

Facilitating Smooth Handovers with a Gesture-Control Glove

for Assistive Robotic Manipulators

Dilara Yigit

S3336433

Department of Discrete Technology and Production Automation

Period: 15/04/2024- 01/07/2024

Bachelor’s project

1st Examiner: Dr. Elisabeth Wilhelm, department of Discrete Technology and

Production Automation

2nd Examiner: Dr. Ir. René Fluit, Faculty of Science and Engineering

faculty of science and

engineering

 biomedical engineering

ABSTRACT
Individuals who survive a stroke often require assistance to be able to perform basic tasks. Robotic

aids, such as Assistive Robotic Manipulators (ARMs) can be used to help stroke survivors perform

tasks, by grasping and handing over items to the patient. Robotic handover is an essential part of

human-robot interaction (HRI). Implementing intuitive robot to human handover is still challenging

to this day. In this project, a glove facilitating gesture control was designed to improve robot-to-user

handover. Two MPU-6050 sensors and two flex sensors were embedded onto a glove to provide

orientation data of the hand and sense bending of the fingers, respectively. Handover was controlled

by movements of the hand wearing the glove. Data from the glove was sent to the ARM to move the

manipulator between positions while independently operating the gripper. Testing was conducted

by handing over five different items (cardboard coffee cup, half-filled bottle of water, empty bottle

of water, cardboard box of tea, whiteboard eraser) twenty times each. Results showed an average

handover time of 7.76 seconds with an error rate of 18.03%. There was a significant difference in

handover times between tested items. Possible factors that impacted the results are testing

environment, the same user performing all tests and hardware limitations. The design shows

promise in being a fast and intuitive method at facilitating robotic handover. Future research is

needed to improve success rate and determine compatibility with the target demographic.

Table of Contents
ABSTRACT .. 2

INTRODUCTION ... 4

Problem definition .. 4

State-of-the-art ... 5

Objectives ... 6

Societal relevance ... 8

Demarcation ... 9

MATERIALS & METHODS ... 11

System description .. 11

Hardware components ... 11

Software components ... 12

Glove set-up .. 12

MPU-6050 sensors details .. 13

Flex sensor details ... 14

Python serial communication ... 15

OpenCR commands ... 16

Test protocol ... 17

RESULTS .. 19

DISCUSSION ... 20

Interpretation of the results ... 20

Problems during development and testing .. 20

Possible hardware improvements .. 21

Possible software improvements ... 21

Future use of the glove ... 22

CONCLUSION ... 23

REFERENCES .. 24

APPENDIX A: CODE SCRIPTS .. 27

Arduino board script: glove_control ... 27

Python script: serial_ports .. 30

OpenCR board script: robot_control .. 32

APPENDIX B: MPU-6050 CASING .. 35

APPENDIX C: FULL DATA AND RESULTS .. 36

INTRODUCTION
In 2020, 38,500 individuals in the Netherlands experienced a stroke, equating to over a hundred

people suffering from a stroke each day [1]. Over half of the patients who survive a stroke require

long-term care to be able to perform basic tasks and activities in their daily lives [2]. To aid patients

in this, assistive robotic manipulators (ARMs) can be used. ARMs are designed to help people with

upper or lower limb disabilities, such as stroke survivors, by performing small but essential tasks [3].

These tasks include opening doors, assisting with eating, and grasping objects. To perform these

tasks successfully, the human and ARM need to interact and work together. Studies show that

mimicking human to human behaviours in human-robot interaction (HRI) allow for smoother and

more intuitive actions [4]. This is still something ARMs struggle with, as they have difficulties

replicating human communication necessary for these interactions [5]. This project aimed to

develop a method for seamless HRI, with a focus on facilitating smooth robot-to-human handovers,

specifically designed for stroke survivors.

Problem definition
A stroke is a medical emergency in which the blood flow to parts of the brain is blocked, or sudden

bleeding occurs in parts of the brain [6]. Generally, only 10% of stroke patients make a full recovery,

and over 50% of stroke survivors sustain impairments that require special or long-term care [2].

