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1 Abstract
Next-generation sequencing (NGS) of circulating tumor DNA (ctDNA) within cell-free
DNA (cfDNA) shows promise for cancer detection and characterization. However,
ctDNA is only a small portion of cfDNA, thereby needing highly sensitive bioinfor-
matics tools known as variant callers to identify mutations. This study benchmarks
six variant callers (VarDict, LoFreq, VarScan2, MuTect2, Strelka2 and Octopus) us-
ing semi-synthetic NGS data with known spiked variants to create a germline-tumor
matched variant calling pipeline. Variant callers were evaluated for sensitivity and
precision when detecting single nucleotide variants (SNVs) and insertions/deletions
(indels) at varying allele frequencies (VAFs). Results indicated that VarDict demon-
strated the highest overall sensitivity, while LoFreq provided the best balance between
sensitivity and precision, as reflected in its highest F1 score of 0.81. VarScan2 also per-
formed well in both metrics. Contrarily, Mutect2, Octopus, and Strelka2 showed lower
sensitivity and precision. The study concludes that LoFreq and VarDict are particularly
effective for detecting low-frequency variants in cfDNA, highlighting their potential for
clinical applications for cancer genomics. These results suggest that a sensitive method
for matching germline and tumor variant calling is feasible , which could help improve
the current ctDNA-based diagnostics.

2 Introduction
Next generation sequencing (NGS) of cell-free DNA (cfDNA) is a promising method
for cancer detection and characterization[1] [2]. cfDNA is DNA that is taken up and
present in body fluids such as blood. In the case of a tumor being present, circulating
tumor DNA (ctDNA) can also be present in the blood and be a part of the cfDNA[3].
Identifying this ctDNA can be troublesome, because the ctDNA is only a small portion
of the cfDNA[4]. For this reason a highly sensitive method is needed to identify the
ctDNA. In this study we use variant callers to do this. Variant callers are bioinfor-
matic tools that play an important role in genomics research by identifying mutations
that may be associated with diseases such as cancer[5]. Amongst other types of ge-
nomic variations, they can identify single nucleotide variants (SNVs) from sequencing
reads[6][7]. The variant allele frequency (VAF) of these SNVs are also identified by
the variant callers. The VAF is the amount of sequence reads that support a specific
variant divided by the total reads[8].

For this study variant callers were benchmarked to create a variant calling pipeline
that uses germline-tumor matched DNA. The benefits of using germline-tumor matched
DNA instead of only tumor DNA is that personal variants and sequence errors are
filtered out because the germline-tumor matched are from the same patient[9][10].

Advances in NGS allow for variant calling with a high sensitivity[6]. However
most variant callers can handle standard DNA sequencing data, but not all of them
are optimized for analyzing cfDNA. The extent to which a variant caller can handle
cfDNA data depends on its sensitivity and precision in detecting low-frequency vari-
ants, because of the cfDNA samples containing a mixture of normal DNA fragments
and ctDNA at varying concentrations. Some variant callers may be specifically de-
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signed to analyze cfDNA data, while others may require additional preprocessing or
calibration to effectively analyze such samples[11]. In order to create a pipeline with
variant callers capable of matched germline-tumor variant calling, it is crucial to bench-
mark them based on sensitivity and precision and compare these benchmarking results.

The aim of this study was to benchmark six different variant callers using NGS
data from cfDNA samples, spiked with known variants in-silico, for a germline-tumor
matched variant calling pipeline.

Next generation sequencing of circulating-tumor DNA (ctDNA) is a promising
method for cancer identification and characterization. Variant callers are bio-informatics
tools that play an important role in genomics research by identifying mutations that
may be associated with diseases such as cancer. They can call single nucleotide vari-
ants (SNVs) and insertions and deletions (indels) from sequencing reads. These tools
identify these genetic variants by analyzing sequencing data to detect differences be-
tween a given reference genome and the patient’s genome that is sequenced [12]. The
subject genome is sequenced from the circulating tumor DNA (ctDNA) that is part of
the circulating free DNA (cfDNA). However, a large portion of the cfDNA is secreted
from normal cells [13]. For that reason, somatic mutations are hard to distinguish from
technical artifacts like PCR and sequencing errors [6]. Therefore, a sensitive detection
method is needed to identify somatic DNA mutations in cfDNA.

