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Abstract

This study explores the impact of adaptive au-
tomation on driving performance. It investi-
gates whether dynamic allocation of control
based on physiological measures have an ef-
fect on the cognitive demands of people. The
research experiments on this using a driving
simulator with varying levels of automation
and a workload modulating task. Results sug-
gest that adaptive automation can influence
driver behaviour, although the effect in not
visible in all levels of workload.

1 Introduction

Since the invention of automobiles over a cen-
tury ago, research has been gone into study-
ing the safety aspect of driving [4]. Many
studies have explored different ways to reduce
the number of driving accidents, such as im-
plementing seat belts or modifying road de-
signs. However, driving remains a challenging
task that demands constant attention and in-
tegration of multiple cognitive skills. Drivers
often distract themselves with other activities
that compete for their cognitive resources [6],
which can impair their driving performance
and increase the probability of crashes. To
overcome this issue car manufacturers are im-
plementing self-driving systems, by automat-

ing driving and taking the driver out of the
loop this holds the potential to eliminate in-
cidents caused by human error. Nevertheless,
this can lead to a different subset of driving
incidents.

Examples of automation failure in driving
are sensor failure leading to a loss of infor-
mation, or automation being unable to make
a safe and ethical decision due to complexity
of the road situation. One challenge of such
failures is the loss of human skills and situa-
tion awareness, which can impair performance
when the automation is unavailable or needs
to be overridden. This can result in longer re-
action times to hazardous situations and more
“unsafe” manoeuvres such as lane deviation
[11]. It is thus important for an automated
system to both improve on routine system per-
formance and reduce workload while keeping
over-reliance and loss of control to a mini-
mum. Lastly Automation must balance the
trust that a user has in the system, for over-
trusting or under-trusting automation will lead
to respectively misuse or disuse of the auto-
mated system [8]. Finding an optimal level of
(trust in) automation that balances the benefits
and costs of automation is a critical task for
designing effective and safe automated driv-
ing system.

Adaptive Automation is such a technique
aimed at optimizing performance by distribut-
ing system functions between humans and ma-
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chines during task execution, considering the
environment, task, and operator states. This
involves the dynamic allocation of work in
real-time to ensure the effectiveness of the sys-
tem, while also maintaining operator engage-
ment and situation awareness [7]. Different
strategies to implement dynamic allocation of
automation have been proposed, such as driv-
ing models based on a combination of human
input and steering dynamics equations [13] or
using a driver engagement measure based on
physiological indicators such as eye-tracking,
heart rate, blood pressure and pupil dilation
[1]. Such dynamic allocation strategies based
on physiological indicators are also used in
(semi) self-driving vehicles.

Changes in these indicators are however
not specific to workload or cognitive state
[3], This means that any such measurements
should not directly be taken as a ground truth
for workload and difficulty; nevertheless, they
can be used to identify patterns and thus esti-
mate cognitive states [2].

By modulating the difficulty of a concurrent
task, we can dynamically automate the simu-
lated driving based on an estimator of work-
load with a measurement of pupil dilation. In
this study, we investigated whether speedome-
ter checks are happening more or less often in
case of changing levels of workload. We hy-
pothesized that a lower workload would allow
more attentional resources to be allocated to
other aspects of driving, such as monitoring
speed, while higher workload would demand
more attention and reduce speedometer check-
ing frequency.

2 Methods

2.1 Participants

We recruited 32 participants (18 male, 14 fe-
male). The participants were aged between 18
and 38 years (M = 23.16, SD = 5), and had
normal or corrected-to-normal vision. The
participants gave informed consent and re-
ceived a compensation of 15 euro for their
participation. One participant was excluded,
this participant showed evidence of not fol-

lowing the instructions properly, further in-
vestigation into the performance of this par-
ticipant showed a significantly lower perfor-
mance than the average participant indicating
a lack of understanding or attention to the task.

2.2 Materials

The experiment was conducted in a driv-
ing simulator consisting of a seat, a steering
wheel, pedals, and a monitor displaying a vir-
tual environment (figure 1).

The eye-tracking data was gathered using
SR Research EyeLink tracking software [12].
The eye-tracking camera was placed in be-
tween the monitor and the participant without
obstructing the view of the monitor.

