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ABSTRACT 
Individuals who survive a stroke often require assistance to be able to perform basic tasks. Robotic 

aids, such as Assistive Robotic Manipulators (ARMs) can be used to help stroke survivors perform 

tasks, by grasping and handing over items to the patient. Robotic handover is an essential part of 

human-robot interaction (HRI). Implementing intuitive robot to human handover is still challenging 

to this day. In this project, a glove facilitating gesture control was designed to improve robot-to-user 

handover. Two MPU-6050 sensors and two flex sensors were embedded onto a glove to provide 

orientation data of the hand and sense bending of the fingers, respectively. Handover was controlled 

by movements of the hand wearing the glove. Data from the glove was sent to the ARM to move the 

manipulator between positions while independently operating the gripper. Testing was conducted 

by handing over five different items (cardboard coffee cup, half-filled bottle of water, empty bottle 

of water, cardboard box of tea, whiteboard eraser) twenty times each. Results showed an average 

handover time of 7.76 seconds with an error rate of 18.03%. There was a significant difference in 

handover times between tested items. Possible factors that impacted the results are testing 

environment, the same user performing all tests and hardware limitations. The design shows 

promise in being a fast and intuitive method at facilitating robotic handover. Future research is 

needed to improve success rate and determine compatibility with the target demographic. 
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INTRODUCTION 
In 2020, 38,500 individuals in the Netherlands experienced a stroke, equating to over a hundred 

people suffering from a stroke each day [1]. Over half of the patients who survive a stroke require 

long-term care to be able to perform basic tasks and activities in their daily lives [2]. To aid patients 

in this, assistive robotic manipulators (ARMs) can be used. ARMs are designed to help people with 

upper or lower limb disabilities, such as stroke survivors, by performing small but essential tasks [3]. 

These tasks include opening doors, assisting with eating, and grasping objects. To perform these 

tasks successfully, the human and ARM need to interact and work together. Studies show that 

mimicking human to human behaviours in human-robot interaction (HRI) allow for smoother and 

more intuitive actions [4]. This is still something ARMs struggle with, as they have difficulties 

replicating human communication necessary for these interactions [5]. This project aimed to 

develop a method for seamless HRI, with a focus on facilitating smooth robot-to-human handovers, 

specifically designed for stroke survivors. 

Problem definition 
A stroke is a medical emergency in which the blood flow to parts of the brain is blocked, or sudden 

bleeding occurs in parts of the brain [6]. Generally, only 10% of stroke patients make a full recovery, 

and over 50% of stroke survivors sustain impairments that require special or long-term care [2]. 

Stroke is the leading cause of adult disability worldwide, and can cause a variety of semi-permanent 

to permanent disabilities which can be in the form of physical, cognitive, psychological or social 

limitations [7]. Stroke is globally the largest contributor of neurological disability-adjusted life years 

(DALYs), and one of the largest contributors for general DALYs [8]. DALYs among stroke survivors 

increase with age, and is highest among the 60–80-year age group. 

Permanent complications of stroke hinder a patient’s ability to perform activities of daily living 

(ADL). The presence of post-stroke depression (PSD) increases this impairment even further, and 

delays a patient’s rehabilitation [9,10]. Approximately 30% of all stroke survivors develop PSD within 

5 years after experiencing a stroke [11]. Empowering a patient’s ability to perform basic ADL has a 

positive effect on their psychological and physical Health-Related Quality of Life (HRQoL) [12,13]. 

The inability of stroke survivors to perform ADL and other general tasks forces them to rely on 

people in their direct environment. This increased stress on caregivers, often direct family, partners 

or friends, can cause burden and considerable strain, leading to both physical and psychological 

health risks for the caregiver [14]. Caregiver burden correlates to the stroke patient’s mental 

wellbeing and their dependency on the caregiver, which has a negative impact on a caregiver’s QoL 

[15]. Increasing a patient’s independence could improve QoL for patient and caregiver alike. 

Stroke survivors with muscle weakness can benefit from robotic assistive aids, such as ARMs, to 

perform small tasks and regain independence in their daily lives. These ARMs can grasp objects for 

the user and either transfer them to a designated location or hand them directly to the user. 

However, a challenge with current assistive robots is the intuitiveness of human-robot interaction 

(HRI), particularly during the handover of items between robot and human. 

Robot to human handover has been extensively researched for decades [16], with findings indicating 

that mimicking human behaviours in robots facilitates smoother and more intuitive HRI [4]. For 

instance, modifying an assistive robot with algorithms that emulate human movement, such as 

employing a human-inspired velocity profile instead of a standard trapezoidal one during handover 

motions, results in faster and smoother interactions [17]. A thing robots struggle to mimic is the 

communication humans use, where eye contact, verbal cues, gestures and motion are used to show 



   

 

   

 

initiation of both giving and receiving during a handover [18]. During a human-to-human handover, 

the giver is able to predict how the receiver will reach for the object and gauge when they have 

grasped it, while the receiver is able to anticipate when the giver will release the object based on 

visual cues. 

There have been attempts at mimicking human communication for assistive robotic manipulators. 

This involves implementing sensors that enable robots to interpret data such as human vision 

[19,20,21], vocal commands [22,23,24] or gestures of different parts of the body [25,26] to enhance 

communication and handover control. However, this often also adds an element that makes the 

interaction less habitable for the human due to a high interaction time [23,24]. Developing smooth 

and intuitive handover for an ARM has to consider both user safety and user experience. 

State-of-the-art 
A wide variety of ARMs are available today, from innovative conceptual designs to market-ready 

products, all designed to aid users in performing Activities of Daily Living (ADL). This market review 

will specifically highlight the current handover designs in ARMs, focusing on how these devices 

transfer items between the ARM and the user during various tasks while ensuring the user maintains 

full control over the ARM [27]. 

Robot handover is defined by the robot moving within proximity to transfer the object, followed by 

the act of the transfer guided by both robot and user together [28]. This interaction can be 

autonomous, with the robot performing all steps, or by the user guiding the process. One of the 

challenges in handover in assistive aids is determining the precise moment for the ARM to release 

the object. Premature release could result in the object falling, whereas delayed release could result 

in user frustration. In general, robot to human handover has the most success if the process is 

closely resembling human-to-human interactions [29]. 

Recent studies have successfully implemented a Voice-User Interface (VUI) that allows the user to 

vocally let the robot know when they are ready for the robot to let go of the item [23,24]. The 

handover is guided through speech from both the robot and user. The robot utilises speech to 

inform the user of the current state of the handover, while the user gives vocal commands to the 

robot to initiate the steps. The studies showed a high success rate in handovers, both over 95%, and 

high user appreciation. However, both studies mentioned a long average duration time of over a 

minute for the handover task. 

For full autonomous handover, a study used an RGB camera combined with an object detection 

algorithm to allow the ARM to both pick-and-place items and handover items to a bystander [30]. 

This study worked with the user, the receiver, holding out their hand and waiting for the robot to 

drop the item into their hand, rather than grasping the item while the robot was still holding it. The 

study showed a high accuracy in detecting objects and human hands. However, the method has only 

been tested on round fruits, limiting the scope of the design. 

To utilise the movements humans make during grasping tasks, one study designed a grip-state 

indicator that integrates both gripping strength and gestures through the use of whole-hand tactile 

sensors [31]. This approach uses several different inputs to facilitate handover. Results showed fast 

handover times, but accuracy rates for unseen grip settings ranged from 75% to 89%. Additionally, 

new objects require a 25 second demonstration for the robot to adapt to the item. This approach 

has currently only been tested in industrial settings. 



   

 

   

 

Objectives 
This study aimed to develop a control method for an assistive robotic manipulator to improve the 

intuitiveness and efficiency of object handovers, by utilising a sensor-equipped glove. The goal was 

to create a more user-friendly and effective assistive device using gestures performed during 

handovers to guide the ARM. 

State-of-the-art handover designs have shown that interaction speed is currently the biggest factor 

that inhabits handover intuitiveness. A glove design was chosen for this project to reduce handover 

duration. Performing gestures while wearing the glove takes little time while still empowering the 

user to control the ARM. Since the glove serves as a wearable remote-control rather than an 

additional input device, it enhances user comfort during interactions. The adaptability of the design 

and the low-cost, readily available components necessary to realise the project also contributed to 

the decision. 

In figure 1 a cause-effect diagram of the effects of a stroke is depicted, focusing on the 

consequences muscle weakness has for the patient. In figure 2, it is shown that restoring the ability 

to perform basic tasks for the patient has a positive effect on the events that follow in the diagram. 

With the ARM making it possible for the patient to perform small tasks on their own, other problems 

created as a result of the lack of independence of the patient can be solved. 

As there is already a wide variety of ARMs designed and manufactured, this project focused 

specifically on creating a way to achieve smooth and intuitive handover between the ARM and the 

user. To reach the goal, a DYNAMIXEL OpenMANIPULATOR-X RM-X52-TNM robot arm provided by 

the lab of the research group of Discrete Technology and Production Automation (DTPA) at the 

University of Groningen was altered in software so that it could read data sent by additional 

hardware. The hardware consisted of inertial measurement units (IMUs) and flex sensors affixed on 

a glove. 

 

Figure 1. Cause-effect diagram of the effects of a stroke pertaining to inability to use the upper extremities. 



   

 

   

 

 

Figure 2. Cause-effect diagram of reaching the goal of allowing the patient to perform basic tasks post-stroke. 

