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Abstract
In nature, organisms larger than a microbe typically comprise organisms of multiple species. Species
speciate, combine and coevolve to perform different functional roles in an ecosystem. This thesis
applies this biological framework to the field of computational evolution. We introduce a model fea-
turing several novel mechanisms applied to the framework of cooperative coevolution, and it is shown
that the model is capable of producing a composite solution of multiple emergent symbiotic species
from a single gene pool, without prior configuration of the composition. Speciation within a single
gene pool is achieved through a novel assortative mating strategy. Emergent species are identified with
unsupervised clustering, and solution compositions are formed by determining species type combi-
nations with a genetic algorithm, thereby also facilitating meaningful coevolution of species. Finally
a novel credit assignment strategy ensures survival of efficient altruism. The model is evaluated with
the behavioural dynamics produced by three distinct domain models: a predator-prey simulation,
function optimization, and a novel ’Toxin’ model designed to showcase the game theory dynamics
inherent to the model. Results show that dynamic emergent symbiotic speciation is achieved and pro-
duces good composite solutions. Species are not shown to be optimally decomposed subcomponents
of the problem.
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1 Introduction

Evolution is a powerful principle. It has shaped all life that we know, it operates on complex systems
from language to the economy, and we can use it as a tool for creative problem solving. To do so,
all we need is to define the problem to solve, the format of an evolutionary unit or ’shape’ that can
attempt to solve the problem and an evaluation method to judge the performance of the candidate
solution. Then, subject the shape to the basic evolutionary mechanics of selection and variation, and
over time the shape will form to be a solution to the problem. It is not certain that the resulting shape
will be an optimal solution, but the outcome is invariably creative and requires no external designer.
The field of evolutionary computation has embraced the insight of evolution as a tool, leading to a
diverse array of algorithms and mechanisms inspired by biological processes [1]. This thesis is pred-
icated on the belief that biology still has much to offer, particularly in understanding evolutionary
strategies. It endeavors to merge a fundamental concept from biological evolution into a computa-
tional model. Specifically, it explores the hologenome theory of evolution[2, 3, 4] - the principle that
interspecies cooperation and coevolution are pivotal in evolution, exemplified by the fact that complex
organisms typically comprise multiple symbiotic species.

One major obstacle in the process of evolution is that to evolve to a good solution, there needs to be an
evolutionary pathway towards that solution. Every change to the shape needs to have an incremental
benefit. The human species cannot grow wings over generations because the end result of flying is
beneficial; every evolutionary step towards those wings needs to confer some advantage.
When the defined problem is a very complex problem, it would require a very complex solution shape.
The more complex the solution shape has to be, the likelihood of finding a viable evolutionary path-
way diminishes. It is unlikely for proto life to grow into a mouse, even if it is artificially subjected
to the exact evolutionary pressures of a mouse. The same is true for tabula rasa agents that are given
a highly complex task to perform. A designer can assist in growing the shape by introducing the
problem incrementally, letting the shape first evolve to solve a simplified version of the problem, then
guiding the shape step by step towards ever more complex versions. This requires a designer to know
how to simplify the problem, and to create multiple versions of the problem of increasing complexity.
In nature, organisms of higher complexity are rarely isolated organisms. Every macrobe and its asso-
ciates can be considered holobionts; complex organisms are composite organisms of many constituent
organisms [5, 6, 3, 4]. The term ’holobiont’ traditionally refers to a host organism and its symbiotic
species. In this work a primary host is not distinguished, the collective is viewed as an integrated unit
without implied hierarchy. To signify this, the term ’composite organism’ or -entity is used.
This view of complex organisms can inspire another approach: let a designer decompose the problem
into smaller and more manageable subproblems, and evolve multiple shapes to solve each of the sub-
problems. Together these shapes form the solution to the problem. This divide-and-conquer strategy
breaks up the evolutionary pathway to multiple shorter pathways that can be traversed independently.
By eliminating the need for a single complex shape, both robustness (by eliminating a single point
of failure) and modularity are provided. It has the advantage that the constituent shapes are able to
specialize in parallel, exploring evolutionary pathways in multiple dimensions, where a single shape
can only change in one dimension per iteration.
However, this approach also requires a designer to know how the problem can be broken up into
multiple subproblems. Not all problems can be neatly partitioned into independent subcomponents;
subcomponents are often linked together and can form an entangled web of overlapping interde-
pendent problems, making it difficult for a designer to define what the subtasks are. Neither can
subsolutions be formed in isolation of each other, the operations of one subsolution will affect the
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efficacy of another. Subsolutions need to be (co)evolved together, to be adapted to each other.
In the field of cooperative coevolutionary algorithms, problem decomposition and dynamic task al-
location is an ongoing area of research [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. This thesis proposes a
perspective and a method addressing this challenge, leveraging biological and game-theoretical prin-
ciples to induce emergent symbiotic speciation as dynamic task allocation. In other words, growing
multiple different species of individuals that perform various functions and configure to form a single
complete solution, from a single population and without defining the configuration a priori. Instead of
creating one many-armed creature, we create many different kinds of smaller creatures and see which
work well together.

Contributions The contribution of this thesis is a general model built using existing frameworks,
with the addition of three distinct novel mechanisms, one novel application of machine learning tech-
niques to evolutionary computation, and one novel domain model.

• The first mechanic is Genome Distance Based Mating, an assortative mating mate selection
mechanic in the evolutionary process where individuals that are selected for replication select
a mate not only based on fitness but also on genomic distance. The purpose of this mechanic is
to maintain solution diversity within a single genome pool, and it achieves this by mimicking
parapatric speciation. It functions as an alternative to the Island Model [17].

• Unsupervised cluster detection is used to classify the emergent species in the single genome
pool, and species are tracked through generations with cluster prototypes.

• The second mechanic are the Evolutionary Compositions. To facilitate meaningful coevolu-
tion between species and find good solution compositions of species, solutions are composed
of individuals sampled according to a composition of the determined species. The solution
compositions are evolved by a genetic algorithm, in parallel with the individuals population.

• The third mechanic, Species Representation Fitness Scaling, is a novel form of credit assign-
ment - in what part did individual behaviour contribute to the collective outcome. By scaling
the fitness of individuals according to the representation of their associated species type in the
compositions, the mechanic couples the selection pressure of the compositions to the individ-
uals genome population. The resulting hybrid of individual and team level selection conserves
species that exhibit altruistic behaviour at personal cost.

The behaviour of the general model is examined using three domain models: a Predator-Prey model,
a Function Optimization model, both extensively used in the context of Evolutionary Algorithms and
Cooperative Coevolution, and a novel Toxin model. The Toxin model, inspired by the Prochlorococ-
cus bacteria and the Black Queen Hypothesis [18, 19], is constructed to make certain dynamics of the
model explicit and thus more easily observable.

Illustrative example Imagine a football coach without any experience tasked with forming a highly
efficient winning team, given only the game’s rules and a pool of players to choose from. Initially,
these players resemble children, indiscriminately chasing the ball without any apparent strategy.
Rather than assigning fixed roles or positions, the coach lets the players experiment with different
strategies during practice matches. Guided by their shared motivation to win, players begin to recog-
nize and adopt beneficial strategies while discarding ineffective ones. Encouraging competition and
learning, the coach gives preference to players who frequently contribute to winning team formations.
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Over time, the coach observes natural inclinations among players towards specific roles, such as
offense, defense, and coordination. Simultaneously, the coach experiments with varying compositions
of these evolving roles, noticing that certain combinations, e.g., a balance of defensive and offensive
strategies, tend to promote team success.
Drawing from these observations, the coach facilitates the process of specialization. By consistently
selecting the most proficient players for each role, the coach encourages players to hone their skills
within their chosen strategies. Though a defender might never score a goal, their contributions to the
team’s success are no less significant.
Thus, over time, roles become increasingly specialized, and the team composition optimizes, reflect-
ing a continuous and dynamic process of evolution. The coach, rather than dictating this process,
guides it by recognizing and rewarding beneficial strategies and fostering an environment conducive
to continuous learning and adaptation.

1.1 Conceptual Framework
The approach is based on two main philosophical ideas. Multilevel evolution, and emergent complex-
ity and simplification in evolution.

Multilevel Evolution

”Biological function emerges from the complex organization that spans the whole scale
of life, from molecules up to whole organisms or even groups of organisms.”

- Michel Morange, The Misunderstood Gene [20]

The philosophy behind the method is to enable a higher order evolution. Evolution operates on multi-
ple levels. Dawkins emphasized the gene as the primary evolutionary unit [21]. It is the expression of
the gene through ontogeny (the development of the organism through its lifespan) in the phenotype of
the individual that is subject to selection. Individuals, as holobionts, are part of a symbiotic ecosys-
tem. The different levels of life supervene on each other, and variation and selection operate on all
at the same time. The theory of recursive evolution[22] postulates that evolution produces systems
that are adapted to producing systems that thrive in changing conditions. Molecular genetics are such
an example[23], where minor genomic alterations (stemming from RNA replication errors) can lead
to potentially significant changes in the phenotype. It is a low cost high potential yield mechanism
for adaptation. In light of this theory, composite organisms with distributed, though interdependent,
functionality provide evolutionary pathways in as many dimensions as constituents, providing a dis-
tinct adaptation advantage over singleton organisms. Functional heterogeneity is ubiquitous in nature,
as driving force of complex emergent behaviour [24].

Emergent Complexity and Simplification

”A central tenet [of these investigations,] was the idea that, as in our own species, the
specialization of workers for specific task groups improved efficiency, and thus overall
colony productivity.”

- Functional Heterogeneity in Superorganisms [24]

Another philosophical concept underlying this research is that of emergent complexity from simple
parts. To produce complex behaviour, the producing systems do not need to be complex. When
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growing complex behaviour through a composition of constituents, the constituents can specialize
through function loss / function transfer[18, 25, 26, 27], and further streamline through reductive
evolution[28]. When a subset of a population specializes, it opens up opportunity for others to do new
things[19]. These new roles are then folded into the ecosystem, increasing complexity. For example
the advent of agriculture in human society; when humans started farming and food production be-
came a specialized task, it freed up others to invent new professions to progress society[26]. Further
function loss and reductive evolution on specialized roles simplifies the constituents.

1.2 Research
Building upon existing frameworks in cooperative coevolutionary systems and heterogenic teams
in multi-agent systems, this research introduces a novel approach to solving complex problems using
emergent composite solutions. While previous methods have successfully implemented various forms
of cooperative evolution, a distinguishing aspect of the contribution lies in the autonomous nature of
emergent symbiotic speciation and composition forming. Unlike prior coevolutionary models, where
a designer determines at least one of either the number and nature of species, or subcomponents,
or the number of individuals per species in a composition, this approach allows self-organization to
determine all of those.
One research objective, as is the case in much of evolutionary computation, is the concept of removing
the human designer from the loop, aiming to fully entrust the design process to the algorithm itself.
This shift allows for a more dynamic and adaptive system, capable of evolving solutions without
predefined constraints on species composition or species population size. By doing so, the system
not only becomes more efficient but also mirrors natural evolutionary processes more closely, where
species and populations dynamically adjust in response to environmental pressures and opportunities.
This thesis attempts to offer a unified and more organic method of evolving complex, composite so-
lutions.

This research explores the potential of the proposed method by focusing on the primary research
question:

Research Question Can evolutionary pressures within a single gene pool lead to the emergence of mutu-
alistic species that collaboratively solve complex problems in dynamically composed
teams?

To address this question, a set of hypotheses are devised, which can be found in section 5.1.

1.3 Thesis Outline
The structure of the thesis is as follows. In chapter 2 an extensive theoretical background is provided
on the relevant concepts, including a primer on the fundamental evolutionary theory used throughout
the thesis, concepts from biology, game theory, computational evolution and machine learning. Chap-
ter 3 reviews the relevant literature of related research concerning cooperative coevolution, problem
decomposition, niching and team heterogeneity in multi-agent systems. The methods of this research
are presented in chapter 4, giving an overview of the model architecture, the three domain models, and
the specifics of the component mechanics of the method. Chapter 5 features the experimental setup,
in which the research question is decomposed to a set of four hypotheses, and the experiments are laid
out for these hypotheses. Chapter 6 shows the results of the experiments, organized by hypothesis.
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Chapter 7 discusses the results of chapter 6, provides criticisms and limitations of the work and gives
further points for consideration and future work. The work is summarized and concluded in chapter
8. A list of terms can be found in the Appendix, as well as an overview of the many parameters and
values, and a link to the code repository that includes results of the presented experiments and many
more.
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2 Theoretical Background
In this chapter some important concepts are explained that provide the context for the work. It serves
as an introduction to the various disciplines and perspectives necessary to fully understand the re-
search. It can be read as is, or used as reference material.

2.1 Biology

First, some concepts from biological evolution.

2.1.1 Evolution Fundamentals

The first concept to understand is the most fundamental, which is the principle of evolution, origi-
nally described by Darwin in his seminal work On the Origin of Species[29]. On the origin of life,
much is still a mystery. At one point in the primordial soup molecules might have grouped them-
selves together to form self-replicators, and then into replicator systems and eventually as de novo
life [30, 31, 32]. These first forms of life were able to produce more copies of themself, causing their
form to stay present over time. The replication process is imperfect, and mistakes during copying take
place, meaning the forms sometimes produce slightly different versions of themselves. Some changes
were disadvantageous to the survival and subsequent chance of reproduction, some neutral, and some
advantageous. The forms with changes that were advantageous produced, as a result of their advan-
tage, on average more versions like themself than the others. This caused the advantageous changes,
or traits, to keep existing, and disadvantageous traits to disappear. This was the first instance of Dar-
winian evolution; the changes of an evolutionary unit through generations, where there is selection
based on traits, variability of traits and traits are hereditary.
A perspective of evolution is to see it as a force acting on evolutionary units, changing their forms with
small increments over time towards a ’path of least resistance’. The path of least resistance being the
path towards increasing fitness. ’Fitness’ in this context means the probability of reproductive success.
A higher fitness equates to a higher probability of passing on genetic material to the next generation,
and a higher amount of genetic material passed on.
The fitness of an evolutionary unit is always dependent on its environment. A dolphin can survive
pretty well in the ocean, but has no chance in the jungle. Say that for a given environment we can
know the fitness of each imaginable shape a creature can take, represented as a numeric value, and we
would plot this on a graph, that would be considered the ’fitness landscape’ of that environment. Peaks
in the landscape represent ’optimal’ shapes for a creature to fit its environment, and valleys shapes
with low viability. The shape of a dolphin in the ocean environment would show a peak, while the
same dolphin shape in the jungle environment is a valley. A peak can be considered an evolutionary
niche. Not all niches are equal however, a niche can be considered a local optimum on the fitness
landscape. See fig. 1 for a visualization. For a creature, any shape resulting from a mutation would
be represented by one of the neighbouring shapes on this fitness landscape. Mutations will produce
divergent shapes in any direction, but due to selection only the shapes with a higher fitness tend to
proliferate. The gradual change of the shape of an evolutionary unit is always a neutral or upward
movement on the fitness landscape. This means that any incremental change needs to be beneficial
on its own – a human can’t suddenly grow wings, wings can only grow if each step towards wings
is beneficial in its own right. A path from one shape to another is called an ’evolutionary pathway’.
Over time, evolutionary units’ shape changes ascending on the fitness landscape. Once the peaks
are reached and there is no evolutionary pathway out of the peak, the evolutionary unit resides in
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Figure 1: A two-dimensional fitness landscape. The y-axis shows the fitness, and the x-axis is the total
(theoretical) sequence space: all possible geno/phenotypes. Peaks in the curve are niches, troughs
are valleys. Any curve upwards is an evolutionary pathway. Note that this is a two-dimensional
representation, in biological life there are many more dimensions.

that niche. This is called a ’punctuated equilibrium’[33]. Also note that the shape of the peak is
of concern. A lower but broader peak is more stable than a high but slim peak, seeing as that more
specific requirements could be lost due to chance, which then eliminates the quasispecies population.
A broader peak is more forgiving and allows lost mutations to reemerge [34].

However, the environment of a creature is not constant. If the environment changes, so does the
fitness landscape. In a classic example of adaptive evolution, the Peppered Moth (Biston betularia)
[35, 36] had a white colour with dark speckles, which provided camouflage when resting on the trees
covered in light-coloured lichen. Then, due to the industrial revolution, trees became covered in
soot and the tree trunks were blackened. Now, instead of being camouflaged on the trees, the moth
stood out in its environment, causing it to be eaten by birds. The environment of the moth changed,
and because of that its fitness decreased. A rare dark-coloured variation of the moth existed that
in the earlier environment was at a disadvantage, and now because of the changing environment its
fitness increased, causing it to proliferate. It is important to understand that the environment of an
evolutionary unit consists of everything that has an effect on the entity. From physics, to the colour
of the available food, to the creature’s own impact on its surroundings. Evolution occurs not separate
from the environment, but evolution is part of the environment.
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2.1.2 Coevolution

”(...) because in a very real way, the ecosystem was the basic unit of life. Species creating,
by their very presence, an environment for other species to work in.”

- Adrian Tchaikovsky, Children of Ruin [37]

Coevolution manifests itself as a dynamic evolutionary ’dance’, where changes in one species drives
adaptations in others by reshaping the environmental fitness landscape. The survival and proliferation
of a species depends on its ability to adapt to the changing landscape. Consider the example of
gazelles and cheetahs: the gazelle needs to be faster than the cheetah or the other gazelles to survive
the hunt to pass on its genes, while the cheetah needs to be faster than the slowest gazelle to catch
prey and survive to pass on its genes. Each time the one creature becomes bit faster, so does the need
for the other increases to become faster. This evolutionary arms race is what evolutionary biologists
call the ’Red Queen’ effect[38], derived from the eponymous phrase by Lewis Carroll: ”It takes all
the running you can do, just to stay in the same place” - The Red Queen, Alice in Wonderland.
In this way, evolutionary units can co-evolve. They adapt to the presence of each other over time, and
change recursively to each others adaptions. Coevolution can be competitive in for example predator-
prey relations, such as how the gazelle and cheetah push each other to become ever faster. Each
driven by competition, the advances of the other being to the detriment of one. Coevolution can also
be cooperative, where species find mutual benefit in their interactions, and evolve to exploit those
interactions. For instance, flowers utilizing insects and birds as efficient pollination medium, and
’paying’ the insects with flight fuel in the form of nectar. These cooperative coalitions can become
very specialized, as is the case with the sword-billed hummingbird (Ensifera ensifera) and a flower
species with a long corolla, the Passiflora mixta. By ensuring only one specific species of bird can
reach its nectar, the flower can be sure that the bird will eat from and so pollinate only the same
species of flower, which means it is efficient with its pollination. The advantage for the bird as that
it has a food source that only it can reach, and so has some form of food security [39]. The same
highly specialized relationship can be found in fig trees and fig wasps, where many fig tree and fig
wasp species co-speciated to form exclusive pollination-food source symbiosis pairs[40, 41].
It is important to note that cooperation and competition often coexist. In the example of flowers using
insects for pollination, there is competition between flowers to attract the insects. The competition
leads to flowers ’advertising’ to insects through colour and smell of the flower, and payments offered
to the insects. Another example of mixed competition and cooperation is a symbiotic relationship
between ant-acacia trees and Pseudomyrmex ant species[42]. The ants colonize the trees and defend
them aggressively (competition based-screening). The ants attack any creature trying to eat the tree,
and the tree rewards the ants with nectar from special glands. Here, the strongest, most aggressive
ants will colonize the tree with the greatest nectar bounty. Stronger and more aggressive ants colonies
can beat competitor ant colonies to the best producing trees, and being stronger protectors of the tree
allows the tree to produce more bounty for the ants.
None of these processes are ’conscious’, they happen because it is the ’path of least resistance’ for
evolution to take. Flowers have no eyes and ears, and are not aware that insects function as their
pollination medium. They are the way they are, because the flowers that had just a bit brighter colours
than their neighbours, on average, had a higher chance of producing offspring, and so the trait of
being just a bit brighter persisted over time.
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2.1.3 Mutualism and Symbiosis

In nature, coevolution is ubiquitous. With many different species living in the same environment,
it is inevitable that symbiotic relationships form [2]. It is probable that most of the earth’s biomass
depend on some form of symbiotic relationship[43, 44]. Symbiotic relationships, meaning two differ-
ent species that are closely associated, come in different forms[45]. Mutualism is when both species
benefit by each others presence, as with the flowering plants and insects. Commensalism is when one
species benefits, and the other is unaffected, such as when barnacles attach to whales as means of
transportation. When one species benefits and the other is harmfully affected, this can be parasitism
or predation[45]. Mutualistic relationships can be classified into two types: obligate mutualistic rela-
tionships, where species are entirely dependent on each other for survival, and facultative mutualistic
relationships, where both derive benefits of the other but could survive without the other. Many mi-
crobes can not be cultured in isolation, they have become ’too simple’ to survive on their own. They
appear to function as multi-species communities [46]. Previously, mutualistic relationships between
two species or two types of species are discussed. Taking a broader view, an entire ecosystem can
be seen to consists of a large symbiotic relationship between many species, where the relationships
are often directly or indirectly mutualistic or commensalistic. Species at different levels perform dif-
ferent functions of the ecosystem. A greatly simplified description – plants collect energy from the
sun through photosynthesis, animals eat plants and produce manure that through bacteria and fungi
becomes ’food’ for plants. Plants transform carbon dioxide to oxygen, animals transform oxygen to
carbon dioxide, et cetera. One can not exist without the other.

2.1.4 Speciation

The diversity of life is a product of speciation [47]. The complex system of life with its interwoven
parts and interactions is a product of growth over time. Gould states that ”Speciation is responsible
for almost all evolutionary change.”[48]. Speciation is when a single species, a collection of individ-
uals with a certain degree of similarity, diverges and becomes two distinct species, or groups. A single
group splitting to two groups is called cladogenesis. A single lineage changing over time is anagene-
sis. Here it is important to remember that a ’species’ is a human construct. ”(...) a species, be it plant
or animal, is a fiction, a mental construct without objective existence.”[49]. It is a decision boundary
people draw for which category a specific entity belongs to. There are only the entities themselves.
Several processes and mechanisms have been identified to cause or contribute to speciation. The
cladogenic divergence can be caused by some form of geographic physical separation:

• allopatric speciation separates the group with some physical barrier without any gene flow.

• parapatric speciation separates the group with some physical barrier with some gene flow.

• peripatric speciation splits and isolates a much smaller subgroup from the main.

Speciation through these methods is often accompanied by environmental change for at least one of
the isolated groups, where the different fitness landscape drives the evolutionary change. Sympatric
speciation is when a new species type develops without physical separation, but through exploitation
of different available niches. Sympatric speciation is a likely outcome of resource competition and
assortative mating (mating preference) [50, 3]. Assortative mating, which is a form of sexual isola-
tion, is also a cause for low gene flow between groups. Cladogenesis through genome reduction and
function loss of the Black Queen Hypothesis (see section 2.1.5) is also an example of sympatric spe-
ciation. Another theorized driver for speciation is through Reinforcement or the Wallace effect[51].
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Whenever a species splits into two distinct species (cladogenesis), any hybrid offspring (child from
parents of either new species) produced during secondary contact has low fitness, called hybrid in-
compatibility. This gives a reproductive benefit to the species that mate only within their new species,
reinforcing the emergence of the new species. Other than clado- and anagenesis, the formation of new
species also occurs through symbiogenesis, the symbiotic combination of existing species [52, 53], or
integration of endosymbiotic and host cell genomes into one functional unit (see section 2.1.6). There
is debate about the contemporary abundance of this mechanism [54].

