgroup is G? Well similarly to above we know some things about
the automorphisms we are interested in: they are some extension of an auto-
morphism of F2(x, y) that fixes F2(x). In other words, if ϕ(σ) = (a1, a2, a3),
then for each j we have aj|F2(x,y)

= σ|F2(x,y)
. This rules out a number of the

possible combinations in D8 ×D8 ×D8.

More formally, create a further map:

ψ : D8 ×D8 ×D8 7→ Z/2Z× Z/2Z× Z/2Z

given by restricting elements in Gal(F2(x, y, w1, w2, w3, α1, α2, α3)/F2(x)) to
the subfield F2(x, y) and observing that Gal(F2(x, y)/F2(x)) ∼= Z/2Z. The
combinations which have image (0, 0, 0) or (1, 1, 1) form precisely the ele-
ments of the Galois Group we are interested in - note that there are 2 ·
#Ker(ψ) = 2 · 83/8 = 128 such combinations. So

G = ψ−1(⟨(1, 1, 1)⟩) ⊂ D8 ×D8 ×D8.

3.2 Note On Our Ability To Find Intermediate Fields
Of The Normal Closure Using Magma

Now we know what the Galois Group is, another part of this project intended
to use Magma to compute such things as the genus and the number of “degree
1 places” of the intermediate fields. Our use of Magma or possibly Magma
itself struggles to compute inside the large extension of degree 128. The
reader can note two things in case a follow up attempt is made:

1. We have asked the team at Magma and they ran my code on their version
which allows a longer loading time (as opposed to the online version which
is just 2 minutes then it cuts out.) The code could still not be executed this
is not because there is an error rather the way Magma computes the field
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extensions is not suitable to how I wrote out the code. Perhaps there is a
more efficient way but for now we leave it as an open task.

2. Perhaps it will be useful for using Magma in an efficient way, to present the
used extension of our base field in one go by adjoining a zero of an irreducible
polynomial of degree 128 rather than in many consecutive steps of degree 2.
In fact, we have

F2(x, y, w1, α1, w2, α2, w3, α3) = F2(x, y · w1 · α1 · w2 · α2 · w3 · α3).

I will now prove this. As the extension is Galois over F2(x) we just need
to show the element (y · w1 · α1 · w2 · α2 · w3 · α3) has orbit consisting of
128 elements under the action of the Galois group G. This is because such
an element would NOT be fixed by any restriction of any map to a smaller
Galois group of an intermediate field. Meaning, it lies in the largest field but
not in any intermediate field so its minimal polynomial must have degree 128
the same degree as the largest extension. So it is at least isomorphic to the
large field but as the element lies in the large field they must be the same
and this element generates the extension therefore. To see why the element
has orbit 128 consider a basis of

F2(x) ⊂ F2(x, y, w1, α1, w2, α2, w3, α3)

i.e.

1, y, w1, y ·w1, w2, w2 ·y, w2 ·w1, w2 ·y ·w1, w3, w3 ·y.w3 ·w1, w3 ·w2, w3 ·y ·w1, · · ·

(all products yn1wn2
1 w

n3
2 w

n4
3 α

n5
1 α

n6
2 α

n7
3 with n1, . . . , n7 ∈ {0, 1}).

Note that the Galois group H of

F2(x, y) ⊂ F2(x, y, w1, α1, w2, α2, w3, α3)

is simply (Z/2Z)6. The elements of H just send each generator to itself +1
or leave it fixed independent of what is done to any other generator. We
have #H = 64 = 26. Now note our extension

F2(x) ⊂ F2(x, y, w1, α1, w2, α2, w3, α3)

has Galois group H ∪Hτ where τ is determined by

τ(y) = y + 1, τ(wi) = ai.

