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Abstract

We investigate the constrained-degree percolation model on d-ary trees, Td =
(Vd,Ed). It is defined based on the continuous-time percolation model, where
aside from the standard sequence of uniform random variables (Ue)e∈Ed

on [0, 1],
a constraint k ∈ N is given. Each edge e ∈ Ed opens at time Ue, unless one
of its end-vertices is a neighbour to k already open edges at this time. The
main result of this thesis is establishing the upper and lower bounds on the
critical time of the constrained-degree percolation model on d-ary trees. Using
these bounds we conduct initial research on the monotonicity and asymptotic
behaviour of the critical time.
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1 INTRODUCTION

1 Introduction

Ever since the first mention of the percolation model in [1], mathematicians have
been experimenting with its different variations seeking for interesting results.
The percolation model is defined on an infinite connected graph G = (V,E),
with vertex set V and set of edges E, such that each v ∈ V is of a finite
degree. We fix a number p ∈ [0, 1] and close each edge in E independently
with probability (1 − p). In such a reduced graph, we are interested in the
existence of an infinite open path, in case such exists we say that percolation
occurs. The answer to the questions of existence and number of disjoint infinite
connected components depend on the structure of the underlying graph and
value of p. It is well known that this model undergoes a phase transition at
a certain value of p = pc(G), called the critical probability, which is defined as
pc(G) := inf{p ∈ [0, 1] : percolation occurs in G}. The most commonly used
graphs are d-dimensional lattices, relevant results for these graphs are discussed
in the following paragraphs.

The importance of this class of models stems from the fact that their macro-
scopic characteristics follow deterministically from the parameters used to define
them. This in turn allows for its applications to real life problems which involve
graph-like structures with random edges, and predict a phase transition regard-
ing the existence of a path between distant vertices. A notable example of
such is the Ising Model [2], a model in statistical mechanics which explains the
phenomenon of ferromagnetism. The effort by Hugo Duminil-Copin to prove
that this model undergoes a phase-transition in dimensions three and four has
been awarded a Fields Medal, exemplifying the relevance of percolation theory
in modern mathematics [3].

A variation of the percolation model that is examined in this thesis is the
constrained-percolation model (we shall abbreviate it as CDP and refer to the
regular model as unconstrained percolation), first defined in [4] and further re-
searched in [5]–[7]. In CDP, each vertex of the graph is assigned a constraint,
which determines the maximum number of open edges which can start at that
vertex. This model is defined based on an alternative representation of the
unconstrained percolation. Once again, consider an infinite connected graph
G = (V,E) with deg(v) < ∞ for all v ∈ V. Let (kv)v∈V be a sequence of degree
constraints, that is, integers such that kv ≤ deg(v) for all vertices in V. To
each bond e ∈ E assign an independent uniformly distributed random variable
Ue ∈ [0, 1]. This allows to define continuous-time percolation model with all
bonds closed at t = 0 and each bond e = ⟨v1, v2⟩ opening at time Ue, provided
that the current number of open bonds connected to v1 or v2 does not exceed
kv1 or kv2 respectively. This assures that at every vertex v there will be at most
kv open bonds, since once vertex v has kv neighbouring open edges, no more
neighbouring edges can open. In such a case we say that v is saturated. A more
in-depth definition of this model is presented in [5]. Note that in the absence
of constraints, such defined continuous-time percolation model at time t corre-
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1 INTRODUCTION

sponds to the unconstrained percolation model in which each edge is open with
probability t.

In CDP, a similar phase transition could occur as in the unconstrained model.
Due to the opening times characterisation, instead of the name critical proba-
bility we shall call this value critical time. For each pair of a graph G and a set
of constraints (kv)v∈V, we define it equivalently as

tc(G, (kv)v∈V) := inf{t ∈ [0, 1]; percolation occurs in G with constraints (kv)} ,
(1)

where we set tc(G, (kv)v∈V) = ∞ if the model does not undergo a phase transi-
tion. We note that in this paper we will deal with constant sets of constraints,
that is kv = k for all v ∈ V and some constant k. Therefore, we simplify the
notation of the critical time to tc(G, k). It is worth pointing out that there have
been other CDP models researched which utilise different types of constraints.
For example, the models in [8], [9] research the cases when only specific config-
urations of the open edges are allowed.

One of the first relevant breakthroughs in the area of percolation theory was
the proof of pc = 1

2 on a square lattice Z2. Conjectured already in the 1950’s,
it had to wait nearly 25 years for a complete argument. The first part of the
proof, namely pc ≥ 1

2 has been proved by Harris in 1960 [10]. It took however
twenty more years before Kesten has shown that the inverted inequality also
holds, and hence validating the conjecture [11]. Since then, more questions
regarding important quantities associated to this model have been asked, such
as the value of the critical probability for higher dimensional lattices or the
number of infinite clusters for p > pc and p = pc. In [12], Kesten and Hara show
that pc(Zd) is of order 1/d for large d, more precisely:

pc(Zd) = (1 + od(1))
1

2d

where the notation f = od(g) means that the expression f/g tends to 0 as d →
∞. Regarding the number of infinite clusters, it is known that for p > pc(Zd)
there is exactly one infinite cluster for all d ≥ 2, a result shown in [13]. However,
the case when p = pc(Zd) has proved to be more difficult. For d = 2 there is no
infinite cluster, a result first proved by Harris with the Russo–Seymour–Welsh
theorem, which then later contributed to the lower bound tc(Zd) ≥ 1

2 [10]. How-
ever, the methods used to prove the planar case are not generalisable to higher
dimensions and different approaches were needed to tackle this problem. The
best effort up to date is the proof that there is no infinite cluster at critical
probability for all d ≥ 11 [14]. Hence, no infinite clusters at p = pc(Zd) is still
a conjecture for 3 ≤ d ≤ 10.

Since CDP has not been researched nearly as much as the unconstrained perco-
lation model, there is less results that were shown. Most importantly, for d = 2
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1 INTRODUCTION

we know that tc(Z2, 2) = 0 and 1
2 < tc(Z2, 3) < 1 [5]. The same paper also

provides an argument that for t > tc(Z2, 3) there is a unique infinite cluster.
Regarding higher dimensions, in [6] the authors establish that tc(Zd, k) is of
order 1/d for a substantial number of pairs (d, k). They also show that:

lim
n→∞

dntc(Zd, (kn)n) =
1

2

for all sequences (dn)n and (kn)n (where dn ≥ kn for all n ∈ N) which diverge
as n → ∞.