As there is already a wide variety of ARMs designed and manufactured, this project focused 

specifically on creating a way to achieve smooth and intuitive handover between the ARM and the 

user. To reach the goal, a DYNAMIXEL OpenMANIPULATOR-X RM-X52-TNM robot arm provided by 

the lab of the research group of Discrete Technology and Production Automation (DTPA) at the 

University of Groningen was altered in software so that it could read data sent by additional 

hardware. The hardware consisted of inertial measurement units (IMUs) and flex sensors affixed on 

a glove. 

The provided DYNAMIXEL OpenMANIPULATOR-X RM-X52-TNM robot arm has 5 degrees of freedom 

(DoF) and is able to move using five XM430-W350-T servomotors [32]. The robot arm was already 

fully assembled and operating, and it has open-source code available on multiple platforms that 

allows for full control [33]. The costs of the robot arm itself are approximately €1350 [34]. This does 

not include the OpenCR control board and the power supply, which would add another estimated 

€200 [35,36]. A successful, working prototype had to be realised within a timeframe of ten weeks. 

Due to time and cost limitations, the design had to be created with sensors that were already 

available in the electronics lab, or sensors that were affordable and could be shipped and received 

within a reasonable time. Given the variety of sensors in both their function and their availability, as 

well as the nature of the problem, a number of concepts could be created and the probability of 

creating a successful prototype was high. The prototype was created in the electronics lab of the 

DTPA, located at Nijenborgh 4, 5117.0205, under the guidance of supervisor Dr. Elisabeth Wilhelm. 

By creating a method for the ARM to be able to hand over small items in a way that is seamless, 

intuitive, and easy for the user to operate, the patient will be able to receive items the ARM has 

grasped in the vicinity independently without needing the aid of another person. Achieving this main 

goal will allow the patient to perform small tasks on their own which will increase their 

independence and ultimately improve their mental state and HrQoL. It will also lessen the burden on 

the caregivers of the patient due to the patient being able to perform small tasks on their own and 

not needing to call over caregivers when they want to reach for an item. This will decrease the strain 

on said caregivers and improve both their physical and mental health. 



   

 

   

 

Societal relevance 
Improving the intuitiveness of HRI in ARMs can significantly enhance the independence of stroke 

survivors, reducing the burden on caregivers and improving the overall quality of life for both 

parties. Multiple other stakeholders are also likely to benefit from these advancements, as shown in 

table 1. 

Table 1. Stakeholder analysis for the assistive robotic manipulator with gripper. 

Stakeholder  Characteristics Expectations Potentials and 
deficiencies 

Implications and 
conclusions 

Stroke patient Patients 
experience pain, 
discomfort and 
physical and 
social limitations. 
Patients are 
unable to 
perform basic 
ADL, further 
lowering their 
QoL. 

They expect to 
regain the ability 
to reach for and 
grab items using 
the ARM and be 
independently 
able to perform 
small tasks. 
 

The patient likely 
has a lack of grip 
strength. As the 
age group of the 
patients is 
around 60-80 
years, mode of 
control of the 
ARM cannot be 
too complicated 
due to possible 
lack of technical 
knowledge. 

The main 
demographic for 
the ARM. It 
needs to be 
designed with 
them in mind, 
which limits the 
possible 
complexity of the 
mode of control 
of the design. 
 

Stroke patient 
caregivers 

Often family, 
partners or close 
friends of the 
patient. Spends a 
long portion of 
their time with 
the patient. 

They expect an 
increase in the 
independence of 
the patient so 
that the burden 
of care is 
lessened. 

They are close to 
the patient and 
know the 
patient’s wishes. 
They might be 
too attached to 
let the patient try 
the assistive arm 
on their own. 

They see the 
patient daily and 
their wishes as 
well as the stress 
put on them 
should be 
considered 
heavily. 

Family and 
friends 

Even when not 
directly the main 
caregiver, they 
often still aid the 
patient. They are 
personally 
impacted by the 
well-being of the 
patient. 

They expect an 
improvement in 
both the physical 
and mental well-
being of the 
patient, even if 
slightly. 

They are very 
close to the 
patient and know 
whether a certain 
treatment 
approach or 
assistive device 
would work or 
not. 

They are often a 
direct line to the 
patient that has 
known the 
patient since pre-
stroke. 

Primary care 
team 

Focusses on the 
overall health, 
survival and well-
being of the 
patient over all 
else. 

They expect a 
product the 
patient can use 
on their own 
without it being 
harmful to the 
patient in any 
way. 

They are experts 
in the medical 
field but 
generally lack 
technical 
knowledge. 

They may not be 
interested in 
working with 
new assistive aids 
if they don’t 
believe it is an 
improvement 
over the current 
situation health-
wise. 



   

 

   

 

Occupational 
therapist 

Assists the 
patient in 
rehabilitation 
with a focus on 
relearning how 
to perform basic 
ADL. Aids the 
patient in gaining 
independence in 
daily life. 

They want to 
improve the 
independence of 
the patient. They 
expect a device 
that is able to aid 
the patient with 
small basic tasks. 
 

They work 
directly with the 
patient to 
enhance their 
fine motor skills 
and cognitive 
abilities, and are 
an expert on 
rehabilitation 
with regards to 
performing ADL. 

They can 
recommend the 
assistive aid to 
the patient if 
they believe in its 
capabilities and if 
the aid adds to a 
patient’s 
independence. 
 

Healthcare 
insurance 

Aims to provide 
optimal care at 
the lowest costs. 

They want to 
keep the costs as 
low as possible. 

Their ability to 
cover the 
expenses of the 
assistive aid 
depends on the 
costs of the aid 
itself as well as 
the patient’s 
specific 
insurance. 

Given the 
expectedly high 
costs of the 
product, wishes 
of the insurance 
should be 
considered as the 
patient and/or 
care facility 
might need them 
for funds. 

Assistive aids 
industry 

Always 
interested in new 
products, 
preferably at low 
costs. 

They want to run 
a profitable 
business. 
 

They are more 
interested in 
products easy to 
manufacture, 
which an 
assistive robot 
arm is not. 

They have 
knowledge of the 
market, the 
demand and the 
selling potential 
of the aid. 
 

 

Demarcation 
The primary focus of the project was on the design, development, and evaluation of a control mode 

that ensures smooth handover between the robotic manipulator and the user. To ensure successful 

completion of the project, clear boundaries had to be set to realise the design within the time limit. 

To facilitate intuitive handover, the ARM is operated by flexion and extension of the hand as well as 

bending of the thumb and index finger, requiring the user to be able to move their hand and fingers. 

The method requires instructional training before it can be used. The handover method was 

designed specifically for stroke survivors with lower limb disabilities or general muscle weakness 

who are in need of assistance when performing small tasks and basic ADL. This strategy cannot be 

employed for patients who have extensive upper limb disabilities or cognitive impairments which 

makes them unable to utilise the glove design. Individuals other than stroke survivors can also make 

use of the designed control method, if they are able to perform the necessary actions for control. 

The research focused on robotic handover rather than comprehensive rehabilitation protocols. 

Due to the low technology readiness level of the design, it could not be tested with the actual target 

group. Testing was instead performed by the developer of the design, who is able-bodied. To assess 

whether or not the design is suitable for the target demographic, separate testing needs to be 

performed, but this is not feasible within the time period for the project. 



   

 

   

 

To distinguish the design from the various ARMs already on the market, the final operating system 

was created out of low-cost materials and sensors. The final control method is able to use the data it 

receives from the sensor on the glove to move the ARM between two positions while also 

independently operating the gripper. It is unable to rotate the ARM and the ARM cannot deviate 

from alternating between two positions, but the positions can be changed manually in the code. The 

ARM can operate on a delay that can be manually changed, but once the delay has passed it will 

perform the actions it received input for and this cannot be cancelled. The design was created for 

one type of manipulator, the DYNAMIXEL OpenMANIPULATOR-X RM-X52-TNM. 

The gripper can close completely or close around an item to hold it, stopping gripper movement 

when it notices a current spike. This was a simple thresholding method to be able to test the design's 

functionality. The force the gripper enacts on the items was not measured. The control of the force 

the gripper exerts is outside of the scope of this project. 

The DYNAMIXEL robot arm is 380mm long and has a payload of 500 grams. The gripper stroke 

ranges from 20mm to 70mm. This limited the weight and the size of the items that were used for 

testing. The final design was tested on handover speed and handover success rate. 

The current design was created using the hardware and software available at the robotics lab of the 

Engineering and Technology Institute Groningen (ENTEG), constraining the possible options for the 

overall set-up. The glove was created for the right hand and the sensor placements as well as the 

movement positions the ARM reacts to are only based on right hand interactions. The set-up does 

not have a safety stop button implemented and the ARM does not stop its movement during an 

action if it encounters an obstacle. Using the glove requires a computer device with two USB ports. 

  



   

 

   

 

MATERIALS & METHODS 
This section outlines the procedures used in the development and evaluation of the glove control 

method for the DYNAMIXEL OpenMANIPULATOR-X RM-X52-TNM. The design was created to make 

the ARM perform its actions as shown in figure 3. Control to facilitate handover was established by 

allowing the Arduino board to read movement data from the MPU-6050 sensors and Spectra Symbol 

2.2 flex sensors. 

 

Figure 3. State-machine diagram of the two independent state changes the ARM can go through to facilitate handover. 

System description 
The idea behind the glove is to control the movements of the ARM, both in moving towards and 

away from the user as well as opening and closing the gripper, by moving the hand wearing the 

glove. To make this concept an intuitive method of control, the movements to facilitate control were 

to be based on movements a person generally performs when reaching for an item in a handover.  