Now act with some element of H ∪Hτ on y ·w1 ·α1 ·w2 ·α2 ·w3 ·α3. Firstly,
elements h1 ∈ H will send it to
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y · (w1 + ζ1) · (α1 + ζ2) · (w2 + ζ3) · (α2 + ζ4) · (w3 + ζ5) · (α3 + ζ6)

where ζ1, . . . , ζ6 ∈ {0, 1}.
An element h2 ∈ Hτ sends y · w1 · α1 · w2 · α2 · w3 · α3 to

(y + 1) · (w1 + ρ1) · (α1 + ρ2) · (w2 + ρ3) · (α2 + ρ4) · (w3 + ρ5) · (α3 + ρ6)

with ρ1, . . . , ρ6 ∈ {0, 1}. This describes in total 26 + 26 = 128 distinct
combinations of the given basis yn1wn2

1 w
n3
2 w

n4
3 α

n5
1 α

n6
2 α

n7
3 . The described orbit

therefore indeed consists of 128 elements, proving our claim.
yn1wn2

1 w
n3
2 w

n4
3 α

n5
1 α

n6
2 α

n7
3 Technical Aside Remark: After trying the above

i.e. using an element of order 128 to generate the extension in one step on
Magma we once again ran into the problem that it could not compute such
a field extension of degree 128. I have personally contacted the Magma team
and they tried something also for it to run for 1 hr without completing the
task and they can use a faster version. There is almost certainly a way of
doing this but as far as our time constraints permit we cannot figure it out
so therefore we leave it as an open question for computing the places and
genus of the bigger extension and from now on will focus our attention on
the smaller extensions. We have shown it is possible for the reader to use
the element y · w1 · α1 · w2 · α2 · w3 · α3 in their attempt to analyse the big
extension in Magma or some similar program but our attempt at this failed.

4 Which Extensions Can Magma Easily Han-

dle And Do They Present Good Coding

Opportunities

The reason we began this investigation was because it had been found already
that an extension over F2 existed with 40 places of degree 1. Such a number
of places made it nice for looking into to find error correcting codes. We
therefore sort to analyse the normal closure of this extension in the hope
that it would similarly bring useful codes. However, as we are having issues
making Magma deal with such a large extension we instead look for suitable
subextensions.

In this process we have found that each of F2(x, y, w1, α1), F2(x, y, w2, α2),
F2(x, y, w3, α3), F2(x, y, w1, α2) has 20 places of degree 1 or equivalently 20
points on the corresponding curves with co-ordinates in F2. This also makes
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them somewhat useful for coding in this regard and more manageable to
work with in Magma.

We present a few such codes. Some come close the limit in terms of possible
dimension and minimal distance. We compared with the lists found on http:

//www.codetables.de. We also attach the Magma source code we used to
describe these examples.

5 Results

Here are the parameters of four linear codes over F2 we found.

Code 1: Length n = 20, Dimension k = 16, Minimal distance 2. This is
best possible for the given [n, k]. Example generated from the extension
F2(x) ⊂ F2(x, y, w1, α1).

Code 2: Length n = 20, Dimension k = 4, Minimal distance 8. This is a lit-
tle below the optimal minimal distance 10 for this [n, k]. Example generated
from the extension F2(x) ⊂ F2(x, y, w1, α1).

Code 3: Length 20 Dimension 12 Distance 3 With Upper Bound On Dis-
tance 4 generated from extension F2(x) ⊂ F2(x, y, w1, α1).

Code 4: Length 20 Dimension 8 Distance 5 With Upper Bound On Distance
8 generated from extension F2(x) ⊂ F2(x, y, w1, α2).

6 Codes

Here the Magma source code providing the binary linear codes we found, is
given.

6.1 Code1

Length 20 Dimension 16 Distance 2

F2:=GF(2);

Kx<x>:=FunctionField(F2);

Px<T>:=PolynomialRing(Kx);

Kxy<y>:=ext< Kx | T^2+T+x^3+x>;

Pxy<T>:=PolynomialRing(Kxy);
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pw:=(x^7 + x + 1)*(T^2 + T) + (x^5 +x)*y + x^2 + x;

Kxyw<w>:=ext< Kxy | pw>;

Pxyw<T>:=PolynomialRing(Kxyw);

pa:=(x^7 + x + 1)*(T^2 + T) + (x^5 +x)*(y+1) + x^2 + x;

Kxywa<a>:=ext< Kxyw | pa>;

P:=Places(Kxywa,1); n:=#P;

#Places(Kxywa,4);