These results and the techniques which authors use to prove them are an in-
spiration to research for similar outcomes for different graph structures. The
natural structure to extend this research to, also mentioned and initially studied
in [5], are trees.

In this thesis we restrict ourselves to researching CDP on d-ary trees. Denoted as
Td, these are the trees in which each vertex (apart from the root) has exactly one
parent vertex and d offspring vertices, in total d + 1 neighboring vertices. The
constraints we consider are k ∈ {1, ..., d}; we don’t consider the case k = d + 1
since it is equivalent to the unconstrained percolation. We will make use of the
notations from [5]. Fix d ≥ 2 and denote Td = (Vd,Ed), with vertex set Vd and
set of edges Ed. Furthermore, denote [d] := {1, 2, ..., d} for all d ∈ N, and define
[d]n as the set of n-dimensional vectors whose entries take values in [d]. This
allows to identify the set of vertices Vd as [d]⋆, defined as:

[d]⋆ =
⋃

n∈N∪{0}

[d]n

Here, [d]0 is considered to be the root vertex o, and each [d]n represents the
set of vertices in the n-th generation, which we denote as x = (x1, ..., xn) (see
Figure 1). For each x = (x1, ..., xn) ∈ [d]n and a ∈ [d] define their concate-
nation: x · a := (x1, ..., xn, a) ∈ [d]n+1. The set of edges can be hence defined
equivalently as Ed := {⟨x, x · a⟩;x ∈ Vd, a ∈ [d]}.

Given some t ∈ [0, 1] and uniformly distributed independent random variables
Ue for all edges e ∈ Ed, we shall denote by ωt the configuration of all open
and closed edges at time t in the CDP model. That is, ωt ∈ {0, 1}Ed , with
ωt,e = 1(e is open at time t) for all e ∈ Ed, which is a random variable equal to
1 when edge e is open at time t, and 0 otherwise. In a similar fashion define the
configuration ω̃t and indicator function of open edges ω̃t,e for the unconstrained
percolation model, where no restriction on the degree of the vertex is assumed.
Observe that this construction implies ω̃t,e ≥ ωt,e for all t ∈ [0, 1] and e ∈ Ed,
since, by definition, in order for an edge to be open in CDP, it clearly has to
be open in unconstrained model as well. This in turn provides a trivial lower
bound tc(Td) ≤ tc(Td, k).
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o

(1)

(1, 1) (1, 2) (1, 3)

(2)

(2, 1) (2, 2) (2, 3)

(3)

(3, 1) (3, 2) (3, 3)

Figure 1: Example of a 3-ary tree T3. Considering the introduced notation,
the red vertex is denoted as a two dimensional vector (2, 3). It can be written

alternatively using concatenation of the orange vertex and the number 3:
(2) · 3 = (2, 3)

As is usually the case in the area of percolation theory, we are interested in eval-
uating the critical times for all permissible values of parameters d, k in CDP.
What makes it difficult for this model is the fact that its properties disallow for
standard coupling arguments, which are commonly used to find bounds for tc
in other percolation models. Such arguments often use the fact that a model is
m-dependent, which means that an object can influence only the objects which
are within distance m from it (in the graph theoretical sense). However, in CDP
configurations exist where the events of opening of arbitrarily distant edges de-
pend on each other. This is elaborated on in the further part of this section.

It is also not possible to trivially couple models on the d-regular tree with dif-
ferent constraints. For an example, see Figure 2.

The standard coupling arguments assume that the set of open edges of one
model is a subset of the set of open edges of the other model. However, the
example above shows that in CDP an edge can be open for the model with
constraint k − 1 when it is closed for the one with constraint k. This means
that not always existence of an infinite path in one model will trivially imply
its existence in the other.

This is as an example of how an edge connecting generations 2 and 3 influences
could connect an edge connecting generations 0 and 1. In a similar way, the
state of an edge can depend on the state of another edge m distance away for
an arbitrary m ∈ N. Opening on an edge from m-th generation can allow for
opening of the m − 2 edges above it, and that in turn could disallow for an
opening of the edge connecting generations 0 and 1.
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Figure 2: A realisation of ωt at t = 1 for CDP with constraints k = 2, 3. Open
edges are coloured red and the numbers above each edge denotes the order in
which they try to open in a given realization of the opening times Ue. Moreover,
edges connecting generations 2 and 3, and 3 and 4, are considered to have larger
opening times than edges presented on the graphs. In such a case, the open part
of ω1 shown on the graphs is independent of the remaining values of U . Note
that the edge ⟨o, (3)⟩ (with number 8) is open for k = 2, but closed for k = 3.

Regarding the unconstrained percolation model on d-ary trees, it is well known
that tc(Td) = 1/d [15]. The proof of this statement is based on the fact that at
time t, the cluster at the origin has the same distribution as the family tree of a
branching process with offspring distribution Bin(d, t). Since in the CDP model
the edges open at a slower rate than the ones in the unconstrained percolation
model, it simply follows that tc(Td) ≤ tc(Td, k) for all k ≤ d. We will in fact
prove something slightly stronger.

Theorem 1. For all d ≥ 3 and k ≤ d we have

1

d
= tc(Td) < tc(Td, k).

It is also important to learn whether this model undergoes a phase transition at
all (that is, whether tc < ∞, where by tc = ∞ we mean that the model does not
percolate). Already in [5], the authors establish tc(Td, 2) = ∞ and tc(Td, 3) < 1
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for arbitrary d ≥ 3. We will provide a generalisation of the argument used to
prove the aforementioned result to extend it to an arbitrary constraint.

Theorem 2. For all d ≥ 3 we have{
tc(Td, k) = ∞ for k = 1, 2,

tc(Td, k) < 1 for k ≥ 3.

Nevertheless, the upper bound of 1 is not particularly interesting to us since it
fails to establish the order of magnitude of tc(Td, k). The main contribution of
this thesis is obtaining of the upper bound of the order 1/d.

Theorem 3. For all d ≥ 4 and 4 ≤ k ≤ d, the critical time satisfies

tc(Td, k) <
1.2

d
.

Unfortunately, the reasoning used in this proof fails to account for the case d = 3.