2.1.5 Black Queen Hypothesis

There is a common view of evolution that it is a gradual change towards more complex systems. Evo-
lutionary reconstructions cast doubt on this view [28]. It is true that since the origin of life, life has
become vastly more complex. However, Wolf and Koonin argue in [28] that it is genome reduction
that is the quantitatively dominant mode of evolution. They describe a biphasic model of evolution
where short, explosive periods of complexification are interspersed by long periods of gradual simpli-
fication. The writers mention that the periods of genome reduction involve specialization contingent
on environmental predictability. This rhymes with Gould’s theory of punctuated equilibrium [33, 48].
The evolutionary driver for this gene loss is that if a function loses its beneficial effect, it will eventu-
ally be purged to reduce energy costs. Retaining a bigger genome is costly [19].
The Black Queen hypothesis describes an effect that concerns the evolution of dependency between
organisms [18, 25, 19]. Say lifeforms of a species perform a function that is ’leaky’, meaning that
it is not only beneficial to itself, but others also derive benefit from it. Suppose this function is
satisfying, meaning that past a certain point it is no longer beneficial to do more of it. Now if in
this population a mutation occurs for an individual to not perform this function, the individual would
still derive the benefit of the function, but without the cost of having to perform the function. This
would give the individual a fitness advantage over the rest of the individuals in the population. This
mutant will produce on average slightly more offspring than the others, and so the proportion of
the mutants of this population grows. The fitness advantage is only there until the proportions have
reached an equilibrium – until the proportions are such that there are enough function-having types
so the function is performed just the right amount to satisfy the entire population. More accurately,
once the cost and benefit of not having the function are equal. Morris in [18] suggests that there is a
set of conditions for a Black Queen effect to occur:

• There is a selective advantage to becoming a beneficiary.

• The fitness advantage of losing the gene must be frequency dependent.

• The lost function is leaky.

To add to this list, in order to prevent a tragedy of the commons (catastrophic resource depletion
through collective greedy behaviour, see section 2.2.4), a fourth condition needs to be met: the abso-
lute benefit of the function must not be frequency dependent for the provider, or the producers should
have preferential access to the function product [19, 55].
The result of a Black Queen effect is that it produces two new species - the providers and the benefi-
ciaries [19]. In one sense, being a beneficiary can be seen as free-riding; they are benefiting from the
actions of the other groups actions without reciprocating. The function providers are left holding the
bag, or the ’black queen’. In another sense, we can see this effect as optimizing the energy expendi-
ture of life, making it so that the function is performed efficiently. What the effect also does, is split
the one life form into two distinct groups of lifeforms, where there is a one-way reliance. Within the
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group of providers there is an evolutionary incentive to optimize the function, and to become better
at it. The better they are at the function, the higher their fitness. The group of beneficiaries now has
an energy surplus, and can ’use’ it to perform a different function. They are free to develop their
own niche, and perhaps perform some other leaky public goods function, that will in turn, directly or
indirectly, benefit the producers. Mas et al in [19] pose that this function loss is the cause of long-
lasting relationships. They find that in a system with several species in competition, if a beneficial
dependency between two species emerges, their coexistence will be optimized. It is the emergence
of cooperation through the emergence of dependency [19, 27, 56]. This effect has also been demon-
strated in economics by Mazancourt and Schwartz in [57]. Morris and Schniter argue in [26] that
Black Queen functions in an economic context provide opportunity for stable commensalistic rela-
tionships to emerge even in competitive environments, which in turn generates opportunity to develop
eventual mutualistic and collective benefit.

2.1.6 Composite Organisms

”Symbiogenesis - The origin of organisms through the combination and unification of
two or many beings, entering into symbiosis.”

— K. S. Merezhkovsky, 1920 [58]

Coevolution occurs between species, and if zoomed out the entire ecosystem can be considered one
large symbiotic system. When zooming in, it becomes clear that that symbiosis and mutualism also
occurs within organisms. The Endosymbiotic theory[59, 60] states that eukaryotic cells originate as
merger of prokaryotic organisms. The building block of eukaryotic life is a composite of multiple
different (previously) lifeforms. Symbiogenesis is the process by which symbiotic partners combine
to a single organism [61]. If we look at a human organism or any other macrobe, we can see that it is
a microcosm of many different species. A human organism is a holobiont; a host with many different
species living in and around it. Humans could not be alive without their gut bacteria.
Many microbes appear only in multi-species communities, and can not be cultured in isolation. They
live in cooperative communities, and have lost the necessary functions to be self sufficient [46, 62].
The central thesis here is that species combine to become composite entities. If this effect occurs on
different levels, the decision boundary of what is considered a single entity becomes arbitrary.

2.2 Game Theory
2.2.1 Fundamental Concepts

Game theory is a mathematical approach to the study of interactions between agents [63, 34]. An
agent here means an entity with agency. Imagine a simple game of rock-paper-scissors between two
players. Both players can choose their strategy: rock, paper or scissors. Rock beats scissors, scissors
beats paper, paper beats rock, two like draw. If a win constitutes gaining 1 point, a draw 0 and a loss
-1, we can represent a single round of the game with the pay-off matrix table 1. The matrix shows
the outcomes for the players for each combination of actions they can take. The outcome for player
A is on the left in each cell, and on the right for player B. In this matrix we can read that if player A
takes action Paper, and player B takes action Rock, A receives a payoff of 1 (win), and B a payoff of
-1 (loss).

Analyzing interactions with pay-off matrices provides some clarity on what rational actions would be
to take, and more importantly, what trade-offs we want to make. The rock-paper-scissors game is an
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Table 1: Pay-off matrix for the rock-paper-scissors game. 1: win, 0: draw, -1: lose.

Player B
↓

Rock Paper Scissors

Player A →
Rock 0, 0 -1, 1 1, -1
Paper 1, -1 0, 0 -1, 1

Scissors -1, 1 1, -1 0, 0

Table 2: Pay-off matrix for the asymmetrical Stag Hunt game. Values are relative amount of bounty.

Hunter B
↓

Stag Hare

Hunter A → Stag 5, 5 0, 4
Hare 3, 0 2, 4

Table 3: Pay-off matrix for the Prisoner’s Dilemma. Negative values are years of prison time.

Bart
↓

Cooperate Defect

Abe → Cooperate -1, -1 -3, 0
Defect 0, -3 -2. -2



24 Chapter 2 THEORETICAL BACKGROUND

example of a zero-sum interaction. Any gain by one player is equal to the loss for the other. The net
result for both players is zero. Not all interactions are zero-sum. We will now briefly describe some
important terms and concepts with classic game theory scenarios. Take the following scenario: Two
hunters decide whether to hunt stag, a larger animal that can only be caught by cooperation and gives
more meat, or hare, which they can hunt alone but provides less meat. Hunter B is more skilled at
hunting hare than hunter A. If one hunter decides to hunt stag while the other hunts hare, that hunter
will come home empty handed. If they both decide to hunt stag, they will catch one and split it for the
large bounty. Since hunter B is the better hare hunter, they will catch more hare than A, and decrease
the hare opportunity for A if they both hunt hare. The payoff matrix of this scenario can be seen in
table 2. The matrix is both asymmetrical and non zero-sum. It is asymmetrical because both players
receive different payoffs for the same actions. The point on the matrix where both hunters choose
stag is the point of maximal social welfare, the sum of both payoffs is greatest. It is also the only
Pareto-optimal outcome; there is no other option where all players do at least as well and one player
has a higher payoff. Both stag stag and hare hare are Nash equilibria; there is no gain for either
player by changing their strategy if the other does not also change their strategy. Neither strategy for
the players is dominant. A strategy is dominant if it yields the highest payoff regardless of the other
players’ chosen strategy.
Game theory is an important abstract framework for the analysis of evolutionary dynamics, providing
a mathematical system to describe interactions and dynamics [34]. What follows are some concepts
from game theory that are applicable to the (co)evolution of cooperation.

2.2.2 Prisoner’s Dilemma

The Prisoner’s Dilemma is a classic game theoretical example illustrating a trade-off scenario between
personal and collective gain. Two people, Abe and Bart, are caught at fleeing a crime scene and are
interrogated separately. The police do not have enough evidence for the conviction they want, so they
try to entice both parties to provide testimony against the other. Abe and Bart both have the option to
either give up the other person to the police (defect), or keep silent (cooperate, with the other). If they
both cooperate and stay silent, the police jails them both for a year. If one testifies against the other
while the other stays silent, the testifier walks free while the silent one is jailed for three years. If they
both testify against each other, both are jailed for two years. The we can see this situation represented
in a payoff matrix in table 3. For both players in the Prisoner’s Dilemma the dominant strategy is to
defect, as defecting would lead to the highest payoff for either action of the other player. This places
the Nash Equilibrium on the point defect, defect. This point is also the worst outcome in terms of
social welfare, the cumulative prison time for both players is the highest here with 4 years. There is
no Pareto-optimal point, and the point of maximal social welfare is when both players cooperate (2
years jail time in total).
If the Prisoner’s Dilemma is played only a single round between two players, the dominant strategy
is for a player to defect. If the game is played over multiple rounds, which we call the Iterated
Prisoner’s Dilemma, many more strategies become viable. Players can now ’punish’ a defection by
retaliating with a defection. A ’pure strategy’ is a definition of each action a player will take for
all given situations: if a player always plays the same strategy in the same situation, we call that a
pure strategy. For example, if a player always repeats the other players’ last move. If players change
their strategy based on probability, that is called a ’mixed strategy’. A mixed strategy is a lottery
over pure strategies, e.g., always repeating the other players’ last move, but choosing a random move
with a probability of 0.05. To avoid confusion, with this the meaning of ’strategy’ is expanded to
mean not just the current action, but the policy for deciding a move. There is no strategy that can win
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the Iterated Prisoner’s Dilemma [64]. A famously effective and at the same time simple strategy is
Tit-For-Tat, which starts out with cooperation and from then on always plays the other players’ last
move. Another is Win-Stay-Lose-Shift.

2.2.3 Public goods Games

There is also a class of game theory games called public goods games. Public goods games are n-
person games where players are given the option to contribute a hidden amount to the public good.
One simple version is that all players contribute a hidden amount of currency in the form of tokens to
a common pool. The contributions are then multiplied by a factor greater than one and less than the
amount of players. The pool is then evenly divided among the players. The trade-off for the players
here is as follows – anything they contribute to the pool will only be returned at a fraction. Anything
they contribute, costs them personally. A player never benefits from their own contribution. But the
game is not zero-sum; anything they contribute increases to total pool of wealth they collectively
have. If everyone contributed all their tokens, everyone’s personal wealth would be increased by
the multiplication factor. Then there is the incentive of free-riding. The amount players submit is
hidden, and submitted at the same time. There is no repercussion for contributing a small amount.
Not contributing is always beneficial for the individual. As long as the multiplication factor is smaller
than the number of players, the dominant strategy for the individual player is to contribute nothing.
Any amount the player contributes, it will receive only that divided by the number of players. There
is a risk of losing if the other players do not also contribute. If everyone contributed all they had,
that would be best for everyone, as the net gain of value would be greatest through the multiplication
factor. Here we see an important trade-off between personal and collective gain that is featured as a
large theme in this thesis. There is also a version of a public goods game with a satisfying function.
Instead of players receiving an equal part of the sum of contributions multiplied by the multiplication
factor, there is a specific goal amount that needs to be reached by the players for them to receive the
reward. Any contributions past the goal amount are superfluous. Think for example of an animal’s
warning call of an approaching danger. Making the call has an associated cost - running and hiding
would be more advantageous to the individual. The function is also satisfying. One warning call
might not be enough to alert the whole group, but once more than a few individuals perform the
warning call the added benefit of one more diminishes sharply ([42]). In this public goods game with
a satisfying function, free riding past satisfaction causes no detriment and contributes to the public
good by not wasting actions. This dynamic is seen in the Black Queen Hypothesis in section 2.1.5.

2.2.4 Tragedy of the Commons

Another well-known common-pool resource dilemma is the Tragedy of the Commons[65]. In some
sense, the tragedy of the commons can be seen as a negative or inverse version of the satisfying public
goods game [66]. In the tragedy of the commons, which we will now represent in the same framework
as a game theory game, players can take an amount from the collective pool, or commons. Then, the
pool is multiplied by a factor and the players play another round. If the players collectively take
as much such that the pool after multiplication is less than it originally was, the pool shrinks. If at
any point the players take so much from the pool that it hits zero, the pool is gone and the ’tragedy’
occurs. The real world analogy is that of farmers letter their cattle graze a commons [67]. Each extra
cow a farmer can place on the commons, gains him a personal benefit, and the cost is divided among
all that can use the commons. The problem is that if too many cows are placed on the commons,
the commons are subject to overgrazing. The commons reduces in size, and this reduction in size is
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accelerated by on the one hand having a smaller size for the multiplication to work on, and on the
other hand farmers, seeing the ’inevitable’ demise of the commons, placing even more cows to get
the last bit of it before it is gone.
What is important is that these concepts are forces of the same things. There is a trade off between
personal and collective gain or loss. In these dynamics there can be limits and equilibria. An upper
limit is a satisfying function, for which contributions should not go over, and in other cases a lower
limit can produce a catastrophe. These are frameworks in which we can place the research into
context, how can we utilize these forces for our benefit, and be aware of the dangers. What feedback
loops act for and against each other? If personal benefit is a fitness that optimizes the individual, the
collective welfare is the fitness for the collective. How can we create the environment and rules such
that individuals self-organize to an evolutionary stable state [68] that is Pareto-efficient and the point
of maximal social welfare?

2.2.5 Evolutionary Dynamics

Instead of two players playing a single round, we consider a population of strategies encountering
each other. Suppose the game played is rock paper scissors, and the population consists of an equal
amount of rock, paper and scissors individuals. Assume there is an equal random chance for any
two individual strategies to encounter each other, and values are large enough that the effect of a
single individual are negligible. The expected value of an interaction for an individual is the average
payoff of all possible interactions. For any individual with the paper strategy, it has an equal chance
of encountering a rock, paper or scissors strategy. The payoffs for these interactions are 1, 0 and -1
respectively (table 1), so it has an expected interaction value of 1+0+−1

3 = 0. Now, lets suppose we
calculate a fitness value for the individual, which we set equal to the expected value of an interaction.
The proportion of individuals of a single strategy will grow or decrease according to the replicator
equation eq. (1):

ẋi = xi
(

fi(x)− f̄ (x)
)

(1)

Here,

• ẋi is the rate of change of the i-th strategy.

• xi the frequency of the i-th strategy.

• x is the population composition x = (x1, . . . ,xn).

• fi(x) the fitness of the i-th strategy.

• f̄ (x) the average fitness of the population, where f̄ (x) = ∑ j x j f j(x).

In the initial state where x = (xrock,xpaper,xscissors) = (1
3 ,

1
3 ,

1
3), the population is in equilibrium – all

strategies have an equal chance of encountering any other, and therefore all fitness values are equal.
If there is a perturbation in the system, e.g., some papers become scissors, now rock has a higher
fitness, because there is a larger chance for it to encounter scissors, and a smaller chance to encounter
paper. The expected value of an interaction for rock goes up, and so does the fitness, and therefore
the population of rocks will grow. It is disadvantageous to be scissors for the opposite reason, so
that population will decrease. Now in the new state, it is beneficial to be paper, because there are
more rocks and fewer scissors, causing that population to grow and rocks to decrease. Now it is more
advantageous to be scissors, and so forth. Depending on the conditions of the system this can have two
outcomes. Either the system changes with dampened oscillations towards an (not Nash) equilibrium
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of equal proportions and continue to orbit that evolutionary stable state, or eventually an oscillation
increases such that one of the three strategies has no individuals left, eliminating that strategy from
the system. Then, with only two strategies left, one strategy will win or draw all interactions and
the other loses or draws, and so the losing strategy is quickly eliminated and only a single strategy
remains [69].

2.2.6 Evolution of Cooperation

The evolution of cooperation and the emergence of altruism are widely studied phenomena [70, 71,
72, 73, 74, 75, 76]. Games are often abstract versions of interactions that happen many times on many
different levels, and are therefore a useful framework to study the emergence of cooperation [70].
In nature we see many examples of cooperation between members of a species, and even between
species, even if it doesn’t always ’make sense’ at first glance. Nowak developed five rules for the
emergence of cooperation in evolutionary dynamics [71].

• Kin Selection - also known as ’Hamilton’s Rule’, there is an evolutionary cost-benefit trade-
off by providing altruistic behaviour for relatives, where your altruistic genes survive in your
relatives. ”I will jump into the river to save two brothers or eight cousins.”.

• Direct Reciprocity - ”I scratch your back you scratch mine”.

• Indirect Reciprocity - ”I help you, someone else helps me.”

• Network (or spatial) Reciprocity - interactions are not well-mixed, we interact more with indi-
viduals in our spatial proximity.

• Group Selection - selection not only acts on individuals, but also on groups, and a group of
cooperators is more successful than a group of defectors.

Group selection has been found to be a strong enabling force for altruists to emerge, even when at a
selective disadvantage within their niche [73].
The evolution of a mutualistic relationship between species is also a form of evolution of cooperation.
Chomicki et al. in [77] identify four pathways to mutualistic dependence:

• Dependence can arise from ecological constraints that limit a species’ niche or behaviour.

• Increased mutualistic dependence can evolve via specific traits favoring or enforcing mutualistic
interactions with particular species.

• Trait loss can lock a species into an obligate relationship with its partner and can relax selection
on features and behaviours that have become outsourced to another species.

• Partner manipulation, in which one partner forces the other to become dependent.

The third pathway of compensated trait loss is also well known in endosymbioses. In other cases,
dependence may emerge from community-level processes, such as the effects of the Black Queen
Hypothesis [77, 75, 26] (see section 2.1.5).
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2.3 Evolutionary Computation
Evolutionary computation translates the principles of biological evolution to computer algorithms. In
biological life the fitness of a creature is determined by its ability to survive and reproduce, a measure
of how well it is adapted to its environment. In the computational version of evolution, the fitness
of an entity can be determined by a custom fitness function. Entities or individuals, represented as
chromosomes, that better fit the custom criterion have a higher chance of surviving. High fitness
solutions are recombined and mutated. In this way, the process of natural selection is leveraged to
produce solutions that fit the designed criterion, instead of designing that solution. The ’creativity’
of design is outsourced to evolution. Evolutionary computation has its difficulties too, it can be quite
difficult to design an appropriate fitness function. There are many examples (for example see [78])
where the ’creativity’ of evolution found a way to satisfy the fitness function without solving the
intended problem. This is called ’reward hacking’[79]. Evolutionary computation is often utilized
in optimization problems, where the fitness function is simply the minimization or maximization of
a value or set of values. However it is important to note that evolution does not produce globally
optimal solutions (the single best solution possible). Solutions are competitive, and will find local
optima, but deal with the same problems as any other optimization algorithm in terms of finding the
global optimum. It is useful to think of genetic algorithms not as optimization process, but as adaptive
systems [1]. Other challenges are, as mentioned in section 1, there needs to be a viable evolutionary
pathway towards a solution for it to emerge, and the defined framework or encoding of the entity
needs to have the capacity to evolve a viable solution – a single small neural network will not be
able to perform all functions required for a self driving car. Evolutionary computation can also be
quite slow, requiring many individual evaluations and generations for viable solutions to emerge. As
such, the scalability can be poor. It can be challenging to maintain solution diversity, and balance
exploitation and exploration [1, 80].

2.3.1 Genetic Algorithm

The Genetic Algorithm (GA) is a computational implementation of the evolutionary principles, first
proposed by John Holland[81, 82]. It evolves a population of individuals, for which the fitness is
evaluated by a constructed fitness function. The individuals ability to ’survive and reproduce’ is
directly tied to their ability to perform the constructed task. Those with higher fitness are more likely
to be selected for reproduction. The new generation of individuals (offspring) is generated through
recombination of individuals and chance mutation. Genetic algorithms, a class of algorithms based on
the same principle, work by translating a problem solution to a chromosome genotype. The expression
of this genotype is the phenotype. A fitness function can be applied to (or ’evaluate’) the chromosome
by running it in a model. Say the problem to solve is a Traveling Salesman Problem (TSP): given a
list of cities, determine the visiting order of the N cities that has the shortest total travel distance.
In this problem, the genotype is an ordered string of city names. The phenotype of that string is
the (hypothetical) journey from city to city. In the TSP we want to minimize travel distance, so the
fitness function is the calculation of the total distance traveled, being the sum of all distances between
connected cities in that sequence. See fig. 2. Genetic algorithms usually work by not instantiating
a single solution / chromosome / genotype, but a population of solutions. The whole population is
evaluated and is assigned their fitness value. With these fitness values, selection can be performed
on the population. Individuals that will reproduce, individuals that survive to the next generation and
the individuals that are culled from the population are selected based on the fitness evaluation. There
are various methods of selection with different trade offs, advantages and disadvantages. Ranking
the individuals on fitness and selecting the top n individuals is called truncation selection. Fitness
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Figure 2: The traveling salesman problem solved using a genetic algorithm. A chromosome (geno-
type) is the order in which the cities are travelled. The phenotype is the actual path taken by the
salesman. The fitness of a solution is the total distance travelled. A mutation (orange) can constitute
flipping the order of two cities. In this representation, we see that the mutation produced a shorter
route.

proportional or roulette wheel selection selects n individuals randomly, weighted by their fitness.
Tournament selection selects the winners of pairwise comparisons of subsets. Elitism is when the top
n individuals are carried over to the next generation. More detail about the trade-offs of the different
used mechanics can be read in the methods section 4.3.1.
Once the subset of the population slated for reproduction is selected, they need to be paired up.
Note that some genetic algorithms only mutate without recombination, or use other recombination
mechanisms such as Horizontal Gene Transfer [83]. Pairing up can be done by selecting any random
other from the pool of parents (with or without replacement), this can also be weighted with fitness, or
it can be done sequentially to ensure all genomic material is passed on. In this research a novel method
is introduced - pairing based on genomic distance: selecting the approximate nearest neighbour from
a sample. More on this in the methods section 4.3.3. Once all parent pairs are selected, they are
recombined to form offspring. Since chromosomes are one-dimensional strings / vectors, they can
be combined using a crossover operator. Several crossover operators exist. A single point crossover
operator selects a point on the genome (possibly randomly), the nth digit of the string. A child is then
produced by taking all values before (and possibly including) the nth digit of parent string A, and
all values after from parent string B. A second child can be created by taking the inverse operation,
taking all first n values from parent B and the last from parent A. A random crossover (or uniform
crossover) selects which gene to take from parent A or B with equal probability, per gene. Other
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crossover operators exist that deal with problems such as when genes are discrete nominal values
and the set of genes can not change (no duplication or gene loss), as is true in the TSP. After the
first method variation is done through recombination, resulting in a set of offspring chromosomes,
variation can be applied in the form of mutations. For each gene there is a small chance to change, or
mutate. What a mutation is depends on the type of chromosome and genes. If a gene is a numerical
floating point value, a mutation can be done by adjusting the value of a single gene up or down. By
how much can be a set amount, a random value on a range, or a random value from a distribution.
If a gene is a nominal value, a mutation can change the gene to have another value picked from the
available (distribution) of genes. In the case of the TSP where a chromosome represents an ordering,
a mutation can be swapping two adjacent genes.