Hardware components 
The final design of the glove consists of the following materials: 

• Garden glove purchased from Wibra, €1.49 

• 2 MPU-6050 Accelerometer and Gyroscope 3-Axis Module 3.3V-5V purchased from RS 

Components Europe, €8.50 per sensor 

• 24 jumper wires 



   

 

   

 

• 30-input breadboard 

• 2 Spectra Symbol 2.2 flex sensors purchased from RS Components Europe, €12 per sensor 

• 2 fixed resistors, approximately 8.2 kilohms each 

• Arduino MKR Wi-Fi 1010 board with USB cable, €33.50 

Any Arduino board with SCL and SDA inputs for I2C communication can be used. The resistance 

value of the resistor can be different, as different resistor values can give usable readings with the 

flex sensors. For flex sensor readings to be usable, the change of output value needs to be 

approximately the same for repeated sensor bending. To connect everything to the glove, self-

adhesive Velcro, duct tape, 3D-printed holders for the MPU sensors and a soldering iron were used. 

The full physical setup of the glove can be seen in figure 4 and 5. All sensors used an input voltage of 

5 volts. 

 

Figure 4 and 5. Setup of the glove with the circuits on the breadboard and the connections to the Arduino MKR (left), and 
the orientation of all sensors when the glove is worn (right). 

Software components 
The following software was used to read, transfer or find data: 

• Arduino IDE 2.3.2 

• Python ver. 3.12 

• Dynamixel Wizard 2.0 

The glove works by combining the various readings it receives from the different sensors and 

sending this data to the OpenCR board of the ARM, which reads the data and uses it to manipulate 

the ARM accordingly. To send the data from the glove to the ARM, serial port communication 

through Python was used. All code used can be found in the Appendix. The glove_control script runs 

on the Arduino board and is used to receive the data from readings of the sensors on the glove. The 

serial_ports script runs on Python and allows the data from the Arduino board serial bus to be sent 

to the OpenCR board serial bus. The robot_control script contains the code the OpenCR board uses 

to manipulate the ARM by reading the data it received from the Python script. 

Glove set-up 
The design utilises two MPU-6050 sensors to track the orientation of the hand and the forearm, and 

two flex sensors to detect bending of the fingers. The sensors were placed as shown in figure 6. MPU 

sensor 1 was placed in the middle of the back of the hand, with the Y-axis running vertically along 

the fingers and arm, and the X axis placed horizontally across the hand, perpendicular to the Y axis. 

The sensor was mounted flat on the hand with the pins oriented upwards, such that the Z-axis 



   

 

   

 

extended perpendicularly from the hand's surface. X, Y and Z axis orientation of the MPU-6050 

sensor were found in the sensor datasheet [37]. 

 

Figure 6: Schematic of the glove and the attached sensors with their significant numbering. Glove template taken from 
OpenClipart [38] 

MPU-6050 sensors details 
The MPU-6050 is a type of IMU sensor that integrates a 3-axis gyroscope and a 3-axis accelerometer, 

providing 6-axis motion sensing capability [37]. It allows for motion tracking by capturing both linear 

and rotational movements in the X, Y and Z axis. The accelerometer measures linear acceleration 

and the gyroscope measures angular rotation around the axes. To create motion tracking, sensor 

fusion algorithms can be used to find the acceleration and rotation data by combining accelerometer 

and gyroscope data. 

The gyroscope has selectable ranges of ±250, ±500, ±1000, and ±2000 degrees per second, and the 

accelerometer has selectable ranges of ±2g, ±4g, ±8g, and ±16g [37]. This design utilises the default 

condition ‘FS_SEL=0’ for the gyroscope, setting it to 250 degrees per second. The accelerometer was 

set to the default condition ‘AFS_SEL=0’, setting it to 2g. The default values for both were chosen as 

they provide sufficient readings for the application in the design while offering the highest accuracy. 

Using the MPU-6050, the Euler angles roll, pitch and yaw can be detected on the location the sensor 

is implemented. Euler angles are a set of three angles that describe the orientation and rotation of 

any point relative to a fixed coordinate system [39]. Roll describes the X axis, pitch the Y axis and 

yaw the Z axis. To calculate roll and pitch, accelerometer data was used. For yaw, both 

accelerometer data and gyroscope data are required. To be able to detect the difference in 

orientation between the two MPU sensors, the roll and pitch values are subtracted from each other 

to provide delta values. These delta angles were used to determine the motion and orientation of 

the hand relative to the forearm, moving the ARM to a base or giving position depending on hand 

flexion or extension. 

MPU sensor 2 was placed on the back of the forearm, below the wrist joint to minimize potential 

sensor movement during independent hand motions. MPU sensor 2 was oriented with the same 

axes alignment as sensor 1. Placing the sensors in these specific locations gives the microcontroller 

the ability to read orientation data of the hand and forearm separately. MPU sensor 1 was in a black 

casing with an AD0 connection to ground, and sensor 2 was in a white casing with an AD0 



   

 

   

 

connection to the voltage input. Without these specific AD0 connections, I2C cannot read different 

addresses for the sensors. 

To provide the roll and pitch data, acceleration values from all three axes were used. The roll angle φ 

in degrees is defined as: 

𝜑  =   arctan(
−𝑎. 𝑥

√𝑎. 𝑦2 + 𝑎. 𝑧2
) ⋅

180

𝜋
 

(1) 

In equation (1), a.x is the acceleration on the X axis, a.y is the acceleration on the Y axis and a.z is the 

acceleration on the Z axis. The formula also converts the data from radians per second to degrees. 

Likewise, pitch angle θ was calculated as shown in equation (2): 

 𝜃 =   arctan (
𝑎. 𝑦

𝑎. 𝑧
) ⋅

180

𝜋
 

(2) 

By using these formulas for the sensors, the microcontroller is able to read when the user moves 

their hand up, down, to the left or to the right in comparison to their arm. 

To prevent outside forces from affecting the readings, such as pulling of the jumper wires, the 

sensors were secured with self-adhesive Velcro pasted on the glove and the 3D-printed sensor 

encasings. The MPU-6050 casings used in this study were created and provided by Paul 

Fetchenhauer. Drawings of the casings can be found in the Appendix.  

The code for the sensor setup and calibration were based on the Adafruit MPU6050 guide for 

Arduino [40]. To get readings from two sensors at nearly the same time, different I2C addresses 

were given in the function setup, 0x68 and 0x69 to sensor 1 and sensor 2. This I2C bus 

communication reads sensors one after the other rather than simultaneously, but the delay is 

insignificant and negligible for the overall readings. To calibrate the sensors for first time use, the 

code reads the values of roll and pitch in base position an N number of times in the calibrateSensors 

function. It uses equations (1) to determine baseRoll1 and basePitch1 for MPU sensor 1, and 

equation (2) to determine baseRoll2 and basePitch2 for MPU sensor 2. Base position is defined as 

the user wearing the glove and having their hand in a resting position laying on a surface. In the code 

used, N = 100 for determining the base roll and pitch values. For these values, calibration was 

measured with a stopwatch to take about 6 seconds before the sensors start giving data. Roll and 

pitch values were calculated in the main loop function using equations (1) and (2), subtracted by the 

base values found during the calibration. To calculate the differences between the same angles of 

the two MPU sensors, the roll and pitch angle values of sensor 1 were subtracted from the values of 

sensor 2. The difference in angle positions were called deltaRoll and deltaPitch. 

Flex sensor details 
The glove has two flex sensors connected to it, one attached to the thumb and one to the index 

finger, with the metal pads of the flex sensor on top. The thumb and index finger were chosen 

because they are the most commonly used when grabbing an item during handover. Flex sensors are 

designed to detect and measure bending on their surface by measuring angular displacement [41]. 

This changes their resistance. To allow for measurements, the sensors were connected to custom 



   

 

   

 

voltage divider circuits on a breadboard. Both voltage divider circuits use a fixed 8.2 kilohms resistor 

and an input voltage of 5 volts.  

The sensor operates by varying its resistance in response to bending, which alters the voltage output 

across the divider circuit. The flex sensors are connected to analogue-to-digital converter pins on the 

Arduino board and give an analogue output between 0 and 1023. Flex sensors work as a resistor in a 

voltage divider circuit, so an increase in resistance changes the output voltage. The sensitivity and 

the baseline value of the output can be altered by changing the fixed resistor in the circuit. The 

output value of the flex sensors was used to determine the state of the gripper, opening below a set 

value and closing again if it rises above this value. 

The flex sensors have an offset value in relaxed state that decreases when the sensor is bent. 

Despite using two fixed resistors both labelled 8.2 kilohms, flex sensor 1 and flex sensor 2 have a 

different offset value measurement in relaxed state. This was accounted for during design. The 

output of the flex sensors was used to both open and close the gripper. The flex sensors were 

connected to the breadboard by soldering them to cut jumper wires, and they were attached to the 

glove with duct tape. As the entirety of the flex sensor needs to be stuck to the glove to notice 

bending of the fingers, duct tape was chosen rather than sewing the flex sensors onto the glove or 

using self-adhesive Velcro. 

For a flex sensor to give values when connected to an Arduino microcontroller, it needs to be 

implemented into a voltage divider circuit. It is then able to give an output using the following 

equation: 

𝑉𝑜𝑢𝑡  =  𝑉𝑖𝑛 ⋅
𝑅𝑓𝑖𝑥𝑒𝑑

𝑅𝑓𝑖𝑥𝑒𝑑 + 𝑅𝑓𝑙𝑒𝑥
 

(3) 

Equation (3) is the standard equation for a voltage divider. It uses 5V for the input voltage Vin, and 

approximately 8.2 kilohms for the fixed resistors Rfixed. Rflex is the flex sensor in the voltage divider, 

and Vout is the output value that is ultimately converted from analog to digital. In this design, the 

fixed resistor is positioned between the input voltage and the flex sensor, with the flex sensor 

connecting the fixed resistor to ground. This causes the output voltage to decrease when the flex 

sensors are bent. 