Establishing a closed form expression of the upper bound for tc(Td, k) which
would depend on k is still to be achieved. Instead, we focused on the asymptotic
behaviour of the critical time to obtain the following result.

Theorem 4. For all increasing sequences (dn)n, (kn)n ∈ N where dn ≥ kn for
all n ∈ N, the critical time satisfies

lim
n→∞

dn · tc(Td, kn) = 1 .

Lastly, we investigate the monotonicity of the critical time in k and d for small
values of these parameters. Since as these parameters grow more edges should
be able to open, we expect this variable to be non-increasing in both k and d.
Once again, this result is far from straightforward due to the difficulty in posing
standard coupling arguments in the CDP model. To show monotonicity, we will
try make the upper bound of the model with parameters d, k smaller than the
lower bound for the model with either k′ = k − 1 or d′ = d− 1.

Theorem 5. For all 3 ≤ d ≤ 100 and 3 ≤ k ≤ d, the critical time tc(Td, k) is
monotonously decreasing in k and d.

The paper is structured as follows. In Section 2 we present the necessary theo-
retical background for the further parts of the thesis. Section 3 introduces two
relevant branching processes which are used in Section 4, where the proofs of
the theorems outlined above are conducted. In Section 5 we conclude on the
results and state conjectures to be researched further.
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2 PRELIMINARY RESULTS

2 Preliminary results

In this Section we present results which are necessary for the proofs conducted in
Section 3. Firstly, we define branching processes and present some of their useful
characteristics. We then proceed to present preliminary ideas regarding CDP
on d-ary trees, and how they can be understood in the language of branching
processes.

2.1 Branching processes

To formulate the concept of branching processes, we use the notations from
[16]. Let X be a random variable which takes values in N. A branching process
(Zn)n∈N is defined as follows. We let Z0 = 1. Then, for all n ≥ 1, Zn is defined
inductively as a sum of Zn−1 independent realisations of X

Zn :=

Zn−1∑
i=1

Xi, where ∀i Xi ∼ X. (2)

One can understand the sequence of random variables (Zn)n as a number of
individuals in consecutive generations during a reproduction process. Z0 = 1
denotes the first individual in generation 0. Then, generation 1 consists of Z1

offspring of the first individual, whose number follows the offspring distribution
X. Next, each of the individual i from the 1-st generation has Xi ∼ X children,
and so the total number of offspring in the 2-nd generation is distributed as

Z1∑
i=1

Xi
def∼ Z2 .

Continuing this procedure leads to creation of the family tree, also known as the
Galton–Watson tree. The vertices of this graph are identified with individuals
and each individual is connected through an edge with their parent and all their
offspring. In such a way, for all n ∈ N the n-th generation consists of Zn indi-
viduals connected to their predecessors and offspring. Observe that if Zi = 0
for some i ∈ N, then, by definition, Zj = 0 for all j > i. If there exists such i,
we say that the process goes extinct. Choosing minimal i with this property, the
family tree of this branching process consists of i − 1 generations. However, if
such i doesn’t exist, the process is said to survive and it is continued indefinitely.

The following lemma presents a useful characteristic regarding the expected
value of the offspring distribution.

Lemma 1. Consider a branching process (Zn)n with offspring distribution X.
We have

P((Zn)n goes extinct) = 1 ⇐⇒ µ ≤ 1 .
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2 PRELIMINARY RESULTS

What this implies is that P(survival) > 0 whenever the branching process is
supercritical, what means that µ > 1. In case that µ < 1, we say the branching
process is subcritical, and from Lemma 1 there is P(survival) = 0.

The notion of branching processes can be generalised to models where each
individual has its own offspring distribution, and not necessarily independent
from the others. We will refer to such as generalised branching processes. For
these processes, the problem of establishing the probability of survival becomes
much more challenging. The following lemma achieves this for a very simple
generalised branching process.

Lemma 2. Let X,Y ∈ N be finite random variables with expectations µ, θ
respectively. Consider the branching process (Z∗

n)n where the root has offspring
distribution Y and the remaining vertices have offspring distribution X. If
θ > 0, then the probability of its survival is nonzero if and only if µ > 1.

Proof. Suppose that µ ≤ 1 and let m be the largest possible value that Y can
realise. Observe that a process starting any vertex from the 1-st generation is
a branching process with offspring distribution X. Then

P((Z∗
n)n survives) ≤ m · P ({(Z∗

n+1)n survives}) = m · 0 = 0 ,

where the first equality follows from Lemma 1 and the fact that µ ≤ 1. Now let
µ > 1 and let l be the smallest non-zero value that Y can realise. In a similar
fashion we obtain the following inequality

P((Z∗
n)n survives) ≥ P(Y ≥ 0)P ({(Z∗

n+1)n survives}) > 0 ,

as the probability of survival is at least the probability of survival of the first
generation and the survival of the remainder of the process. The fact that
P(Y ≥ 0) > 0 follows from θ > 0 and P ({(Z∗

n+1)n survives}) > 0 is the result
of Lemma 1 and µ > 1.

In further sections we are going to use the relation between the event of per-
colation in CDP and survivability of some branching process. To this end we
introduce the notation BP (Td, k, t), which signifies a generalised branching pro-
cess, whose offspring distribution matches the distribution of the open cluster
containing the origin of the CDP on a d-ary tree at time t with constraint k.
Note that unlike in the unconstrained percolation model, the offspring distri-
butions of BP (Td, k, t) are non-trivial and might vary between the generations.
We also let BP (X) denote the branching process with offspring distribution X.

2.2 Percolation on d-ary trees

We prove a well known result for the critical time of the unconstrained percola-
tion model on trees, which is a necessary tool for the proof of the lower bound
of CDP’s.
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Lemma 3. The critical time of the unconstrained percolation model on a d-ary
tree satisfies

tc(Td) =
1

d
.

Proof. Fix an arbitrary t ∈ [0, 1]. Since in the unconstrained model the event
of an edge opening is independent of the opening of any other edge, clearly all
vertices will have the same distributions of open edges. Fix an arbitrary vertex
v ∈ Vd. Each of the edges ea = ⟨v, v · a⟩, a ∈ [d] is assigned an independent
uniform random variable Uea ∈ [0, 1]. Observe that the probability that exactly
i edges ea are open at v at time t is equal to

P(#{a ∈ [d]; Uea < t} = i).