During the trial, an automated driving sys-
tem based on ACT-R was responsible for the
driving during automation. This system could
take over control of either the steering wheel
or both the steering wheel and the accelera-
tor. These take-overs were based on a tem-
porary increase in pupil-dilation, which in-
dicated a high cognitive load for the driver.
Once the pupil size changed back to normal
the driver was informed on the heads-up dis-
play that soon the automation would stop, and
the driver had to take over control.

This self-driving mode also controls the
other vehicles on the road. The simulation it-
self does not include physics for road surface
and or obstruction, which means that driving
into something or driving of the road itself
would not change the steering dynamics.

2.3 Task

The participants performed a driving task that
involved monitoring and adjusting their speed
according to the speed signs. This is a vari-
ation on the n-back task, which is a widely
used measure of working memory and work-
ing memory capacity [10]. The participants
in some trials, had to match their speed to
the most recent speed sign (0-back condition).
In other trials, they had to recall and match
the speed sign that was presented 1, 2, 3, or
4 signs earlier (1-back, 2-back, 3-back, or 4-
back conditions). The n-back task requires the
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Figure 1: A screenshot of the virtual road we used
for our driving experiment. At this point, there are
no roadblocks, half trials include these roadblocks
on the left lane of the road. In the dashboard the
speedometer is visible. Above that, a heads-up dis-
play shows the current control state.

participants to keep track of what they have
seen or heard before and compare it with what
they see or hear now. The higher the number
of n, the more difficult the task is. An example
of a sequence of speed signs is shown 2.

Figure 2: An example of a sequence of speed signs
that a driver encounters on a road. The first sign
that the driver sees is 90, indicating the current
speed. After the driver passes this sign, there is
a delay before the next sign appears. If a car has
passed these signs the correct speed for the 0, 1,
2, 3 -back trials are respectively: 70, 80, 60, 90.
(since no fifth sign appeared yet, the driver is in-
structed to drive according to the speed of the first
sign in a 4-back trial, in this case: 90)

Participants completed the driving session
of 80 (+-) minutes, divided into two blocks of
40 minutes each. In each block participants
completed a total of 10 trials. Each of the 10
trials consist of a combination of the possible
road condition (with or without construction)
and the working memory task level. The or-

der at which this combination was presented
was randomized for every participant, though
the order of the first block was repeated in op-
posite direction in the second block. Partici-
pants were instructed to follow the road and
obey to traffic rules. Participants were asked
to change their speed in accordance with the
combination of n-back level and value of the
speed sign. Every 20 seconds a new speed sign
was shown on the right side of the road.

2.4 Procedure

Before the experiment, participants were in-
formed about the purpose, procedure, and
risks of the study. They were also made aware
they could withdraw from the study at any
time. The next step involved setting up the
eye-tracker which involves calibrated and val-
idated using the supplied software of EyeLink
[12]. Before the start of the first trial partic-
ipants were instructed to get used to the sys-
tem in the form of a practice session of the
driving task with n-back level set to “0”. The
participant was asked if they understood the
task completely, then the eye tracker was re-
calibrated and validated, after which a pop-
up message indicated the first “n-back level”.
Once the participant acknowledged reading
the message, the first trial began. After the
first 10 trials the participants were instructed
to take a short break. Prior to each trial drift
correction of the eye-tracker was performed.

3 Results

3.1 Data analysis

First the collected data was cleaned by re-
moving outliers and filling in missing values
The simulator recorded various driving perfor-
mance indicators, such as speed, lane position
and eye-tracking data such as eye-location,
eye-fixations and pupil size. These indicators
were used to measure the effects of adaptive
automation on driver behaviour and attention.

We applied k-means clustering with differ-
ent values of k and evaluated the quality of
the resulting clusters using silhouette scores.
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K-means clustering is an unsupervised ma-
chine learning technique that partitions a set
of data points into a predefined number of
clusters based on their similarity [5]. In this
analysis, we use k-means clustering to anal-
yse eye-tracking data collected from partici-
pants. This data was pre-processed using the
software supplied by eyelink[12]. The clus-
tering algorithm assigned each data point to
one of the clusters and produced a visual rep-
resentation of the clusters. Figure 3 shows the
resulting clusters, the speedometer cluster was
then appointed based on matching coordinates
of cluster and speedometer.

Figure 3: A screenshot depicting the driving sce-
nario with added cluster data. The blue group of
points shows the found speedometer cluster.