Advances in targeted next-generation sequencing (NGS) allows for variant calling
with a high sensitivity. Variant callers identify mutations by detecting differences be-
tween a reference genome and the target genome across all reads for each position in
the sequencing data [6]. However most variant callers can handle standard DNA se-
quencing data, but not all of them are optimized for analyzing cfDNA. The extent to
which a variant caller can handle cfDNA data depends on its sensitivity and specificity
in detecting low-frequency variants, because of the cfDNA samples containing a mix-
ture of DNA fragments from different tissues at varying concentrations. Some variant
callers may be specifically designed to analyze cfDNA data, while others may require
additional preprocessing or calibration to effectively analyze such samples [3]. In a
previous study, our group developed a pipeline specifically designed to analyse tumor
only samples, comparing it to a panel of normals (PoN). To our knowledge, a pipeline
comparing ctDNA with matched germline DNA has not yet been established in a simi-
lar fashion. In order to create a new pipeline for this purpose, variant callers capable of
matched germline-tumor variant calling are necessary. To find fitting variant callers for
this new pipeline it is crucial to benchmark different variant callers based on sensitiv-
ity, specificity and processing speed. By comparing the benchmark results, a suitable
variant caller can be identified that is the most accurate and reliable for detecting the
somatic mutations in the new pipeline [14].

For this benchmarking project, the sensitivity of variant callers will be tested on
semi-synthetic data. Clinical data is spiked with known variants at different variant
allele frequency (VAF) levels. This provides a known reference to perform the bench-
mark against. Due to the structure of the utilised pipeline, only variant callers with the
ability of paired tumor-control data will be considered, and only paired tumor-control
testing will be performed. Furthermore, the to-be-used variant callers need to have the
ability of identifying SNVs as well as indels. Variant callers also need to be sensitive
enough to detect low-frequency variants. Variant callers derived from our previous
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pipeline which are known to perform well on cfDNA include MuTect2, VarDict, and
LoFreq [15, 16]. Based on previous research, variant callers that fit this criteria (and
are not yet present in the pipeline) include Strelka, VarScan2, and Octopus [17, 18, 19,
20, 21].

3 Methods

3.1 Generating dummy variants in real data
cfDNA NGS data from plasma of PTLD patients was aligned to the human genome
(hg38) using Burrows-Wheeler Aligner (BWA) [22]. Subsequently, aligned reads were
processed to mark duplicate reads using the MarkDuplicates tool from the Picard suite,
followed by Base Quality Score Recalibration (BQSR) using the Genome Analysis
Toolkit (GATK) [22]. These files were saved in the .bam format. For this study, two
.bam files were used of which both contained sequenced data from tumor samples.

Dummy mutations were spiked in the .bam files in selected regions of 1000bp using
BamSurgeon, each being at least 150bp apart [23]. In short, mutations were spiked by
selecting reads covering a specific nucleotide within the original .bam file and then
changing the base of all overlapping reads. These altered reads were placed back into
the original .bam file. Mutations were spiked in the following VAFs: 0.0005, 0.001,
0.005, 0.01, 0.02 and 0.05. Mutations with each VAF were spiked 42 times for a total
of 252 spiked mutations.

The genomic coordinates and VAF level of the spiked mutations were saved to a
.tsv file for later use, referred to as the list or set of spiked mutations.

3.2 Benchmarking prerequisites
In order to select the optimal tools for a tumor-normal matched variant calling pipeline,
Mutect2, VarDict, LoFreq, Strelka, VarScan2, and Octopus were used.

For the benchmarking, one of the spiked .bam files was regarded as the normal file
and the other as the tumor file. Furthermore, a reference genome (hg38) .fasta file was
supplied. Lastly, a .bed file was supplied containing the spiked regions in order to limit
the considered regions to just the spiked regions while running the variant calling tools.
All results were output as a .vcf file, except for VarScan2 which was output as a .snp
file.