It is left to observe that this event is equivalent to obtaining i successes in d
trials, where each trial is sampling a uniform random variable U ∈ [0, 1], with
success defined as {U < t}, hence

P({exactly i edges ea neighboring v are open at time t}) = P(Bin(d, t) = i).

Since these distributions are the same, the event of percolation in the uncon-
strained percolation model is equivalent with there being a non-zero probability
of survival of the branching process. Since the expected value of the bino-
mial distribution with parameters d, t is equal to dt, by Lemma 1, we see that
this branching process will have a nonzero probability of survival exactly when
dt > 1, hence if and only if t > 1

d . Therefore

tc(Td) = inf{t ∈ [0, 1] : percolation occurs in Td}

= inf

{
t ∈ [0, 1] : t >

1

d

}
=

1

d
.

This lemma in combination with a result from introduction allow to establish a
natural lower bound for CDP on d-ary trees.

Corollary 1. The critical time for CDP on a d-ary tree with constraint k
satisfies

1

d
= tc(Td) ≤ tc(Td, k) .
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3 Comparison processes

In this section we introduce two branching processes which will be used to bound
the critical times of CDP’s for various values of parameters d and k. We also
provide a tool which will allow us to compare two branching processes with
respect to their supercriticality.

3.1 Lower bound process

We first define a random variable which is the offspring distribution of the
branching process which we will later use to bound the critical time of CDP
from below.

Definition 1. Given parameters d, k ∈ N with d ≥ 3 and d ≥ k and t ∈ [0, 1],
the random variable X−(d, k, t) is defined as

P(X−(d, k, t) = l) =

{
P(Bin(d, t) = l) if l ∈ {0, ..., k − 2} ,
P(Bin(d, t) ≥ k − 1) if l = k − 1 .

This yields a random variable that realises an outcome of Bin(d, t) when it is
less than k − 1, and takes value k − 1 when the outcome is greater than k − 2.
Using this notation, we can then define the lower bound process (Z−(d, k, t)n)n
as the branching process with the offspring distribution X−(d, k + 1, t) at the
root and X−(d, k, t) for all remaining vertices. For simplicity, we denote it as
Z−(d, k, t) := Z−(d, k, t)n)n. While considering constant d, k, we will use the
shortened notations Z−(t) := Z−(d, k, t) and X−(t) := X−(d, k, t).

From Lemma 3, it follows that this process is supercritical whenever the branch-
ing process with offspring distribution X−(d, k, t) is supercritical. Since for
constant d, k this random variable depends only on the time parameter, we
introduce the notation of the critical time of the lower bound process

tc(Z
−(t)) := inf{t ∈ [0, 1] : E[X−(t)] > 1} ,

and set tc(Z
−(t)) = ∞ if the condition fails to be satisfied for all t ∈ [0, 1].

Observe that if tc(Z
−(t)) < ∞, then, using Lemma 1, the critical time of the

lower bound process is the smallest value of the parameter t, such that for
all t′ > t the process Z−(t′) is supercritical. Lastly, the expected value of
X−(d, k, t) satisfies

E[X−(d, k, t)] =

k−1∑
l=1

l

(
d

l

)
tl(1 − t)d−l + (k − 1)

d∑
l=k

(
d

l

)
tl(1 − t)d−l .
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3.2 Upper bound process

In the similar manner as above, we define the following random variable.

Definition 2. Given parameters d, k ∈ N with d ≥ 3 and d ≥ k and t ∈ [0, 1],
the random variable X+(d, k, t) is defined as

P(X+(d, k, t) = l) =

{
P(Bin(d, t) = l) if l ∈ {1, ..., k − 1} ,
(1 − t)d + P(Bin(d, t) ≥ k) if l = 0 .

Intuitively, one can understand this as a random variable Bin(d, t) taking val-
ues 1, ..., k − 1 if they are its realisation, but having value 0 if the outcome
is 0 or greater than k − 1. Using this notation, we can then define the upper
bound process (Z+(d, k, t)n)n as the branching process with the offspring dis-
tribution X+(d, k + 1, t) at the root and X+(d, k, t) for all remaining vertices.
Again, simplicity, we denote it as Z+(d, k, t) := Z+(d, k, t)n)n, and for constant
parameters d, k we will use the shortened notations Z+(t) := Z+(d, k, t) and
X+(t) := X+(d, k, t).

The process Z+(d, k, t) is supposed to behave closely to CDP in order to be
useful in finding an upper bound on the critical time of the CDP. Observe that,
by definition, the degree of each vertex never exceeds k. Each individual has
offspring only if the realisation of Bin(d, t) is less than k, meaning that in case
when more than k − 1 edges could open, none of them do open instead. This
strict rule will make it possible to show that when the upper bound process is
supercritical, then necessarily there is a non-zero probability of an infinite open
path from the origin in the CDP with parameters d, k, t.

Similarly to the previous section, Lemma 3, yields that upper bound process is
supercritical whenever the branching process BP (X+(d, k, t)) is supercritical.
For constant d, k, we introduce the notation of the critical time of the lower
bound process

tc(Z
+(t)) := inf{t ∈ [0, 1] : E[X+(t)] > 1} ,

and set tc(Z
+(t)) = ∞ if the condition fails to be satisfied for all t ∈ [0, 1].

Analogously to above, tc(Z
+(t)) < ∞ implies that the critical time of the lower

bound process is the smallest value of the parameter t, such that for all t′ > t the
process Z+(t′) is supercritical. We also find the expected value of X+(d, k, t)
to be

E[X+(d, k, t)] =

k−1∑
l=1

l

(
d

l

)
tl(1 − t)d−l .

In order to prove Theorem 3, we will need the following result regarding the
expected value of the offspring distribution X+(d, k, t).
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Lemma 4. The time parameter t0 = 1.2/d is such that E(X+(d, k, t0)) > 1 for
all k ≥ 4 and d ≥ k.