D1:=Places(Kxywa,4)[1]; D2:=Places(Kxywa,4)[2];

D3:=Places(Kxywa,4)[3]; D4:=Places(Kxywa,4)[4];

V,g:=RiemannRochSpace(4*D3+ 4*D4 +3*D1);

d:=Dimension(V);

bas:=g(Basis(V));

CV:=[];

for i in [1..d] do

vec:=[];

for j in [1..n] do

ev := Evaluate( bas[i], P[j]);

Append(~vec, ev);

end for;

Append(~CV, vec);

end for;

C:=LinearCode<F2, n | CV>;

[Dimension(C), MinimumDistance(C)];

6.2 Code2

Length 20 Dimension 4 Distance 8

F2:=GF(2);

Kx<x>:=FunctionField(F2);

Px<T>:=PolynomialRing(Kx);

Kxy<y>:=ext< Kx | T^2+T+x^3+x>;

Pxy<T>:=PolynomialRing(Kxy);

pw:=(x^7 + x + 1)*(T^2 + T) + (x^5 +x)*y + x^2 + x;

Kxyw<w>:=ext< Kxy | pw >;

Pxyw<T>:=PolynomialRing(Kxyw);

pa:=(x^7 + x + 1)*(T^2 + T) + (x^5 +x)*(y+1) + x^2 + x;

Kxywa<a>:=ext< Kxyw | pa >;
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P:=Places(Kxywa,1); n:=#P;

#Places(Kxywa,4);

D1:=Places(Kxywa,4)[1]; D2:=Places(Kxywa,4)[2];

D3:=Places(Kxywa,4)[3]; D4:=Places(Kxywa,4)[4];

V,g:=RiemannRochSpace(6*D3+ 2*D4);

d:=Dimension(V);

bas:=g(Basis(V));

CV:=[];

for i in [1..d] do

vec:=[];

for j in [1..n] do

ev := Evaluate( bas[i], P[j]);

Append(~vec, ev);

end for;

Append(~CV, vec);

end for;

C:=LinearCode<F2, n | CV>;

[Dimension(C), MinimumDistance(C)];

6.3 Code3

Length 20 Dimension 12 Distance 3

F2:=GF(2);

Kx<x>:=FunctionField(F2);

Px<T>:=PolynomialRing(Kx);

Kxy<y>:=ext< Kx | T^2+T+x^3+x>;

Pxy<T>:=PolynomialRing(Kxy);

pw:=(x^7 + x + 1)*(T^2 + T) + (x^5 +x)*y + x^2 + x;

Kxyw<w>:=ext< Kxy | pw>;

Pxyw<T>:=PolynomialRing(Kxyw);

pa:=(x^7 + x + 1)*(T^2 + T) + (x^5 +x)*(y+1) + x^2 + x;

Kxywa<a>:=ext< Kxyw | pa >;

P:=Places(Kxywa,1); n:=#P;

#Places(Kxywa,4);

D1:=Places(Kxywa,4)[1]; D2:=Places(Kxywa,4)[2];

D3:=Places(Kxywa,4)[3]; D4:=Places(Kxywa,4)[4];
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V,g:=RiemannRochSpace(9*D3 + D4);

d:=Dimension(V);

bas:=g(Basis(V));

CV:=[];

for i in [1..d] do

vec:=[];

for j in [1..n] do

ev := Evaluate( bas[i], P[j]);

Append(~vec, ev);

end for;

Append(~CV, vec);

end for;

C:=LinearCode<F2, n | CV>;

[Dimension(C), MinimumDistance(C)];

6.4 Code4

Length 20 Dimension 8 Distance 5

F2:=GF(2);

Kx<x>:=FunctionField(F2);

Px<T>:=PolynomialRing(Kx);

Kxy<y>:=ext< Kx | T^2+T+x^3+x>;

Pxy<T>:=PolynomialRing(Kxy);

pw:=(x^7 + x + 1)*(T^2 + T) + (x^5 + x)*y + x^2 + x;

Kxyw<w>:=ext< Kxy | pw>;