3.3 Variant calling
The semi-synthetic data containing dummy mutations was analyzed by all variant
callers, mostly using default settings. Exceptions include the minimum allele frequency
which was set to 0.0001, the maximum variant size which was set to 10 and the min-
imum supporting reads which was set to 1. Furthermore, if applicable, annotation
options used to write the VAF into the output file were enabled and default filters were
disabled.
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3.4 Statistics
Statistical analysis was performed per variant caller. The list of spiked mutations was
used as reference to identify true positives (TP) and false negatives (FN). Spiked muta-
tions that were identified by a variant caller were marked as TP. Spiked mutations that
were not identified were marked as FN.

Per variant caller, the total number of identified spiked mutations (recall) was mea-
sured by comparing the genomic coordinates of all identified mutations with the ge-
nomic coordinates in the list of spiked mutations. The total number of matching ge-
nomic coordinates was used as the recall value. This same method was used to mea-
sure the recall per VAF per variant caller. Furthermore, uniquely called spiked variants
were measured by comparing the recalled variants of a specific caller to the results of
all other variant callers. Every recalled variant that had a match with another variant
caller was subsequently discarded, resulting in a list of called variants specific to each
variant caller.

The absolute percentual difference per VAF was calculated per variant caller in
order to assert that the spiked mutations’ VAFs were identified at a comparable VAF
level. This was calculated as |i− j |

(i+ j)/2
∗ 100.0, in which i is the spiked VAF and j is the

identified VAF.
As it is hard to obtain false positive (FP) values from tumor samples, likely con-

taining somatic mutations along with the spiked dummy mutations, a consensus calling
approach was used. Non-spiked identified mutations were marked as false positive if
the mutation was called by only one variant caller. Non-spiked mutations called by
more than one variant caller were considered as a somatic mutation. Somatic muta-
tions were subsequently not counted as a FP in further analyses. Furthermore, true
negatives (TN) were not taken into consideration for the analyses as this would include
every single base pair that wasn’t mutated.

Per variant caller, the sensitivity and precision were calculated. Sensitivity was
calculated as: S ensitivity = T P

T P+FN . Precision was calculated as Precision = T P
T P+FP .

Sensitivity values were calculated overall and per VAF in order to identify differences
and overlap in sensitivity at specific VAF levels between variant callers. Overall sensi-
tivity was calculated as T P

252 and sensitivity per VAF was calculated as T P
42 . The precision

could only be calculated as overall precision, as the FP mutations could not be catego-
rized per VAF.

In order to symmetrically represent the precision and sensitivity metrics in one
value, the harmonic mean (F1) value was calculated per variant caller. The F1 value
was calculated as F1 = 2 ∗ Precision∗S ensitivity

Precision+S ensitivity .

3.4.1 Visualization and analysis

Data visualization and statistical calculations were performed using Python 3.9.5 us-
ing custom plotting and statistical analyses scripts. Packages used were Matplotlib
[Hunter:2007], seaborn [seaborn] and scikit-learn [scikit-learn].
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4 Results

4.1 Metric Selection
To select the tools we used a metric with relevant information regarding their capabili-
ties (Figure 1 .

Table 1: An overview of variant caller information

Variant caller Release date Last updated Citations Hits with ’cfDNA’ Main language Version
VarDict 2016 2020 774 173 Perl 1.8.2
LoFreq 2012 2020 1197 68 C 2.1.5
VarScan2 2010 2016 4846 343 Java 2.4.4
Mutect2 2018 2024 5444 383 Java 2.2
Octopus 2015 2021 73 0 C++ 0.7.4
Strelka2 2016 2018 1041 80 C++ 2.9.9

4.2 Sensititvity
4.2.1 Overall Sensitivity

To determine the sensitivity of the variant callers, the overall recall and thus the true
positives need to be determined first. The spiked mutations that were called per variant
caller are shown below in Figure 1. VarDict has the highest recall which makes it
the most sensitive. LoFreq follows with the second highest recall. VarScan2 also
performed fairly well, however Mutect2 did not, showing a low sensitivity. Octopus
and Strelka did not perform well at all, having almost no recall. When looking at the
venn diagram 35, also shown below in Figure 1, spiked mutations can be seen that are
called by VarDict and no other variant caller. VarDict is the most sensitive and calls
almost all spiked mutations (235/250).
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Figure 1: A) Bar graph showing the recall per variant caller. VarDict is shown in blue, LoFreq
in green, VarScan2 in yellow, Mutect2 in purple, Octopus in cyan and Strelka2 in red. B) Venn
diagram showing the overlap of identified spiked mutations per variant caller. The colors of the
planes represent the six different variant callers, as depicted in the bottom right. The values of
the non-overlapping planes represent the amount of spiked mutations identified by their repre-
sentative variant caller. Values of overlapping planes indicate the amount of spiked mutations
identified by that combination of variant callers.