Proof. Consider the function:

h(d) = P(X+(d, k, t0) = 1) + 2P(X+(d, k, t0) = 2) + 3P(X+(d, k, t0) = 3)

Observe that h does not depend on k, since k ≥ 4. Clearly h(d) < g(d) for all
regarded d, k. One can show that:

h′(d) =(((−1.2 + d)/d)d(−6.2208 + d(16.5888 + d(−14.3424 + 4.2048d))+

d(−6.2208 + d(15.552 + d(−12.8448 + 3.504d)))·
log((−1.2 + d)/d)))/(−1.2 + d)4

It can be checked numerically that for all d ≤ 100 there is h(d) > 1.05. We use
the well known Maclaurin series for the function log(1 + x) to evaluate:

log(1 − 1.2/d) =

∞∑
i=1

(−1)i+1 (−1.2/d)i

i
= −1.2/d−

∞∑
i=2

(1.2/d)i

i

We can use this formula to simplify the form of the derivative above:

h′(d) = ... =
(d− 1.2)d−4

dd
((1.24416 − 2.0736d + 1.07136d2)−

d

( ∞∑
i=2

(1.2/d)i

i

)
(−6.2208 + 15.552d− 12.8448d2 + 3.504d3))

We would like to bound the absolute value of h′(d) and use this bound to say
something about the behaviour of the function h(d). To do this, we first bound
the infinite sum in the expression:∣∣∣∣∣−

∞∑
i=2

(1.2/d)i

i

∣∣∣∣∣ < 0.72

d2

∞∑
i=0

(1.2/d)i =
0.72

d2
d

d− 1.2
=

0.72

d(d− 2)

Moreover, observe that the first polynomial (in the expression for the derivative)
is positive for all d and the second polynomial is positive for all d > 2. Lastly,
note that (d− 1.2)d−4 < dd−4 for the d’s that are considered. Therefore:

|h′(d)| = ... <
1

d4
((1.24416 − 2.0736d + 1.07136d2) +

0.72

d− 2
(−6.2208 + 15.552d− 12.8448d2 + 3.504d3)) =: θ(d)
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3 COMPARISON PROCESSES

Since h(d) = h(a) +
∫ d

a
h′(x)dx, we can substitute a = 100 to obtain for all

d > 100:

|h(d) − h(100)| =

∣∣∣∣∣
∫ d

100

h′(x)dx

∣∣∣∣∣ ≤
∫ d

100

|h′(x)|dx <

∫ d

100

θ(x)dx ≤
∫ ∞

100

θ(x)dx

It can be computed that:

∫ ∞

100

θ(x)dx =
16875000 log (100) − 16875000 log (98) + 8357796

244140625
< 0.036

In combination with previous results, this implies:

h(d) > h(100) − 0.036 > 1.05 − 0.036 > 1

for all d > 100, what with the numerically found h(d) > 100 for d ≤ 100 gives
us the wanted result.

Remark. From Poisson Limit Theorem we have that for t = c/d:

lim
d→∞

h(d) = c(1 + 2c + 2c2)e−c

The value c = 1.2 is one of the possible values that yield limd→∞ h(d) > 1.
If h(d) were to be monotonously decreasing, there would have to be g(d) >
h(d) > 1 for all d. Unfortunately, due to the log function approaching 0 and the
non-vanishing largest power of the polynomials (which on its own would make
the function diverge), for large d there is a lot of fluctuations around 0, some of
which take positive value. Therefore another method had to be used to bound
the function.

3.3 Comparison Lemma

In order to use the branching process Z−(d, k, t) to reach conclusions about the
critical times of the CDP’s, we need a tool to compare these two models. The
following lemma will serve as such.

Lemma 5 (Comparison Lemma). If the branching process Z−(d, k, t) is
subcritical, then also the cluster of the origin of CDP on a d-ary tree with
constraint k is subcritical.

Proof. Fix the parameters d, k, t and let Z− := Z−(d, k, t) as well as X− :=
X−(d, k, t). We can identify the cluster of the origin of CDP as some branch-
ing process (Z̃n)n, where each individual has a different offspring distribution.
Specifically, let Z̃0 := {o} and for each m let Z̃m := {(x1, . . . , xm) ∈ Td : o →
(x1, . . . , xm)}, the set of vertices in the cluster of the root at height m. De-
note the number of offspring of the i-th vertex of generation m in this tree by
X̃m,i for i ∈ [Z̃m]. We will first show that for all m ∈ Z, the random variables
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3 COMPARISON PROCESSES

X̃m,1, ..., X̃m,Z̃m−1
conditioned on the previous generations are stochastically

dominated by X−. More precisely, we want for each individual i ∈ [Z̃m] that

P(X̃m,i ≤ x | Z̃0, ..., Z̃m−1) ≥ P(X− ≤ x) ∀x∈R. (3)

Using the notation from introduction, let this individual be denoted as v ∈ [d]m

in the CDP model. Since we know that both X̃m,i and X− take values in
{0, 1, ..., k − 1}, it is sufficient that we show inequality (3) holds for x taking
these values. Since there clearly is P(X− ≤ k) = (X̃m,i ≤ k | Z̃0, ..., Z̃m−1) = 1,
the inequality holds for x = k. Fix an arbitrary x ∈ {0, 1, ..., k − 1}. Observe
that the value of X̃m,i conditioned on previous generations depends only on the
event that the edge e = ⟨u, v⟩ connecting (m− 1)-st and (m)-th generations at
i − th individual is open at time t. Therefore we can bound this conditioned
random variable by

P(X̃m,i ≤ x | Z̃0, ..., Z̃m−1) ≥
P(#{a ∈ [d] : U⟨v,v·a⟩ ≤ t} ≤ x | at time Ue, u and v are not saturated) ,

where the condition is equivalent with the fact that at time Ue, the edge e can
open. This inequality holds since the event that at most x edges having an
opening time less than t is a sub-event of at most x edges opening at time t. If
we can now show that

P(#{a ∈ [d] : U⟨v,v·a⟩ ≤ t} ≤ x | at time Ue, u and v are not saturated)

≥ P(X− ≤ x) ,

then we will have proved the assertion. To this end, observe that for x ≤ k− 1,
the edge e can always be open from the bottom, and hence

P(#{a ∈ [d] : U⟨v,v·a⟩ ≤ t} ≤ x | at time Ue, u and v are not saturated) =

P(#{a ∈ [d] : U⟨v,v·a⟩ ≤ t} ≤ x)/P(at time Ue, u and v are not saturated) ≥
P(#{a ∈ [d] : U⟨v,v·a⟩ ≤ t} ≤ x) = P(X− ≤ x) .