Stroke is the leading cause of adult disability worldwide, and can cause a variety of semi-permanent

to permanent disabilities which can be in the form of physical, cognitive, psychological or social

limitations [7]. Stroke is globally the largest contributor of neurological disability-adjusted life years

(DALYs), and one of the largest contributors for general DALYs [8]. DALYs among stroke survivors

increase with age, and is highest among the 60–80-year age group.

Permanent complications of stroke hinder a patient’s ability to perform activities of daily living

(ADL). The presence of post-stroke depression (PSD) increases this impairment even further, and

delays a patient’s rehabilitation [9,10]. Approximately 30% of all stroke survivors develop PSD within

5 years after experiencing a stroke [11]. Empowering a patient’s ability to perform basic ADL has a

positive effect on their psychological and physical Health-Related Quality of Life (HRQoL) [12,13].

The inability of stroke survivors to perform ADL and other general tasks forces them to rely on

people in their direct environment. This increased stress on caregivers, often direct family, partners

or friends, can cause burden and considerable strain, leading to both physical and psychological

health risks for the caregiver [14]. Caregiver burden correlates to the stroke patient’s mental

wellbeing and their dependency on the caregiver, which has a negative impact on a caregiver’s QoL

[15]. Increasing a patient’s independence could improve QoL for patient and caregiver alike.

Stroke survivors with muscle weakness can benefit from robotic assistive aids, such as ARMs, to

perform small tasks and regain independence in their daily lives. These ARMs can grasp objects for

the user and either transfer them to a designated location or hand them directly to the user.

However, a challenge with current assistive robots is the intuitiveness of human-robot interaction

(HRI), particularly during the handover of items between robot and human.

Robot to human handover has been extensively researched for decades [16], with findings indicating

that mimicking human behaviours in robots facilitates smoother and more intuitive HRI [4]. For

instance, modifying an assistive robot with algorithms that emulate human movement, such as

employing a human-inspired velocity profile instead of a standard trapezoidal one during handover

motions, results in faster and smoother interactions [17]. A thing robots struggle to mimic is the

communication humans use, where eye contact, verbal cues, gestures and motion are used to show

initiation of both giving and receiving during a handover [18]. During a human-to-human handover,

the giver is able to predict how the receiver will reach for the object and gauge when they have

grasped it, while the receiver is able to anticipate when the giver will release the object based on

visual cues.

There have been attempts at mimicking human communication for assistive robotic manipulators.

This involves implementing sensors that enable robots to interpret data such as human vision

[19,20,21], vocal commands [22,23,24] or gestures of different parts of the body [25,26] to enhance

communication and handover control. However, this often also adds an element that makes the

interaction less habitable for the human due to a high interaction time [23,24]. Developing smooth

and intuitive handover for an ARM has to consider both user safety and user experience.

State-of-the-art
A wide variety of ARMs are available today, from innovative conceptual designs to market-ready

products, all designed to aid users in performing Activities of Daily Living (ADL). This market review

will specifically highlight the current handover designs in ARMs, focusing on how these devices

transfer items between the ARM and the user during various tasks while ensuring the user maintains

full control over the ARM [27].

Robot handover is defined by the robot moving within proximity to transfer the object, followed by

the act of the transfer guided by both robot and user together [28]. This interaction can be

autonomous, with the robot performing all steps, or by the user guiding the process. One of the

challenges in handover in assistive aids is determining the precise moment for the ARM to release

the object. Premature release could result in the object falling, whereas delayed release could result

in user frustration. In general, robot to human handover has the most success if the process is

closely resembling human-to-human interactions [29].