4.2.2 VAF specific Sensitivity

The mutations were spiked at known VAFs, these specific VAFs are then called by the
variant callers. To see which variant caller worked best at which VAF, a bar graph was
made to illustrate this. as shown below in Figure 2. It is shown that VarDict is sensitive
across all VAFs, as for the other variant callers this is not the case. A rising line can
be observed from the low VAFs to the high VAFs. This is because the lower a VAF is
the less chance there is for a mutation to be found in the reads. As for Octopus and
Strelka2, the results are disappointing and there is a very low sensitvity observed.
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Figure 2: Bar graph of the number of spiked mutations found per VAF for A) VarDict, B)
LoFreq, C) VarScan2, D) Mutect2, E) Octopus, F) Strelka2. The black striped line is set at y =
42, indicating the maximum amount of spiked mutations per VAF.

Venn diagrams were also made to illustrate the overlapping called variants at spe-
cific VAFs, As shown below in Figure 3. VarDict shows unique calls for lowest VAFs.
Meaning that only VarDict can call some of the variants that are spikedin at the lowest
VAFs.
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Figure 3: Venn diagram showing the overlap of identified spiked mutations per variant caller
with a VAF of A) 0.0005, B) 0.001, C) 0.005, D) 0.01, E) 0.02, F) 0.05. The colors of the planes
represent the six different variant callers, as depicted in the bottom right. The values of the non-
overlapping planes represent the amount of spiked mutations identified by their representative
variant caller. Values of overlapping planes indicate the amount of spiked mutations identified
by that combination of variant callers
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To ensure the spiked mutations were identified at the specific VAF levels, the abso-
lute percentage difference between the spiked VAF level and the identified VAF level
was calculated and visualised in violin plots, as shown below in Figure 4. As the VAF
levels go higher, the measured VAF levels are more similar to the known VAF levels
at which the variants were spiked in, because the absolute percentual difference drops.
This is true for VarDict, LoFreq and VarScan2 however, for Mutect2, Octopus and
Strelka2 the results were contradictory due to their low sample size.

Figure 4: Violin plot showing the absolute percentual difference between spiked and identified
VAFs for A) VarDict, B) LoFreq, C) VarScan2, D) Mutect2, E) Octopus, F) Strelka2.

4.2.3 False positives

For approximating the false positives from the non-spiked mutations, A consensus call-
ing approach was used. The total of 322 non-spiked mutations were identified across
all of the six variant callers. Of these 110 mutations were identified by at least two vari-
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ant callers. what can be observed is that as the minimum number of tools required to
call a specific non-spiked mutation increased, the number of called mutations gradually
decreased. It is also important to look at the overlap of mutations called by multiple
tools, there it can be observed that VarDict called a large portion of the non-spiked
mutations, as shown in Figure 5. Based on these results, we classified any non-spiked
mutation called by more than one variant caller as a somatic mutation, thus excluding
them from the false positives. Therefore we classified the 112 non-spiked mutations
identified by only one variant caller as false positives.

Figure 5: A) Bar graph of the number of non-spiked mutations identified by a certain amount
of variant callers. The x-axis describes the minimum amount of tools that called the same non-
spiked mutation. B) Venn diagram showing the overlap of identified non-spiked mutations per
VAF per variant caller. The colors of the planes represent the six different variant callers, as
depicted in the bottom right. The values of the non-overlapping planes represent the amount
of non-spiked mutations identified by their representative variant caller. Values of overlapping
planes indicate the amount of spiked mutations identified by that combination of variant callers.
C) Violin plot of the identified VAFs from the non-spiked mutations per variant caller. The
variant callers, along with their respective amount of non-spiked mutations identified are shown
on the x-axis.