2.4 Machine Learning Concepts

While evolutionary computation can be considered a form of machine learning [84], some other
machine learning concepts that can not be categorized as evolutionary computation are used in this
thesis.

2.4.1 Feed Forward Neural Network

A feed forward neural network is a function that produces an output for an input. More specifically,
it is a function that can be trained to produce, or more rather approximate, certain output for certain
input. Training involves shaping and reshaping the function such that it produces the desired outputs
for the inputs that we give it, by adjusting the function parameters based on how well it performs. The
function can be anything, from a simple plus operator to distinguishing pictures of bees from pictures
of threes. A feed forward neural network is a framework that is a ’universal function approximator’.
How well it does this and how complex the function can be depends on the architecture and capacity of
the network. There are many complex versions and configurations, all of which will not be discussed,
as only a small and simple version is used here. A feed forward neural network consists of a graph
of nodes and edges, configured in a way that a node is part of a subgroup of nodes called a layer,
and the edges always only connect nodes from one layer to the next. Layers are ordered sequentially.
The graph is fully connected, meaning all nodes of one layer are connected to all nodes of the next
layer. The first layer is called the input layer, the last layer is the output layer, and the layers in
between are ’hidden’ layers. See fig. 3. Additionally, each layer has a single extra node connecting
to all nodes in the next layer, called the bias. With each edge a value or ’weight’ is associated. Each
node is a temporary ’container’ for a value, which is called the activation value, and each layer has
an associated ’activation function’. An activation function is a function that maps the input value to
an output value on a desirable range and distribution. There are many different activation functions
for different purposes.
The network produces an output for an input in the following way. First, the input is passed to the
nodes of the input layer. The number of inputs must therefore correspond with the number of input
nodes. The input is numerical. These input values are going to be passed through the network, and
operations are performed on them until they are passed out of the output nodes. How this happens
is that from each layer, starting with the input layer, the values are passed to the nodes of the next
layer. The activation value for each node in the next layer is calculated by taking the product of the
activation value and the weight of the connecting edge of all connecting nodes, summing them, adding
the bias value associated with that layer, and then applying the activation function of that layer. After
this is done for each node in each layer, we have the activation values in the output nodes, which are
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Figure 3: A feed forward neural network. Neurons are blue, biases are red. This fully-connected
FFNN has two input nodes (I), one hidden layer of four nodes (H), two output nodes (O) and biases
for each node in the hidden and output layer. The edges signify the connecting weights. It takes two
inputs, and produces two outputs.
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the output of the network. In mathematical terms, given a neural network, the value of a node i in the
kth layer, S(k)i , is determined by the following equation:

S(k)i = g

(
∑

j
w(k)

i j S(k−1)
j +b(k)i

)
(2)

Here,

• S(k)i is the activation value of the ith neuron/node in the kth layer.

• g is an activation function applied to the weighted sum of inputs.

• w(k)
i j is the edge weight from the jth node in the (k−1)th layer to the ith node in the kth layer.

• S(k−1)
j is the value of the jth node in the (k−1)th layer.

• b(k)i is the bias for the ith node in the kth layer.

Note that the sum runs over all nodes j in the previous layer (k−1).

In fig. 4 a cross-section of a single neuron is shown. At first, the values of the weights and biases
are initialized with some initialization strategy, such as setting them all to some random value on the
range [0,1]. Initially the output of the network can be anything. ’Training’ the network means giving
the network some input, comparing the output with the target output and adjusting the values for the
weights and biases so that the output is slightly more desirable. This is done until the performance
of the network is as desired or has hit a plateau (oversimplified). There are different strategies for
how the weights and biases are changed. One of the most well known is by using backpropagation.
In this research a slightly more unconventional method based on evolutionary principles is used. The
weights and biases of the network are mapped from a chromosome (see fig. 5). More detail can be
found in section 4.3.1.

2.4.2 Unsupervised Clustering

A feed forward neural network is an example of supervised learning, where for an input there is a
known desired output. In this research we’re interested in producing different species. It is useful to
have a way to recognize when the data has shaped itself into different distinct categories. If the cate-
gories are not obvious from the data, more advanced methods are required. Clustering is the practice
of grouping data into distinct categories. If the categories are known beforehand, classification can
be done by creating a pattern and a decision boundary to match individual data points to a category.
If the categories are not known beforehand, as is the case for emergent species, clusters of like data
can be recognized using unsupervised clustering algorithms. Unsupervised clustering attempts to find
patterns in data that can indicate distinct categories within the data. There are many unsupervised
clustering algorithms for vector data. A simplified explanation is that the data is mapped to an N
dimensional space, N being the length of the vector. Then, for each vector, the euclidean distance to
other vectors is calculated, and we assign the same category to vectors in close euclidean proximity.
There are methods that use centroids, which calculate the hypothetical mean of all cluster constituents,
and assign each individual vector to the cluster of the centroid that is closest. The disadvantage of
this approach is the assumption that clusters are roughly spherical. Other methods are density-based,
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Figure 4: A neuron. This is a neuron in the hidden layer, input and output neurons work similarly.
The input of the neuron are the activation values S1 and S2, associated weights w1 and w2 and a bias
b1. The output is its own activation value S. The product of the activation values and weights are
summed with the bias. The result is fed through the activation function, here a sigmoid function. The
result of that function is the output activation value of the neuron S.
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Figure 5: A neural network is initialized with the values of a chromosome. The values of genes are
mapped to the weights and biases of the neural network.

that use direct distance between two points and so ’grow’ a cluster. In this research, the DBSCAN
[85, 86] algorithm is used. A detailed explanation and reasoning for using this technique is provides
in the methods section 4.3.4.
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3 Literature Review
In this chapter, first some background and general information about Cooperative Coevolution (CC)
is given, followed by a comparison to Evolutionary Multi-Agent Systems (EMAS). Then, one of its
main difficulties of problem decomposition is described. After that follows a short study of different
approaches in earlier work that address the same problems the novel mechanics of this thesis attempt
to solve. Finally, some gaps in the field are identified.

3.1 Cooperative Coevolution
Cooperative Co-Evolutionary Algorithms (CCEA) are algorithms inspired by the ecological phe-
nomenon of mutualism, where two or more species of organisms mutually benefit from the inter-
actions with the other, and coevolve to exploit that relationship more [7]. The main idea is to solve
problems using a divide and conquer strategy, where a problem is decomposed into multiple sub-
problems, or subcomponents. Then for each subcomponent a solution is evolved. Solutions are
evolved parallel, and in combination with each other, so solutions are coevolved such that they not
only contribute to solving their subproblem, but also work well with the other solutions to solve the
complete problem. In this way, individual solutions can be kept smaller, and much of the optimization
can be done in parallel. The full solution is a composite of the subcomponent solutions. Important
problems in CCEAs are that of problem decomposition - how can a problem be decomposed into sub-
components that are separable, collaborator selection, individual fitness evaluation, and subproblem
resource allocation [7].
An illustrative example with the CCGA-1 algorithm (code 1) [87]. Suppose a function optimization
problem, where function f takes a vector v of length N as input. For a traditional genetic algorithm,
to find v∗ that produces the minimal (or maximal value) is an N-dimensional search problem. A pop-
ulation of chromosomes (vectors) of length N is maintained and subjected to evolutionary pressures.
The fitness of chromosome vector vci is equal to f (vci). A decomposition strategy could be to break
up the input vector to N subcomponents - one for each variable. Now, using a CCEA, instead of
a single population with chromosomes of length N, N subpopulations with chromosomes of length
1 are maintained. The fitness of each chromosome is evaluated by combining it with (the current
best) individuals from each other subpopulation to form an input vector vci j for the function f . If we
assume each variable is fully separable (see section 3.3), the N-dimensional search problem is now
transformed to N 1-dimensional search problems, reducing the search space [87]. For clarity of the
thesis, note that in this example a ’species’ is the subpopulation type of one variable. What a ’species’
is will vary with problem and domain. If a problem is decomposed differently and variables need to
be grouped, a species type can be any grouping of variables, and in a multi-agent systems context a
’species’ is a group of genomically similar agents.
CCEAs have four main advantages over traditional EAs [7].

• By decomposing the problem into separate subcomponents, (partial) parallelism can be applied
to speed up the optimization.

• Separate subpopulations maintain good solution diversity.

• Decomposition into submodules increases robustness against failures of the modules, which
increases the (re)usability in dynamic environments.

• Proper decomposition alleviates some of the ’curse of dimensionality’ - problems that arise with
high-dimensional data.
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Ma et al in [7] distinguish five main components of CCEAs: problem decomposition, subproblem
optimizer, collaborator selection, individual fitness assignment and computing resource allocation of
subproblems.

gen = 0
for each species s:

pop[s][gen] = randomly initialized population
evaluate fitness of each individual in pop[s][gen]

while termination_condition = false:
gen += 1
for each species s:

select pop[s][gen] from pop[s][gen-1] based on fitness
apply genetic operators tot pop[s][gen]
evaluate fitness of each individual in pop[s][gen]

Code 1: Potter & de Jong’s CCGA-1

3.1.1 History

The Genetic Algorithm (GA) by John Holland [81, 82], harnesses the principles of Darwinian evolu-
tion in a computational framework (section 2.3.1). The method was successfully applied to a range of
problems. Optimization problems proved especially approachable to this technique, as they inherently
have a well defined fitness measure for individual solutions, and solutions often fit the chromosome
with genes that can mutate format. However, the method proves limited when problems increase in
complexity, and not all domains are suited for the architecture. In 1994 Potter & de Jong proposed
a general model for the coevolution of cooperating species in [87]. With this they introduced the
first Cooperarative Coevolutionary Evolutionary Algorithm (CCEA). Their thesis was that in order to
evolve increasingly complex structures, explicit notions of modularity need to be introduced in order
to provide opportunity for complex solutions to evolve as interacting co-adapted subcomponents. The
paper and method garnered much interest because of its ability to solve various kinds of optimiza-
tion problems, and much faster than earlier evolutionary algorithms [7, 87, 88]. In 2000 Potter &
de Jong published a paper[13] concerned with the emergence of coadapted subcomponents, or, into
how many subproblems should the complex problem be decomposed. The concept of cooperative
coevolution was applied to other domains, such as training and generating (deep) neural networks
[89, 90, 91, 92, 93, 94, 95, 96]. Later developments returned to large scale optimization [97, 11, 8].
Symbiotic evolution is applied to multi-agent systems learning [98, 99, 100, 101, 102], others expand
on this by introducing a multi-leveled approach [103]. A coevolutionary approach is explored in deep
multi-agent reinforcement learning [104].

Benchmarks To evaluate the performance of CCEAs, benchmark problems are often used. For
large-scale optimization problems, a suite of mathematical function has been created [105, 106]. This
suite includes functions with scaleable dimensions, that are multi-model, non-uniform subcomponent
sizes and overlapping subcomponents. CCEAs can also be evaluated in EMAS models like a predator-
prey (persuit) or herding models, and various multirobot environments [7, 16, 107, 108].
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3.2 Evolutionary Multi-Agent Systems

Another branch of Evolutionary Algorithms closely related and overlapping with CCEAs is Evolu-
tionary Multi-Agent Systems (EMAS). An EMAS comprises multiple agents within an environment.
An agent is an autonomous entity (inter)acting based on input from the environment (including other
agents) [16, 15]. The framework offers a decentralized approach to solving dynamic and complex
problems, and has proved to be an efficient tool for global, multi-modal and multi-criteria optimiza-
tion [15]. EMAS come in different forms, including parallel, cooperative-, competitive- coevolution-
ary, and immunological-inspired multi-agent algorithms [15]. In cooperative multi-agent learning
(cEMAS), two approaches in learning can be distinguished: team learning and concurrent learning
[16]. With concurrent learning approaches, each agents behaviour is directed by their own learning
entity. In team learning, a single learning entity learns the behaviour for a team of agents. Teams
can be homogeneous, meaning a single agent behaviour type is employed by each agent in the team,
or heterogeneous, where agents can develop unique behaviour types. A hybrid team consists of het-
erogeneous squads of homogeneous agents. The trade-off between the two strategies is the search
space and specialized functionality, fully homogeneous having the smallest search space and least
specialization, fully heterogeneous the largest and most, and hybrid anywhere between the extremes.
Domains where a single agent (behaviour type) perform well are suited for homogeneous teams [109],
while heterogeneity is better suited for decomposable domains, and the number of different required
skills in a domain promotes heterogeneous specialization [110]. The level of selection can be on the
team or individual in either type of team [111]. The key insight from this is that the level of gran-
ularity of control, learning and variation can be varied, and sliding these settings around are subject
to trade-offs. Our model presents a concurrent learning approach with hybrid heterogeneous teams,
with selection based on a combination of individual and team evaluation.

3.3 Problem Decomposition

One of the main challenges of CCEAs is that of problem decomposition. In order for a complex prob-
lem to be solved using a divide-and-conquer technique, we need to know if and how we can divide,
or separate the problem into different sub-problems [14, 7]. If a problem is fully separable, each
sub-problem, or decision variable, can be optimized independently to find the global optimum of an
objective function. However, problems are not always fully separable. Interaction between variables
is referred to as non-separability in continuous optimization literature, or as epistasis, linkage or gene
interaction in the genetic algorithms literature [105, 11]. [7] defines separability as differentiated by
problems being either fully separable (no interaction), fully nonseparable (every two variables inter-
act), k-nonseparable (at the most k variables are interdependent) or additively separable (variables are
interdependent within a subcomponent that is independent of all other subcomponents). A problem is
fully nonseparable if every two decision variables interact with each other. If two decision variables
interact with each other, their optimal values are interdependent. Interdependent variables should
ideally be grouped in the same subcomponent, keeping dependencies between subcomponents to a
minimum [11]. Interdependence between variables can greatly affect the performance of optimiza-
tion algorithms in the continuous domain [11, 112]. Various variable grouping strategies have been
proposed, including static-, random-, linkage-learning based-, overlap and hierarchical- and domain
knowledge-based variable grouping [7].
For numerical function optimization problems, the number of decision variables is known before-
hand, and so applying a CCEA simply requires grouping these variables in sensible subcomponents.
In other domains such as EMAS, decision variables can be more obscured, and a subcomponent, or
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partial solution, can be an agent with a specialized function. The problem is then decomposed in a
set of distinct coevolved behaviours. For example in the Predator-Prey model (see section 4.2.1), the
solution is open ended, and predator agents can discover any type of behaviour to catch the prey. A
solution could involve multiple coadapted behaviours by the predators. It is possible that three preda-
tors evolving distinct behaviours is optimal. Imagine a triangulation from three different approach
vectors. It is also possible that two distinct behaviours, of which one is carried out by two predators,
is optimal. Imagine two chasers and one blocker. It could also be possible that a homogeneous so-
lution is sufficient, with predators approaching at an angle influenced by model stochasticity, initial
conditions or within-type differences resulting in sufficiently different approach vectors.

3.4 Maintaining Diversity in Evolutionary Computation
One difficulty in evolutionary computation is to maintain diversity in the population [113]. Diver-
sity in an evolutionary algorithm is desirable because it gives a more optimal search over the search
space. Loss of diversity leads to premature convergence, resulting in a sub- or local optimum. In
CCEAs diversity is desirable because the different species can tackle different subcomponents of the
problem, and so form a more complex solution through the combination of simpler sub-solutions.
Most implementations of CCEAs employ a forced subpopulations approach. Population diversity is
enforced by keeping subpopulations of solutions separate. If there is no crossover between popula-
tions, and individuals are selected for cooperation with individuals of the other populations, a diverse
population is maintained, and the different subpopulations evolve to form their own partial solu-
tion. Evolving species separately mimics allopatric speciation as found in nature. Limiting species
crossover is desirable as the offspring of two individuals specialized for different behaviours could
result in a non-viable combination of two specialized halves. At the same time, occasional migration
between populations can be beneficial in maintaining collective diversity and achieve higher fitness
peaks [114, 115, 14]. A variant of the forced subpopulations approach that incorporates migration is
the island model[17]. It places the different subpopulations on separate ’breeding islands’. Occasion-
ally, individuals migrate from one island to another [115]. Allowing some crossover between islands
allows some mixing of genetic material. This mirrors parapatric speciation. A problem with this ap-
proach is that the number of subpopulations, equal to the number of islands, needs to be determined
by a designer. The number of subpopulations should be equal to the optimal number of specialists,
which is equal to the number of subproblems the larger problem can be decomposed in, which is not
always clear. It also offers no solution for how many of individuals from each species are required
for an optimal composition in the final solution. Ideally, both the number of species, the roles of the
species and the number of individuals per species is determined emergently [13].

3.5 Solution Composition Approaches
Determining the composition of the final solution - the number of unique species / subcomponents,
and the number of instances of those species (in the case of cEMAS) is non-trivial.
Potter and de Jong (2000)[13] propose a solution that adds a new species, or isolated subpopulation,
to the system when stagnation of the ecosystem is detected. If a species finds a niche functionality
that contributes to the population, it will tend to exploit that niche, specializing in that niche. It will
then be difficult for any newly added species to enter that niche. If a species is found to not contribute
to the collective, it is destroyed.
Hara and Nagao proposed a genetic programming based technique that discovers the optimal num-
ber of groups and their compositions called Automatically Defined Groups (ADG)[116]. Bongard
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proposed the Legion System[117, 118], a similar approach that places the groups under evolutionary
control using a genetic algorithm.
Coupling the problem of team heterogeneity in cooperative multi-agent systems with the specific
domain of cooperative coevolution, Nitschke et al developed the Collective Neuro-Evolution (CONE)
algorithm[119], that coevolves multiple robot controllers using emergent behavioural specialization
with the aim of increasing collective behaviour task performance. They achieve this by limiting
crossover between different populations if the populations have similar specialization. A limitation of
CONE is that the resulting teams are fully heterogeneous. Gomes et al developed Hyb-CCEA[120],
which improves on CONE by allowing for the emergence of genetically homogeneous subteams, does
not require a priori specification of the possible specializations, and (in contrast to CONE, which is
limited to a specific neural network architecture) is compatible with any evolutionary algorithm.
Omidvar et al proposed a differential grouping strategy[11], an automatic way of decomposing an
optimization problem into a set of smaller problems where there are few or no interdependencies
between the subcomponents. By accurately grouping the decision variables, they can quantify the
contribution of each subcomponent to the global fitness. They use this information to divide the
computational resources, and allocate proportional resources according to contribution. This provides
the advantage of greatly enhancing the optimization performance of imbalanced problems [11].
With many studies focused on finding the accurate number of species / teams / squads / subcompo-
nents, Trunfio[10] is interested in finding the correct size for each subcomponent. His Differential
Evolution approach is shown to effectively adapt the size of subcomponents during the CC search.
What all these works have in common is that they substantiate the idea that the optimal heterogeneity
of a solution system is a domain and problem specific property. In [110] they found that this property
is dependent not on the difficulty of the task, but that the optimal number of species is dependent
on the number of skill sets necessary to successfully solve the task. This highlights the need for
a general, dynamic and emergent approach to evolving the appropriate number of species and the
overall solution composition.

3.5.1 Fitness

Fitness is the critical metric that determines the direction of evolution. The fitness function can also
be used to ’help’ evolution. In [101], the fitness function for the predator-prey model (predators need
to learn to catch a prey in a 2D toroidal world) does not just reward catches, but also distance traveled
in the direction of the prey, to promote solutions learning they must converge on the prey to catch it,
and reward predators that did not catch the prey but did help with catching. Fitness can also be used
as a tuning tool. For instance, fitness sharing is a technique that scales fitness of individuals based on
their proximity to others, originally intended to reduce redundancy in populations [1]. By decreasing
fitness of individuals in close genomic proximity to many others, an evolutionary pressure is instigated
towards novel shapes, promoting solution diversity. Fitness of an individual chromosome can be
calculated in various ways. Individual fitness is a direct representation of the individuals performance
in the model, sometimes called local reward. In the Predator-Prey model, an individual fitness could
be the amount of prey caught by the individual. Collective fitness, sometimes called global reward, is
an alternative approach where fitness is attributed to the individual based on the performance of the
collection of individuals. In the Predator-Prey model, a collective fitness could be the total number of
prey caught by all predators. An individual fitness promotes competitive learning, a collective fitness
promotes cooperative learning [111]. In some domain models an individual fitness function is clearly
available, such as in the Predator-Prey domain. In others, it can be more difficult to determine the
individuals contribution on the collective success.
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Credit Assignment

”If our goal is to use a computational model of evolution to solve a decomposable problem
by way of a collection of coadapted subcomponents, there must be a process by which
credit or blame is assigned to each of the subcomponents for their role in the health of
the ecosystem.”

- M.A. Potter [14]

The difficulty in determining each individuals’ contribution to the collective performance is called the
credit assignment problem. The fitness of the collective is often not simply the sum of the contribution
of each individual, the system is complex and there are synergistic effects. Calculating the fitness of
the individual as the average of all fitness evaluations of full solutions it was a part of ([101, 13]) is a
reasonable heuristic approach that informs on viable partial solutions. However, it does not tell about
the size of the contribution of the individual. In [13] they evaluate the contribution of an individual by
comparing the collective fitness of solutions with them included with the collective fitness of solutions
with the same subsolutions and only the individual replaced by another. A global reward shared fitness
does not scale well in complex tasks as it does not give enough feedback on individual performances
[121]. Or, it is difficult or impossible to compute because of the distributed nature of the system.

3.5.2 Species Detection & Tracking

To perform species detection, we utilize the fact that chromosomes are (numerical) vectors, and so are
points in high-dimensional euclidean space. As such, performing unsupervised vector quantization on
a population of chromosomes yields a classification of those chromosomes, which we can interpret as
different species. There are many unsupervised clustering algorithms [122], all with different trade-
offs. DBSCAN[85] is a density-based clustering algorithm, that has the advantage of working well
with non-spherical clusters, large spatial data and noise [86]. The idea is that different species are
clusters of spatially, and so genomically, similar data. Species are separated by areas of low density.
There is little literature available within the field of EA where species are classified bottom-up through
vector quantization or unsupervised clustering methods.
Detecting species in a single population is one thing, tracing those detected clusters over time is
another. The labels assigned to clusters in a single population are arbitrary, so any new population is
assigned new arbitrary labels. The problem can be compared to tracking clusters in streaming data,
which is an active area of research [123, 124, 125]. Tracking the evolution of clusters can be useful
for phylogenic analysis of the species.

3.6 Limitations of previous approaches
The concept of using evolution as a problem solver is well established, with extensive research ded-
icated to developing systems that produce optimized solutions through evolutionary computation.
Coevolving cooperating species is proven to be an effective strategy to tackle complex decomposable
problems. Finding efficient decomposition strategies remains a challenge. Existing methods manag-
ing speciation are often static, demand designer input, or lack generalizability across domains.