Recent studies have successfully implemented a Voice-User Interface (VUI) that allows the user to

vocally let the robot know when they are ready for the robot to let go of the item [23,24]. The

handover is guided through speech from both the robot and user. The robot utilises speech to

inform the user of the current state of the handover, while the user gives vocal commands to the

robot to initiate the steps. The studies showed a high success rate in handovers, both over 95%, and

high user appreciation. However, both studies mentioned a long average duration time of over a

minute for the handover task.

For full autonomous handover, a study used an RGB camera combined with an object detection

algorithm to allow the ARM to both pick-and-place items and handover items to a bystander [30].

This study worked with the user, the receiver, holding out their hand and waiting for the robot to

drop the item into their hand, rather than grasping the item while the robot was still holding it. The

study showed a high accuracy in detecting objects and human hands. However, the method has only

been tested on round fruits, limiting the scope of the design.

To utilise the movements humans make during grasping tasks, one study designed a grip-state

indicator that integrates both gripping strength and gestures through the use of whole-hand tactile

sensors [31]. This approach uses several different inputs to facilitate handover. Results showed fast

handover times, but accuracy rates for unseen grip settings ranged from 75% to 89%. Additionally,

new objects require a 25 second demonstration for the robot to adapt to the item. This approach

has currently only been tested in industrial settings.

Objectives
This study aimed to develop a control method for an assistive robotic manipulator to improve the

intuitiveness and efficiency of object handovers, by utilising a sensor-equipped glove. The goal was

to create a more user-friendly and effective assistive device using gestures performed during

handovers to guide the ARM.

State-of-the-art handover designs have shown that interaction speed is currently the biggest factor

that inhabits handover intuitiveness. A glove design was chosen for this project to reduce handover

duration. Performing gestures while wearing the glove takes little time while still empowering the

user to control the ARM. Since the glove serves as a wearable remote-control rather than an

additional input device, it enhances user comfort during interactions. The adaptability of the design

and the low-cost, readily available components necessary to realise the project also contributed to

the decision.

In figure 1 a cause-effect diagram of the effects of a stroke is depicted, focusing on the

consequences muscle weakness has for the patient. In figure 2, it is shown that restoring the ability

to perform basic tasks for the patient has a positive effect on the events that follow in the diagram.

With the ARM making it possible for the patient to perform small tasks on their own, other problems

created as a result of the lack of independence of the patient can be solved.

As there is already a wide variety of ARMs designed and manufactured, this project focused

specifically on creating a way to achieve smooth and intuitive handover between the ARM and the

user. To reach the goal, a DYNAMIXEL OpenMANIPULATOR-X RM-X52-TNM robot arm provided by

the lab of the research group of Discrete Technology and Production Automation (DTPA) at the

University of Groningen was altered in software so that it could read data sent by additional

hardware. The hardware consisted of inertial measurement units (IMUs) and flex sensors affixed on

a glove.

Figure 1. Cause-effect diagram of the effects of a stroke pertaining to inability to use the upper extremities.

Figure 2. Cause-effect diagram of reaching the goal of allowing the patient to perform basic tasks post-stroke.

As there is already a wide variety of ARMs designed and manufactured, this project focused

specifically on creating a way to achieve smooth and intuitive handover between the ARM and the

user. To reach the goal, a DYNAMIXEL OpenMANIPULATOR-X RM-X52-TNM robot arm provided by

the lab of the research group of Discrete Technology and Production Automation (DTPA) at the

University of Groningen was altered in software so that it could read data sent by additional

hardware. The hardware consisted of inertial measurement units (IMUs) and flex sensors affixed on

a glove.

The provided DYNAMIXEL OpenMANIPULATOR-X RM-X52-TNM robot arm has 5 degrees of freedom

(DoF) and is able to move using five XM430-W350-T servomotors [32]. The robot arm was already

fully assembled and operating, and it has open-source code available on multiple platforms that

allows for full control [33]. The costs of the robot arm itself are approximately €1350 [34]. This does

not include the OpenCR control board and the power supply, which would add another estimated

€200 [35,36]. A successful, working prototype had to be realised within a timeframe of ten weeks.