We have learned that X− stochastically dominates the offspring distribution
of the branching process which matches the distribution of the cluster at the
origin of the CDP at all vertices. Therefore, in the sense of (reference with
the theorem coupling stoch. dom. random variables), we can couple this CDP
cluster with the family tree of (Z−

n )n in a way that for all generations m ∈ Z
there is Z̃m ≤ Z−

m. This in turn implies that if Z−
l = 0 for some l ∈ Z, then

necessarily Z̃m = 0, and hence the lemma follows.

Page 14 of 21
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4 Results

The introduction of the preliminary concepts and lemmas allows to prove further
results for CDP on d-ary trees, expanding the current knowledge established in
[5].

4.1 Phase transition occurs for all constraints 3 ≤ k ≤ d

In the paper [5], it has been shown that tc(Td, 3) < 1 for arbitrary d ≥ 3. We
generalise the reasoning from this proof to show a stronger result.

Theorem 2. For all d ≥ 3 we have:{
tc(Td, k) = ∞ for k = 1, 2

tc(Td, k) < 1 for k ≥ 3

Proof. If k = 1, then existence of an infinite path is trivially impossible. Ob-
serve that each vertex belonging to a path, which is neither its beginning or
end, needs to have a degree equal to 2. The case k = 2 has been resolved in
Proposition 6 from [5].

For the remainder of the proof assume k ≥ 3 Given a sequence of uniformly
distributed random times U ∈ [0, 1]E . We define a random forest F(U) =
(V,E(F)), where

E(F) = {⟨x, x · a⟩ ∈ Ed; #{b ∈ [d]\{a};U(e) > U(⟨x, x · a⟩)} ≤ k − 2}

This set contains all edges of Td which have opening times greater than at most
k− 1 of its siblings. As this definition implies that F is a collection of k− 1-ary
trees, let T be the one which contains the origin. Given any e = ⟨x, x · a⟩ ∈ T ,
we call this bond blue if:

#{b ∈ [d];U(e) > U(⟨x · a, x · a · b⟩)} ≤ k − 1

That means that blue edges belong to T and have opening times greater than
at most k − 1 of their offspring. Clearly, if e is blue, it will open at time Ue.
Therefore it is sufficient to prove that there exists a percolation of blue bonds
in T .

Define the k− 1 edges of n-th generation of T as e
(i)
n = ⟨x, x · ai⟩ for i ∈ [k− 1],

x ∈ [d]n−1 and ai ∈ [d], so that U(e
(1)
n ) < ... < U(e

(k−1)
n ). Given any e ∈ E(T ),

it holds that

P(e is blue) = P(e is blue, e = e(1)n ) + ... + P(e is blue, e = e(k−1)
n )

=
1

k − 1
P(e is blue | e = e(1)n ) + ... +

1

k − 1
P(e is blue | e = e(k−1)

n )
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Pick any l ∈ [k−1] and consider the expression P(e is blue | e = e
(l)
n ). This is an

event that the chosen edge is blue, given that it has the l-th smallest opening
time from the d edges from the same node. This event depends only on 2d
edges: sons and siblings of e and e itself. For e to be blue, Ue can be larger than
at most k − 1 of the opening times of its sons. Assume that Ue is greater than
exactly 0 ≤ m ≤ k − 1 of its sons. Then the number of possible combinations
of these 2d edges given the restrictions above is equal to

(d)l(d)m

(
m + l − 1

l − 1

)
(2d−m− l)!

where we introduce the notation (x)n = x!/(x− n)!. This holds due to the fact
that we can choose with order l− 1 siblings and one edge e in (d)l ways, choose
m sons with order in (d)m ways, order the preceding edge e edges in

(
m+l−1
l−1

)
ways (since they are already ordered in their respective groups, we order them
as if they were indistinguishable) and lastly order the remaining (2d − m − l)
elements in (2d −m − l)! ways. Since this holds for all m ∈ {0, ..., k − 1} and
there are a total of (2d)! permutations of a 2d-element set, we conclude that

P(e is blue | e = e(l)n ) =

k−1∑
m=0

(d)l(d)m
(
m+l−1
l−1

)
(2d−m− l)!

(2d)!

Combining it with the expression for the probability that the edge e is blue, we
obtain:

P(e is blue) =
1

k − 1

k−1∑
l=1

k−1∑
m=0

(d)l(d)m
(
m+l−1
l−1

)
(2d−m− l)!

(2d)!

One can check that this is consistent with the paper [5] in case k = 3. For
the blue edges to have the distribution of a supercritical branching process,
we need that E[X] > 1, where X is a binomial distribution with parameters
p = P(e is blue) and s = k − 1. If this will turn out to be the case, then there
must exist a percolation of blue edges and we are done. Since X ∼ Bin(s, p), we
know that E[X] = sp = (k − 1)P(e is blue), hence the process is supercritical if
P(e is blue) > 1

k−1 . To this end, observe:

P(e is blue) =
1

k − 1

k−1∑
l=1

k−1∑
m=0

(d)l(d)m
(
m+l−1
l−1

)
(2d−m− l)!

(2d)!

>
1

k − 1

2∑
l=1

2∑
m=0

(d)l(d)m
(
m+l−1
l−1

)
(2d−m− l)!

(2d)!

>
1

k − 1
· 1 >

1

k − 1

where the second inequality follows from simple evaluation of the double sum
in the second line.
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4.2 Strict lower bound for the critical time tc(Td, k)

We already know that for k = 1, 2 the critical time is infinite. The following
result provides a trivial lower bound for CDP on d-ary trees.

Theorem 1. For all d ≥ 3 and 3 ≤ k ≤ d we have:

1

d
= tc(Td) < tc(Td, k)

Proof. The first equation is the statement of Lemma 2. To show that the in-
equality holds, consider the processes Z−(d, d + 1, t) and Z−(d, k, t) for an ar-
bitrary t ∈ [0, 1]. Observe that:

E[X−(d, d + 1, t)] =

d∑
l=1

l

(
d

l

)
tl(1 − t)d−l >

k−1∑
l=1

l

(
d

l

)
tl(1 − t)d−l

+ (k − 1)

d∑
l=k

(
d

l

)
tl(1 − t)d−l = E[X−(d, k, t)]

Therefore 1
d = tc(Z

−(d, d + 1, t)) < tc(Z
−(d, k, t)). Now, consider the CDP

on Td with constraint k at time t, and the branching process BP (Td, k, t)
corresponding to it. From Lemma 5 it follows that if the branching pro-
cess BP (Td, k, t) is supercritical, then so is Z−(d, k, t). Moreover, whenever
BP (Td, k, t) is supercritical, there is a non-zero probability of existence of an
infinite open cluster containing the origin in the CDP with parameters d, k, t.
Therefore tc(Z

−(d, k, t)) ≤ tc(Td, k) and hence

1

d
= tc(Z

−(d, d + 1, t)) < tc(Z
−(d, k, t)) ≤ tc(Td, k) .