The code for the flex sensors was combined with the code for the MPU sensors. In the loop function, 

the code first reads data from flex sensor 1, then flex sensor 2, MPU 1 and finally MPU 2. The time 

between the readings of the different sensors is negligible. Flex sensor 1 is connected to A0 and flex 

sensor 2 is connected to A1. To use the data from the readings for all sensors, the output values 

deltaRoll, deltaPitch, flexValue1, and flexValue2 were converted to string format. This data string 

format was then printed to Python for serial communication between the ports. 

Python serial communication 
The sensors on the glove and the ARM are not directly connected in hardware, but through port-to-

port communication facilitated by Python using two USB ports on a computer device. By naming the 

two communication ports and setting the baud rate to the rate the Arduino board operates at 

(115200), the data can be sent from the Arduino port to the OpenCR port. The Python monitor prints 

the data the OpenCR board receives, that being the changes in roll and pitch angles, and the values 

the flex sensors read. 



   

 

   

 

OpenCR commands 
The code for the OpenCR board was written using data retrieved from Dynamixel Wizard 2.0. By 

using the example sketch usb_to_dxl for the OpenCR board [42], the ARM could be connected to the 

Wizard and manually moved into the desired positions. The wizard also showed the IDs for all servo 

motors, and allowed for movement of each servo motor separately while showing the exact angles. 

The control tables for the manipulator and each servo motor could also be found using the Wizard, 

which showed the locations of the addresses for values such as ‘present current’, ‘current limit’ and 

‘goal position’. 

The OpenCR board connected to the ARM receives the data string from Python and uses this data in 

an Arduino code to move the 5 servo motors it consists of. Before reading any data, the code 

activates the torque for the servo motors so that the ARM remains stable. In the setup function, it 

sets the baud rate to the baud rate of the glove data, 115200. 

In moveServosToPosition, the servo motors of the ARM are set to respond to their functions. This is 

not the case for servo motor 15, as ID 15 corresponds to the gripper, which is moved by the flex 

sensors rather than the MPUs. The gripper is defined in the function closeGripper, where it is set to a 

full closing position at 2700 when the flex sensors are relaxed. In the Dynamixel Wizard the angle for 

a full closing position was found to be 238 degrees. To convert the servomotor angles to encoder 

counts the OpenCR board can read, the following formula was used: 

𝐸𝐶  =  
𝛼 ⋅ 4096

360
 

(4) 

In the equation (4), α is the angle of the servomotor in degrees and EC is the number of encoder 

counts. This equation had to be used to move the servomotor in the correct position, as it has a 

rotation of 360 degrees in which it can assume 4096 positions as specified by the XM430-W350 

datasheet [43]. With this formula, the angle in degrees is converted to encoder counts. When the 

gripper is holding an item, it cannot fully assume the closing position of 238 degrees. To prevent the 

gripper from becoming unresponsive due to its inability to fully achieve the set position, the bool 

function isGripperHoldingItem checks to see if the current of the gripper servomotor is increased 

during closing, which happens when it squeezes an item it holds. If the specified current threshold is 

reached, it stops attempting to close and allows for commands again. 

In the main loop function, the board checks if serial communication is established. If there is, it 

receives the data string from the port and reads the values. The servomotors are moved into 

position based on the deltaPitch value. If it is below a certain value, it will move into the ‘giving’ 

position. If it is above a certain value, it will move into the ‘base’ position. The manipulator does not 

move if deltaPitch has a value between these two limits. The values necessary for the limits of 

deltaPitch were determined by testing the glove on its own and reading the data output in the serial 

monitor of Arduino. The ‘base’ and ‘giving’ positions can be seen in figure 7 and 8 and are achieved 

by changing the angles of the motors that need to be adjusted in OpenCR. The desired positions and 

their corresponding angles were found using the Dynamixel Wizard. The loop function also opens 

the gripper based on the flex sensor values. If either of the flex sensors drops below a certain value, 

the gripper moves to a fully open position. The angle for a full open gripper is 110 degrees, 

converted to 1252 using equation (4). The values for the flex sensors were found using the serial 

monitor output of separate glove testing. If the flex sensors raise above the limit again, the gripper 

acts according to the closeGripper function, which closes the gripper either fully or until the current 



   

 

   

 

limit is reached. All values read by the OpenCR board are also printed in the Python monitor to check 

if the values are as expected and read correctly by the board. 

 

Figure 7 and 8. The gripper in its base (left) and giving (right) positions. 

Test protocol 
The experiment was conducted over the course of two weeks in the electronics lab. The design was 

tested by one person, the developer, using five items. The items were successfully handed over from 

ARM to the user twenty times. A ‘handover’ is defined as the robot, already holding the item and in 

‘base’ position’, moving into the ‘giving’ position towards the user, releasing the item when the user 

has grasped it, and moving back to ‘base’ position once the handover is finished. Before testing was 

conducted, the user followed guided training to familiarise with the method and improve 

consistency. The ARM was tested on its ability to correctly hand over an item by the user sitting in 

front of it at a desk. Handovers were timed separately on a stopwatch, meaning the times below 

have an error rate of 0 to 2 seconds, as the operator was also managing the stopwatch. Handovers 

were performed consecutively per item. 

Table 2. Specifics of the items used during testing of the glove control. 

Item number Item description Length (mm) Width or 

diameter (mm) 

Weight (g) 

1 Empty cardboard 

coffee cup 

90 55-80 (varies 

among length) 

18.8 

2 500ml bottle of 

water, half filled 

230 64 302.7 

3 500ml bottle of 

water, empty 

230 64 41.2 

4 Cardboard box of 

tea 

120 80 40.3 

5 Whiteboard eraser 143 50 84.7 

 

With the codes uploaded to their respective boards and the serial communication being established 

through Python, the glove can be connected to the ARM for gesture control. The MPU sensors were 

calibrated while the glove was in resting position on the hand before testing was performed. Timing 

the handover started when the ARM was in base position holding the item, and stopped when the 

ARM returned to base position after it handed over the item. Specifics of the items used during 



   

 

   

 

testing can be found in table 2. Different shapes, dimensions and weights were used for testing. 

Handover times were noted of the successful handovers. If a handover failed, no time was noted and 

it was counted as a failed handover instead. A failed handover is defined as the user unable to take 

over the item from the ARM due to failure of the design or the ARM. If the ARM let go of the item 

before the user could grasp it, or if the ARM retracted before the handover was performed and 

without the user intending for the ARM to do so, it would count as a failure. The total handovers 

performed per item were the twenty successful handovers plus the number of failed handovers. 

Error rate was calculated in percentages by dividing the number of failed handovers by the number 

of total handovers performed.  

To interpret the data, IBM SPSS Statistics 29.0.2.0 was used. Handover time was plotted in histogram 

and Q-Q plot form to analyse the data and determine if it has a normal distribution. A Shapiro-Wilk 

test was performed to fully ascertain that the handover time was normally distributed. These tests 

were performed with all hundred readings grouped together. 

 A one-way ANOVA test was performed to analyse the handover times of all items. The items served 

as independent variables in the test, and their handover times were used as dependent variables. 

The purpose of the analysis was to determine whether there were significant differences in 

handover times among the items. As the tests were performed using the same test person for every 

item, the items are not completely independent variables. Classical ANOVA assumes independent 

variables. This discrepancy can potentially influence the statistical analysis and interpretation of 

results. 

  



   

 

   

 

RESULTS 
Testing of the handover method was performed according to the test protocol. A full list of times for 

every item can be found in the Appendix. In table 3, the overall results per item can be found. 

Table 3. Handover results and statistics per item, approximated to two decimal places. 

Item Average 

time (s) 

Total 

number of 

handovers 

Standard 

deviation 

(s) 

Range of 

time (s) 

Failed 

handovers 

Error 

rate 

Empty 

cardboard 

coffee cup 

9.08 23 1.78 6.79 - 13.81 3 13.04% 

500ml bottle of 

water, half 

filled 

8.84 27 2.04 6.64 - 13.41 7 25.93% 

500ml bottle of 

water, empty 

8.53 25 1.45 6.50 - 12.47 5 20.00% 

Cardboard box 

of tea 

5.99 23 1.59 3.97 - 10.15 3 13.04% 

Whiteboard 

eraser 

6.36 24 1.57 4.23 - 10.08 4 16.67% 

 

Handovers were performed a total of 122 times, of which 22 attempts failed, giving an overall error 

rate of approximately 18.03%. The overall mean time for all 100 successful handovers is 

approximately 7.76 seconds, with an overall handover time range from 3.97 seconds to 13.81 

seconds. The overall standard deviation over all handovers was 2.15 seconds. 

The Shapiro-Wilk test resulted in a p-value of 0.007, indicating a normal distribution in handover 

time. An ANOVA test was performed with all 5 items as separate groups for which a p-value of below 

0.001 was found. Full results of the statistical tests and graphs can be found in the Appendix. 

 

  



   

 

   

 

DISCUSSION 
Interpretation of the results 
The average handover time of the tested method was 7.76 seconds with a success rate of 81.97%. 

The error rate is high in comparison with other studies that tested specifically on handover, which 

usually range between 1% to 10% [38, 39]. Handover time is very fast in comparison to other 

designs. The aforementioned studies both had an average handover time of over a minute for solely 

a handover task, but also had a much more complex set-up. Future advancements should focus on 

improving success rate of the handover, which may cause an increase in handover time.  

Both graphs and the Shapiro-Wilk test showed a normal distribution of the time of all handovers. 