Due to time and cost limitations, the design had to be created with sensors that were already

available in the electronics lab, or sensors that were affordable and could be shipped and received

within a reasonable time. Given the variety of sensors in both their function and their availability, as

well as the nature of the problem, a number of concepts could be created and the probability of

creating a successful prototype was high. The prototype was created in the electronics lab of the

DTPA, located at Nijenborgh 4, 5117.0205, under the guidance of supervisor Dr. Elisabeth Wilhelm.

By creating a method for the ARM to be able to hand over small items in a way that is seamless,

intuitive, and easy for the user to operate, the patient will be able to receive items the ARM has

grasped in the vicinity independently without needing the aid of another person. Achieving this main

goal will allow the patient to perform small tasks on their own which will increase their

independence and ultimately improve their mental state and HrQoL. It will also lessen the burden on

the caregivers of the patient due to the patient being able to perform small tasks on their own and

not needing to call over caregivers when they want to reach for an item. This will decrease the strain

on said caregivers and improve both their physical and mental health.

Societal relevance
Improving the intuitiveness of HRI in ARMs can significantly enhance the independence of stroke

survivors, reducing the burden on caregivers and improving the overall quality of life for both

parties. Multiple other stakeholders are also likely to benefit from these advancements, as shown in

table 1.

Table 1. Stakeholder analysis for the assistive robotic manipulator with gripper.

Stakeholder Characteristics Expectations Potentials and
deficiencies

Implications and
conclusions

Stroke patient Patients
experience pain,
discomfort and
physical and
social limitations.
Patients are
unable to
perform basic
ADL, further
lowering their
QoL.

They expect to
regain the ability
to reach for and
grab items using
the ARM and be
independently
able to perform
small tasks.

The patient likely
has a lack of grip
strength. As the
age group of the
patients is
around 60-80
years, mode of
control of the
ARM cannot be
too complicated
due to possible
lack of technical
knowledge.

The main
demographic for
the ARM. It
needs to be
designed with
them in mind,
which limits the
possible
complexity of the
mode of control
of the design.

Stroke patient
caregivers

Often family,
partners or close
friends of the
patient. Spends a
long portion of
their time with
the patient.

They expect an
increase in the
independence of
the patient so
that the burden
of care is
lessened.

They are close to
the patient and
know the
patient’s wishes.
They might be
too attached to
let the patient try
the assistive arm
on their own.

They see the
patient daily and
their wishes as
well as the stress
put on them
should be
considered
heavily.

Family and
friends

Even when not
directly the main
caregiver, they
often still aid the
patient. They are
personally
impacted by the
well-being of the
patient.

They expect an
improvement in
both the physical
and mental well-
being of the
patient, even if
slightly.

They are very
close to the
patient and know
whether a certain
treatment
approach or
assistive device
would work or
not.

They are often a
direct line to the
patient that has
known the
patient since pre-
stroke.

Primary care
team

Focusses on the
overall health,
survival and well-
being of the
patient over all
else.

They expect a
product the
patient can use
on their own
without it being
harmful to the
patient in any
way.

They are experts
in the medical
field but
generally lack
technical
knowledge.

They may not be
interested in
working with
new assistive aids
if they don’t
believe it is an
improvement
over the current
situation health-
wise.

Occupational
therapist

Assists the
patient in
rehabilitation
with a focus on
relearning how
to perform basic
ADL. Aids the
patient in gaining
independence in
daily life.

They want to
improve the
independence of
the patient. They
expect a device
that is able to aid
the patient with
small basic tasks.

They work
directly with the
patient to
enhance their
fine motor skills
and cognitive
abilities, and are
an expert on
rehabilitation
with regards to
performing ADL.

They can
recommend the
assistive aid to
the patient if
they believe in its
capabilities and if
the aid adds to a
patient’s
independence.

Healthcare
insurance

Aims to provide
optimal care at
the lowest costs.

They want to
keep the costs as
low as possible.