3.2 Driving performance

3.2.1 Steering reversal rate

Steering reversal rate is often used to mea-
sure driving performance on various levels of
cognitive and or visual distraction, it is shown
that with higher levels of distractions a higher
amount of steering reversal rate is found [9].
Figure 4 shows the steering reversal rate for
the different values of n-back. Figure 4 shows
no clear difference between the reversal rate
for these values, A linear mixed effect model
comparison with random effects for construc-
tion and participant revealed that there was no
statistically significant effect on reversal rate
by the different n-back values (χ2=6.87,p>
0.05).

3.2.2 N-back performance

Figure 5 shows the percentage of correct speed
driven. From this figure, we see was that the

Figure 4: Mean reversal rate per n-back and per
construction value

performance was higher in lower n-back trials.
This was confirmed using linear mixed effect
models (AIC=4947.5, p < .001). This indi-
cates that the modulating the workload based
on the n-back task difficulty is successful.

Figure 5: Plot of percentage of correct speeds
driven by the participants in a driving simulator
task under different n-back levels. The results sug-
gest that the percentage of correct speeds decreases
as the n-back level increases, indicating that higher
cognitive load impairs driving performance.

3.3 Eye-tracking performance

We computed the proportion of fixations that
fell within the speedometer range (figure 7).
We then tested whether this proportion var-
ied with the amount of automation during the
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n-back task using. The linear mixed effect
analysis revealed no significant effect of au-
tomation percentage on the fixation distribu-
tion on both semi-automation and full automa-
tion percentage (χ2 = 0.68, p = 0.4955) (χ2 =
0.6, p = 0.425). These findings suggest that
the amount of automation does not influence
the driver’s attention to the speedometer. The
number of fixations on the speedometer clus-
ters per n-back trials reveals a slight decrease
but large standard deviation in speedometer
checks for trials with higher n-back value
(figure6). This shows that modulating the
difficulty of the task results in different be-
haviour.

Figure 6: speedometer checks on different levels
of n-back.

To investigate whether the interaction be-
tween n-back and automation level lead
to a significantly different percentage of
speedometer checks we fit and compared
models with and without the interaction term
between automation level and n-back level.
This showed a significant effect (χ2 = 7.08,
p ¡ 0.005). These results indicate that while
automation itself does not change the be-
haviour significantly, that the interaction be-
tween workload and n-back level leads to a
significantly different behaviour in eye fixa-
tion.

4 Discussion

The present study investigated the effects of
adaptive automation on driving performance.
We hypothesized that a lower workload would
allow more attentional resources to be allo-
cated to other aspects of driving, such as moni-
toring speed, while higher workload would de-
mand more attention and reduce speedometer
checking frequency. It is shown that the num-
ber of fixations on the speedometer increases
significantly on higher workload trials.

The aim of the experimental design was to
explore how dynamically adjusting the level
of automation influences driver’s behaviour
in terms of monitoring their speedometer.
The primary finding of this study was that
adaptive automation alone had a no signif-
icant impact on driver’s engagement with
their speedometer; The results do not show
a significant change in speedometer checks
with changing automation. We see that if
we account for the n-back level we do find
a significant positive effect for the change
in speedometer checks. This shows that in
driving with high mental demand, automation
does help to overcome some of the cognitive
load. Although, the variation in automation
effects across different n-back trials may be
attributed to various human activities rather
than an overall increase in cognitive load.

4.1 Limitations

In this study, we utilized a simulated driv-
ing setup, which differs from real-world con-
ditions due to changes in cognitive demands
(such as setting up and navigating a route, or
a conversation with fellow passengers), and
therefore, caution should be exercised when
generalizing the results to on-road scenarios.
Analyses of the automation further revealed
that only a minor part of the driving was done
on partial or full automation, this could have
impacted the driver’s usage of this automation;
with increased exposure to automation drivers
could potentially allocate more of the freed up
cognitive workload to other processes. Future
research should study the difference in cog-
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Figure 7: speedometer checks with different amount of automation.

nitive demands while modulating the automa-
tion level.

4.2 conclusion

In summary, the research demonstrates that
adaptive automation systems, designed to ad-
just automation levels dynamically, can have
a beneficial impact on driver attentiveness and
road safety. The results can inform the design
and implementation of future automation sys-
tems that aim to enhance driver engagement
and situational awareness.
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