This thesis bridges the literature gap by proposing a unified method that leverages cooperative co-
evolution and team heterogeneity with a bottom-up dynamic approach to speciation and team com-
position, generalizable across domains. In order to achieve this, known techniques need to be supple-
mented by novel mechanisms and novel implementations of known mechanisms:
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• Parapatric speciation through assortative mating.

• Species identification through unsupervised cluster detection.

• Tracking identified species through generations.

• Evaluating dynamic species in compositions that allow meaningful coevolution.

• A credit assignment method that both promotes individual optimization and optimization for
the collective.

For these mechanisms the thesis provides theoretical grounding from principles observed in biologi-
cal life and game theory.

The goal is to streamline a combination of known approaches to produce a unified novel method with
the added functionality of dynamic speciation and composition. Let evolution dictate both the shape
and size of the solution, on multiple hierarchical levels. In the bigger picture, this is a rudimentary
step in providing the principle of evolution a framework to function as universal function approxima-
tor. While the current implementation serves as ’proof-of-concept’, showing only modest advantages
over existing algorithms and no performance advantage over state-of-the-art algorithms for domain
specific problems, its contribution lies in establishing a foundational baseline for future explorations
of the new design philosophy of emergent symbiotic speciation. This thesis addresses immediate
computational challenges, and opens a pathway for advancements in evolutionary computation.
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4 Methods
This chapter gives an overview of the framework, referred to as ’the model’, used to test the research
question and hypotheses (section 5.1). An overview of the pipeline is given, along with descriptions
of the specific simulation environments (domain models). Components that are special mechanics
are explained in more detail. An overview of the relevant model configurations and hyperparameters,
with a brief explanation of their influences, is provided in appendix B.

4.1 Model Overview

The model used for testing the research question (section 1.2) and hypotheses (section 5.1) and show-
ing that the desired effects (emergence of mutualists from a single gene pool) are possible consists
of a general architecture managing the chromosome population, and a simulation environment - the
domain models, where chromosomes are represented as agents in an environment to act. The ar-
chitecture performs the operational and evolutionary tasks, and the simulations are used as testbeds
that provide fitness data on chromosomes. This ensures that the method is general, and the tasks
are specific. In theory, the simulation can be replaced by any task conform to some restrictions (it is
multi-agent, a fitness value can be provided based on agent behaviour), and the architecture will allow
symbiotic speciation to emerge.
The general overview of the model is as follows. There is a population of individual chromosomes,
and there is a task (the domain model) which requires a subset of the population to be performed. The
idea is to apply evolutionary forces over generations on the population, and also on the composition
of the subset of individuals so that they shape into a population and composition that is optimal for the
task. Since (most of) the individuals exist for only a single generation, the compositions are composed
of types of individuals, where a type, or species, is identified based on genomic distance.
First the population is initialized. Each individual is assigned a species type based on its genome
(section 4.3.4). A set of compositions is initialized based on these types. For each composition, a
subset of individuals is sampled from the population with types corresponding to the composition
(section 4.3.7). Then, all compositions of individuals are evaluated by applying them to the domain
model (section 4.2). From the evaluations a fitness score is calculated for each individual and each
composition. Using these fitness scores, an evolutionary algorithm is applied to the population of
individuals and the set of compositions and through selection, recombination and mutation a new
population of individuals and compositions is produced (section 4.3.1). The population of individuals
are again assigned a species type, the compositions are aligned with the new set of types and the
process is repeated for a set number of generations.
The distinction this approach has to other evolutionary computing lies in the main contributions of
this thesis: bottom up species detection combined with evolutionary compositions, genome distance
based mate selection and species representation fitness scaling credit assignment. The design of the
model is such that these mechanisms can be replaced by more traditional mechanics (e.g., random
compositions or forced subpopulations instead of evolutionary compositions) or simply turned off, to
aid in comparative testing.

4.1.1 Model Pipeline

A general overview of the model pipeline is visualized in fig. 6. The initial chromosome population
is generated according to the set hyperparameters with random uniform initialization. Chromosomes
are translated to agents in the simulation environment. The agents are evaluated and a fitness value
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Figure 6: A general overview of the model pipeline. A chromosome population is instantiated, species
labels are assigned through cluster detection, labels are homologized with species tracking, individu-
als are placed in compositions according to composition chromosomes, compositions and individuals
are evaluated in the domain model, new generations of individuals and compositions are produced
with the evaluations using evolutionary algorithms.

is retrieved. The chromosomes and fitness values are passed to the evolution machine, which returns
the next generation of chromosomes. See section 4.3.1 for details.

4.1.2 Technologies

The model architecture, speciation techniques and domain models are built bespoke using the Python
programming language. Some external libraries for data analysis, producing graphs and visualization
are used. The complete source code can be found on GitHub, a link is provided in appendix C.

4.2 Domain Models

To test the symbiotic speciation architecture we have applied it to some domain models. Two com-
mon CCEA benchmark models are used, and one novel. The common benchmark domains are the
Predator-Prey (persuit) model, and a model for function optimization. The novel model, called the
Toxin Model, is designed to show the evolutionary game theory dynamics of the architecture. Note
that the larger framework / architecture / model is also referred to as ’model’. When referring to a
domain model, the specific name will always be used or it is referred to as ’domain model’.
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(a) Herding prey by equidistant
triangulation from far.

(b) Close proximity triangula-
tion.

(c) Predators close in to catch the
prey.

Figure 7: Visual representation of the Predator-Prey model. We see three predators (red foxes) of two
different types, distinguishable by slightly different coloured fur, triangulating prey (beige bunny).
The three screen captures are from different runs of the model featuring the same individuals at
different stages of the capturing process.

4.2.1 Predator-Prey Model

The Predator-Prey or pursuit-evasion model is a common benchmark domain model for cooperative
multi-agent systems [101, 126, 127, 16, 128, 100, 129, 130]. Among the many implementation there
are subtle and less subtle differences. Here our implementation is described. In a 2-dimensional
toroidal world, there is one prey (a rabbit), and three predators (foxes). It is the objective of the
predator to catch the prey, by coming within a certain distance from the prey, and it is the prey its
objective to evade the predators. See fig. 7 for a visualization. The predators and the prey move at the
same speed. The prey its behaviour is dictated by a simple rule; it will move in the direct opposite
direction of the closest predators position. This means that a single predator will never be able to
catch the prey, and if all predators adopt a greedy approach of heading straight for the prey, they will
never catch the prey. The predators will have to cooperate for consistent success. The behaviour of
the predator is directed by a tiny feed forward neural network with two inputs - the x and y delta to
the prey, a single hidden layer (of 4 nodes, biases, a sigmoid activiation function on the input and
hidden layer, an identity activation function on the output layer, see fig. 3), and two outputs - an x
and y forming a movement direction vector. Note that the predator can ’see’ the prey and dictate their
own movement, but has no direct knowledge of the other predators. The values of the weights and
biases of the neural network are mapped from a one dimensional vector of 22 continuous values - the
chromosome (see fig. 5).
A single run of the model consists of 150 ’ticks’, or steps. Predators are spawned at location (0,0), the
prey spawns at a random location. Each tick, every agent determines their heading (on a continuous
scale) and is moved a set distance (speed = 5) in the direction of that heading. A small amount of
random noise is added to the heading of the prey. Agents are updated sequentially, first the predators,
then the prey. The environment is 500 units by 500 units, agents move 5 units per tick, allowing
agents to travel 5 · 150 = 750 units in a single run. The run ends if 150 ticks elapsed, or the prey is
caught.

The Predator-Prey Model is an open ended search problem. The solution consists of three real val-
ued vectors of length 22. These chromosome vectors are the genotypes of the phenotype behaviour
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produced in the model. The gene values are applied to form the feed forward neural network, which
determines predator action policy. The chromosome c is translated to a neural network (eq. (3)), the
neural network, as function f taking two inputs and producing two outputs (eq. (4)), determines the
action response of an agent for each input. The output, a desired x and y direction, are transformed
to a heading angle (eq. (5)) in radians. This heading, the current position of the agent, and the speed
parameter s are then used to calculate the new position of the agent (eq. (6)).

ci → faction (3)

faction(∆x,∆y) 7→ (dx,dy) (4)

θ = arctan2(dy,dx) (5)

fmove(xt−1,yt−1,θt ,s) 7→ (xt ,yt) (6)

xt = (xt−1 +(s · cos(θ))) mod 500 (7)

yt = (yt−1 +(s · sin(θ))) mod 500 (8)

Here,

• ci is the chromosome for predator agent i.

• faction is the feed forward neural network as function, taking two inputs and producing two
outputs.

• ∆x and ∆y are the difference in x and y position between the predator and prey, accounting for
toroidal space.

• dx and dy are the ’desired’ x and y direction for the predator.

• arctan2 is the function computing the angle in radians from origin to the dx and dy coordinates.

• θ is the desired heading angle in radians.

• fmove is the function that calculates the x and y coordinates for the agent for the next time step.

• xt , yt are the x and y coordinates for the agent on time step t.

• s is the speed parameter, giving the euclidean distance traveled in the direction θ from the
current position (x,y).

Predators, or more rather their chromosome, are evaluated with the fitness function eq. (9). The fit-
ness of predator agent i, Fi, is determined by the initial distance of the predator to the prey d0 and
the final state of the model, providing the distance of the predator to the prey at the final tick de and
whether the prey was caught. This means an evaluation of a chromosome takes place after performing
an action anywhere from 1 to 150 times. The fitness of a chromosome is partially dependent on the
behaviour of the two other chromosomes that are in its team.
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Fi =
1

10

{
354+10000−de if prey is caught
354+d0 −de otherwise

(9)

Here,

• Fi is the individual fitness of agent i.

• d0 is the initial distance to the prey for agent i.

• de the distance to the prey at the end of the run for agent i.

354 is added to both outcomes to ensure the fitness is a positive value, 354 being the maximum
possible distance to the prey (diagonal). This constraint is required for the species representation
fitness scaling (see section 4.3.8). The model and fitness calculation is largely based on that of [101].
The fitness function gives some guidance to the evolution by rewarding partial solutions; predators
are rewarded if they move closer to the prey.
The collective fitness CF for the Predator-Prey model is the average fitness of all predator agents,
calculated with eq. (10).

CF =
1
3
·

3

∑
i=1

Fi (10)

For a consistent assessment of the teams the stochasticity of random prey spawns needs to be factored
out. For this purpose a benchmark setting is ran every couple generations. This is the same benchmark
setting used in [101]. The field is divided up into a 3x3 grid, and for nine runs the prey spawns in the
center of one of the 9 squares, one time in each. The benchmark score is the number of catches the
team of predators make out of these 9 attempts, 0/9 meaning no catches and 9/9 a perfect score.

Justification The Predator-Prey persuit domain model is used extensively throughout the literature
[101, 126, 127, 16, 128, 100, 129, 130], and so gives a solid reference point. In this thesis, it shows
how the larger model framework operates on a domain model with a moderately sized open ended
search space, and provides a demonstrative function by being easily visualized.

4.2.2 Toxin Model

The Toxin model is a novel model created to give an insight in various evolutionary (game theory)
dynamics, and explicitly show problem decomposition. The model is roughly based on the theoretical
scenario discussed in [18, 19], of simple organisms living in a toxic environment with a leaky function
of detoxifying the environment. It concerns the bacterium Prochlorococcus living in an environment
with toxic HOOH, for which some of the population have a gene KatG responsible for the production
of catalase-peroxidase, which neutralizes the HOOH [131]. The idea is that the organisms perform
a satisfying public goods function, and that in a saturated environment it is evolutionary beneficial
to lose the function. In the model there are T distinct toxins present in the environment in a certain
amount (hereafter ’level’), represented by an integer value. There are also N agents, that for each toxin
either have the function to clean an amount from the environment, or do not have that function. If an
agent has the function for cleaning toxin t, they are also immune to the harmful effects of that toxin
(see fig. 8). There is a set cost associated with having the function, whilst not having the function has
no (direct) cost. Whether an agent has this function for a toxin is determined by the bit value of a gene
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on its chromosome, which is a binary vector of length T , each gene corresponding to one toxin. E.g.,
a = [1,0,0,1], where the agent has the function active for t1 and t4. One model run consists of a single
tick. For each toxin, for each agent with the gene corresponding to a particular toxin active, the toxin
level is decreased by a set absolute amount (or until there is none of that toxin left) (see fig. 9). At the
end, the fitness value attributed to each agent and its corresponding chromosome are calculated with
the remaining toxin level for each toxin it is not immune to, and the cost of each function it performed.
A gene cost multiplier is added to allow experimentation with different function groupings as optimal
solution. A lower or greater cost for each subsequent active function should yield a different grouping
of functions, which allows us to examine the effectiveness of the methods to find an optimal solution.

Figure 8: The cleaning function of an agent (vertical chromosome with one gene). If the gene for the
specific toxin (here coloured green) is active, the agent decreases the level of toxin in the environment.
The agent is also immune for the toxin, signified by the toxin coloured barrier around the agent. If the
function for the toxin is off (gene coloured black), the toxin is neither protected for the toxin damage
nor decreases the toxin level in the environment.
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Agents Toxins

Figure 9: A visual representation of the Toxin model with three agents and three toxins. The chro-
mosomes show the active functions of the agents for each toxin, black means off. The toxin levels
decrease according to the number of agents with the corresponding function active.

The system can be described with eqs. (11) to (15) and the following variables:

ni =
|T |

∑
t=1

I(git) (11)

ct = cB −
|A|

∑
i=1

R∗ I(git) (12)

GFCi =
ni−1

∑
j=0

C f ·M j (13)

TCi =
|T |

∑
t=1

ct · (1− I(git)) (14)

Fi =−(GFCi +TCi) (15)

Equation set 1: Toxin model equation definitions.

Given,
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ti Toxin i
ai Agent i
T The set of toxins
A The set of agents
cB Base toxin level amount
ct Remaining level of toxin t
gi Chromosome of agent i, a binary vector of length T
ft Function to clean toxin t
R Rate of cleanup, the amount a toxin is decreased by a cleanup function
C f Base cost of having a gene (function) active
M Gene cost multiplier
ni Total number of active genes for agent i
I(git) Indicator function for gene t of agent i
GFCi Gene Fitness Cost for agent i
TCi Toxin Cost for agent i
Fi Fitness of agent i
CF Collective fitness / global reward

Two different calculations for the global reward or collective fitness are used for the Toxin model,
in different configurations. One called ’average’, which is equal to the average fitness of all individ-
uals (eq. (16)), and one called the ’toxin remainder’, that calculates the total remaining toxin in the
environment (eq. (17)).

CFaverage =
1
|A|

·
|A|

∑
i=1

Fi (16)

CFtoxin remainder =
|T |

∑
t=1

ct (17)

Dynamics illustration To explain the dynamics of the system (fig. 10), consider |N|= 1, meaning
there is only a single toxin T = {t} in the environment, |A| = 15, giving 15 agents, the initial toxin
value cB = 10, each agent performing the function to clean up R = 1 toxin value, and the cost for
having the function active C f = 3. The fitness of a ’helper’ agent with the function active is constant
and independent of the number of other agents with the function active. The fitness of a ’beneficiary’
agent without the function active is dependent on the number of helper agents (fig. 10a). If there
are 10 agents with the function active (eq. (11) ∑i∈A I(git) = 10), the toxin level for the one toxin
in the system decreases to ct = 0 (eq. (12)). All 10 agents with the function active have a fitness of
Fi = −(GFCi +TCi) = −(3+0) = −3 (eq. (15)), for the cost of having the function active, and the
remaining agents have a fitness of 0, since they do not suffer any consequences of not having the
function active. This gives the total system a fitness of -30. The Nash equilibrium of the system is
when for each agent the gene cost of having the function and the toxin cost of not having the function
are equal. At that point the costs of switching from active to inactive and vise versa are not worth it.
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(a) The fitness of being a helper (function active) vs
being a beneficiary (function inactive). The vertical
line shows the payoff / fitness equilibrium. From 10
helpers, all toxin is removed and being a beneficiary
incurs no cost.

(b) The social welfare of the system (the sum of all
individuals’ fitness). The graph shows that the best
collective situation is when there are exactly enough
helpers to clean all the toxin, and no more. Note that
this number does not correspond to the equilibrium
amount of cooperators.

Figure 10: The fitness dynamics of the Toxin model for the example parameters.

The number of agents with the function active at the equilibrium can be calculated using eq. (18):

N∗ =
(cB −C f )

R
(18)

Here,

• N∗ is the Nash equilibrium number of cooperators - the number of agents with the function
active for a toxin.

For the currently defined system N∗ comes to 7 agents with the function active (fig. 10a). In that Nash
equilibrium state if an active agent switches to inactive, the toxin level increases to 4, meaning active
agents now have a fitness advantage. If an inactive agent changes to active, the toxin level decreases
to 2, meaning inactive agents now have a fitness advantage. Note however that for a single inactive
agent to switch to active is a cost neutral move for that agent, making the equilibrium a non-strict
Nash equilibrium.
Note that the equilibrium is a Nash equilibrium that is not Pareto-optimal nor the maximal social
welfare. The equilibrium is not situated at the point that the function is fully satisfied, but at the
point that the costs of having the function and not having the function are equal for each individual
(fig. 10b). From the equilibrium, a Pareto improvement is possible. If one more agent switched from
beneficiary to helper, the switch would be a cost-neutral move (-3 to -3) for the individual agent, and
it would bring benefit to all beneficiaries, the benefit being the size of the cleanup rate (-3 to -2).
The Pareto-optimal distribution is when there are exactly enough helpers to clean all the toxin from
the environment - here any change in strategy that increases the individuals payoff (switching from
helper to beneficiary) reduces the payoff of all beneficiaries. In this state, the switch from beneficiary
to helper decreases the individuals’ payoff.
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Justification Evolutionary game theory is a useful analytical framework for the study of coevolu-
tionary models [132]. The Toxin model allows a window into the evolutionary dynamics that the
speciation architecture produces. It does so through unambiguous evaluation of the fitness of the indi-
vidual and system, making agent phenotype and genotype explicit, and the tune-ability of the model
offers avenues for experimentation, verifying theory with practice. In the Toxin model functions are
explicit. The benefit is that we can observe functions unambiguously. The cost is that due to their
deterministic nature, functions evolve binary. A function can not be ’lost’, as would be the case in
a much more stochastic and complex model, such as predator behaviour in the Predator-Prey model.
One mutation can remove or return a function to the genome. With parameter tuning, changing the
number of toxins and the function cost multiplier, we can determine the degree of speciation required
for an optimal solution. As opposed to the Predator-Prey model, where a theoretical jack-of-all-trades
single genotype is able to solve the problem with three versions of itself and some stochasticty to
break lockstep. Due to its origins, it is especially adept at showing the Black Queen effect. The sys-
tem Nash equilibrium is a suboptimal social welfare. Species are explicit, and by tuning parameter
values we can dictate what the optimal solution composition

4.2.3 Function Optimization Model

(CC)EAs have traditionally been benchmarked with a suite of optimization functions [14, 87, 105,
106]. The original paper by Potter & de Jong[87] proposed cooperative coevolution as strategy for
solving high dimensional optimization problems.
An optimization problem is formally defined by a function f : RN →R, where the objective is to find
a vector x ∈ RN that optimizes the output of f . Here, x is an N-dimensional decision vector, with
each component xi representing a decision variable. The function f (x) maps this vector to a single
real value, which is the objective value to be optimized.
For a minimization problem, the goal is:

min
x∈RN

f (x) (19)

This means finding x such that f (x) is as small as possible.
Function optimization problems can be tackled using an evolutionary computation [1, 106, 87, 10, 11,
88]. By encoding the decision variables vector x as a chromosome, where each decision variable is a
gene, a solution has a genotype that can be evolved through variation and selection. By evaluating the
chromosome with the outcome of its decision variables in the problem domain, a selection pressure
to optimize is be applied. In a traditional genetic algorithm a single population of chromosomes is
evolved, where each single chromosome is a complete solution to the optimization problem. In a
single population where no effort is made to conserve diversity, the population will converge to a
single species of solutions. In an optimization problem with N variables, each chromosome has N
genes with values corresponding to the variables, making the search an N dimensional problem. In
the first cooperative coevolutionary algorithm[87] the N dimensional problem is decomposed into
N 1 dimensional problems, by creating N subpopulations, and so N species, of chromosomes with
a single gene corresponding to the optimization variables, optimizing them separately and evolving
them cooperatively. As discussed before in section 3.3, this decomposition strategy is suboptimal if
the optimization problem is not fully separable and can get stuck in faux optima [7]. A solution is
to group the variables that are linked in a single chromosome species, and coevolve these species.
This problem is non trivial, and a benchmark suite is developed with optimization functions with
various degrees of separability and overlapping subcomponents to benchmark the performance of
the optimization architectures that attempt to solve the problem. While the proposed method makes
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no claims in terms of optimization speed, it is still useful to see the performance and observe the
behaviour on functions from known benchmarks.

The problem of variable grouping can be viewed as a hybrid team heterogeneity problem. The lit-
erature frames subcomponents as species. By viewing a specific subset of the decision vectors as a
species, and we allow both the number of species in a composition and the optimization variables
within a species to change, there is the capacity for an optimal decomposition to emerge. The chal-
lenge is in aiming the evolutionary pressures so that they will do so.

For an N dimensional optimization problem, an individual is a vector of length N. A full solution is
the combination of (initially) N individuals, where the solution is the sum of all individuals (vector
sum of the chromosomes). This initially increases, not reduces, the optimization problem from an N
dimensional problem to an N2 dimensional problem. Then, two new mutation types are introduced:
the gene knockout mutation (section 4.3.9), and a chromosome resizing mutation (section 4.3.10). The
knockout mutation is only applied to the individual chromosomes. It allows a mutation to occur on a
chromosome that ’knocks out’ a gene, by setting its value to zero and allowing no further mutations
except the un-knockout mutation. Because a full solution decision vector is composed of the sum of
all individuals in the composition, a gene with the value zero has no effect on the solution vector. This
is an implementation detail, considering knocked out genes as removed genes has no difference. The
chromosome resizing is a mutation only applied to the composition chromosomes (section 4.3.7). It
allows for a mutation to occur that increases or decreases the length of the chromosome by removing
a randomly selected gene or inserting a random gene to the chromosome. This in- or decreases
the number of species in the solution, and so the number of subcomponents. This gives the system
the capacity to evolve a solution where species are indeed vectors with a subset of variables that
have linkage, and that there are the ’correct’ number of species. This approach has the advantage
of allowing for overlapping subcomponents, since there is no restriction for a single variable to be
constrained to a single subcomponent. The slight downside to not having that restriction is that if 0 is
a local minimum for a variable it has a more likely probability of ending up there and a harder time
of getting out, because there is a mutation that sets the variable to 0 and entrenches disallows regular
mutations to change the value, that is much more likely to occur than a regular mutation setting the
value to 0.