The ANOVA test showed a p-value of below 0.001 for the times of the five items. It should be noted 

that all handovers were performed by one person, making the variables not truly independent and 

affecting the ANOVA data analysis. This lack of independence could potentially bias the results, as 

the variability in handover times may not fully reflect real-world scenarios where multiple individuals 

might be involved. In addition to this, the last two items to be tested were the items with the fastest 

handover times. Multiple handovers by the user could have improved the user's skill during testing, 

leading to faster times for the last items. 

In real-world scenarios, it is not realistic that the user is always sitting right in front of the ARM, in 

the exact location the giving position moves to. In those scenarios, the ARM also has to grasp an 

item first before it can hand it over to the user, rather than it already being positioned with the item 

like in the tests. The handover is also designed for stroke survivors, who may have less upper body 

mobility. Testing was done by the able-bodied developer of the design, who is very familiar with the 

set-up and knows exactly how it works. It is expected that real-world handover times and error rate 

will be higher than the results found in this project. 

Problems during development and testing 
The design started with the idea to have the ARM move freely with movement of the glove, rather 

than moving between set positions. For this, the roll, pitch and yaw values of both sensors would be 

used, as well as differences in these values between the sensors. During development, it became 

clear that this necessitates the creation of a complex kinematic model capable of mapping hand 

movements to the motion of the robotic setup. To achieve the project goals, it was decided to 

reduce the model complexity and limit the motion of the robot accordingly. The ARM now moves 

between two positions depending on movement of the hand. It has no rotation, which was initially 

included in the design.  

The gripper rarely responds to the bool function isGripperHoldingItem. This function should allow 

the gripper to stop the attempt at closing when it detects it is holding an item. This causes a current 

spike, which should stop the gripper’s movements and allow for new commands, such as the 

command to open again. Regardless of what value the current threshold is set to, it only sporadically 

performs the correct actions for this function. Attempts were made at solving the issue by making it 

a closed loop function, but this did not show different results. To work around this, the angle the 

gripper closes at was manually changed to a little below the width of each item the tests were 

performed with, to allow the gripper to close and still take commands. This was done by changing 

the encoder counts in the code every time a new item was tested. This workaround might have 

impacted how well the gripper could hold each item, as it could not ‘squeeze’ items. 



   

 

   

 

The Dynamixel manipulator also slows down significantly in performing actions after an unspecified 

number of commands, and eventually completely stops responding. When this happens, the Arduino 

code needs to be reuploaded to the OpenCR board before it responds again. This locking up seems 

to be affected by object weight, and is also the reason why objects heavier than 302.7 grams could 

not be tested despite the ARM's payload of 500 grams. It can be seen from the results that items 

with a lighter weight have better handover times and a higher success rate. The weight of an item 

might also have impacted the results. 

In the giving position, the gripper of the ARM is 12.5 cm above ground. During movement from base 

to giving position, the ARM moves its gripper down before it moves up to assume the giving position, 

leaving less room between gripper and ground. This means that items held by the gripper could not 

stick out below the gripper much, or else they would hit the ground during movement. This creates 

an imbalance in the item while the gripper is holding it, which may have affected handover of long 

items. 

Possible hardware improvements 
The most restricting problem currently is the movement limitations while wearing the glove due to 

the wires and the boards it is connected to. Even when the wiring is bundled together, or changed in 

direction or orientation, it sometimes obstructs hand movement. This includes the wiring from the 

breadboard to the Arduino MKR. Additionally, the breadboard that necessitates the dual clock line 

for the MPUs and allows for two voltage divider circuits for the flex sensors unintentionally functions 

as an anchor and obstructs movement, making it difficult to fully stretch out the arm without 

messing up the wiring 

There are multiple ways to fix this, such as using longer wire, bundling them together and sewing 

these bundles onto the glove itself to restrict their movement. Another option is using a battery-

powered Arduino board with Bluetooth connection, and integrating both the Arduino board and the 

breadboard with the circuits onto the glove. This would however make the glove heavier and require 

it to be longer. Even so, redesigning the current set-up so that the wires and boards no longer 

obstruct the movement of the user would be a huge improvement. 

Another aspect that can be improved is the connection of all the sensors to the glove. If they are not 

well secured, it will directly impact the readings of the sensors. To make sure the flex sensors sense 

every bending movement of the fingers, they were attached with duct tape to the glove, but this is 

not a good permanent solution as duct tape loses its adhesive strength over time. The MPU sensors 

are inserted in cases and attached to the glove with self-adhesive Velcro. While the cases are a snug 

fit and do not allow for any movement of the MPU sensors within them, the Velcro is not very secure 

and prone to being moved by the pulling of the jumper wires. To improve MPU readings, the sensors 

should be attached directly onto the glove, either by sewing them on directly or creating sensor 

casings with holes on the side that can be sewn onto the glove. 

Possible software improvements 
Currently, the gripper responds to the inputs of either flex sensor dropping below a set value. This 

means that bending either the pointer finger or the thumb opens the gripper. The gripper can also 

be set to open only when values for both flex sensors are dropped below their threshold. While this 

threshold can be adjusted so that light bending of the fingers does not open the gripper, every time 

the fingers fully bend the gripper opens. A way to improve this would be to add an on and off button 

to the glove part of the operating system, so that the user can turn the glove manipulator on when 

they need to move the robot arm, and off when they want to use the hand without moving the 



   

 

   

 

robot arm and without taking off the glove. This functionality should be added without undoing the 

initial calibration of the glove. 

The number of readings taken for the initial calibration of the sensors on the glove can be changed. 

During this project, 100 readings were taken, which takes about 6 seconds for calibration before 

data can be used. This is a significant amount of time, and the user should be able to see when the 

calibration is finished and they can move their hand. Currently, the serial output in Python displays 

this, but for user convenience haptic feedback, such as a light lighting up when calibration is 

complete, should be implemented. 

Despite being able to calculate the roll and yaw values, the final operating system does not actually 

use these values due to forced simplification of the final design. This is also because the roll and yaw 

values are less reliable than the pitch value. Pitch measures the flexion and extension of the hand, 

which is easy to perform, but roll measures the radial and ulnar deviation of the hand, which is an 

uncomfortable gesture to make. Yaw measures the rotation of the hand, but when the hand rotates 

the forearm automatically rotates as well, meaning only overall yaw values can be used. Because of 

the unreliability of these values, only pitch angles were used to move the ARM, but the unused 

angles can be used to for example allow rotation, something it cannot currently do. 

Future use of the glove 
The operating system designed for the specific DYNAMIXEL OpenMANIPULATOR-X RM-X52-TNM 

robot arm can be used for different manipulators. Different manipulators use different joint motors, 

so the code for the robot arm will have to be adjusted depending on what type is used, but the code 

for the sensors and the serial communication can be used as is as an operating system for any 

manipulator arm. As the glove system is completely separated from the manipulator, it can easily be 

attached, detached, personalised and adapted if necessary. 

The glove operating system has shown to be an effective method of human to robot handover, with 

intuitive movements and short handover time. If the previously described improvements are 

implemented, it will be a more comfortable method of handover, created with readily available and 

affordable components. Future studies are necessary to determine if the method of handover 

described in this project is intuitive in use for the demographic it was designed for, as it has only 

been tested so far by the developer. 

  



   

 

   

 

CONCLUSION 
This project evaluated the current state of robotic handovers in assistive aids and designed a method 

of handover for an ARM with the objective of achieving seamless user interaction. The aim was to 

develop a handover method specifically designed for stroke survivors that improves efficiency and 

mode of control for an overall smoother HRI. To do so, a glove was designed with MPU-6050 and flex 

sensors to give it the ability to read hand and finger movements. This allowed for gesture control of 

the ARM. 

The tests performed showed that compared to peers, the error rate was high at 18.03%, however 

average handover times were very fast at 7.76 seconds. Average handover time differed significantly 

between the five types of items tested. The handover times show promise of a fast method of 

facilitating handover from robot to human while improving handover intuitiveness. 

Improvements are necessary to increase the design's success rate and overall performance. Future 

research should focus on reducing the error rate of handovers to make it a more eligible method for 

ARM control. Additionally, testing should be performed by the target demographic to determine 

whether it is a suitable method of control. Functions of the design that were ultimately dropped due 

to limitations, such as making the ARM rotate, should also be researched to see if implementation is 

possible. 

 

  



   

 

   

 

REFERENCES 
1. Koop, Y., Wimmers, R. H., Vaartjes, I., & Bots, M. L. (Eds.). (2021). Hart- en vaatziekten in 

Nederland, 2021. Den Haag: Hartstichting. 

2. Northwestern Medicine. (n.d.). Life after stroke. Retrieved 24-06-2024 from 

https://www.nm.org/conditions-and-care-areas/neurosciences/comprehensive-stroke-

centers/life-after-stroke 

3. Mohebbi, A. (2020). Human-Robot Interaction in Rehabilitation and Assistance: a Review. 

Curr Robot Rep, 1, 131–144. https://doi.org/10.1007/s43154-020-00015-4 

4. Basili, P., Huber, M., Brandt, T., Hirche, S., & Glasauer, S. (2009). Investigating Human-

Human Approach and Hand-Over. In H. Ritter, G. Sagerer, R. Dillmann, & M. Buss (Eds.), 

Human Centered Robot Systems (pp. 151–160). Springer. https://doi.org/10.1007/978-3-

642-10403-9_16 

5. Ortenzi, V., Cosgun, A., Pardi, T., Chan, W. P., Croft, E. A., & Kulić, D. (2021). Object 

Handovers: A review for Robotics. IEEE Transactions on Robotics, 37(6), 1855–1873. 

https://doi.org/10.1109/tro.2021.3075365 

6. National Heart, Lung, and Blood Institute. (2023, May 26). What is a stroke? | NHLBI, NIH. 

Retrieved 24-06-2024 from https://www.nhlbi.nih.gov/health/stroke 

7. Chohan, S. A., Venkatesh, P. K., & How, C. H. (2019). Long-term complications of stroke and 

secondary prevention: an overview for primary care physicians. Singapore Medical Journal, 

60(12), 616–620. 