4.3 Upper bound for tc(Td, k)

So far we know that 1
d < tc(Td, k) < 1 for all choices of natural k ≥ 3 and d > k.

We wish to obtain a better upper bound for the critical times, ideally one of the
order o(1/d). To obtain that, we will make use of the properties of the upper
bound process.

Theorem 3. For all d ≥ 4 and 4 ≤ k ≤ d, the critical time satisfies

tc(Td, k) <
1.2

d
.

Proof. We want to show that tc(Td, k) < t0 = 1.2
d for all k ≥ 4 and d > k. This

relies on the coupling of CDP to the percolation model, in which the cluster of
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the origin has the same distribution as the family tree of Z+(d, k, t0).

Consider the tree Td and any realisation of uniform random variables U ∈
[0, 1]E(Td). Let x ∈ [d]n be an arbitrary vertex and e = ⟨x, x · a⟩ an edge for
some a ∈ [d]. We write v(e) = x for the end vertex of e which is in the earlier
generation. Define the sets Ex := {⟨x, x ·b⟩; b ∈ [d]} and Dx := {Ue∗ ; e∗ ∈ Ex},
which is a collection of opening times of the edges stemming from x. Lastly, we
denote the random variable Ft,x := #{u ∈ Dx; u ≤ t}. We define the model ω̌
as

ω̌t,e =

{
ω̃t,e · 1(Ft,v(e) ≤ k) e = ⟨o, a⟩ , a ∈ [d] ,

ω̃t,e · 1(Ft,v(e) ≤ k − 1) otherwise ,

where ω̃t is the unconstrained percolation model as defined in the introduction.
Therefore, an edge e = ⟨x, x · a⟩ is open in ω̌t if and only if at time t at vertex
x there are at most k− 1 edges ⟨x, x · b⟩, b ∈ [d], with opening times lower than
t (and k edges in case they are neighbouring the root).

Similarly to reasoning from Section 3.2, this construction yields a model where
the root has distribution X+(d, k + 1, t), and all remaining vertices has the
distribution X+(d, k, t). Observe that this implies that for all considered pairs
of (d, k), the model ω̌t at time t = t0 has a non-zero probability of containing
an infinite open cluster containing the origin. This follows from Lemma 4, and
that Z+(d, k, t) is supercritical for t = t0. Therefore t0 > tc(Z

+(d, k, t)). If we
now show that

{Cluster of origin is infinite in ω̌t,e} =⇒ {Cluster of origin is infinite in ωt,e}

for all fixed t and all e, then trivially tc(Td, k) ≤ tc(Z
+(d, k, t)) < t0, what in

turn yields the inequality from Theorem 3. To this end, suppose an infinite
path starting at the origin exists in ω̌t0 and denote the subsequent vertices it
visits as x0, x1, ... where x0 = o. For an arbitrary n ∈ N, consider the edge
e = ⟨xn, xn+1⟩. Since it is open in ω̌t0 , it must be the case that Ue < t0
and at the vertices xn, xn+1 there is at most k − 1 edges open (k if n = 0).
This description clearly implies that edge e will open be open at time t0 in the
configuration ωt0 . Since this holds for all n ∈ N, we obtain that the infinite
path x0, x1, ... is also open in ωt0 , what concludes the proof.

4.4 Limiting behaviour of the expression d · tc(Td, k)

Theorem 4. For all increasing sequences (dn)n, (kn)n ∈ N where dn ≥ kn for
all n ∈ N, the critical time satisfies

lim
n→∞

dn · tc(Td, kn) = 1 .

Proof. First observe that for all such sequences (dn)n, (kn)n the result from
Theorem 3 implies

1 < dn · tc(Td, kn) < dn · tc(Z+(dn, kn, t)) .
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Hence if we prove that the last expression goes to 1 as n → ∞, by the squeeze
theorem it will imply Theorem 4. To show this, it is sufficient to prove that for
all ϵ > 0 there exists N ∈ N such that for all n > N there is tc(Z

+(dn, kn, t)) ≤
(1 + ϵ)/dn. Remembering the definition of the critical time of the upper bound
process (1), the statement above is equivalent with proving that such N ∈ N
exists which for all n > N satisfies E[X+(dn, kn, t)] > 1. Hence we need

kn−1∑
l=1

l

(
dn
l

)(
1 + ϵ

dn

)l(
dn − 1 − ϵ

dn

)dn−l

> 1 ∀n>N

Before working on this expression further, consider the Maclaurin series of
e−(1+ϵ). Since it converges to the value e−(1+ϵ), there exists N0 ∈ N such
that for all n > N0

e1+ϵ −
n−2∑
l=0

(1 + ϵ)l

l!
< α ,

where α := (ϵe−(1+ϵ))/(2 + 2ϵ) > 0. Let kN0
= κ. We also know that as

n → ∞, by Poisson Limit theorem the Binomial distribution with parameters
dn, (1 + ϵ)/dn converges to the Poisson distribution with parameter (1 + ϵ).
Then, considering n = N0, for all κ − 1 summands of the expected value sum,
there exists Nl ∈ N (where l ∈ {1, ..., κ− 1}) such that for all n > Nl:

(1 + ϵ)l

l!
e−(1+ϵ) −

(
dn
l

)(
1 + ϵ

dn

)l(
dn − 1 − ϵ

dn

)dn−l

<
ϵ

κ(κ− 1)

Pick N := max{N0, ..., Nκ−1}. Then for all n > N :

kN−1∑
l=1

l

(
dN
l

)(
1 + ϵ

dN

)l(
dN − 1 − ϵ

dN

)dN−l

>

kN−1∑
l=1

l

(
(1 + ϵ)l

l!
e−(1+ϵ) − ϵ

κ(κ− 1)

)

= (1 + ϵ)e−(1+ϵ)
kN−2∑
l=0

(
(1 + ϵ)l

l!

)
− ϵ

2
> (1 + ϵ)e−(1+ϵ)(e1+ϵ − α) − ϵ

2

= 1 +
ϵ

2
− ϵ

2
= 1

what ends the proof.