4.3 Sensitivity and Precision
The overall performance of the six variant callers can be estimated by combining the
sensitivity with the precision. A confusion matrix is made to illustrate the proportions
between true positives (TP), false positives (FP) and false negatives (FN). Where the
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’true’ labels represent the list of spiked variants and the ’predicted’ labels as the list
of the variants found by the variant callers. VarDict shows the highest amount of true
positives but also shows a high amount of false positives. LoFreq and VarScan2 both
show high true positives while having a much lower amount of false positives. Mutect2,
Octopus and Strelka2 all three show low true positives and false positives (Figure 6).

Figure 6: Confusion matrices per variant caller. P = positive, N = negative. Top left = TN, top
right = FP, bottom left = FN, bottom right = TP. The color of the squares corresponds to the
amount of TN, FP, FN or TP as indicated to the right of the matrices.

The sensitvity per VAF of each variant caller was plotted in a line graph as wel as
a scatterplot (Figure 7). Here it can be seen that VarDict as shown in previous recall
graphs has the highest sensitivity at each VAF, however LoFreq can be seen as the
second best as it has the second highest sensitivity at low VAFs and almost the same
sensitivity as VarDict at the higher VAFs. The other four are underperfroming at every
VAF. Furthermore the precision is also plotted in a bar graph (Figure 7). Here Mutect2
is shown to have the highest precision. Varscan2 and LoFreq also have performed well

12



in precision. Vardict on the other hand has one of the lowest precision. Strelka2 also
has performed well in the precision. Octopus has performed poorly as expected.

To get a more conclusive result a test was done to evaluate the sensitivity and pre-
cision at the same time. This is illustrated in scatterplot (Figure 7). In this scatterplot
it can be seen that VarDict and LoFreq are the two variant callers that perform well in
this test, with LoFreq showing the best sensitivity/precision ratio.

Figure 7: A) Line graph of the sensitivity per VAF per variant caller. The colors represent the
variant callers as depicted on the right. B) Scatterplot of the sensitivity per VAF per variant caller.
VAF levels are represented by different colors. A brighter color indicates a higher VAF level, a
darker color a lower VAF level, as depicted on the right. C) Bar graph of the overall precision
per variant caller. The x-axis shows the variant caller, along with their respective number of
identified spiked mutations. D) Scatterplot of the precision and sensitivity for each variant caller.
Each variant caller is represented by a color as depicted by the legend on the right.

This ratio is calculated and defined in a F1 score (Table 2). LoFreq having the
highest score followed by VarDict and VarScan2. Mutect2 Octopus and Strelka2 did
not perform well.
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Table 2: F1 values per variant caller. The highest value is highlighted in bold.

Tool F1 value
LoFreq 0.81
VarDict 0.75
VarScan2 0.70
Mutect2 0.48
Octopus 0.21
Strelka2 0.05

4.3.1 Paired sensitivity and precision

To test the effectiveness of combining variant callers, paired test were done to deter-
mine which pair performed the best.

The sensitivity of paired variant callers per VAF is shown in a line graph (Figure
8). The combination of VarDict and LoFreq performed the best and all of the other
pairs that come close to this combination have either VarDict or LoFreq in them. The
overall precision per pair is also illustrated in a bar graph (Figure 8). This graph shows
that the pairs containing a combination of LoFreq, Varscan2 and Mutect2 have the best
precision. In a scatterplot where the overall sensitvity and precision of each variant pair
is illustrated (Figure 8), the combination of LoFreq and VarDict performed the best in
this test. The pair is the closest to the top right. Thus having relatively the highest
combination of precision and sensitivity.
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Figure 8: A) Line graph of the sensitivity per VAF per variant caller pair. The colors represent
the variant caller pairs as depicted on the right. B) Bar graph of the overall precision per variant
caller pair. The x-axis shows the variant caller pairs, along with their respective number of
identified spiked mutations. C) Scatterplot of the precision and sensitivity for each variant caller
pair. Each variant caller pair is represented by a color as depicted by the legend on the right.

The results of the sensitivity and precision per pair are again used to calculate the
F1 score for the pairs (Figure 3). Where the pair of the combination of VarDict and
LoFreq has the highest score.
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Table 3: F1 values per variant caller pair. The highest value is highlighted in bold.