8. Feigin, V. L., Abajobir, A. A., Abate, K. H., Abd‐Allah, F., Abdulle, A., Abera, S. F., Abyu, G. Y., 

Ahmed, M. B., Aichour, A. N., Aichour, I., Aichour, M. T. E., Akinyemi, R., Alabed, S., Al‐

Raddadi, R., Alvis‐Guzmán, N., Amare, A. T., Ansari, H., Anwari, P., Ärnlöv, J., ... Vos, T. 

(2019). Global, regional, and national burden of neurological disorders, 1990–2016: a 

systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology, 18(5), 

459–480. https://doi.org/10.1016/s1474-4422(18)30499-x 

9. Park, G. Y., Im, S., Lee, S. J., & Pae, C. U. (2016). The Association between Post-Stroke 

Depression and the Activities of Daily Living/Gait Balance in Patients with First-Onset Stroke 

Patients. Psychiatry Investig, 13(6), 659-664. https://doi.org/10.4306/pi.2016.13.6.659 

10. Robinson, R. G., & Jorge, R. E. (2016). Post-Stroke Depression: A Review. The American 

Journal of Psychiatry, 173(3), 221–231. https://doi.org/10.1176/appi.ajp.2015.15030363 

11. Hackett, M. L., & Pickles, K. (2014). Part I: Frequency of Depression after Stroke: An Updated 

Systematic Review and Meta-Analysis of Observational Studies. International Journal of 

Stroke, 9(8), 1017-1025. https://doi.org/10.1111/ijs.12357 

12. Kwok, T., Lo, R. C., Wong, E., Tang, W. K., Mok, V., & Kai-Sing, W. (2006). Quality of Life of 

Stroke Survivors: A 1-Year Follow-Up Study. Archives of Physical Medicine and Rehabilitation, 

87(9), 1177–1182. https://doi.org/10.1016/j.apmr.2006.05.015 

13. Li, J., Yang, L., Lv, R., et al. (2023). Mediating effect of post-stroke depression between 

activities of daily living and health-related quality of life: meta-analytic structural equation 

modeling. Quality Life Research, 32, 331–338. https://doi.org/10.1007/s11136-022-03225-9 

14. McCullagh, E., Brigstocke, G. H., Donaldson, N., & Kalra, L. (2005). Determinants of caregiving 

burden and quality of life in caregivers of stroke patients. Stroke, 36(10), 2181–2186. 

https://doi.org/10.1161/01.str.0000181755.23914.53 

https://www.nm.org/conditions-and-care-areas/neurosciences/comprehensive-stroke-centers/life-after-stroke
https://www.nm.org/conditions-and-care-areas/neurosciences/comprehensive-stroke-centers/life-after-stroke
https://doi.org/10.1007/s43154-020-00015-4
https://doi.org/10.1007/978-3-642-10403-9_16
https://doi.org/10.1007/978-3-642-10403-9_16
https://doi.org/10.1109/tro.2021.3075365
https://www.nhlbi.nih.gov/health/stroke
https://doi.org/10.1016/s1474-4422(18)30499-x
https://doi.org/10.4306/pi.2016.13.6.659
https://doi.org/10.1176/appi.ajp.2015.15030363
https://doi.org/10.1111/ijs.12357
https://doi.org/10.1016/j.apmr.2006.05.015
https://doi.org/10.1007/s11136-022-03225-9
https://doi.org/10.1161/01.str.0000181755.23914.53


   

 

   

 

15. Tsai, P. C., Yip, P. K., Tai, J. J., & Lou, M. F. (2015). Needs of family caregivers of stroke 

patients: a longitudinal study of caregivers’ perspectives. Patient Preference and Adherence, 

9, 449–457. https://doi.org/10.2147/PPA.S77713 

16. Shibata, S., Sahbi, B. M., Tanaka, K., & Shimizu, A. (1997). An analysis of the process of 

handing over an object and its application to robot motions. IEEE International Conference 

on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation. 

https://doi.org/10.1109/ICSMC.1997.625724 

17. Huber, M., Lenz, C., Rickert, M., Knoll, A., Brandt, T., & Glasauer, S. (2008). Human 

Preferences in Industrial Human-Robot Interactions. In International Workshop on Cognition 

for Technical Systems. 

18. Ortenzi, V., Cosgun, A., Pardi, T., Chan, W. P., Croft, E. A., & Kulić, D. (2021). Object 

Handovers: A review for Robotics. IEEE Transactions on Robotics, 37(6), 1855–1873. 

https://doi.org/10.1109/tro.2021.3075365 

19. Shahria, M. T., Ghommam, J., Fareh, R., & Rahman, M. H. (2024). Vision-Based object 

manipulation for activities of daily living assistance using assistive robot. Automation, 5(2), 

68–89. https://doi.org/10.3390/automation5020006 

20. Leroux, M., Raison, M., Adadja, T., & Achiche, S. (2015). Combination of eyetracking and 

computer vision for robotics control. In Technologies for Practical Robot Applications. 

https://doi.org/10.1109/tepra.2015.7219692 

21. Ding, D., Styler, B., Chung, C., & Houriet, A. (2022). Development of a Vision-Guided Shared-

Control system for assistive robotic manipulators. Sensors, 22(12), 4351. 

https://doi.org/10.3390/s22124351 

22. Poirier, S., Routhier, F., & Campeau-Lecours, A. (2019). Voice Control Interface Prototype for 

Assistive Robots for People Living with Upper Limb Disabilities. In International Conference 

on Rehabilitation Robotics. https://doi.org/10.1109/icorr.2019.8779524 

23. Langer, D., Legler, F., Kotsch, P., Dettmann, A., & Bullinger, A. C. (2022). I Let Go Now! 

Towards a Voice-User Interface for Handovers between Robots and Users with Full and 

Impaired Sight. Robotics, 11(5), 112. https://doi.org/10.3390/robotics11050112 

24. Langer, D., Legler, F., Diekmann, P., Dettmann, A., Glende, S., & Bullinger, A. C. (2024). Got 

it? Comparative Ergonomic evaluation of robotic object handover for visually impaired and 

sighted users. Robotics, 13(3), 43. https://doi.org/10.3390/robotics13030043 

25. Haseeb, M. A., Kyrarini, M., Jiang, S., Ristic-Durrant, D., & Gräser, A. (2018). Head Gesture-

based Control for Assistive Robots. In Proceedings of the 11th PErvasive Technologies 

Related to Assistive Environments Conference (PETRA '18) (pp. 379–383). Association for 

Computing Machinery. https://doi.org/10.1145/3197768.3201574 

26. Canal, G., Escalera, S., & Angulo, C. (2016). A real-time Human-Robot Interaction system 

based on gestures for assistive scenarios. Computer Vision and Image Understanding, 149, 

65-77. https://doi.org/10.1016/j.cviu.2016.03.004 

27. Mohebbi, A. (2020). Human-Robot Interaction in Rehabilitation and Assistance: a Review. 

Current Robotics Reports, 1(3), 131–144. https://doi.org/10.1007/s43154-020-00015-4 

28. Strabala, K. W., Lee, M. K., Dragan, A. D., Forlizzi, J. L., Srinivasa, S., Cakmak, M., & Micelli, V. 

(2013). Towards seamless Human-Robot handovers. Journal of Human-robot Interaction, 

2(1), 112–132. https://doi.org/10.5898/jhri.2.1.strabala 

https://doi.org/10.2147/PPA.S77713
https://doi.org/10.1109/ICSMC.1997.625724
https://doi.org/10.1109/tro.2021.3075365
https://doi.org/10.3390/automation5020006
https://doi.org/10.1109/tepra.2015.7219692
https://doi.org/10.3390/s22124351
https://doi.org/10.1109/icorr.2019.8779524
https://doi.org/10.3390/robotics11050112
https://doi.org/10.3390/robotics13030043
https://doi.org/10.1145/3197768.3201574
https://doi.org/10.1016/j.cviu.2016.03.004
https://doi.org/10.1007/s43154-020-00015-4
https://doi.org/10.5898/jhri.2.1.strabala


   

 

   

 

29. Castro, A., Silva, F., & Santos, V. (2021). Trends of Human-Robot Collaboration in industry 

contexts: handover, learning, and metrics. Sensors, 21(12), 4113. 

https://doi.org/10.3390/s21124113 

30. Chen, Q., Wan, L., & Pan, Y. (2023). Robotic pick-and-handover maneuvers with camera-

based intelligent object detection and impedance control. Transactions of the Canadian 

Society for Mechanical Engineering, 47(4), 486–496. https://doi.org/10.1139/tcsme-2022-

0176 

31. Yu, H., Kamat, V. R., Menassa, C. C., McGee, W., Guo, Y., & Lee, H. (2023). Mutual physical 

state-aware object handover in full-contact collaborative human-robot construction work. 