Pxyw<T>:=PolynomialRing(Kxyw);

pa2:=(x^7+x+1)*(T^2+T)+(x^5 + x^4 + x^3 +x)*(y+1) + x^6 + x^4;

Kxywa2<a2>:=ext< Kxyw | pa2 >;

P:=Places(Kxywa2,1); n:=#P;

#Places(Kxywa2,4);

D1:=Places(Kxywa2,4)[1]; D2:=Places(Kxywa2,4)[2];

D3:=Places(Kxywa2,4)[3]; D4:=Places(Kxywa2,4)[4];

V,g:=RiemannRochSpace(7*D3 +D4 +D1);

d:=Dimension(V);

bas:=g(Basis(V));
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CV:=[];

for i in [1..d] do

vec:=[];

for j in [1..n] do

ev := Evaluate( bas[i], P[j]);

Append(~vec, ev);

end for;

Append(~CV, vec);

end for;

C:=LinearCode<F2, n | CV>;

[Dimension(C), MinimumDistance(C)];

7 Brief Discussion Of Coding Theory Used

The field extensions we are looking at correspond to some curve over F2.
Such a curve has points where the co-ordinates lie in F2 to see this let’s take
a more basic example where it is easily seen where the co-ordinates lie in F2.
(In reality for our big field extension we simply use Magma to calculate such
points).

Take F2(x) ⊂ F2(x, y), remembering:

y2 + y = x3 + x.

In projective space where we replace x by x/z and y by y/z we get new
equation which corresponds to a curve X:

y2z + yz = x3 + xz2.

As we work over F2 it is extremely basic to see we can look for triplets (µ, ζ, ν)
which solve the equation but whose values lie in F2.

Such triplets in this case are:

(0 : 1 : 0), (0 : 0 : 1), (0 : 1 : 1), (1 : 0 : 1), (1 : 1 : 1).

For the curve X considered here, the points of X with coordinates in F2

form the set

X(F2) = {(0 : 1 : 0), (0 : 0 : 1), (0 : 1 : 1), (1 : 0 : 1), (1 : 1 : 1)}.
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It is useful to note for later that these 5 points on this curve correspond to
the 5 ”places” of degree 1 in our field F2(x, y).

From these points a code can be constructed with length 5.

If one has forgotten: a binary code C of length n is defined as a nonempty
subset of Fn

2 . The elements of C are called words and if

∀v, w ∈ C also v + w ∈ C

then it is called a binary linear code.

So in general the aim of the game is to find some ”nice” subsets of Fn
2 . For

engineers ”nice” means the dimension of the code which is just the dimension
of the subspace in our case and the minimum distance between the vectors
is high. Now there is a tradeoff between minimum distance and dimension.
For example, to see this in the most basic case if one takes the subset which
is just the entire space then clearly the dimension is n and the minimum
distance is 1 as taking 2 distinct vectors they must differ in at least 1 place
to be distinct therefore the minimum distance is 1.

In real life these codes are, for example, used in space. I send by code a
vector or message in our subspace of Fn

2 which you receive but because of
physical effects the signal you receive is distorted. This will make the code
word you receive different from what was sent. Now this is why we look for
a high minimal distance. Say I receive a code with 2 errors in where instead
of 1’s there are 0’s or vice versa. If my code has minimal distance 5, one can
say with 100 percent certainty that the only possibility is that the code sent
was the vector closest to the one received that actually lies in our subspace.
However, if the code has 3 errors now there can be multiple closest options
so you know that it must be this or that one but the exact precise code
word is unknown. A code with minimum distance 1 is therefore in practical
applications useless. Similarly a code with minimal distance 2 is not very
useful.

Thus you can see the utility in finding a subspace with high minimal distance
and also high dimension. The dimension means I can encode more informa-
tion and the minimal distance means I can correct more errors. There is also
a topic of efficiency: if the ratio k/n is large this means we aren’t wasting
much space i.e. most of the information we send is actually information use-
ful to us or in mathematical terms: the dimension of our subspace is high in
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comparison to the larger space. If it were small this would mean we would
have to send long messages to receive a small amount of information which
obviously may not be optimal if encoding massive amounts of information.