Their ability to
cover the
expenses of the
assistive aid
depends on the
costs of the aid
itself as well as
the patient’s
specific
insurance.

Given the
expectedly high
costs of the
product, wishes
of the insurance
should be
considered as the
patient and/or
care facility
might need them
for funds.

Assistive aids
industry

Always
interested in new
products,
preferably at low
costs.

They want to run
a profitable
business.

They are more
interested in
products easy to
manufacture,
which an
assistive robot
arm is not.

They have
knowledge of the
market, the
demand and the
selling potential
of the aid.

Demarcation
The primary focus of the project was on the design, development, and evaluation of a control mode

that ensures smooth handover between the robotic manipulator and the user. To ensure successful

completion of the project, clear boundaries had to be set to realise the design within the time limit.

To facilitate intuitive handover, the ARM is operated by flexion and extension of the hand as well as

bending of the thumb and index finger, requiring the user to be able to move their hand and fingers.

The method requires instructional training before it can be used. The handover method was

designed specifically for stroke survivors with lower limb disabilities or general muscle weakness

who are in need of assistance when performing small tasks and basic ADL. This strategy cannot be

employed for patients who have extensive upper limb disabilities or cognitive impairments which

makes them unable to utilise the glove design. Individuals other than stroke survivors can also make

use of the designed control method, if they are able to perform the necessary actions for control.

The research focused on robotic handover rather than comprehensive rehabilitation protocols.

Due to the low technology readiness level of the design, it could not be tested with the actual target

group. Testing was instead performed by the developer of the design, who is able-bodied. To assess

whether or not the design is suitable for the target demographic, separate testing needs to be

performed, but this is not feasible within the time period for the project.

To distinguish the design from the various ARMs already on the market, the final operating system

was created out of low-cost materials and sensors. The final control method is able to use the data it

receives from the sensor on the glove to move the ARM between two positions while also

independently operating the gripper. It is unable to rotate the ARM and the ARM cannot deviate

from alternating between two positions, but the positions can be changed manually in the code. The

ARM can operate on a delay that can be manually changed, but once the delay has passed it will

perform the actions it received input for and this cannot be cancelled. The design was created for

one type of manipulator, the DYNAMIXEL OpenMANIPULATOR-X RM-X52-TNM.

The gripper can close completely or close around an item to hold it, stopping gripper movement

when it notices a current spike. This was a simple thresholding method to be able to test the design's

functionality. The force the gripper enacts on the items was not measured. The control of the force

the gripper exerts is outside of the scope of this project.

The DYNAMIXEL robot arm is 380mm long and has a payload of 500 grams. The gripper stroke

ranges from 20mm to 70mm. This limited the weight and the size of the items that were used for

testing. The final design was tested on handover speed and handover success rate.

The current design was created using the hardware and software available at the robotics lab of the

Engineering and Technology Institute Groningen (ENTEG), constraining the possible options for the

overall set-up. The glove was created for the right hand and the sensor placements as well as the

movement positions the ARM reacts to are only based on right hand interactions. The set-up does

not have a safety stop button implemented and the ARM does not stop its movement during an

action if it encounters an obstacle. Using the glove requires a computer device with two USB ports.

MATERIALS & METHODS
This section outlines the procedures used in the development and evaluation of the glove control

method for the DYNAMIXEL OpenMANIPULATOR-X RM-X52-TNM. The design was created to make

the ARM perform its actions as shown in figure 3. Control to facilitate handover was established by

allowing the Arduino board to read movement data from the MPU-6050 sensors and Spectra Symbol

2.2 flex sensors.

Figure 3. State-machine diagram of the two independent state changes the ARM can go through to facilitate handover.

System description
The idea behind the glove is to control the movements of the ARM, both in moving towards and

away from the user as well as opening and closing the gripper, by moving the hand wearing the

glove. To make this concept an intuitive method of control, the movements to facilitate control were

to be based on movements a person generally performs when reaching for an item in a handover.