Automation in Construction, 150, 104829. https://doi.org/10.1016/j.autcon.2023.104829 

32. ROBOTIS. (2024). OpenManipulator-X. ROBOTIS e-Manual. Retrieved 24-06-2024 from 

https://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/ 

33. Robotis. (n.d.). Chain example from the OpenManipulator [Computer software]. Robotis. 

Retrieved 24-06-2024 from 

https://emanual.robotis.com/docs/en/platform/openmanipulator_x/quick_start_guide/ 

34. RM-X52-TNM. (n.d.). ROBOTIS. Retrieved 24-06-2024 from 

https://en.robotis.com/shop_en/item.php?it_id=905-0024-000 

35. OpenCR1.0. (n.d.). ROBOTIS. Retrieved 24-06-2024 from 

https://en.robotis.com/shop_en/item.php?it_id=903-0257-000 

36. SMPS 12V 5A PS-10 [US-110V]. (n.d.). ROBOTIS. Retrieved 24-06-2024 from 

https://en.robotis.com/shop_en/item.php?it_id=903-0126-00 

37. InvenSense. (2013). MPU-6000 and MPU-6050 Product Specification Revision 3.4. Retrieved 

24-06-2024 from https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-

Datasheet1.pdf 

38. JicJac. (2006, November 30). Various Clothing. OpenClipart. Retrieved 24-06-2024 from 

https://www.openclipart.org/detail/11225/various-clothing 

39. Weisstein, E. W. (n.d.). Euler Angles. In MathWorld--A Wolfram Web Resource. Retrieved 24-

06-2024 from https://mathworld.wolfram.com/EulerAngles.html 

40. Adafruit. (2024). MPU6050 6-DoF Accelerometer and Gyro Guide: Arduino. Adafruit. 

Retrieved 24-06-2024 from https://learn.adafruit.com/mpu6050-6-dof-accelerometer-and-

gyro/arduino 

41. Spectra Symbol. (2014). Flex Sensor [PDF]. Retrieved 24-06-2024 from 

https://cdn.sparkfun.com/assets/9/5/b/f/7/FLEX_SENSOR_-

_SPECIAL_EDITION_DATA_SHEET_v2019__Rev_A_.pdf 

42. ROBOTIS. (2024). DYNAMIXEL Workbench - USB to DXL Example. ROBOTIS e-Manual. 

Retrieved 24-06-2024 from 

https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_workbench/ 

43. ROBOTIS. (2024). XM430-W350. ROBOTIS e-Manual. Retrieved 24-06-2024 from 

https://emanual.robotis.com/docs/en/dxl/x/xm430-w350/ 

https://doi.org/10.3390/s21124113
https://doi.org/10.1139/tcsme-2022-0176
https://doi.org/10.1139/tcsme-2022-0176
https://doi.org/10.1016/j.autcon.2023.104829
https://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/
https://emanual.robotis.com/docs/en/platform/openmanipulator_x/quick_start_guide/
https://en.robotis.com/shop_en/item.php?it_id=905-0024-000
https://en.robotis.com/shop_en/item.php?it_id=903-0257-000
https://en.robotis.com/shop_en/item.php?it_id=903-0126-00
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://www.openclipart.org/detail/11225/various-clothing
https://mathworld.wolfram.com/EulerAngles.html
https://learn.adafruit.com/mpu6050-6-dof-accelerometer-and-gyro/arduino
https://learn.adafruit.com/mpu6050-6-dof-accelerometer-and-gyro/arduino
https://cdn.sparkfun.com/assets/9/5/b/f/7/FLEX_SENSOR_-_SPECIAL_EDITION_DATA_SHEET_v2019__Rev_A_.pdf
https://cdn.sparkfun.com/assets/9/5/b/f/7/FLEX_SENSOR_-_SPECIAL_EDITION_DATA_SHEET_v2019__Rev_A_.pdf
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_workbench/
https://emanual.robotis.com/docs/en/dxl/x/xm430-w350/


   

 

   

 

APPENDIX A: CODE SCRIPTS 
Arduino board script: glove_control 

#include <Adafruit_MPU6050.h> 
#include <Adafruit_Sensor.h> 
#include <Wire.h> 

 
const int flexSensorPin1 = A0;  // Analog pin A0 to which the first flex 

sensor is connected 
const int flexSensorPin2 = A1;  // Analog pin A1 to which the second flex 

sensor is connected 

 
Adafruit_MPU6050 mpu1; 
Adafruit_MPU6050 mpu2; 

 
#define NUM_READINGS 100  // Amount of calibration readings 

 
float basePitch1[NUM_READINGS], baseRoll1[NUM_READINGS]; 
float basePitch2[NUM_READINGS], baseRoll2[NUM_READINGS]; 
float avgPitch1, avgRoll1; 
float avgPitch2, avgRoll2; 
unsigned long lastTime; 

 
void setup(void) { 
  Serial.begin(115200);   // Sets baud rate 
  while (!Serial) delay(10); 

 

  Serial.begin(9600);  // Initialise serial communication at 9600 bps 

 
  if (!mpu1.begin(0x68)) { 
    Serial.println("Failed to find MPU6050 chip 1"); 
    while (1) delay(10); 
  } 

 

  if (!mpu2.begin(0x69)) { 
    Serial.println("Failed to find MPU6050 chip 2"); 
    while (1) delay(10); 
  } 

 
  Serial.println("MPU6050 sensors initialized. Calibrating sensors...");  // 

Calibration message, user should not move hand when message is displayed 

 

  calibrateSensors(); 
  lastTime = millis(); 
} 

 

void calibrateSensors() { 
  for (int i = 0; i < NUM_READINGS; i++) { 
    sensors_event_t a1, g1, temp1; 



   

 

   

 

    sensors_event_t a2, g2, temp2; 

 
    mpu1.getEvent(&a1, &g1, &temp1); 
    mpu2.getEvent(&a2, &g2, &temp2); 

 
    basePitch1[i] = atan2(a1.acceleration.y, a1.acceleration.z) * 180 / PI;   

// Pitch and roll are calculated according to equations (1) and (2) 
    baseRoll1[i] = atan2(-a1.acceleration.x, sqrt(a1.acceleration.y * 

a1.acceleration.y + a1.acceleration.z * a1.acceleration.z)) * 180 / PI; 
    basePitch2[i] = atan2(a2.acceleration.y, a2.acceleration.z) * 180 / PI; 
    baseRoll2[i] = atan2(-a2.acceleration.x, sqrt(a2.acceleration.y * 

a2.acceleration.y + a2.acceleration.z * a2.acceleration.z)) * 180 / PI; 

 
    delay(50); 
  } 

 
  float sumPitch1 = 0, sumRoll1 = 0; 
  float sumPitch2 = 0, sumRoll2 = 0; 

 
  for (int i = 0; i < NUM_READINGS; i++) { 
    sumPitch1 += basePitch1[i]; 
    sumRoll1 += baseRoll1[i]; 
    sumPitch2 += basePitch2[i]; 
    sumRoll2 += baseRoll2[i]; 
  } 

 
  avgPitch1 = sumPitch1 / NUM_READINGS; 
  avgRoll1 = sumRoll1 / NUM_READINGS; 
  avgPitch2 = sumPitch2 / NUM_READINGS; 
  avgRoll2 = sumRoll2 / NUM_READINGS; 

 
  Serial.println("Calibration complete.");    // Now user can move hand 
  Serial.print("Base Pitch1: "); Serial.println(avgPitch1); 
  Serial.print("Base Roll1: "); Serial.println(avgRoll1); 
  Serial.print("Base Pitch2: "); Serial.println(avgPitch2); 
  Serial.print("Base Roll2: "); Serial.println(avgRoll2); 
} 

 
void loop() { 
  int flexValue1 = analogRead(flexSensorPin1);  // Read the analog value 

from the first flex sensor 
  int flexValue2 = analogRead(flexSensorPin2);  // Read the analog value 

from the second flex sensor 

 
  sensors_event_t a1, g1, temp1; 
  sensors_event_t a2, g2, temp2; 

 
  mpu1.getEvent(&a1, &g1, &temp1); 
  mpu2.getEvent(&a2, &g2, &temp2); 



   

 

   

 

 

  unsigned long currentTime = millis(); 
  float deltaTime = (currentTime - lastTime) / 1000.0; 
  lastTime = currentTime; 

 
  float pitch1 = atan2(a1.acceleration.y, a1.acceleration.z) * 180 / PI - 

avgPitch1;    // Pitch and roll are calculated according to equations (1) 

and (2) 
  float roll1 = atan2(-a1.acceleration.x, sqrt(a1.acceleration.y * 

a1.acceleration.y + a1.acceleration.z * a1.acceleration.z)) * 180 / PI - 

avgRoll1; 

 

  float pitch2 = atan2(a2.acceleration.y, a2.acceleration.z) * 180 / PI - 
avgPitch2; 
  float roll2 = atan2(-a2.acceleration.x, sqrt(a2.acceleration.y * 

a2.acceleration.y + a2.acceleration.z * a2.acceleration.z)) * 180 / PI - 

avgRoll2; 

 
  float deltaPitch = pitch2 - pitch1;   // Gives the angles between the two 

MPUs. Numbering is important, changes +/- in the values if switched 
  float deltaRoll = roll2 - roll1; 

 
  // Format data string 
  String dataString = String(deltaPitch) + "," + String(deltaRoll) + "," + 

String(flexValue1) + "," + String(flexValue2); 
  Serial.println(dataString); 

 
  delay(500); 
} 

  



   

 

   

 