We attempt to do so with the inspiration of the biological principles of Black Queen function transfer
and genome reduction that utilizes the architectures ability of emergent speciation. By giving a fitness
penalty for active genes, the intention is to create an incentive for non-linked variables to not be
grouped, through selection of the quasispecies [34]. The fitness penalty for non-knocked out genes
is similar to the gene cost in the Toxin model. A non-knocked out gene performs the function of
contributing to the solution vector. By placing a cost on that function we place an evolutionary
pressure to minimize the size of subcomponents. To counter this effect for variables that are linked
there should be an evolutionary pressure for linked variables to occur in the same subcomponent.

Functions The benchmark functions used are a Sphere function eq. (20), the Griewangk function
eq. (21), a custom fully nonseparable function (FNS) eq. (22) and a strongly partially separable func-
tion (SPS) eq. (23). For each function f : RN → R, and where x = [xi1,xi2, . . . ,xN ]. For fSPS x is
divided into k subcomponents such that x = [x(1),x(2), . . . ,x(k)], where x(k) = [xk1,xk2, . . . ,xkm].
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(a) Sphere (b) Griewangk (c) FNS (d) SPS

Figure 11: 3D projection of the optimization functions with N = 2. These images give an oversimpli-
fied view of the dynamics, as N is usually larger than 2.
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∑
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gsubf(x(i)) (23)
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m

∑
j=1

xi j)
2 (24)

(25)

Equation set 2: Function optimization functions.

The solution to each objective function has a standard offset applied to it using eq. (26), where f :
RN → RN . The offset to each value xi is the index i of the value starting at 0 (+0 for the first, +1 for
the second, +2 for the third.) This is done so that the solution to every optimization is not 0 for each
variable. This is to prevent ’cheat’ convergence to the optimum through gene knockout mutations,
see section 4.3.9.

foffset(x) = [x1 +0,x2 +1, . . . ,xN +(N −1)] (26)

The functions are selected to demonstrate the behaviour of the system and capability to find optimal
solutions under varying conditions of separability. The FNS function is fully nonseparable. The SPS
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function is divided into subcomponents of size m, where each subcomponent is fully separable from
each other subcomponent, and strongly nonsepararable within the component. The tanh function
makes the subcomponent sensitive to small variation, but with diminishing returns for larger varia-
tion. The Sphere and Griewangk functions are commonly used as benchmark functions for function
optimization.
First, the solution vector x without offsets is calculated by taking the element wise addition of all
chromosomes in the composition with eq. (27).

x =
n

∑
i=1

ci (27)

Here,

• x is the solution vector without offset applied.

• ci is the i-th chromosome in the composition, an N-dimensional real valued vector.

• n is the number of chromosomes in the composition.

Then, the offsets are applied to create the solution vector x′ with eq. (28).

x′ = foffset(x) (28)

Now the objective value y is calculated by applying the solution vector with offsets x′ to the objective
function f with eq. (29).

y = f (x′) (29)

Here, f is any of eqs. (20) to (23).
For each individual chromosome ci, the gene fitness cost is calculated with eq. (30).

GFCi = |{gi ∈ c : gi ̸= 0}| (30)

Here,

• GFCi is the fitness penalty for each non-knocked out gene.

• c is the chromosome, an N-dimensional real valued vector.

• gi is the i-th gene value on the chromosome.

Finally, the individual fitness of any chromosome Fi can be calculated with eq. (31).

Fi =−(y+GFCi) (31)

The collective fitness CF is equal to the objective value, eq. (32).

CF = f (x′) (32)

Justification Function optimization problems are a common benchmark problem for cooperative
coevolution [106, 105, 87, 10, 11, 88]. Applying the larger model framework to the explicit task of
function optimization, specifically with functions of different levels of separability provides insight
in the models ability to correctly group linked decision variables in subcomponents.
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4.3 Component Mechanics
Other than the domain models, the larger framework model has many components that require elab-
oration. In this section the basic evolutionary mechanics are detailed, as well as the types of fitness,
genome distance based mate selection, species detection and tracking, the need for agent sampling
and how that is done through evolutionary compositions, the species representation fitness scaling
mechanism, knockout mutation and chromosome resizing.

4.3.1 Evolutionary Mechanics

The basic evolutionary unit of the model is the chromosome. A chromosome is a vector of a length,
the length corresponding to the number of genes on the chromosome. A chromosome can have one
of multiple types of genes; the chromosome vector can consist of continuous values (floating points
or integers) (as in the Predator-Prey model), of booleans (as in the Toxin model), or nominal names
(as in the compositions, see section 4.3.7). The length of the chromosome is consistent for all chro-
mosomes in a simulation and generally does not change over time, with the exception of chromosome
resizing (see section 4.3.10, applied only to the composition chromosomes in the Function Optimiza-
tion model). A generation of chromosomes is evolved to a new generation through the evolutionary
operations of selection, crossover and mutation. In the model, evolutionary operations are preformed
on the population using what in fig. 6 is dubbed the ’Evolution Machine’, an overview of which is
given in fig. 12.

Initialization Chromosomes are initialized with random values. The initialization can be passed
boundary conditions for the values, by default these are [-1,1]. Compositions are initialized randomly
with values of the detected species labels of the first generation of agents.

Selection Chromosomes are ranked according to their obtained fitness value. Set parameters (see
table 7) dictate the number of chromosomes to be culled from the population nc, and the number of
individuals that will be eligible for reproduction np. The nc lowest ranking individuals are culled. The
number of offspring to be produced no equals nc. The np highest ranking individuals are selected for
reproduction, these are the set of parents P.
From the set of np highest ranking individuals P a first parent is selected. In the model there are three
types of selection processes possible: random selection, sequential selection and fitness proportional
selection. Random selects a random first parent (with replacement), sequential loops through the set
highest to lowest, fitness proportional selects a random individual weighted to the relative fitnesses of
the individuals in the set.
For each first parent, a mate, or second parent is selected from P. There are three types of mate se-
lection processes possible: random selection, fitness proportional selection, and approximate nearest
neighbour selection. Random selection selects a random other from P. Fitness proportional selects
a random other weighted to the relative fitnesses. Nearest neighbour selection takes a sample of P,
and compares the genomic distances of the first parent to all in the sample, and selects the one with
the smallest distance. Genomic distance for floating point genes are calculated using the L1 Norm
or Manhattan Distance, or total absolute distance between genes. For nominal and binary genes the
distance is equal to the Hamming distance. See section 4.3.3 for details.

Crossover The two selected parents produce offspring using random crossover. For each parent
pair, two offspring are generated. For each gene, a random value determines whether the gene from
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Population Rank on fitness

selection criterion

fitness

Selection

reproduce
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cull

Select parents
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Figure 12: Schematic overview of the different steps taken to evolve a population from one generation
to the next. First the individuals are ranked on their fitness towards a selection criterion. In the larger
model this is the performance of the individuals and compositions in the domain models, in this
schematic overview it is signified by their likeness to the star shape. Once ranked, a subset of the
population is selected to produce offspring, a subset is culled from the population. The subset not
selected to be culled survive to the next generation. The variables determining the sizes of these
subsets are independent - e.g., the full population can be selected for reproduction and to be culled.
Reproducing individuals are paired up, and produce offspring. For each offspring, there is a chance
for a mutation to occur. The newly produced offspring and the survivors of the previous generation
form the new generation.
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parent A or parent B is inherited. The gene of the other parent goes to the other offspring. In this way,
no genes are lost.

Mutation For all newly produced offspring, there is a small chance for its genes to mutate. This
mutation probability ∈ [0,1] applies to each gene individually. For binary genes, a mutation flips
the gene to the opposite value. For nominal genes, a mutation changes the value to any of the other
available gene values. For continuous genes, there is a second parameter called the mutation range
∈ [0,1]. To mutate a gene a delta value is applied changing the value up or down slightly. The delta
value is sampled from a uniform distribution from the range [-mutation range, mutation range].

4.3.2 Fitness Calculation

Fitness determines the selection pressure. In the domain models, there are several ways the fitness
of an individual can be determined. The individual fitness represents the performance of a single
agent in the model. In the Predator-Prey model see eq. (9), in the Toxin model see eq. (15), in
the Function Optimization model see eq. (31). The collective fitness represents the performance of
the combination of agents in the domain model. In the Predator-Prey model the collective fitness
calculation is the average individual fitness of all participating agents eq. (10), in the Toxin model it
is either the average fitness of all agents (eq. (16)) or the toxin remainder (eq. (17)), in the Function
Optimization model it is the objective value (eq. (32)). The difference is that the collective fitness is
the same for each participating agent in the composition in the domain model run, and the individual
fitness individually determined per agent.
The individual fitness allows specific tuning of behaviour or shape growth, such as introducing a
penalty term for each active gene in the Function Optimization model minimizes the size of sub-
components. It also allows the collective fitness to be a function of the collective personal fitnesses,
such as in the Toxin model where the performance of the system is determined by the fitness of each
individual.
The collective fitness makes sure that the evolution of the system is aimed at a collective objective -
the thing that we want the system to achieve. The individual fitness promotes individual specialization
and efficiency.
The personal fitness of an agent is the combined individual fitness and collective fitness (eq. (33)),
where the relative weight is made tunable through a parameter called the ’collective fitness weight’
(c f w), which in the experiments is only ever set to 0 or 1. This is used for some experiments where
we want the fitness of an individual be fully determined by either the collective or individual fitness.

PFi = (1− c f w) ·Fi + c f w ·CF (33)

Here,

• PFi is the personal fitness of agent i.

• c f w is the collective fitness weight parameter ∈ [0,1].

• Fi is the individual fitness of agent i.

• CF is the collective fitness.

The ’final’ fitness of a chromosome is determined by taking the average of all obtained personal
finesses from each model run it participated in (eq. (35)). Note that, if applied, the fitness scaling of
section 4.3.8 is applied to this value, before selection.
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Given that ARi is the set of domain model runs where agent chromosome i is in the set of agents A for
that model run (eq. (34)):

ARi = {r ∈ R|i ∈ A} (34)

FFi =
1

|ARi|
· ∑

r∈ARi

PFi,r (35)

Here,

• ARi is the set of domain model runs featuring the agent chromosome i.

• R is the set of model runs {r1,r2, . . . ,rn}.

• A is the set of agents for model run r {a1,a2, . . . ,an}.

• FFi is the ’final’ fitness of agent chromosome i.

• PFi,r is the personal fitness obtained by agent chromosome i in model run r.

The fitness of a composition chromosome for a single model run is equal to the collective fitness
(eq. (36)).

FCi =CF (36)

Here,

• FCi is the fitness of composition chromosome i.

• CF is the collective fitness achieved by the agents that comprise the composition this domain
model run.

The final fitness of a composition is determined by taking the average collective fitness obtained in
all runs it or any other composition that is identical to it formed the agent composition (eq. (38)).
Given that CRi is the set of domain model runs where the composition of agent types C is equal to the
composition chromosome i for that model run (eq. (37)):

CRi = {r ∈ R|C = i} (37)

FFCi =
1

|CRi|
· ∑

r∈CRi

FCi,r (38)

Here,

• CRi is the set of runs featuring composition chromosome i or a composition identical to i.

• FFCi is the final fitness of composition chromosome i.

• FCi,r is the fitness obtained by a composition equal to composition chromosome i in domain
model run r.
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4.3.3 Genome Distance Based Mate Selection

One mechanic employed to promote speciation is that of approximate nearest neighbour mate selec-
tion. One of the problems of standard genetic algorithms is that it is difficult to maintain population
diversity. Maintaining two different species in a single population with uniform interbreeding is less
stable than maintaining a single species, so eventually the population will converge to a single species.
In a forced subpopulations approach this problem is solved by completely separating subpopulations
from each other, allow no (or very little) gene flow between subpopulations, meaning a single species
emerges per subpopulation. Since with emergent speciation the number of species and so subpopula-
tions is variable at all times, a different approach is required.
To restrict the gene flow between species in a dynamic way, mate selection can be made dependent
on genomic distance between individuals. This mimics the biological equivalent of mates selecting
mates that are like them, introduces a specializing feedback loop, and allows for parapatric speciation
to occur.
A chromosome can be viewed as an n-dimensional vector. The (genomic) distance between two
vectors with continuous valued genes can be calculated by calculating the L1 norm or Manhattan
distance between the two vectors (eq. (39)), or taking an edit distance for binary or nominal gene
values.

D(a,b) =
n

∑
i=1

|ai −bi| (39)

Here,

• D(a,b) is the distance function, taking two vectors as input arguments.

• a, b are vectors of length n.

• ai, bi are the i-th element of their respective vectors.

Calculating the closest neighbour for each first parent in high dimensional space is computationally
costly, and quickly becomes unfeasible for larger populations. Instead a random sample of the eligible
parent population can be taken, and from this the nearest neighbour can be selected. See fig. 13
for a visual representation, and code 2 for the pseudocode algorithm. Taking the nearest neighbour
from a sample has the added benefit of tunable stochasticity. The larger the sample, the closer the
nearest neighbour will be on average. Setting the sample value to the fraction of the population size
that reproduces ensures the true nearest neighbour, and setting it to 1 gives a random eligible mate.
Selecting the nearest neighbour from a random sample enables that most mating is done with a close
mate, and there is still the possibility for species crossbreeding. Again, there is the trade-off between
exploitation and exploration.
Alternative methods that will not be explored here are only selecting mates from the same species with
a small chance of selecting a random other, or distance proportional mate selection. See section 7.4
for more details.
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first parent
selected mate

sample

Figure 13: Approximate Nearest Neighbour Mate Selection. A first parent is selected (red). Then, a
sample of the potential second parents is taken (orange). For each parent in the sample, the distance
to first parent is calculated. The second parent with the closest distance (green outline) is selected to
form a pair with the first parent. Note that this is (intentionally) not necessarily the true closest parent.

# Genome Distance Based Mate Selection through Approximate Nearest Neighbour

def select_reproduction_pairs(genome_population: list[Genome], n_reproduce: int
, n_parent_pairs: int):
# select the top ranked genomes for the set of reproducers
parent_population = genome_population[0:n_reproduce]
first_parents = select_first_parents(parent_population, n_parent_pairs)
second_parents = [select_mate(p1, parent_population) for p1 in

first_parents]
return zip(first_parents, second_parents)

def select_first_parents(...):
# Create a set of first parents with fitness weighted random sampling
return first_parents

def select_mate(p1, parent_population):
# Filter self and select a random sample
eligible_parents = select_eligible_parents(p1, parent_population)
p2 = min(eligible_parents, key=lambda p2: distance(p2, p1))
return p2

Code 2: Genome Distance Based Mate Selection

4.3.4 Species Detection

Because speciation occurs bottom-up in a single population, methods to detect species are required.
For the Toxin model, species are explicit due to their explicit and deterministic functions. Species
labels can be derived directly by taking the binary agent chromosome and mapping it to a base 10
integer. Species labels for the optimization model should represent the different variable groupings,
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so the species labels for those agents are obtained by converting the agent chromosome to a binary
vector where each off bit is a knocked out gene, and a non-knocked out gene is an on bit, and mapping
the resulting binary vector to a base 10 integer. In order to group the chromosomes together in
reasonable groups that are similar, we can utilise the format of the chromosomes as vectors to apply
a vector quantization technique. We can use unsupervised cluster detection algorithms. These cluster
algorithms detect groups of similar datapoints. The analogy is that if we translate human DNA and
the DNA of bananas to vectors, a cluster algorithm would be able to assign a group A and group B
that correspond to the human DNA group and the banana DNA group.
In nature, the taxonomy of animals is also not always as clear-cut. During the process of speciation
it is not always clear when the one species has become two, and the decision boundary is a human
construct. There is within species variation too, and an individual with a particularly rare set of genes
would not necessarily be considered a different species. This is a difficulty that we have to deal with,
but it also affords us some freedom in ambiguous cases. It would be better suited to think of the gene
pool with species as a collection of individuals that can loosely be grouped into sets of quasispecies.
Over time, through positive feedback loops towards speciation, eventually species will clearly be
distinct from each other.
In our gene pool, the differences wont be as clear, especially as the intent of the simulation is some
form of speciation, meaning that there will be many in-between species forms and outliers.

There are many considerations when deciding which clustering algorithm to use, such as the speed,
scalability, ability to detect non-spherical clusters, ability to deal with outliers, unbalanced cluster
sizes. Careful consideration and testing has shown the DBSCAN algorithm to perform best in de-
tecting clusters, as well as being scalable for a large number of datapoints and medium amount of
clusters, as well as its ability to deal with non-flat geometry, uneven cluster sizes and ability to detect
outliers.
DBSCAN (Density-Based Spatial Clustering of Applications with Noise)[85, 86] is a density-based
cluster algorithm. It works by defining an epsilon value (ε) and a minimum number of points. Then
it groups all datapoints together based on distance to other points. See fig. 14 for a visualization.

Two important parameters for DBSCAN are the ε value [133], which determines the maximum dis-
tance between two points for them to be considered in the same neighbourhood, and the minpts, the
minimum number of datapoints a set should have for it to be considered a cluster. The first is a value
that would need careful tuning for our case: set it too low and we will get many more species than
desired. Set it too high, and we will not have enough definition of the species, and different clusters
will be considered the same species. The second parameter, minimum of points, we will set to 1. In
our model there are no outliers that are not also a species. A single outlier that does not belong to any
other cluster should be considered its own species. The alternative is that all outliers belong to their
own species group of outliers, which makes no sense.

See code 3 for a pseudocode implementation of the three species detection algorithms.
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ε

Figure 14: Cluster detection using DBSCAN. Clusters are build by connecting all datapoints that are
within an ε radius of each other. All (indirectly) connected points are then assigned the same cluster
label. The colours show the cluster labels. All green neighbourhood circles are shown to demonstrate
when connections between points are made. The blue and orange neighbourhood circles show that
overlap of circles do not warrant a connection. As the minimum number of points for a cluster is set
to 1, the single datapoint is also assigned a cluster label.
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# (Quasi)species detection for the chromosome population

def get_quasispecies(chromosome_population, species_type):
if species_type == "binary" or species_type == "binary_knockout":

quasispecies_labels = get_binary_quasispecies(chromosome_population,
species_type)

if species_type == "spatial_cluster":
quasispecies_labels = get_spatial_cluster_quasispecies(

chromosome_population)
return quasispecies_labels

def get_binary_quasispecies(chromosome_population, species_type):
quasispecies_labels = []
for chromosome in chromosome population:

if species_type = "binary":
binary_chromosomes = [1 if gene > 0 else 0 for gene in chromosome]

elif species_type = "binary_knockout":
binary_chromosomes = [0 if gene = "knocked_out" else 1 for gene in

chromosome]
chromosome_label = binary_to_integer(binary_chromosome, base = 10)
quasispecies_labels.append(chromosome_label)

return quasispecies_labels

def gen_spatial_cluster_quasispecies(chromosome_population):
# DBSCAN implementation of the scikit-learn (sklearn) library utilized.
quasispecies_labels = sklearn.cluster.DBSCAN(epsilon, min_samples).

fit_predict(chromosome_population)
return quasispecies_labels

Code 3: Species Detection

4.3.5 Species Tracking / Label Homologation

Detecting species in the gene pool for a single generation is one thing, but it becomes more difficult
when we want to track these species though time. Applying the same cluster algorithm to a new
generation of chromosomes does not guarantee that the labels assigned are consistent with those of
the previous generation. The label of a cluster can be arbitrarily reassigned from one generation to
the next. We have to remember we’re dealing with quasispecies, meaning that the individuals can
change in steps from one generation to the next. Species assignment is context-dependent, and if
many individuals change, the shapes of clusters will also change. To introduce some consistency,
we apply ’gt−1 +gt’ species detection; when performing the vector quantization both the current and
previous generations’ full population are included (see fig. 15).
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Figure 15: gt−1+gt cluster detection: cluster detection is performed with both the current generation
(opaque) and the previous generation (faded).

Additionally, the cluster prototypes are tracked for each generation. The cluster prototype type used
are cluster centroids - the average position of all included datapoints. This is sub-optimal, as the
DBSCAN algorithm is density-based and not centroid-based, however using density-based prototypes
brings a lot of extra computational cost [134], and centroid prototypes have shown good performance
during testing.

These prototypes are used to have label consistency. Each generation the cluster algorithm detects
the current clusters. Next the cluster prototypes are calculate for each cluster (fig. 16). Then each
prototype is assigned the label of the closest prototype from the previous n generations (fig. 17), if the
distance is below a threshold (fig. 18a). A small n is desirable, setting a threshold ensures new species
are allowed to emerge through genetic drift. If multiple prototypes in the newest generation are
closest to the same older prototype (fig. 18b), only one assume the label, and the others are assigned
a new label. Which prototype is assigned the old label is determined by checking which prototype is
associated with the largest cluster (largest is assigned the label), and using the smallest distance to the
cluster as a tie-breaker.

There will still be cases where one individual will be assigned species label A in one generation and
species label B in the other, but using these species tracking techniques enables sufficient reliability
over time. There is still some arbitrariness and stochasticity in this method, and further improvements
to this method will most likely yield improved performance on the whole. Cluster tracking over time
is an area of ongoing research that has picked up some interest recently with analyzing data patterns
over time in streaming data such as social media [123, 124, 125].
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Figure 16: For each cluster, the prototype (in this case, centroid) is calculated. The cluster centroid is
at the average position of all cluster constituent datapoints.

(a) The distance to previous n generations’ known
cluster centroids is calculated.

(b) The new cluster is assigned the label of the closest
previously known cluster centroid.

Figure 17: To promote species label consistency, newly detected clusters are compared using cluster
prototypes to previously known clusters. Labels are propagated through generations.
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θ

(a) A threshold value theta (θ) is set so any cluster that
deviates significantly from known clusters is assigned
a new label.

(b) If two new cluster prototypes are assigned the same
closest known cluster, the cluster with the most con-
stituents is assigned the label, and the other a new la-
bel. If both clusters are equally large, the closest pro-
totype is assigned the label.

Figure 18: New species labels are created if there is no known previous cluster prototype within
a threshold distance, or if there is a conflict over which new cluster should be assigned the same
previously known cluster label.

def homologate_species_type_labels(clusters):
# calculate prototype for clusters
prototypes = [calculate_prototype(cluster) for cluster in clusters]

# find closest known prototype of the last n generations, assign its label
if it is within threshold distance, a new label otherwise.

for p in prototypes:
closest_known_prototype = find_closest_prototype(p, known_prototypes[-n

:])
if distance(closest_known_prototype, p) <= threshold:

p.species_label = closest_known_prototype.species_label
else :

p.species_label = name_generator.next()

# if the same label is assigned to multiple prototypes, reasign the labels
of prototypes that are not the largest, or closest when multiple are the
largest.

for conflicting_prototypes in groupby(prototypes, species_label):
if len(conflicting_prototypes) > 1:

p = max(conflicting_prototypes, key=lambda p: (p.cluster_size, -p.
distance_to_closest_prototype))

others = conflicting_prototypes - p
for other_p in others:

other_p.species_label = name_generator.next()

known_prototypes[generation] = prototypes

Code 4: Species Tracking Algorithm. In the true implementation, the steps are performed to build
a translation key of the detected temporary labels to the most likely species type label considering
previous cluster-label pairings.
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4.3.6 Agent Sampling

In a domain model, a certain number of agents are required. For example in the Predator-Prey model,
there are three predators, meaning there are three agent chromosomes required. We will refer to these
positions as agent slots. A composition is the combination of chromosomes filling the agent slots in
a single run of the model. Because the size of the population of agent chromosomes is larger than the
number of slots, a sampling method is required to sample the individuals from the population. The
sampling method should attempt to satisfy three constraints:

• Each individual chromosome is evaluated at least once.