The reason, then, algebraic curves are used for these error correcting codes is
because there are known bounds for n, k and d and the ratios between them,
for various ways of constructing codes from such a curve. This makes it
somewhat easier to find good codes, as opposed to other methods for finding
linear subspaces of Fn

2 .

As I mentioned earlier, the number of points on our curve corresponds to the
dimension of Fn

2 we use. So in our previous example there were 5 points so
our code would be some subspace of F5

2 this is not immediately obvious why
so I will attempt to make a small explanation. The main point to note is
there exists a linear map between 2 vector spaces. The target space here is
Fn
2 and the vector space our map starts from, is the so-called Rieman-Roch

Space L(D). Here D is a formal finite sum of ‘places’, which corresponds to
a formal finite sum of Galois-Orbits of points. As the map is linear the image
is a subspace of Fn

2 and this subspace we call our code. Again the reason why
such a seemingly complex example is used is because there are guarantees or
bounds for the values of n, k, d we will obtain which makes it easier to guess
if we will obtain a nice code or not. The Rieman-Roch space to be precise is:

L(D) = {0−function}∪{all functions with zeroes and poles dictated by D}.

For example,
L(3 ∗ (0 : 1 : 0))

means include all functions with poles of order less than equal to 3 at (0:1:0)
and no poles anywhere else.

If you see a negative, for example:

L(3 ∗ (0 : 1 : 0)− 2 ∗ (1 : 1 : 1))

it means take all functions with poles of order less than equal to 3 at (0:1:0)
and no poles anywhere else & one zero at (1:1:1) of order less than equal to
2.

As I said previously there exists a linear map: evaluate the functions in our
Rieman-Roch space at the points p1, . . . , pn of our curve,

L(D) −→ Fn
2
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f ∈ L(D) 7→ (f(p1), f(p2)....f(pn)) ∈ Fn
2 .

This is how one finds error correcting codes with good values for n, k, d and,
indeed how we obtained the codes in this text.

7.1 Conclusion

In this report, we found the Normal Closure of our original field extension.

F2(x) ⊂ F2(x, y, w1, w2, w3)

and then studied this normal extension

F2(x) ⊂ F2(x, y, w1, w2, w3, α1, α2, α3)

. We proved the Galois Group is

Gal(F2(x, y, w1, w2, w3, α1, α2, α3)/F2(x)) ⊂ D8 ×D8 ×D8

In particular, it is the subgroup which under the following map has image
(0,0,0) , (1,1,1). I.e. when restricted to an element of the Galois group
of F2(x, y, w1α1)/F2(x) or F2(x, y, w2α2)/F2(x) or F2(x, y, w3α3)/F2(x) must
have the same action on y giving us the images mentioned in the following
map:

D8 ×D8 ×D8 7→ Z/2Z× Z/2Z× Z/2Z

Where we recall that each of the smaller Galois group was isomorphic to D8.

Gal(F2(x)/F2(x, y, w1, α1)) ∼= D8

We then encountered problems with running Magma in the hope of getting
good error correcting codes for an extension of degree 128. In attempting
to fix the issue we tried contacting Magma directly so we could use their
superior verison of the product and we also proved the following:

F2(x, y, w1, α1, w2, α2, w3, α3) = F2(x, y · w1 · α1 · w2 · α2 · w3 · α3)

So that we could do the extension in one go rather than making multiple
degree 2 extensions thinking this would ease the run time. Perhaps that
equality will be useful in the future if the reader wishes to fix the issue.
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Following this obstacle we switched our attention to more manageable normal
sub extensions of degree 16 in Magma:

F2(x) ⊂ F2(x, y, wi, αi)

Interestingly such extensions have 20 places of order 1 over F2 so we can
make codes of length 20 with them. We found a number of codes with decent
dimension and minimum distance and we have included such codes which can
be easily adjusted in the attempt of finding better codes in the future in an
attempt to make the project more complete. As a brief discussion I note
that the process of finding codes once a Rieman Roch Space is determined
is somewhat manual and involves lots of guessing it would be preferable I
believe if one could iteratively change the Places , Poles and Zeroes in a way
which all possibilities were seen this would simply produce the best codes
and take less time.
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