Hardware components
The final design of the glove consists of the following materials:

• Garden glove purchased from Wibra, €1.49

• 2 MPU-6050 Accelerometer and Gyroscope 3-Axis Module 3.3V-5V purchased from RS

Components Europe, €8.50 per sensor

• 24 jumper wires

• 30-input breadboard

• 2 Spectra Symbol 2.2 flex sensors purchased from RS Components Europe, €12 per sensor

• 2 fixed resistors, approximately 8.2 kilohms each

• Arduino MKR Wi-Fi 1010 board with USB cable, €33.50

Any Arduino board with SCL and SDA inputs for I2C communication can be used. The resistance

value of the resistor can be different, as different resistor values can give usable readings with the

flex sensors. For flex sensor readings to be usable, the change of output value needs to be

approximately the same for repeated sensor bending. To connect everything to the glove, self-

adhesive Velcro, duct tape, 3D-printed holders for the MPU sensors and a soldering iron were used.

The full physical setup of the glove can be seen in figure 4 and 5. All sensors used an input voltage of

5 volts.

Figure 4 and 5. Setup of the glove with the circuits on the breadboard and the connections to the Arduino MKR (left), and
the orientation of all sensors when the glove is worn (right).

Software components
The following software was used to read, transfer or find data:

• Arduino IDE 2.3.2

• Python ver. 3.12

• Dynamixel Wizard 2.0

The glove works by combining the various readings it receives from the different sensors and

sending this data to the OpenCR board of the ARM, which reads the data and uses it to manipulate

the ARM accordingly. To send the data from the glove to the ARM, serial port communication

through Python was used. All code used can be found in the Appendix. The glove_control script runs

on the Arduino board and is used to receive the data from readings of the sensors on the glove. The

serial_ports script runs on Python and allows the data from the Arduino board serial bus to be sent

to the OpenCR board serial bus. The robot_control script contains the code the OpenCR board uses

to manipulate the ARM by reading the data it received from the Python script.

Glove set-up
The design utilises two MPU-6050 sensors to track the orientation of the hand and the forearm, and

two flex sensors to detect bending of the fingers. The sensors were placed as shown in figure 6. MPU

sensor 1 was placed in the middle of the back of the hand, with the Y-axis running vertically along

the fingers and arm, and the X axis placed horizontally across the hand, perpendicular to the Y axis.

The sensor was mounted flat on the hand with the pins oriented upwards, such that the Z-axis

extended perpendicularly from the hand's surface. X, Y and Z axis orientation of the MPU-6050

sensor were found in the sensor datasheet [37].

Figure 6: Schematic of the glove and the attached sensors with their significant numbering. Glove template taken from
OpenClipart [38]

MPU-6050 sensors details
The MPU-6050 is a type of IMU sensor that integrates a 3-axis gyroscope and a 3-axis accelerometer,

providing 6-axis motion sensing capability [37]. It allows for motion tracking by capturing both linear

and rotational movements in the X, Y and Z axis. The accelerometer measures linear acceleration

and the gyroscope measures angular rotation around the axes. To create motion tracking, sensor

fusion algorithms can be used to find the acceleration and rotation data by combining accelerometer

and gyroscope data.

The gyroscope has selectable ranges of ±250, ±500, ±1000, and ±2000 degrees per second, and the

accelerometer has selectable ranges of ±2g, ±4g, ±8g, and ±16g [37]. This design utilises the default

condition ‘FS_SEL=0’ for the gyroscope, setting it to 250 degrees per second. The accelerometer was

set to the default condition ‘AFS_SEL=0’, setting it to 2g. The default values for both were chosen as

they provide sufficient readings for the application in the design while offering the highest accuracy.