• Chromosomes are sampled a proportionally equal amount.

• Chromosomes are sampled with as many unique others so the evaluation is robust.

A simple random sampling with replacement after exhaustion strategy adheres to the first two con-
straints. However, this strategy completely disregards the species type of the individuals, making it
difficult for coevolution to occur.

Agents need to be evaluated under the conditions that they are ’supposed’ to function. In a Predator-
Prey simulation with a scenario with forced subpopulations, all compositions are A,B,C, meaning
there will always be an agent of type A, an agent of type B, and an agent of type C present in the
simulation. An A evolves in an environment with always one type B and one type C, and so allowing
it to exploit the niche not present in the simulation. The species ’learn’ to cooperate with each other
as they are always part of each others environment. For this, a deterministic sampling strategy can be
utilized.
When there are no forced subpopulations, we can not exploit this knowledge, as is the nature of hav-
ing no fixed subpopulations. If we were to create groups of 3 by sampling randomly or uniformly
from the population, the compositions would generally reflect the larger population distribution, but
any species would be matched with any other species. Any fitness evaluation then would include a
large number of combinations that it did not ’evolve’ for, and subsequently they are not allowed to
exploit a niche, but the fitness landscape would be such that the agent that can cooperate the best with
any composition of other types would be the fittest. This does not promote niching towards speci-
ation, but evolution towards generalists. To address this problem, the novel method of evolutionary
compositions (section 4.3.7) is designed.

Deterministic sampling strategy If the population is segmented into equal sized forced sub-populations
where the number of sub-populations corresponds to the number of slots, a deterministic sampling
strategy can ensure all three constraints. The deterministic sampling algorithm iterates through the
sets of chromosomes of distinct types and generates a specified number of combinations. It employs
an index-based approach where from each subpopulation it selects the individual with the index cor-
responding to ai in eq. (40).

ai = ci +(ti · li) mod |S| (40)

Here,

• ai is the index of the agent in the population.

• ci is the index of the current composition.
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• ti is the index of the type subpopulation.

• li is an iterator counting the number of loops done over the population.

• |S| is the size of the subpopulations.

Specifically, this means the first loop produces |S| compositions where the elements with the same
index from the populations are sampled together. On the second loop, the indices of the second and
third subpopulations are offset by +1 and +2 respectively, on the third loop the offsets are +2 and +4.
This ensures chromosomes will be sampled at least once, equally as much, in unique combinations
with as many other chromosomes. See code 5 for a pyseudocode example.

# Assumption: there are a fixed number of species, equal to the size of the
composition, all with an equal number of members.

def generate_deterministic_chromosome_combinations(chromosomes, n_combinations)
:

chromosomes_per_type = index_chromosomes_per_type(chromosomes)
n_chromosomes_per_type = length(chromosomes_per_type[type])
chromosome_combinations = []
loops = 0

while True:
for chromosome_index in n_chromosomes_per_type:

chromosome_combination = []

for type_index, chromosome_type in enumerate(chromosomes_per_type):
selected_chromosome_index = (chromosome_index + (loops *

type_index)) % n_chromosomes_per_type
chromosome_combination.append(chromosomes_per_type[

chromosome_type][selected_chromosome_index])

chromosome_combinations.append(chromosome_combination)

if len(chromosome_combinations) == n_combinations:
return chromosome combinations

loops += 1

Code 5: Deterministic Sampling Strategy

4.3.7 Evolutionary Compositions

To allow emergent species to coevolve, they need to be evaluated in composition with each other. If a
fitness advantage of species A by exploiting a niche is dependent on the presence of another species
B, evaluating species A without species B present gives poor results, giving species A a selection
disadvantage. Beyond needing a single other species to be present, the evolutionary landscape is de-
termined by the complete environment, and relationships can be indirect and complex. It could be
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possible that the fitness advantage of A enjoyed with a B present is only possible if species B ex-
presses a behaviour made indirectly possible by a species C, or if there are more than one of species
A. Therefore, in order to properly evaluate species, they need to be evaluated in compositions that
allow them to exploit their niche. In other words, there needs to be some stability in the evolutionary
landscape for agents to move into their niche. This problem is non-trivial, because both the number
of individuals of a certain type is variable, the number of types is variable and not restricted to the
number of slots, and most importantly, the types themselves are emerging and disappearing.

Creating a configuration of variables in order to optimize an objective value is an optimization prob-
lem, and so the solution we propose is to determine the compositions using an evolutionary algorithm.

A composition chromosome is a combination of agent chromosome types, that can be evaluated by
using the collective fitness of the agents in the domain model. Note that the chromosome is explicitly
a combination and not a permutation. The chromosome is a vector where each value, representing a
gene, is a nominal value signifying a species type, e.g., C = [A,A,B]. For the Predator-Prey model,
the gene is the detected species label (section 4.3.4). For the Toxin model, the species label is the
base 10 integer value of the binary agent chromosome. For the optimization model, the species label
is the integer value of the agent chromosome mapped to binary, where a non-knocked out gene is
1, and a knocked out gene is 0 (meaning variable groupings determine the species). The phenotype
of this chromosome is the expression of a composition of sampled agents with the corresponding
type in the domain model. Figure 19 visualizes how an evolutionary compositions chromosome is
used as sampling strategy, selecting agent individuals of types corresponding to the genes on the
composition chromosome to perform in the domain model. Using a genetic algorithm to determine
the compositions has the advantage of dynamically adjusting the compositions when new dynamics
emerge. It balances exploitation of known well performing global and local (subcomponent) compo-
sitions and exploration by recombination and variation. By providing some stability of composition
it facilitates coevolutionary growth. By recombination and variation it explores potentially beneficial
(sub)compositions and allows a flexibility to move with a dynamically changing system.

There are also some caveats that we need to account for. The composition chromosome population
and the agent chromosome population are decoupled. A next generation of the composition chromo-
somes are an ’improved’ generation of compositions, optimized for the previous generation of agent
chromosomes. The compositions are trying to hit a moving target.

The types have different rates of change between populations. In the agent population the proportion
of chromosomes with a specific type can change strongly between two generations. The number of
genes signifying that species type maximal change between two generations of composition chromo-
somes is lower. This recalcitrance in change is something that can be used as an advantage. More on
that advantage in section 4.3.8.

Composition-Population alignment Because the populations are decoupled, it is not possible for
them to be perfectly adjusted to each other at all times. It is possible that a type featured in the
compositions has gone extinct in the agent population, and if a new type emerges in the population it
needs to be introduced in the compositions, and there need to be sufficient slots for all chromosomes
to feature in at least one composition. This can be solved in two ways, and which way constitutes a big
design decision. The compositions can be aligned with the agent population, or the compositions can
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Agent Population Composition Population

Slots

Domain
Model

Figure 19: Evolutionary agent sampling creates compositions of individuals according to their type,
directed by composition chromosomes. In this schematic overview, the domain model requires three
individuals to function (three slots), as is the case in the Predator-Prey model. Here we see three
composition chromosomes, where the genes signify the agent type. The green, red and orange com-
position samples one agent of each of those types, and delivers them to the domain model.

be taken as leading. Favouring the agent population entails adjusting the composition chromosomes
to adhere to constraints set by the agent population. Favouring the compositions will result in some
agents from the population not being selected for any composition, which effectively means they are
culled without evaluating their fitness.
The composition chromosomes are aligned with the agent chromosome population in two ways. The
evolutionary step of the composition chromosomes occurs after the evolutionary step of the agent
chromosomes, so the new species types and their corresponding counts are known. The first is that
during evolutionary step of the composition chromosomes when a mutation occurs, a mutation is
restricted to the set of species types occurring in the new agent chromosome population. Genes on
a composition chromosome signifying a species type no longer present in the agent chromosome
population are also mutated. This ensures that all compositions only feature species types that are
present in the agent chromosome gene pool. The second alignment strategy ensures that there is at
least one available slot for each agent chromosome. After the evolutionary steps of both chromosome
populations, the differences between each species type occurrence are calculated. A negative delta
means that the type occurs more in the chromosome population than in the compositions, and so the
negative delta correspond to the number of agent chromosomes for which there is no slot available.
The composition chromosomes are iterated over in random order and the most over-represented genes
are replaced by underrepresented genes until there are no negative deltas left. See code 6
To favour the compositions over the agent population, the above alignment strategies are simply not
applied. The new generation of agents is generated with the remaining agents that did feature in
compositions. In this case, the values for cull fraction and reproduce fraction are applied to the
desired population size, not the actual number of agent chromosomes.
By employing evolutionary compositions with an agent population and a population for compositions,
both concurrent learning and a hybrid heterogeneous team learning is employed (section 3.2). The
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next section describes how the credit assignment problem is dealt with.
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def align_compositions_with_chromosome_population_types(compositions,
chromosomes):
type_deltas = get_chromosome_composition_type_deltas(compositions,

chromosomes)

# Get transformations
transformations = []
while any(delta < 0 for delta in type_deltas.values()):

from_type = max(type_deltas, key=type_deltas.get)
to_type = min(type_deltas, key=type_deltas.get)
type_deltas[from_type] -= 1
type_deltas[to_type] += 1
transformations.append((from_type, to_type))

# Apply transformations
for from_type, to_type in transformations:

# Loop over the compositions randomly so we don’t introduce a bias with
changing earlier compositions

shuffle(compositions)
for composition in compositions:

if from_type in composition:
composition.remove(from_type)
composition.append(to_type)
break

return compositions

def get_chromosome_composition_type_deltas(compositions, chromosomes):
# Check the differences between type occurance in the chromosome population

and the compositions.

# Extract chromosome types from chromosomes and compositions
chromosome_types = [chromosome.type for chromosome in chromosomes]
composition_types = [type for composition in compositions for type in

composition]

# Count occurrences of each type in chromosomes and compositions
chromosome_counts = Counter(chromosome_types)
composition_counts = Counter(composition_types)

# Calculate and return the deltas between compositions and chromosome
counts

type_deltas = {type: composition_counts[type] - chromosome_counts[type] for
type in chromosome_counts}

return type_deltas

Code 6: Agent population - Compositions Alignment
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4.3.8 Species Representation Fitness Scaling

While there is now evolution present on both the individual and composition level, the individual
population evolutionary process is still completely decoupled from the compositional evolution. Say
there is an individual species type that performs a function at personal cost, but yields a net gain for
the population. This species has an evolutionary disadvantage to its competitors in the agent popu-
lation. Compositions are evolved with team performance, and so will feature species that contribute
to the collective. This means that a species with self-sacrificing altruistic behaviours feature reliably
in compositions, and decline in the agent population. Those species are represented proportionally
more in the compositions than in the individual population. This signature of altruistic species can be
utilized. By introducing a fitness advantage for species that are represented more in the compositions
than in the population, species that provide a public goods at personal cost are compensated for this
cost. In this way, a personal cost is allowed so far as it benefits the collective. To this end, we in-
troduce the species representation fitness scaling mechanism. The personal fitness of each individual
is scaled with a scalar that is equal to the representation rate of its species in the compositions. This
introduces an evolutionary pressure on the individual population to shape according to the distribution
of the compositions. Compositions are evolving for teamwork, individuals evolve competitively.

Given,

A The set of agents {a1,a2, ...,an}.

ai Agent ai with a species type type(ai) ∈ S and a fitness fitness(ai) ∈ R.

C The set of compositions {c1,c2, ...,cm}.

c j Composition c j is a multi-set of species types, e.g., [s1,s2,s2].

S The set of unique species types {s1,s2, ...,sk}.

sk Species type identifier sk.

First a normalization factor α is calculated with eq. (41) to account for differences in agent population
and total slots in the composition population.

α =
|A|

∑
m
j=1 |c j|

(41)

Then, for each species type s ∈ S the fitness scaling factor βs can be calculated using eq. (44).

countC(s) = ∑
c j∈C

|[s : s ∈ c j]| (42)

countA(s) = |{ai : type(ai) = s,ai ∈ A}| (43)

βs = α× countC(s)
countA(s)

(44)

Finally, the fitness of each agent a is scaled according to its species scaling factor with eq. (45).

fitnessscaled(ai) = fitnessbase(ai)×βtype(ai) (45)
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It is possible that there are multiple niches that can coevolve. It is very possible and probably very
likely that not all niches on the sequence space evaluate to the same range of fitness. Other than in
nature, the artificial selection performs selection on one fitness range, agnostic of species or niche.
Any species that has a lower fitness will be out-competed by another species with a higher fitness.
Even if both species are in an obligate mutualistic relationship, the species with the higher fitness will
crowd out the lower fitness species, causing the extinction of the lower fitness species, which means
that the higher fitness species crashes. This is the difference in fitness that should be compensated for
with the species representation fitness scaling.

4.3.9 Knockout mutation

For the Function Optimization domain model, we want agent chromosomes to be able to represent
any possible subcomponent / variable grouping. Species should be allowed to evolve to include more
or fewer variables in its grouping. A full solution consists of a combination of agent chromosomes,
and the solution vector is constructed by taking the sum of all chromosome vectors. If the value of a
gene is 0, that gene has no effect on the solution vector. This means that by setting a gene value to
0 is equivalent to removing that component variable from the subcomponent. To facilitate dynamic
variable grouping and subcomponent size, the gene knockout mutation mechanic is introduced in the
evolutionary step of the architecture. Each gene has a probability knockout mutation probability to
be knocked out, meaning its value is set to 0 and no further mutations are allowed except the un-
knockout mutation, which sets the value of the gene to the value of any random other gene on the
chromosome and re-allows regular mutations to occur. During the crossover step, knocked out genes
are transferred to offspring in the same way as non-knocked out genes.

4.3.10 Chromosome resizing

When there is no predetermined number of slots in a domain model as in the Function Optimization
model, the there is no size restriction on the composition chromosome. Therefore the composition
chromosome is allowed to resize through a resizing mutation. In essence this mutation is similar to
the knockout mutation, but since a composition is a combination and not a permutation a resizing mu-
tation can be simpler, by either removing or adding a random gene with equal probability. Removing
a gene simply removes that gene from the chromosome, adding a gene inserts a gene at a random
position with either the value of a random other gene on the chromosome, or a value from the list of
allowed mutations.

4.4 Parameters and Configurations
An overview of the parameters and model configurations is provided in tables in the appendix B,
along with their effect and default values.
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5 Experimental Setup

5.1 Research Questions & Hypotheses
To reiterate the primary research question first stated section 1.2 that this research explores:

Research Question Can evolutionary pressures within a single gene pool lead to the emergence of mutu-
alistic species that collaboratively solve complex problems in dynamically composed
teams?

To address this question, the following hypotheses and sub-hypotheses are investigated:

Hypothesis 1 Multiple species can coexist stably in a single chromosome population, maintaining
functional heterogeneity within a single genome population.

1.1 Genome distance-based mating serves as a dynamic assortative mating mechanism for
speciation.

Hypothesis 2 A composition of individuals from multiple species can collectively form a complete
solution to a problem, with each species contributing a distinct subcomponent.

2.1 These species form an obligate mutualistic relationship and are interdependent.

Hypothesis 3 The emerging species converge to a near-optimal decomposition of the problem.

Hypothesis 4 A hybrid approach combining individual and team level selection promotes the survival
of self-sacrificing altruistic behaviour in a competitive environment.

Hypothesis 1 ”Multiple species can coexist.”
First, it should be proven a stable coexistence of multiple species with distinct behavioural functional-
ity can emerge and be maintained within a single genome population. The main mechanic combating
local cluster diffusion and single group convergence is the dynamic fuzzy compartmentalization of
genome distance-based mate selection. The validity of this hypothesis can be shown by showing
speciation occurs, and comparing speciation in model runs with and without the mechanic active.

Hypothesis 2 ”The species can cooperate.”
Once it is established that multiple distinct species can evolve from a single population, the next step
is to show that the species are symbiotic, and in composition form a solution to the fitness criterion.
To prove that species have coevolved cooperatively, it should be shown that they form a solution when
in a composition with each other, but not independent. This can be done by measuring a metric of
problem solved-ness for the different domain models, and showing that when a species is forcibly
removed the remaining species fail to perform.

Hypothesis 3 ”The best teams are selected.”
Considering evolutionary pressures on the individual promote efficient individuals, and evolutionary
pressures on compositions promote efficient compositions, it is worthwhile to explore if the full so-
lution is optimal. When the sequence space is large, it should not be expected that an evolutionary
algorithm always finds the global optimum. This hypotheses can be tested by comparing the emergent
composition to a known optimal decomposition of the problem. Such an optimal decomposition is
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most explicit for the Toxin model, where the theoretical optimal is any composition where the total
system fitness equals the maximum social welfare Pareto-optimum. If there are redundant functions,
the solution is not optimal. In the Function Optimization model, linked decision variables should
group in the same species.

Hypothesis 4 ”Team-players are recognized.”
A competitive environment where each individual seeks to maximize its fitness eliminates strategies
that produce additional public good at personal cost. Composition evaluation shows the total public
good produced by the combination of individuals. Including a heuristic measuring the public good
contribution at personal cost for individuals (section 4.3.8) and ’compensates’ individuals proportion-
ally for that cost, allows altruistic strategies to survive. This can be tested by seeing if self-sacrificing
altruistic individuals are part of the converged solution composition.

5.2 Experiments
While variation exists for specific experiments, the main experimental framework for testing the hy-
potheses are comparing three distinct configurations on the domain models:

RC Random compositions: traditional EA configuration with random agent sampling and fitness
proportional mate selection.

FS Forced subpopulations: traditional CCEA configuration with forced subpopulations and fitness
proportional mate selection.

EC Evolutionary compositions: evolutionary composition agent sampling and genome distance based
mate selection.

Comparing these three configurations gives the clearest view of the properties of the proposed meth-
ods.

Table 4 shows which domain models are used in experiments to test the hypotheses. Hypothesis 1
benefits from the open-ended nature of the solution space of the solution space of the Predator-Prey
model, in which a collapse to a single species is most likely. The results of experiments for other
hypotheses already show the ability of the model to maintain coexisting species in the Toxin and
Function Optimization domain models. The effect of genome distance based mating is observed by
comparing chromosome groupings in a 2D mapping of the many dimensional chromosomes between
the three configurations of compositions. This compares no genome distance based mating in a single
population with no compartmentalization (RC) and total compartmentalization of three populations
(FS) with genome distance based mating in one population (EC).
That the emergent species can cooperate should be a universal outcome of the model, and so hypoth-
esis 2 is tested for all three domain models by comparing the quality of produced solutions across the
three configurations. The performance of all three domain models can be measured, the Predator-Prey
model by its benchmark, the Toxin model by the remaining toxin in the environment, and Function
Optimization model’s ability to find the solution vector that minimizes the objective value. Whether
the emerged mutualistic relationship is facultative or obligate is tested by artificially removing all
individuals of one of the dominant species (with the largest population size) at a set timestep, and
observe the change in performance of the remaining compositions.
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Hypothesis 1 2 3 4

Domain Model Predator-Prey X X X X
Toxin X X X
Function Optimization X X

Table 4: Domain Models used to test each hypothesis.

To test hypothesis 3 we look at the optimality and decomposition of the solution, and compare it
to the theoretical optimum. In the Toxin model this means creating an evolutionary pressure for
the grouping of functions by adjusting the function cost multiplier parameter M. For the Function
Optimization model we look at the subcomponent size and number of subcomponents, compared
to the theoretical optimal decomposition. An optimal decomposition in the Predator-Prey model
constitutes a combination of specific behaviours, which are difficult to analyze, but by looking at
the number of emergent species and comparing the achieved benchmarks to a forced subpopulations
approach some inference can be made about the optimality of the emergent decomposition.
Hypothesis 4 is tested on the Toxin model, where functions of agents and their contribution to per-
sonal and collective gain are explicit. A baseline of the dynamics is set with random compositions.
The effect of the fitness scaling mechanism is observed by comparing equal runs using evolutionary
compositions with and without the mechanism active, specifically if the converged equilibrium is the
Pareto-optimal social welfare. A comparison is made to a run without fitness scaling where the indi-
vidual fitness is wholly determined by the collective fitness to show how fitness scaling is similar to
but not exactly the same to optimizing for the collective welfare, and a Predator-Prey model run with
these same parameters is run to determine how these dynamics hold up in a larger search space where
species can go extinct more freely.

The default (hyper)parameters used throughout experimentation can be found in appendix B. The
specific setup and complete results for each experiment, along with the source code of the implemen-
tation, can be found on the GitHub page found in appendix C, as well as a ’ReadMe’ file detailing the
technology stack and instructions on how to run an experiment.

5.3 Hyperparameter Justification

Experimental disclaimer: The model architecture is large, and there are many moving parts that all
deserve their own analysis and experimentation. It is infeasible to test and minutely justify each
parameter choice. The objective of the thesis is to show that it is possible for symbiotic species
to emerge from a single population, the parameter choice serves to facilitate that the desired effect
appears. In order to limit the scope of the research, some constituent parts will need to be justified
theoretically rather than experimentally, and experimentally only in combination with everything else.
There is an operating window, or range of parameters, in which the effect can appear. It is not the aim
of this research to prove the viable range of these parameters. There will no doubt be more efficient
parameters for domain specific applications.
For all parameters, a course and fine grained parameter sweep is performed. Results of these, along
with many variations of the discussed experiment results, can be found in the code repository which
can be found in appendix C.
For the Predator-Prey model, results of single runs are displayed to give better insight in what is hap-
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pening in the model. Emerged species (labels) are unique for their run, so averages of species across
multiple runs is an insufficient metric. For the Toxin and Function Optimization model species labels
are consistent, and so average results of 10 runs are shown. These values and the other parameters in
table 6 are chosen to give sufficient ’room’ for the model to work, while keeping computational space
and time complexity at a manageable level. When experiment parameters deviate from these values,
that is explicitly mentioned.
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6 Results
Due to the inherent stochasticity in evolutionary processes and the model’s design, individual runs
with identical parameters can yield a diverse array of outcomes. Nonetheless, the results presented
here are representative of the general patterns and effects consistently observed across a substantial
number of simulations. Results are often presented in terms of averages in order to show general
converged trend lines, which is sufficient to show qualitative congruence with the theory. The focus
of the results is on showing these qualitative dynamics, and therefore some liberties have been taken
to improve visual clarity in lieu of exact correctness. Most notably the presented results are often
smoothed running averages, the size of the spread of results is omitted since these are dependent on
parameter specifics, and legends are limited to the top relevant species. To reiterate, more results for
each experiment and many more can be found on the GitHub page linked in appendix C.

6.1 Hypothesis 1
Hypothesis 1 Multiple species can coexist stably in a single chromosome population, maintaining

functional heterogeneity within a single genome population.