Pair F1 value
VarDict x LoFreq 0.80
VarDict x VarScan2 0.76
LoFreq x VarScan2 0.76
VarDict x Mutect2 0.70
LoFreq x Mutect2 0.68
VarScan2 x Mutect2 0.60
VarDict x Strelka2 0.59
VarDict x Octopus 0.55
LoFreq x Octopus 0.54
LoFreq x Strelka2 0.54
VarScan2 x Octopus 0.47
VarScan2 x Strelka2 0.44
Mutect2 x Octopus 0.34
Mutect2 x Strelka2 0.29
Octopus x Strelka2 0.14

5 Discussion
The goal of this benchmark study was to find the most suitable variant callers for a
new pipeline that can detect somatic mutations most accurately at low variant allele
frequencies in ctDNA. After benchmarking, results showed that all of the variant callers
(Mutect2, VarDict, LoFreq, Strelka, VarScan2, and Octopus) have unique strengths
and weaknesses. VarDict and LoFreq showing very promising results. Octopus and
Strelka2 however, proved to be very difficult to work with and thereby showing very
little or disappointing results.

Sensitivity, measured by the recall rate of spiked-in mutations at various VAFs,
varied noticeably among the tools. LoFreq and VarDict demonstrated the highest sen-
sitivity, particularly at lower VAFs; all variant callers performed significantly worse
than Vardict. However VarDict also had the most false positive calls because of its
sensitivity, yet VarDict was matched in sensitivity by LoFreq at higher VAFs, making
them both suitable for detecting rare variants in ctDNA. Strelka and Octopus did not
perform well and were significantly less sensitive compared to the other variant callers.
Mutect2 and VarScan2, while effective, showed reduced sensitivity compared to the
others, especially in the lower VAF range.

Precision was a very important parameter. The consensus calling approach, which
required a mutation to be called by at least 2 out of the six variant callers to be consid-
ered probable, helped filter out false positives. This method showed that while some
tools were highly sensitive, they also called more false positives. Precision was calcu-
lated as the portion of called spiked mutations relative to all spiked mutations, gave a
well balanced view of each tool’s performance. It showed that LoFreq together with
VarScan2, Mutect2 and Strelka2 had the best precision, indicating a good balance be-
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tween sensitivity and specificity. VarDict, whilst being highly sensitive, was slightly
lower in precision due to its higher false positive rate. Octopus showed some disap-
pointing results with its low precision and had an overall low sensitivity.

When the sensitivity and precision were both taken in consideration altogether, the
F1 score showed that VarDict and LoFreq scored the highest, both solo as well as paired
together. To achieve a high sensitivity and precision, pairs can be made between the
variant callers to balance out the strengths and weaknesses of each variant caller. With
this method it was observed that VarDict and LoFreq are the pair that scored the highest
in sensitivity. They were also the highest scoring pair in the test where the sensitivity
and precision were both compared to each other.

Looking back at these results it can be concluded that VarDict paired with LoFreq
prove to be the best combination for detecting the spiked somatic mutations in the semi-
synthetic data. Where LoFreq is the most precise and VarDict is the most sensitive
especially at the lower VAFs. Making it the best pair for the pipeline.

The semi-synthetic data that was used for this benchmark study, did not include the
germline-tumor matched DNA that will be used in the new pipeline. In this study a
second tumor file was used as the germline matched DNA file. This was done because
of the unavailability of a germline matched DNA, due to the novelty of the pipeline.

Some variant callers performed as expected but some did not. VarDict, LoFreq
and VarScan2 performed as expected when looking at results of previous research.
VarDict is known for calling many false positives and also here it finds many false
positives. LoFreq and VarScan2 showed high precision in identifying variants again in
accordance with previous studies. The variant callers that did not perform as expected
are Mutect2, Octopus and Strelka2. Because these variant callers performed poorly
whilst they performed well in other studies. It could be explained by the command-line
settings for these tools because they might not have been set correctly or optimized for
tumor-matched variant calling. However for Octopus almost all options for relevant
settings were exhausted. Together with the fact that some tools that are sensitive to low
quality reads may underperform, when the mutations are in such reads.

These results are limited by using only one set of semi-synthetic data, so no cross
comparisons were possible. Future studies should address this by using multiple sets of
ground truth and semi-synthetic data. This would reduce the impact of one low-quality
set and make the findings more reliable.

Despite its limitations, this study can serve as a basic guide for tumor-normal
matched variant calling and help develop new variant calling methods.
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