Python script: serial_ports 

import serial 
import threading 
import time 

 
mkr_port = 'COM9' # Adjust COM if necessary 
opencr_port = 'COM5' 
baud_rate = 115200 # Baud rate of the sensors in the Arduino code 

 
def open_serial_port(port, baud_rate): # Defines opening of the ports 
    try: 
        ser = serial.Serial(port, baud_rate, timeout=2) 
        print(f"Opened port: {port}") 
        return ser 
    except serial.SerialException as e: 
        print(f"Error opening port {port}: {e}") 
        return None 

 
mkr_serial = open_serial_port(mkr_port, baud_rate) 
opencr_serial = open_serial_port(opencr_port, baud_rate) 

 
if not mkr_serial or not opencr_serial: 
    print("Failed to open one or more serial ports. Exiting.") 
    exit() 

 

def relay_mkr_to_opencr(): # Establishes one way communication (Arduino to 

OpenCR) 
    while True: 
        try: 
            if mkr_serial.in_waiting > 0: 
                data = mkr_serial.readline().decode().strip() 
                if data: 
                    opencr_serial.write((data + "\n").encode()) 
                    print("Sent to COM5 (Robot Arm):", data) 
        except serial.SerialException as e: 
            print(f"Error reading from MKR: {e}") 
            break 

 
def relay_opencr_to_mkr(): # Prints received data, necessary for calibration 
    while True: 
        try: 
            if opencr_serial.in_waiting > 0: 
                data = opencr_serial.readline().decode().strip() 
                if data: 
                    mkr_serial.write((data + "\n").encode()) 
                    print("Received from COM5 (Robot Arm):", data) 
        except serial.SerialException as e: 
            print(f"Error reading from OpenCR: {e}") 
            break 



   

 

   

 

 

thread_mkr_to_opencr = threading.Thread(target=relay_mkr_to_opencr) 
thread_opencr_to_mkr = threading.Thread(target=relay_opencr_to_mkr) 

 
thread_mkr_to_opencr.start() 
thread_opencr_to_mkr.start() 

 
try: 
    while True: 
        time.sleep(1) 
except KeyboardInterrupt: 
    print("Exiting...") 
finally: 
    if mkr_serial.is_open: 
        mkr_serial.close() 
    if opencr_serial.is_open: 
        opencr_serial.close() 
    print("Serial ports closed.") 

  



   

 

   

 

OpenCR board script: robot_control 

#include <DynamixelSDK.h> 

 

#define DEVICENAME "1"  // Adjust to the correct USB port 

#define BAUDRATE 1000000 

#define PROTOCOL_VERSION 2.0 

 

#define DXL_ID_11 11    // Servo motor IDs 

#define DXL_ID_12 12 

#define DXL_ID_13 13 

#define DXL_ID_14 14 

#define DXL_ID_15 15 

 

dynamixel::PortHandler *portHandler; 

dynamixel::PacketHandler *packetHandler; 

 

void setup() { 

  Serial.begin(115200);   // Baud rate from the sensors 

 

  portHandler = dynamixel::PortHandler::getPortHandler(DEVICENAME); 

  packetHandler = 

dynamixel::PacketHandler::getPacketHandler(PROTOCOL_VERSION); 

 

  if (portHandler->openPort()) { 

    Serial.println("Succeeded to open the port!"); 

  } else { 

    Serial.println("Failed to open the port!"); 

    return; 

  } 

 

  if (portHandler->setBaudRate(BAUDRATE)) { 

    Serial.println("Succeeded to change the baudrate!"); 

  } else { 

    Serial.println("Failed to change the baudrate!"); 
    return; 

  } 

 

  // Enable Torque for all servos 

  packetHandler->write1ByteTxRx(portHandler, DXL_ID_11, 64, 1); 

  packetHandler->write1ByteTxRx(portHandler, DXL_ID_12, 64, 1); 

  packetHandler->write1ByteTxRx(portHandler, DXL_ID_13, 64, 1); 

  packetHandler->write1ByteTxRx(portHandler, DXL_ID_14, 64, 1); 

  packetHandler->write1ByteTxRx(portHandler, DXL_ID_15, 64, 1); 

} 

 

void moveServosToPosition(int servo11, int servo12, int servo13, int 

servo14, int servo15) { 



   

 

   

 

  packetHandler->write4ByteTxRx(portHandler, DXL_ID_11, 116, servo11); 

  packetHandler->write4ByteTxRx(portHandler, DXL_ID_12, 116, servo12); 

  packetHandler->write4ByteTxRx(portHandler, DXL_ID_13, 116, servo13); 

  packetHandler->write4ByteTxRx(portHandler, DXL_ID_14, 116, servo14); 

  if (servo15 != -1) { 

    packetHandler->write4ByteTxRx(portHandler, DXL_ID_15, 116, servo15); 
  } 

} 

 

bool isGripperHoldingItem() {   // Should allow the gripper to open when 

not fully closing due to holding an item 

  uint16_t current; 

  int dxl_comm_result = packetHandler->read2ByteTxRx(portHandler, 

DXL_ID_15, 126, &current);  // 126 is the address for present current 

  if (dxl_comm_result != COMM_SUCCESS) { 

    Serial.println(packetHandler->getTxRxResult(dxl_comm_result)); 

  } 

  return current > 5000;  // Current threshold for the gripper in mA, 

adjust if necessary 

} 

 

void closeGripper() { 

  int closePosition = 2700;  // Gripper close (238 degrees = ~2700 EC = 
full close) 

  int increment = 10;  // Small steps for closing 

 

  while (true) { 

    packetHandler->write4ByteTxRx(portHandler, DXL_ID_15, 116, 
closePosition); 

    delay(100);  // Small delay to allow the servo to move 

 

    if (isGripperHoldingItem()) { 

      break;  // Stop closing when item is held 

    } 
    closePosition -= increment;  // Incrementally close more 

    if (closePosition <= 0) { 

      break;  // Safety check to prevent over-closing 

    } 

  } 

} 

 

void loop() { 

  if (Serial.available() > 0) { 

    String data = Serial.readStringUntil('\n'); 

    if (data.length() > 0) { 
      float deltaPitch, deltaRoll; 

      int flexValue1, flexValue2; 

      sscanf(data.c_str(), "%f,%f,%f,%d,%d", &deltaPitch, &deltaRoll, 



   

 

   

 

&flexValue1, &flexValue2); 

 

      // Move servos based on delta pitch value 

      if (deltaPitch <= -15) {  // Adjust value if necessary. If MPU 1 

and 2 are switched, this value becomes positive 
        // Giving position 

        moveServosToPosition(360 * 4096 / 360, 240 * 4096 / 360, 100 * 

4096 / 360, 180 * 4096 / 360, -1);   // Servomotor ID 12 and 13 move and 

decide position 

      } else if (deltaPitch >= 25) {  // Adjust value if necessary. If 

MPU 1 and 2 are switched, this value becomes negative 

        // Base position 

        moveServosToPosition(360 * 4096 / 360, 140 * 4096 / 360, 210 * 

4096 / 360, 180 * 4096 / 360, -1); 

      } 

 

      // Control gripper based on flex sensor values 
      if (flexValue1 < 300 || flexValue2 < 400) {   // Adjust if 

necessary. May change if flex sensor position in voltage divider circuit 

is swapped, or resistor value differs 

        // Open gripper 

        packetHandler->write4ByteTxRx(portHandler, DXL_ID_15, 116, 

1252); // Gripper open at 110 degrees (110/360 * 4096) 
      } else { 

        // Close gripper 

        closeGripper(); 

      } 

 

      // Print out the received data for debugging, shown through Python 

      Serial.print(" Pitch: "); Serial.print(deltaPitch); 

      Serial.print(" Roll: "); Serial.print(deltaRoll); 

      Serial.print(" Flex Sensor 1: "); Serial.print(flexValue1); 

      Serial.print(" Flex Sensor 2: "); Serial.println(flexValue2); 

    } 

  } 

} 

 

  



   

 

   

 

APPENDIX B: MPU-6050 CASING 

 

Figure 9: Full drawing of the 3D-printed casings used for the MPU-6050 sensors. Drawing and casings created and provided 
by Paul Fetchenhauer, used with permission.  



   

 

   

 

APPENDIX C: FULL DATA AND RESULTS 
Table 4: Individual handover times per item. 

Handover 

attempt 

Time for 

item 1 (s) 

Time for 

item 2 (s) 

Time for 

item 3 (s) 

Time for 

item 4 (s) 

Time for 

item 5 (s) 

1 10.47 13.41 7.69 4.34 4.72 

2 11.76 11.84 6.50 10.15 6.10 

3 13.81 7.77 9.13 6.38 9.97 

4 12.72 9.53 6.89 6.16 5.90 

5 8.96 6.64 8.12 6.04 5.84 

6 9.43 7.27 7.48 7.05 4.50 

7 8.56 6.84 8.94 5.99 5.38 

8 9.17 8.57 6.92 3.97 6.74 

9 8.23 11.86 9.93 7.25 5.81 

10 7.92 7.91 8.16 4.84 6.08 

11 8.64 8.90 12.47 5.76 4.92 

12 8.35 8.98 8.61 4.51 8.07 

13 7.83 7.42 7.45 8.31 6.65 

14 8.98 8.36 7.76 6.36 7.74 

15 9.49 13.26 8.18 4.17 6.98 

16 8.13 7.87 10.72 8.59 10.08 

17 7.22 7.55 9.68 4.75 5.19 

18 6.79 6.87 7.61 5.16 6.83 

19 7.38 8.24 10.38 4.78 5.54 

20 7.84 7.62 7.92 5.24 4.23 

 



   

 

   

 

 

Figure 10: Histogram graph of the frequency distribution of handover time. 

 

Figure 11: Q-Q plot distribution of the handover time.  



   

 

   

 

 

 

Figure 12: Full results of the performed Shapiro-Wilk test in SPSS. 

 

 

Figure 13: Full results of the performed ANOVA test in SPSS 