1.1 Genome distance-based mating serves as a dynamic assortative mating mechanism for
speciation.

6.1.1 Predator-Prey

To show that multiple species can coexist stably in a single population we compare the evolution of
species in the Predator-Prey domain model. Using the traditional evolutionary configuration where
the compositions are sampled randomly from the population, and mate selection is done proportional
to fitness (RC), we observe in fig. 20a that the number of species collapses to a single species. This
results in fully homogeneous compositions. In contrast, when using evolutionary compositions and
genome distance based mate selection (EC), fig. 21a shows that two species can survive in the same
population. Figure 21b shows the average number of individuals per species in a composition. Since
in the Predator-Prey model there are three foxes, a composition consists of three agents. The graph
shows that compositions are formed of two species, on average equally many per species. Note
the graphs display a smoothed moving average for readability, oscillations have higher amplitude
and frequency than visible. The graph indicates that the composition oscillates between ’AAB’ and
’ABB’ configurations, where A and B signify the species. In this specific graph, A and B are species
’340’ and ’371’. Species are named in order of first detection. The oscillatory behaviour and the fact
that two species survive instead of three or one can point to that there is no need for a third species
- two strategies in whichever composition are sufficient. It is also possible that this composition is
a local optimum that the model can not get out of. In a minority of runs of the model, results not
included here, three species emerge and form a stable composition.
For an insight in what species look like a lower (2) dimensional representation of the 22-dimensional
chromosome vectors is shown in fig. 22 using t-SNE. A reference image fig. 22a shows final genera-
tion vectors for a forced subpopulations run, where the number of subpopulations is set initially and
compositions are created with deterministic sampling. Clear clusters are visible. Figure 22c shows
the spatial structure of the single remaining species for the last generation of the model run using
traditional evolutionary parameters. Figure 22b shows the clusters of the remaining two species in
the evolutionary compositions with genome distance based mating run. Here we see three clusters of
vectors, identified as two distinct species. That two clusters in this lower dimensional representation
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(a) The number of species in the agent population (sin-
gle run). Decreasing to one species over generations.

(b) The average number of agents of a species per com-
position (100 compositions). The compositions con-
verge to consist of only a single species.

Figure 20: The number of species in the agent population (a) the species composition composition
(b) for the Predator-Prey model for RC configuration.

are identified as the same species could possibly be explained by the fact that it is a lower dimensional
representation, and that in higher dimensions the clusters appear relatively more similar. Another ex-
planation is that the ε value used for the DBSCAN cluster detection could be fine-tuned more. It also
shows that the clustering effect of genome distance based mating is separate from species classifica-
tion.
We see that when genome distance based mating is used, species are more consistent – chromosomes
cluster and so species are less diffused than in fig. 22c. We can see this too with the species naming
in the legend. Each detected species is given an integer value as name, starting at 0 and counting
incrementally for each new species. The high value for species names (in fig. 22c) indicate that many
species have been recognized.

6.2 Hypothesis 2
Hypothesis 2 A composition of individuals from multiple species can collectively form a complete

solution to a problem, with each species contributing a distinct subcomponent.

2.1 These species form an obligate mutualistic relationship and are interdependent.

6.2.1 Predator-Prey

The baseline benchmarks of the forced subpopulation configuration in fig. 23a show that when each
agent type is evolved in isolation and the number of subpopulations is equal to the number of slots in
the domain model, a fairly consistent maximum score can be attained. Three distinct and separate fox
types coevolved to cooperate with the other two form an effective team for catching prey. The tradi-
tional random sampling and fitness proportional approach that collapses to a single species in fig. 23b
shows that a fully homogeneous composition performs worse. Three agents of the same type can
still catch the prey fairly consistently, but are not as effective as three distinct behaviours. Figure 23c
shows that the two species evolved with evolutionary compositions and genome distance based mating
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(a) Number of species in the agent population. De-
creasing to two species over generations.

(b) The average number of agents of a species per com-
position. The compositions converge to consist of two
species, oscillating between ’AAB’ and ’ABB’.

Figure 21: The number of species in the agent population (a) the species composition composition
(b) for the Predator-Prey model with evolutionary chromosome sampling and genome distance based
mate selection (EC) configuration.

are effective at catching the prey, though slightly worse and less consistent than the forced subpopu-
lations approach. It is distinctly better than the single genome population that converges to a single
solution. Figure 23d shows what happens to the performance if all individuals of one species are
(manually) removed from the simulation at generation 250. The two species have formed an obligate
mutualistic relationship, and removing one from the environment causes the performance of the other
to collapse, it is incapable of catching the prey in a homogeneous composition of only its own type.
Over time, the species behaviour is adjusted to fit the new environment and performance improves.
In fig. 24 the species compositions shows that a new species emerges that benefits from the vestigial
behaviour of the lone surviving symbiont. When that new species proliferates, opportunity for a new
niche better suited as symbiont for the new species allows a second new species to emerge. The two
new species initiate a mutualistic relationship and coevolve. Note that the prototypical genotype of a
species is allowed to shift over time, and that a new species emerging constitutes that a new genome
is sufficiently far in genomic distance to existing prototypes. This can be due to sufficiently large mu-
tations, or crossover between parents of different species producing offspring with sufficient genomic
distance to either parents’ species prototype.

6.2.2 Toxin

In fig. 25 a measure of ’problem-solvedness’ of the Toxin model is displayed, namely the level of re-
maining toxin in the environment for each toxin. The base toxin level value is 6, with 5 toxins, and 30
agents per composition gives that every agent needs one active function on average for all toxin to be
cleaned. The gene function cost is 3, meaning the break-even point for an agent to adopt the cleaning
function for a specific toxin is if the toxin level of that toxin in the environment is 3. Note that agents
are evolved with their personal fitness, and compositions with the collective fitness. When agents are
evolved using the collective fitness (e.g., c f w = 1 with the toxin remainder, results in appendix C),
all configurations manage to decrease toxin levels to 0. The traditional evolutionary parameters us-
ing random sampling and fitness proportional mate selection in fig. 25a and the forced subpopulation
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(a) Species chromosome clusters for the Predator-Prey
model run using forced subpopulations (FS).

(b) Species chromosome clusters for the Predator-
Prey model run using evolutionary compositions and
genome distance based mate selection (EC).

(c) Species chromosome clusters for the Predator-Prey
model run with random sampling and fitness propor-
tional mate selection (RC).

Figure 22: t-SNE plots of agent chromosomes of the final generation of a Predator-Prey model run.
A lower dimension mapping of chromosome vectors. Colours indicate detected species.
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(a) Baseline benchmarks using FS configuration. (b) Baseline benchmarks using RC. The population
collapses to a single species, compositions are homo-
geneous.

(c) Benchmarks with EC. (d) Benchmarks with EC. At generation 250 an extinc-
tion event is triggered, removing all chromosomes of
one type.

Figure 23: Benchmark results of various Predator-Prey domain model configurations. The dotted line
indicates the maximum score of 9/9.
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Figure 24: The average composition of species where a single species (the species with label 12) is
eliminated at generation 250. The gradual decline seen is an artifact of the line smoothing using a
moving average. Results from the same run as fig. 23d.

(a) RC, toxin levels (b) FS, toxin levels

(c) EC, toxin levels

|T | : 5
|A| : 30
cB : 6
R : 1
C f : 3
M : 1

(d) parameters

Figure 25: Average toxin levels for various configurations in the toxin domain model with 5 toxins.
Lower values mean more toxin is cleaned from the environment, lower is better.
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configuration in fig. 25b are unable to decrease toxin levels to a minimum. Figure 25c shows that
evolutionary compositions and genome distance based mating are more capable of decreasing toxin
levels, when fitness of individuals is determined by their personal fitness.

6.2.3 Function Optimization

For the optimization model, the metric showing the level of problem-solvedness is the objective func-
tion value. The objective value is the output of the optimization function for the given input vector,
which is composed of a composition of agent chromosomes and a standard offset applied, see sec-
tion 4.2.3. Figure 26 shows the average objective value for the four optimization functions (eqs. (20)
to (23)) for the three model configurations. The trend observable is that for all functions except SPS,
for all model configurations the model is able to converge to the optimum in about the same number
of generations. The FS configuration takes a long time to get to the true optimum for the Sphere and
Griewangk function after quickly converging to a near optimum value. All of these graphs (except
SPS) show a similar curve shape, starting with logarithmic decline of the value until it starts to level
off (and in some cases plateaus), followed by a kink angled down, then turning in the optimal value or
an asymptote approaching the optimal value. The model has difficulty solving the SPS function. EC
decreases the value, and then improves very little. RC performs best and shows the same curve as for
the other functions, but ends on a higher value than the optimum. FS seems to be unable to solve the
problem. Problems with progressive optimization could be explained by the partially separable na-
ture of the function. Another explanation for the difficulty in solving this function is that the optimum
is in a small range ([-1, 1]), and outside of that range there is little or no gradient in feedback (see
fig. 11d). Simply put, there is only a small range of input values for which a change in input results
in a change in output. The function removes the evolutionary pathway. This means that the outcome
of the optimization could rely heavily on the random initial state. Averaged results of many runs for
this configuration show a similar curve as fig. 26j.

6.3 Hypothesis 3
Hypothesis 3 The emerging species converge to a near-optimal decomposition of the problem.

6.3.1 Predator-Prey

For the Predator-Prey model, it is difficult to determine when the decomposition of the problem is
optimal. Most of the time, the model converges to a composition of two distinct species, oscillating
between one of one and two of the other (as in fig. 21b). It is possible that a composition of two species
is sufficient for a task of this complexity. Figure 23c shows that many compositions of this type are
able to achieve a perfect benchmark score of 9/9. On average, compositions of three distinct species
evolved separate perform slightly better, as seen in fig. 23a. This could suggest that three distinct
species is the optimal decomposition, and the emergent species do not converge to that optimum.

6.3.2 Toxin

In the Toxin model, the optimal decomposition is more easily determined. An optimal decomposition
is one where all costs are minimized – both the cost of the toxin, and the genes. The toxin cost
is minimized if there is no toxin left in the environment, as each unit of toxin costs more for the
population to take as damage, than it costs a single agent to perform the clean function. The gene
cost is minimized by having no redundant functions – if the toxin is completely cleaned, any extra
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(a) EC, Sphere (b) RC, Sphere (c) FS, Sphere

(d) EC, Griewangk (e) RC, Griewangk (f) FS, Griewangk

(g) EC, FNS (h) RC, FNS (i) FS, FNS

(j) EC, SPS (k) RC, SPS (l) FS, SPS

Figure 26: Objective value for different model configurations (columns) (Evolutionary Compositions,
Random Compositions, Forced Subpopulations) and different optimization functions (rows) (Sphere,
Griewangk, Fully Non Separable (FNS), Strongly Partially Separable (SPS)) for the Function Op-
timization model. The number of dimensions N = 10, and for SPS the number of subcomponents
k = 5.
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(a) RC, toxin levels (b) RC, gene frequency (c) RC, fitness

(d) FS, toxin levels (e) FS, gene frequency (f) FS, fitness

(g) EC, toxin levels (h) EC, gene frequency (i) EC, fitness

Figure 27: Optimality of the Toxin model with three different running settings. Left column shows
the toxin levels (objective), middle column shows gene frequency (efficiency), right column shows
fitness breakdown. The dotted line in the gene frequency graph denotes the Nash equilibrium value.
Any value over 10 is redundant, anything under is missing.

cleaning function is wasted energy (see fig. 10b). If the function cost is equal for each agent, function
distribution across the population is no factor in optimality. However, if the gene cost multiplier makes
subsequent functions cheaper (M < 1) or more expensive (M > 1), functions should be concentrated
or dispersed evenly through species, respectively.
In fig. 28 the distribution of functions among the agent population can be analyzed. Lines show
the amount of agent with the corresponding number of active functions. 0 means that an agent has
no active functions, 5 means it performs the cleaning function for all present toxins. M is the cost
exponent, used in calculating the function cost eq. (13), for M < 1 each subsequent function has lower
cost, M > 1 increases the cost for each extra active function after the first. The most cost efficient
distribution of functions for M < 1 would be for a proportion of the agent population to adopt all
functions, and all others performing no function. For M > 1 the most cost efficient distribution is to
have the most diffuse possible distribution of function among the agent population. For M = 1 there is
no selection pressure on distribution of functions, and so the expected distribution should be normal.
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(a) EC, M = 0.1 (b) EC, M = 1 (c) EC, M = 10

(d) RC, M = 0.1 (e) RC, M = 1 (f) RC, M = 10

(g) FS, M = 0.1 (h) FS, M = 1 (i) FS, M = 10

Figure 28: Plots showing the distribution of functions among agents in the Toxin model. The y-
axis shows the number of agents with the amount of functions active associated with the line. Three
settings of the model are run with different function cost multiplier (M) settings. Simulations for
|T |= 5.
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In all three model type runs the same effects can be observed in varying strengths. A lower value for
M increases the viability for having multiple active functions, and thereby increasing the proportion of
agents without a function. The optimal composition for M = 10 would be to maximize the distribution
of functions across the agents, and to minimize the highest number of functions on a single agent, in
order to minimize the amount of times the multiplier function cost is incurred. For 5 toxins, 10 base
toxin, 30 agents and 1 cleaning rate this comes down to 50 active functions total distributed over 30
agents, giving an optimally diffuse composition of 10 agents with 1 function active, and 20 agents
with 2 functions active. Figure 28c does come close to this distribution. Given M = 0.1 the aim of
the distribution is the exact opposite - it should maximize the number of times the cost multiplier is
applied to minimize the gene fitness cost on the population. The optimal distribution here is 10 agents
with 5 functions active, and 20 agents with 0 functions active. Figure 28a shows that this is not the
distribution of functions achieved by the model. The distribution more closely resembles the normal
distribution of fig. 28b.

6.3.3 Function Optimization

The Function Optimization model can determine optimal decomposition by analyzing the separability
of the used optimization function. An optimally decomposed solution is one where each nonseparable
subcomponent is grouped in a species. An optimal composition would entail a fully heterogeneous
composition of species representing nonseparable subcomponents. Each position of the solution vec-
tor would be filled by a gene of at least one species. Every overlap of positions on the vector are
explained by the variable being part of multiple nonseparable subcomponents.
The Fully Non-Separable (FNS) function has an optimal subcomponent size of 10 (given N = 10),
encompassing all 10 variables in a single subcomponent. The Strongly Partially Separable (SPS)
function, defined with N = 10 and k = 5, has 5 subcomponents per composition, leading to an optimal
subcomponent size of 2. Thus, the ideal composition sizes are 1 for FNS and 5 for SPS. Note that the
composition size for RC and FS is constant at 1 for RC and the number of dimensions (10) for FS.
However, as shown in fig. 29, particularly in fig. 29a and fig. 29g, neither function predominantly ex-
hibits its optimal subcomponent size. SPS’s subcomponent sizes appear normally distributed around
a mean of 5, indicating minimal evolutionary pressure on subcomponent size. In RC, a convergence
towards a stable distribution of subcomponent sizes is observed, intriguingly aligning more closely
with the optimal distribution for the alternate function rather than its own.
For composition sizes, neither FNS nor SPS achieves its optimal configuration; FNS’s ideal being
a single subcomponent of size 10, and SPS’s, five subcomponents of size 2 without overlap. The
subcomponent and composition size graphs for the forced subpopulation model are included as a
reference. Each subcomponent consists of a single variable, and a composition has one component
for each variable.

6.4 Hypothesis 4

Hypothesis 4 A hybrid approach combining individual and team level selection promotes the survival
of self-sacrificing altruistic behaviour in a competitive environment.

6.4.1 Toxin

Agents purely interested in maximizing personal fitness can lead to a sub-optimal Nash equilibrium
state. This is most clearly seen in the Toxin model, as described in section 4.2.2. In the Toxin model,
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(a) EC, FNS, subcomponent size. (b) RC, FNS, subcomponent size. (c) FS, FNS, subcomponent size.

(d) EC, FNS, composition size. (e) RC, FNS, composition size. (f) FS, FNS, composition size.

(g) EC, SPS, subcomponent size. (h) RC, SPS, subcomponent size. (i) FS, SPS, subcomponent size.

(j) EC, SPS, composition size. (k) RC, SPS, composition size. (l) FS, SPS, composition size.

Figure 29: Average composition and subcomponent sizes for different model configurations and op-
timization functions for the Function Optimization model. The subcomponent size is the number of
non-knocked out genes on a chromosome, which are the number of genes contributing to the objective
solution. The composition size is the number of chromosomes (subcomponents) included in a final
evaluation.



Chapter 6 RESULTS 91

to achieve the maximal social welfare Pareto-optimum, it is required that some agents engage in self-
sacrificing altruistic behaviour by adopting the cleaning function at net personal cost. The cost to the
individual yields a substantially larger net gain for the population.
The species representation fitness scaling detailed in section 4.3.8 introduces a team level selection
mechanic that should allow the altruistic species to survive. Evolutionary compositions are required
for this technique to have any effect. Applying representation scaling to a model with random agent
sampling has no effect, since random agent sampling gives compositions with distributions that mirror
the population distribution.
As baseline we take the Toxin model with random sampling and personal fitness fully determined
by the individual fitness (eq. (15), with c f w = 0 in eq. (33)) fig. 30. As expected, the number of
agents with the cleaning function moves to the Nash equilibrium. Experiments with EC and fitness
scaling (fig. 31) show that the number of agents with the cleaning function moves to the Pareto-
optimal number, thereby achieving the maximal social welfare state. The optimal composition with
10 helper agents and 20 beneficiaries is stable. The proportional difference between the composition
distribution (fig. 31b) and population distribution (fig. 31e) shown in fig. 31f confirms that altruistic
species are at a disadvantage in the agent population and at an advantage in the compositions. Note
the simulations here are run with an agent population of 30. The results are the same at larger scale,
but these parameters produce a clearer view.
The same result can be achieved by setting the personal fitness fully to the collective fitness (c f w= 1),
the average fitness of all composition evaluations it participated in (see section 3.5.1), as seen in
fig. 32. Here, individuals are selected for only based on team performance. This simulation shows
that without individual fitness, he fitness of each species is about equal fig. 32c.

6.4.2 Predator-Prey

These result do not extend to the Predator-Prey model. Figure 33 show the results obtained when
the personal fitness is wholly determined by the collective fitness (c f w = 1), when applied to the
Predator-Prey model. In fig. 33d it is visible a three species composition emerges around generation
20. The composition steadily increases in performance for 20 some generations as visible in fig. 33a
and fig. 33b. Then, one of the three species (species 92) drops in number and goes extinct around gen-
eration 50, as seen in fig. 32e. The two remaining species are unable to recover performance, and the
species slightly more adapted to the new environment (218) out competes and consequently crowds
out the remaining other species (0), resulting in a fully homogeneous population around generation
90. Species 218 recovers some performance as it adapts to a fully homogeneous team environment.
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(a) RC, active cleaning function prevalence. (b) RC, average species distribution per composition.

(c) RC, average fitness per species. (d) RC, average composition of the fitness calculation.

Figure 30: Toxin model random compositions baseline, showing the model moves to a sub-optimal
Nash equilibrium. Random sampling for the compositions means that the species per composition
(fig. 30b) shows the species population distribution.
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(a) EC, active cleaning function prevalence. (b) EC, average species distribution per composition.

(c) EC, average fitness per species. (d) EC, individual fitness.

(e) EC, species population distribution. (f) EC, representation rate of species in compositions.

Figure 31: Toxin model evolutionary compositions with fitness scaling, showing the model moves to
the Pareto-efficient maximal social welfare.
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(a) EC, gene frequency. (b) EC, average species distribution per composition.

(c) EC, species fitness. (d) EC, individual fitness.

(e) EC, species population distribution. (f) EC, representation rate of species in compositions.

Figure 32: Toxin model evolutionary compositions with individual fitness fully determined by team
performance. Without species representation fitness scaling.
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(a) EC, benchmark. (b) EC, average fitness per agent.

(c) EC, agent species population distribution. (d) EC, agent species compositions distribution.

(e) EC, species fitness.

Figure 33: Predator-prey model evolutionary compositions with individual fitness fully determined
by team performance. Without species representation fitness scaling.
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7 Discussion
This section discusses the results in light of the research question and the theory. The value of the
novel mechanics is reviewed briefly, some limitations of the model are discussed as well as some
suggested areas where improvements and refinements can be made. Finally, the work is summarized
and concluded.

7.1 Interpretation of results
Hypotheses The results show that the first hypothesis can be confirmed by observation. The results
in section 6.1 clearly show that multiple species can emerge and coexist stably within the same pop-
ulation. The difference in cluster shape between fig. 22c and fig. 22b and the similarity to fig. 22a
show the compartmentalization and clustering effect of genome distance based mating. The second
hypothesis can also be confirmed. Individuals from multiple species can form a composition that
is a full solution to the problem, even if these species are evolved in the same population. Species
coevolve as an interdependent composition. Performance is higher when the composition is func-
tionally heterogeneous. Emergent species compositions performance is not consistently better than
forced subpopulations, and at times worse. The third hypothesis can not be confirmed. While species
form a decomposition of the problem, and finding the optimal solution is difficult, the results do not
show consistent near-optimal decomposition of the problem. The fourth hypothesis can be confirmed.
Self-sacrificing behaviour can be allowed to thrive in a competitive environment if there is some form
of team level selection in combination with individual level selection.

Variable grouping One possible reason for the failure to produce a near-optimal decomposition
could lie in that there is too little or no evolutionary pressure for linked variables to self-organize
in subcomponents. Reasoning for the optimization model, whether the variables of a subcomponent
of the function are grouped in the same chromosome species needs to confer an advantage to the
species over any other configuration. A possible fitness advantage, though very weak, is that a correct
grouping of linked variables without any other non-linked variable gives a more stable fitness peak –
any mutation within such a species gives a predictable and consistent resulting change in fitness. The
strength of this fitness advantage is hard to determine, and could easily be outweighed by the fitness
penalty applied for each subsequent variable in a species, which is intended to pressure variables to
only group when they are linked.

Toxin optimization In the Toxin model this fitness advantage to self-organize in optimal groups
is forced by adjusting the M cost multiplier parameter. This cost multiplier changes the Pareto-
optimal and maximal social welfare distribution. Analyzing why for M = 10 the population does
organize nearing an optimal composition and why it does not for M = 0.1 provides insights in the
specific dynamics at play. One partial explanation is that for M = 10 the fitness of species diverges
strongly and so has a strong evolutionary effect. In contrast, for M = 0.1 any extra application of the
cost multiplier gives diminishing returns; the fitness difference between a 4 function species and a 5
function species is insignificant. While this dynamic could play a role, it is an incomplete explanation.
The more important dynamic for this result is to realise that once the collective fitness objective is
satisfied, in this case cleaning all the toxin from the environment, constituents are free to optimize
their own fitness. With M = 0.1, the ’optimal’ composition that minimizes both toxin and gene cost
features 10 agents with 5 functions, and 20 with 0. This is not achieved (fig. 28a), because increasing
the number of functions for an individual agent does not confer any benefit to the individual. In this
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configuration the collective fitness and so the fitness of a composition is set to the remaining toxin in
the environment. Because of this, compositions are agnostic to the distribution of functions, as long
as the objective is met. It also means that there is no evolutionary pressure from team selection to
reduce the number of functions past saturation. So the self-sacrificing behaviour (of adopting more
functions at a discount to save on total function cost) is not compensated for with fitness scaling. The
total function cost is never a metric for which is optimized. Then, why does M = 10 approach the
optimal composition of 20 2 function agents and 10 1 function (fig. 28c)? Because they all try to
minimize their own function cost and thus number of functions, and not doing so is much less viable.
For M = 1 it would also be expected that over time the agents minimize the number of functions
per agent, the results (fig. 28b) show this less than expected. This could be because many species
are and remain equally viable, just as many compositions are equally viable, resulting in that the
compositions never converge. This means the group of agents with no functions is always large (for
having the lowest function cost), which gives a selection advantage (through fitness scaling) to agents
that produce successful compositions that include many agents with no function. The conclusion we
can draw from this is that if a collective value needs to be optimized, it should be included in the
objective function for the compositions. Experiments (in appendix C) that set the collective fitness
to the average fitness of all, thereby including both the toxin and function cost, confirm this. As an
interesting aside point, the inability for functions to converge on a single species, even if at great
discount for each subsequent function, could be considered an argument against the ’shooting the
moon’ theory of the BQH [18], where a species that has become a helper for one function is more
likely to become helper for other functions, becoming a ’keystone species’ as evolutionary strategy.