4.5 Monotonicity of the critical times in k and d

Observe that the previous sections have proved the following relation for the
critical time tc(Td, k):

tc(Z
−(d, k, t)) ≤ tc(Td, k) ≤ tc(Z

+(d, k, t))

To prove the existence of the upper bound of order o(1/d) we have used an
upper bound on the rightmost expression. In order to say something about the
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monotonicity of the critical time we will need a tighter bound; one that depends
on k, what is not provided by Theorem 3. Observe that monotonicity in d, k
can be shown if we prove the following assertions for all k ≥ 3 and d ≥ k:

tc(Td, k) ≤ tc(Z
+(d, k, t)) < tc(Z

−(d, k − 1, t)) ≤ tc(Td, k − 1)

tc(Td, k) ≤ tc(Z
+(d, k, t)) < tc(Z

−(d− 1, k, t)) ≤ tc(Td−1, k)

Although we weren’t able to show this explicitly, numerical calculations per-
formed to evaluate these inequalities lead to the following conclusions:

Theorem 5. For all 3 ≤ d ≤ 100 and 3 ≤ k ≤ d, the critical time tc(Td, k) is
monotonously decreasing in k and d.

Proof. We only need to prove the second inequality of both cases since the
remaining ones follow from previous results. Since we know that 1

d < tc(Td, k) <
1.2
d for all considered d, k, the inequality would follow from showing that for all
t ∈ [ 1d ,

1.2
d ] there is

E[X+(d, k, t)] − E[X−(d, k − 1, t)] > 0 ,

E[X+(d, k, t)] − E[X−(d− 1, k, t)] > 0 .

This can be done numerically by calculating the difference between the expected
values and checking whether it is always greater than 0 for all t on the considered
interval. The code in the appendix strongly suggests the correctness of this
hypothesis for all d < 100 and 3 ≤ k ≤ d. However, it cannot be treated as an
explicit proof, since not all values of t are considered. We would nevertheless
expect a certain smoothness from these functions on the considered interval
and hence it is very unlikely that significant fluctuations would appear at the
unchecked arguments.

Figure 3: Graphs of the difference of expectations for d = 100 and k = 4, 50, 99
respectively on the interval [0.01, 0.012]. Importantly, the functions take only
non-negative values
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5 Conclusion

An insight which allowed us to hypothesise the order of the critical time of the
CDP’s to be o(1/d) is that the constraint doesn’t play a major role in cases
where t is small. More precisely, for small values of parameter t there is a
very small probability that more than k edges neighbouring a single vertex have
opening times smaller than t. If this intuition were to be correct, CDP should
behave closely to the unconstrained percolation model when t ≈ 1/d, and hence
the motivation to search for bounds of such order. The methods used to prove
these bounds have also adopted this observation, since we were able to com-
pare the CDP to other models whose behaviour was partially mimicking the
behaviour of the unconstrained model. Further research is needed to extend the
upper bound to the case d = 3 and to optimise its value of 1.2/d.

The thesis investigates the asymptotic behavior of the critical time in CDP’s,
deriving the asymptotic formula for the critical time in the case when both pa-
rameters d, k go to infinity. Unfortunately the method used to prove Theorem
4 is not sufficient to show similar result when the constraint k is allowed to be
constant. The critical time tc(Z

+(dn, k, t)) does not converge to 1/d as n → ∞,
but this does not imply that the same holds for limd→∞ tc(Td, k). Intuition
suggests that as d → ∞, the critical time 1/d of the unconstrained percolation
model approaches 0, and hence the constraint k should have less and less impact
on the critical time of the CDP. This supports the following conjecture.

Conjecture 1. For all increasing sequences (dn)n ∈ N where d0 ≥ k, the
critical time satisfies

lim
n→∞

dn · tc(Td, k) = 1 .

As we discussed before, it is to be expected that as d, k grow, more and more
edges are able to open and hence the critical time of the CDP should decrease.
The way such results are usually proved in the percolation theory is by making
use of standard coupling arguments, where one modelh is shown to produce con-
figurations which are subsets of configurations produced by the second model at
all times. However, as was shown in the introduction, these are not applicable
for the CDP’s. Hence another method needs to be found in order to prove this
result rigorously. The computer assisted solution outlined in Theorem 5 was
merely an attempt at showing this result for a limited number of parameters
d, k. Both the intuitive insight and the numerical results from the thesis allow
to formulate the following conjecture.

Conjecture 2. For all 3 ≤ d and 3 ≤ k ≤ d, the critical time tc(Td, k) is
monotonously decreasing in k and d.
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Appendix: Python code

import math
import numpy as np

def binomial (n , k ) :
exp r e s s i on = 1
for i in range (n−k+1, n+1):

exp r e s s i on ∗= i
expr e s s i on = expr e s s i on / math . f a c t o r i a l ( k )
return exp r e s s i on

def D i f f e r e n c e (k , d , p ) :
a r r a y p r o b a b i l i t i e s = np . z e r o s (d−k+1)
expec ted va lue = 0
sum = 0

for i in range (k , d+1):
a r r a y p r o b a b i l i t i e s [ i−k]= binomial (d , i )∗ ( p ∗∗ i )∗ (1 − p )∗∗ ( d − i )
expec ted va lue+=a r r a y p r o b a b i l i t i e s [ i−k ]∗ i
sum += a r r a y p r o b a b i l i t i e s [ i−k ]

expec ted va lue ∗= (k−2)
expec ted va lue = binomial (d , k−1)∗(p∗∗(k−1))∗(1−p )∗∗ ( d−k+1)−sum
return a r r a y p r o b a b i l i t i e s , expec ted va lue

d max = 100
N = 10000
Fault Counter = 0

for d in range (3 , d max+1):
p r o b a b i l i t i e s = np . l i n s p a c e (1/d , 1 .2/ d , N)
print (d)

for k in range (3 , d+1):
for l in range (N) :

i f D i f f e r e n c e (k , d , p r o b a b i l i t i e s [ l ] ) [ 1 ] < 0 :
Fault Counter += 1
print ( ’ Fault  at ’ , d , k , ’ at  time ’ , p r o b a b i l i t i e s [ l ] )

i f Fault Counter == 0 :
print ( ” Success ” )

else :
print ( ” Fa i l u r e ” )
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