Collective versus hybrid The results of fig. 32 lead to an interesting question: if a collective fitness
for individuals leads to the system approaching the maximal social welfare state, why bother with
individual fitness and fitness scaling at all? In a forced subpopulations approach, this strategy is
proven to work. Theoretically, there is still an incentive for agents to optimize and out compete
competitors if they contribute more to the collective, including if that is done by specializing and
becoming more efficient personally. The problem lies with the emergent species approach. Results
of this collective fitness only scenario in the Predator-Prey model show in fig. 33 that performance
increases for some generations, after which it declines sharply. It declines because one or more
obligate mutualistic species have gone extinct. Why they go extinct exactly is difficult to determine,
but one explanation could be that the marginally worse performing species is crowded out by the
other(s). As fig. 32c and fig. 33e show, species’ fitness are close in value. This is advantageous in
the sense that species average to the same population sizes as fig. 32e shows, which gives them equal
opportunity for evolution. However, it does not prevent a species that marginally out competes others
from crowding out the species it relies on. This is not a problem in the Toxin model (fig. 32) as
species are only a few mutations away and so are effectively never ’lost’. But when the sequence
space for species is very large, extinction of a species means a lineage is lost and will not re-emerge
easily. Simply put, there needs to be correction mechanism preventing species useful to compositions
from going extinct, and the fitness scaling does exactly that. It allows a population of individualist
self-interested reward maximizing agents to produce the same Pareto-optimal results as a population
of collectivist agents, with the additional benefit of conserving necessary diversity.

Function distribution One of the objectives of the thesis is dynamic task allocation. It is difficult to
conclude if that is achieved. Tasks in the Toxin model are atomic, tasks in the Predator-Prey model are
ambiguous and no thorough behavioural analysis is performed on predator species strategies, and in
the Function Optimization model while ’correct’ variable grouping is preferred, any variable group-
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ing resulting in a heterogeneous solution is dynamic task allocation. ’Tasks’ insofar as they can be
discretized might not necessarily assort in species as the path of least resistance. The idea is that mul-
tiple multi-function species emerge, and through black queen effects functions are transferred, lost,
and converged in species such that functions are unique per species. This effect is not demonstrably
observed from the experiments. Speciation and niching occur for as far as it is evolutionary advanta-
geous to do so. If theoretically it is advantageous to always have a jack-of-all-trades within the ranks,
it is possible for that to emerge. If it is advantageous for some type to niche completely and lose all
other functions, because it can rely on others for that task, that can also happen. Clean compartmen-
talization and modularity of function might simply not be a common evolutionary strategy. We find
some evidence for this conclusion if we look at the functionality of the brain, enzymes or of genes. In
this light, dynamic task allocation might simply not result in a distinct and recognizable distribution
of functions.

7.2 Novel mechanics review
This section briefly summarizes the contributions of the introduced novel mechanisms.

Genome Distance Based Mating The genome distance based mating has the intended effect of
converging candidate solutions to multiple areas in the sequence space. Hypothesis 1 and 1.1 confirm
this. It is not the scope of this thesis to asses whether it alone works well as a general method of
preserving diversity in a single population. For the purpose of allowing multiple species to emerge
the mechanic works as intended, though still rudimentary in implementation. There are still many
gains to be made from the concept, which are discussed in section 7.4.

Evolutionary Compositions The primary objective of the evolutionary compositions is sampling
in a way that allows symbiotic relationships to form through coevolution. The secondary objective
that follows from the first is to produce good compositions. By confirming hypothesis 1, 2 and 2.1 the
conclusion can be drawn that both objectives are achieved. The technique explores the search space
of compositions with more informed direction than another sampling method.

Fitness Scaling Species proportional fitness scaling is intended to help species that are good for
the collective but are at a disadvantage individually to survive. Hypothesis 4 shows that this goal is
achieved by utilizing this mechanism.

7.3 Limitations
Potter in his dissertation[14] mentions that all single-gene pool approaches are limited to the evolution
of subcomponents that share a common representation. This is true for the current implementation.

Scalability Questions can be raised over the scalability of the model. The thesis has opted to favour
testing the model in different domains over deep performance runs. All tested domains have been
simple or abstracted versions of more real world applications. The Predator-Prey model only requires
a maximum of three different species, the Function Optimization model is only tested with a low
number of dimensions whereas the challenge is often in the high number of dimensions, and the Toxin
model is an abstract model with clear dynamics. The model, by making the (necessary) adaptation to
a single genome pool, loses a distinct advantage that traditional CCEAs have of parallel optimization
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of subcomponents. On top of that, it increases the number of (sometimes costly) fitness evaluations
required by evaluating different compositions of species, whereas with forced subpopulations only
one composition of species is ever evaluated. The extra steps taken in genome distance based mating
and species detection require many high dimensional distance calculations that scale non-linearly as
population size increases. It is clear that the proposed model is not an improvement with regard to
computation time.
Other questions remain over the scalability of the functionality. What is the role of population size?
The population size is a clear constraint on the number of species that can develop in parallel, and it
could be true that a population size that is too small does not allow the required or optimal number of
species to emerge. It is also not clear what challenges emerge when the number of required species is
large, and if the current model implementation is capable of handling those challenges.

Species Detection and Tracking limitations Species detection and tracking are tasks where per-
fection is not possible because of the inherent ambiguity of identity. Unsupervised cluster detection
features many different trade-offs, and what should be classified as species is equally subject to trade-
offs. Balancing these demands can be tricky. The ε value for DBSCAN is important to set such that
it accurately distinguish different species. The optimal value for ε changes with the characteristics of
the population, such as the population size or dimensions of the agent chromosome. E.g., if the pop-
ulation size is higher, the density of the data increases, and it becomes more likely different clusters
are connected though some intermediate points, making a lower ε value more suitable. Improvements
to species tracking can be made by tracking density peaks or other more accurate cluster prototypes
than the currently used centroid prototype method. This would make more sense as cluster detection
is performed with a density based model (DBSCAN). The current centroid method is implemented
because centroids work as a heuristic, and are much faster and easier to calculate than density peaks.

7.4 Future work

The current implementation of the genome distance based mate selection mechanic is quite primitive.
Selecting a sample from the population to find the closest neighbour in solves some technical issues
and gives some control over the granularity of the search, but there is still a lot of dormant undevel-
oped potential in the mechanic. One alternative mode for genome distance based mate selection is
to select a random mate based on species. An explicit (tunable) exploitation/exploration parameter
can determine if a mate is selected from the own species, or from another. This gives a closer resem-
blance to the island model. A problem with this mode for the current model implementation is that
it would be ineffective early on, when many different species are recognized and comprise of only a
single individual. Another alternative is distance proportional mate selection. Converting distances
to likelihoods such that genomes close by are selected proportionally more than those at a distance.
Introducing a scalar determining the relative weight of distance in this likelihood calculation gives
control in the same way as the sample size does in the current implementation. Furthermore, this
scalar can be adjusted using the local density of the cluster of the mate selecting genome to dynam-
ically scale exploitation and exploration based on local topological requirements. A third extension
takes inspiration from biological life. In nature, population diversity is necessary, and mating with the
genomic nearest neighbours (family) has a risk of causing detrimental inbreeding effects. Similarly,
mating with genomically very distant mates risks losing specialization benefits or producing unviable
offspring. This suggests that there is an optimal range (without making claims over the variability
of or distribution within that range) between minimizing and maximizing genomic distance between
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mates. Further study to the optimal distance range can be done.

Genome distance based mating and fitness scaling are methods aimed to promote speciation and con-
serve diversity. Providing a fitness benefit based on the level of diversity in composition chromosomes
could increase diversity and promote speciation even more. Regarding the fitness function as objec-
tive function, applying a penalty to low-diversity composition chromosomes gives a fitness advantage
to high diversity composition solutions. Similarly, a form of novelty search giving a fitness advantage
to agent chromosomes that are more unique promotes novel solutions, and thereby exploration for
new niches.
The current implementation of species representation fitness scaling, similarly to genome distance
based mating, is a platform with more development potential. The mechanic introduces a negative
feedback loop that prevents important species from going extinct by utilizing the difference between
relative species occurrences in the individual and composition populations. A simple normalized
representation ratio scalar proved to be effective. Replacing this scalar with a function could expand
functionality to include not only the scalar, but a tuning parameter, a simulated-annealing like temper-
ature or other context metrics to give more control over the strength of the effect. Increasing the effect
contributes to dynamic resource allocation by equalizing the proportion of species across populations.
Thereby, a species has a population size (evolutionary resources) closer to how much the species is
utilized in solutions. Right now the altruist species is kept alive but still lags behind in population
size, giving it a stronger fitness advantage pushes the equilibrium ratio closer to 1. Decreasing the
effect can be useful if a more homogeneous final solution is desired.
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7.5 Conclusion
This thesis explores applying the hologenome theory of evolution within computational evolution,
aiming to create functionally heterogeneous compositional ’chimera’ entities through coevolution. It
leverages emergence and self-organization directed by evolutionary pressures in combination with
providing the capacity potential for desirable solutions to emerge. The method uses a single gene
pool from which a subset is sampled to form a solution composition. Compositions are composed of
any number of individuals from any number of species. A species is a collection of similar chromo-
somes in the gene pool labeled using an unsupervised clustering algorithm. Speciation and species
persistence are enabled by genome distance based recombination, functioning as permeable com-
partmentalization within the gene pool to produce parapatric speciation. Solution compositions are
coevolved with the gene pool of individuals, and through them team-level selection is applied to in-
dividuals, promoting both good individual solutions as solutions that contribute to the collective.
The introduction of three novel mechanics; genome distance based mate selection, evolutionary com-
positions and species proportional fitness scaling, in combination with the application of unsupervised
cluster detection to assign species, to the framework of cooperative coevolution is sufficient to achieve
emergent symbiotic speciation. Showing only modest performance improvements over over existing
algorithms, the model functions as proof-of-concept showcasing the design philosophy of emergent
symbiotic speciation for hologenome formation.
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Appendices

A Glossary — Terms List
Throughout this thesis a lot of terminology is used. The problem with terminology is that the meaning
is not always clear, different words can be used for the same thing, and one word can be used to mean
different things. In an attempt to improve clarity to the reader we attempted to stay consistent with
the uses of terms, and provide an overview of most important terms.

Term Meaning

Emergent Symbiotic Speciation The process through which new species evolve from a
shared environment and develop a mutualistic relationship.

Hologenome The collective genome of a host and its symbiotic microbes,
considered together as a unit of selection in evolutionary
processes.

Cooperative Coevolution An evolutionary computation strategy where complex prob-
lems are decomposed and solved through the combination
of coevolved species / subcomponents.

Functional Heterogeneity Diversity of functional roles within a system.
Evolutionary Pathway The conceptual path of increasing fitness on the fitness land-

scape from one point on the sequence space to another.
Holobiont A host organism and its symbiotic species as discrete eco-

logical unit.
Composite Organism / Entity A collection of symbiotic species as descrete ecological

unit, without host-symbiont hierarchical relationship.
Problem Decomposition Breaking up a problem into a collection of sub-problems,

that if individually solved solves the complete problem.
Parapatric Speciation Speciation through population division and reproductive

isolation, but with a level of gene exchange.
Allopatric Speciation Speciation through population division and total reproduc-

tive isolation.
Sympatric Speciation Speciation without reproductive isolation, e.g., through

competition over limited resources or function loss.
Credit Assignment Determining the value of one individuals contribution to the

collective result.
Genome Distance-Based Mating An assortative mating strategy that selects partners based on

genetic distance.
Species Representation Fitness Scaling Fitness adjustment strategy based on the proportional differ-

ence in species representation in the individual- and compo-
sition genome population.

Evolutionary Compositions Genetic algorithm based agent type sampling and composi-
tion forming strategy.
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Term Meaning

Fitness Landscape A conceptual landscape representing how different geno-
types correspond to their reproductive success or fitness.

Niche The match of a species to the environment[135]. A local
optimum / peak region on the fitness landscape.

Local Optimum The position of a relative extremum (maximum or mini-
mum) value of a function. The global optimum is the ex-
tremum of all possible values, local is the extremum of its
neighbourhood.

Punctuated Equilibrium Theory of species evolution through long periods of evolu-
tionary stability interspersed with short bursts of rapid evo-
lutionary change. Contra evolutionary gradualism.

Quasispecies A large group of related genotypes with high rate of change
within and between generations.

Symbiosis Two or more species living in close association.
Mutualism A mutually beneficial symbiotic relationship. If the mutual-

istic relationship is obligate, species are entirely dependent
on each other for survival. If it is facultative, they are not.

Commensalism A symbiotic relationship beneficial to one side and neutral
to the other.

Cladogenesis The splitting of one species into two distinct species.
Symbiogenesis The process by which symbiotic partners combine to a sin-

gle organism.[61]
Pay-off Matrix An abstract representation of interaction outcomes as pay-

off between two or more players.
Maximal Social Welfare In game theory, the point on the pay-off matrix giving the

largest collective reward.
Pareto Optimal / Efficient The situation where there is no other option where all play-

ers do at least as well and at least one player has a higher
payoff.

Nash Equilibrium The situation where no player gains by changing their strat-
egy as long as the other player keeps their strategy un-
changed.

Satisfying Function A function where an increase in input does not yield a
change in the output past the point of satisfaction.

Reward Hacking Optimizing the literal definition of an objective function
without fulfilling the intended goal.

Agent An individual autonomous entity (inter)acting based on in-
put from the environment, including other agents.

Separability The degree to which a thing can be decomposed into inde-
pendent subcomponents.
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Term Meaning

Epistasis / Linkage / Gene interaction Interaction between genes or variables. The dependent re-
lationship between subcomponents.

(En)Forced Subpopulations Evolving multiple species in separate gene populations.
Island Model A model of forced subpopulations with limited population

crossover.
Individual Fitness The direct representation of the performance of an individ-

ual, the local reward.
Collective Fitness The representation of the performance of all contributing

individuals, the global reward.
Personal Fitness The final fitness attributed to an individual that is used in se-

lection, which can be a combination of individual and col-
lective fitness.

Unsupervised Clustering The process of identifying groups of similar data points in
a datasets in bottom-up fashion.

Table 5: Terms and meanings.

B Model Parameters and Configurations
An overview of the parameters and model configurations is provided in the following tables, along
with their effect and default values. Values often deviate from the default settings across experiments
for various purposes. Where applicable, deviations are mentioned.

Parameter Name Description P T F

n runs Number of complete model runs. 1 10 10
n generations Number of generations in a model run. 500 500 500
n chromosomes Agent chromosome population size. 150 300 300
n compositions Number of compositions to run per generation. Composition chromosome population size. 100 30 30
runs per composition Number of times each composition is run in the domain model. 5 1 1

Table 6: General model settings. P = Predator-Prey, T = Toxin, F = Function Optimization.
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Parameter Name Type Options / Range Description (indirect) Effects Default Value

gene data type nominal continuous Gene values are continuous floating points model dependent
binary Gene values are binary (0, 1)
nominal Gene values are nominal

reproduce fraction closed unit interval [0,1] Fraction of the top fitness individuals that are selected for reproduction Truncation selection 0.5

cull fraction closed unit interval [0,1]
Fraction of the bottom fitness individuals that are removed from the population.
The inverse fraction remains (elitism).

Elitist selection model dependent

selection type nominal random First parents are randomly selected from the reproducing individuals fitness proportional
fitness proportional First parents are selected randomly weighted with their fitness from the reproducing individuals

mate selection type nominal random Second parents are selected randomly from the set of reproducing individuals experiment dependent
fitness proportional Second parents are selected randomly weighted with their fitness from the reproducing individuals
approximate nearest neighbour Second parents are selected according to the smallest euclidian distance to the first parent from sample.

mate selection sample size continuous [0,N] Size of sample for approximate nearest neighbour mate selection. Scale between random and certain nearest neighbour. 50, population size dependent
allow self mating binary {0,1} Allow first and second parents to be the same chromosome. Allow mutation only variation. false

mutation probability closed unit interval [0,1]
Probability for a gene to mutate in newly produced offspring.
Applies to each gene individually.

Exploration / exploitation tradeoff 1 / chromosome length

mutation range continuous Q
Range of the mutation size.
Mutation size sampled from uniform distribution from [-range, +range].

Search space step size. 0.1

knockout mutation binary {0,1}
Allow knockout mutations to occur, disabling a gene expression.
Reverseable action.

model dependent

knockout mutation probability closed unit interval [0,1]
Probability for a gene knockout mutation to occur in newly produced offspring.
Applies to each gene individually.

1 / chromosome length

initial gene knockout continuous W
Number of genes knocked out for chromosomes in the initial population.
0 gives a random number on the range [0, chromosome length].
Only applies if knockout mutations are enabled

0

chromosome resizing binary {0,1} Allows gene deletion and insertion. (used for compositions) model dependent

chromosome resizing probability closed unit interval [0,1]
Probability for a gene to be deleted or inserted on a chromosome.
If the action occurs, there is equal probability for either deletion or insertion.
Probability applies to chromosome.

0.1

Table 7: Agent Evolution Parameters.
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Parameter Name Options / Range Description Default Value

gene data type nominal Gene values are nominal values nominal
reproduce fraction [0,1] Fraction of the top fitness individuals that are selected for reproduction 0.5

cull fraction [0,1]
Fraction of the bottom fitness individuals that are removed from the population.
The inverse fraction remains (elitism).

1.0

selection type random First parents are randomly selected from the reproducing individuals fitness proportional
fitness proportional First parents are selected randomly weighted with their fitness from the reproducing individuals

mate selection type random Second parents are selected randomly from the set of reproducing individuals fitness proportional
fitness proportional Second parents are selected randomly weighted with their fitness from the reproducing individuals

allow self mating {0,1} Allow first and second parents to be the same chromosome. true

mutation probability [0,1]
Probability for a gene to mutate in newly produced offspring.
Applies to each gene individually.

1 / chromosome length

mutation range Q
Range of the mutation size.
Mutation size sampled from uniform distribution from [-range, +range].

0.1

chromosome resizing {0,1} Allows gene deletion and insertion. (used for compositions) true

chromosome resizing probability [0,1]
Probability for a gene to be deleted or inserted on a chromosome.
If the action occurs, there is equal probability for either deletion or insertion.
Probability applies to chromosome.

0.1

Table 8: Composition Evolution Parameters.

C Code
The complete source code of the project can be found on GitHub:

https://github.com/IvoSte/EmergentSymbioticSpeciation

Here, the exact setup and results of a large amount of experiments can be found, including the ones
presented in the results section. A read-me explaining how to run experiments is available.
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Parameter Name Options / Range Description Default value

population type forced subpopulations Breed populations separately with fixed species assignment per subpopulations experiment dependent
emergent subpopulations Breed populations from a single gene pool and detect emerging species

n subpopulations N The number of separate chromosome populations
chromosome sampling simple random Sample individuals to fill domain model slots randomly with replacement after exhaustion population type dependent

deterministic Sample individuals using a deterministic algorithm, see section 4.3.6
evolutionary compositions Sample individuals using evolutionary compositions, see section 4.3.7

composition fitness scaling {0,1} Apply a species representation scalar to fitness of individuals, see section 4.3.8 experiment dependent
species detection method DBSCAN DBSCAN is used as vector quantization method to assign a species label to clusters of chromosomes. chromosome type dependent

binary The binary encoding of a chromosome is the species
binary (knockout) The binary encoding of all non-knocked out genes of a chromosome is the species

species detection ε (DBSCAN) Q The maximum distance between two points to be considered a neighbourhood 0.5
species detection minimum samples N The minimum number of samples for a neighbourhood to be considered a cluster 1
species tracking {0,1} Remember previously identified species and use this information to assign species labels to clusters. chromosome type dependent
species tracking search depth N Number of generations back to compare new prototypes to. 5

Table 9: Speciation model settings. Note RC experiments run emergent subpopulations with simple
random chromosome sampling.

Parameter Name Options / Range Description Default value

n agents N Number of predators 3
n prey N Number of prey 1
prey behaviour flee from closest predator Prey moves opposite closest predator flee from closest predator with noise

flee from closest predator with noise Prey moves opposite closest predator with heading noise
individual fitness type individual kills The number of catches by this agent catch with distance

catch with distance The fitness calculation eq. (9)
collective fitness type collective kills The number of catches by all agents catch with distance

catch with distance The fitness calculation eq. (9), averaged for all agents, eq. (10)
collective fitness weight [0,1] The scalar determining the individual and collective fitness weight. 0

Table 10: Predator-Prey Domain Model parameters.

Parameter Name Options / Range Description Default value

n agents (|A|) N Number of agents that can have the function to clean toxin from the environment. 30
n toxins (|T |) N Number of toxins in the environment. 5
toxin base (cB) N Base toxin level amount 10
toxin cleanup rate (R) N Amount of toxin removed from the environment by a single agent with the cleanup function for that toxin. 1
function cost (C f ) N The fitness cost for having the function to clean toxin from the environment. 3
function cost multiplier (M) Q Cost increase or decrease exponent for each subsequent active function. 1.0
individual fitness type default The combined function cost and damage from remaining toxins, see eq. (15) ’default’
collective fitness type average fitness The average individual fitness of all agents, see eq. (16) toxin remainder

toxin remainder The sum of all remaining toxin in the system, see eq. (17)
collective fitness weight [0,1] The scalar determining the individual and collective fitness weight. 0

Table 11: Toxin Domain Model parameters.

Parameter Name Options / Range Description Default value

function see eqs. (20) to (23) The optimization function used experiment dependent
n dimensions (N) N The number of dimensions, the length of the decision vector. 10
n agents N The number of subcomponents in a full solution. Variable if composition resizing is enabled. 10

n genes N
The number of genes on a subcomponent chromosome,
equal to the number of decision variables of the optimization function.

10

function cost N Fitness penalty for each non-knocked out gene. 0
individual fitness type default The signed objective value minus total function cost, see eq. (31) ’default’
collective fitness type average The signed objective value, see eq. (32) objective value
collective fitness weight [0,1] The scalar determining the individual and collective fitness weight. 0

Table 12: Function Optimization Domain Model parameters.
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