Using the MPU-6050, the Euler angles roll, pitch and yaw can be detected on the location the sensor

is implemented. Euler angles are a set of three angles that describe the orientation and rotation of

any point relative to a fixed coordinate system [39]. Roll describes the X axis, pitch the Y axis and

yaw the Z axis. To calculate roll and pitch, accelerometer data was used. For yaw, both

accelerometer data and gyroscope data are required. To be able to detect the difference in

orientation between the two MPU sensors, the roll and pitch values are subtracted from each other

to provide delta values. These delta angles were used to determine the motion and orientation of

the hand relative to the forearm, moving the ARM to a base or giving position depending on hand

flexion or extension.

MPU sensor 2 was placed on the back of the forearm, below the wrist joint to minimize potential

sensor movement during independent hand motions. MPU sensor 2 was oriented with the same

axes alignment as sensor 1. Placing the sensors in these specific locations gives the microcontroller

the ability to read orientation data of the hand and forearm separately. MPU sensor 1 was in a black

casing with an AD0 connection to ground, and sensor 2 was in a white casing with an AD0

connection to the voltage input. Without these specific AD0 connections, I2C cannot read different

addresses for the sensors.

To provide the roll and pitch data, acceleration values from all three axes were used. The roll angle φ

in degrees is defined as:

𝜑  =   arctan(
−𝑎. 𝑥

√𝑎. 𝑦2 + 𝑎. 𝑧2
) ⋅

180

𝜋

(1)

In equation (1), a.x is the acceleration on the X axis, a.y is the acceleration on the Y axis and a.z is the

acceleration on the Z axis. The formula also converts the data from radians per second to degrees.

Likewise, pitch angle θ was calculated as shown in equation (2):

 𝜃 =   arctan (
𝑎. 𝑦

𝑎. 𝑧
) ⋅

180

𝜋

(2)

By using these formulas for the sensors, the microcontroller is able to read when the user moves

their hand up, down, to the left or to the right in comparison to their arm.

To prevent outside forces from affecting the readings, such as pulling of the jumper wires, the

sensors were secured with self-adhesive Velcro pasted on the glove and the 3D-printed sensor

encasings. The MPU-6050 casings used in this study were created and provided by Paul

Fetchenhauer. Drawings of the casings can be found in the Appendix.

The code for the sensor setup and calibration were based on the Adafruit MPU6050 guide for

Arduino [40]. To get readings from two sensors at nearly the same time, different I2C addresses

were given in the function setup, 0x68 and 0x69 to sensor 1 and sensor 2. This I2C bus

communication reads sensors one after the other rather than simultaneously, but the delay is

insignificant and negligible for the overall readings. To calibrate the sensors for first time use, the

code reads the values of roll and pitch in base position an N number of times in the calibrateSensors

function. It uses equations (1) to determine baseRoll1 and basePitch1 for MPU sensor 1, and

equation (2) to determine baseRoll2 and basePitch2 for MPU sensor 2. Base position is defined as

the user wearing the glove and having their hand in a resting position laying on a surface. In the code

used, N = 100 for determining the base roll and pitch values. For these values, calibration was

measured with a stopwatch to take about 6 seconds before the sensors start giving data. Roll and

pitch values were calculated in the main loop function using equations (1) and (2), subtracted by the

base values found during the calibration. To calculate the differences between the same angles of

the two MPU sensors, the roll and pitch angle values of sensor 1 were subtracted from the values of

sensor 2. The difference in angle positions were called deltaRoll and deltaPitch.

Flex sensor details
The glove has two flex sensors connected to it, one attached to the thumb and one to the index

finger, with the metal pads of the flex sensor on top. The thumb and index finger were chosen

because they are the most commonly used when grabbing an item during handover. Flex sensors are

designed to detect and measure bending on their surface by measuring angular displacement [41].

This changes their resistance. To allow for measurements, the sensors were connected to custom

voltage divider circuits on a breadboard. Both voltage divider circuits use a fixed 8.2 kilohms resistor

and an input voltage of 5 volts.

The sensor operates by varying its resistance in response to bending, which alters the voltage output

across the divider circuit. The flex sensors are connected to analogue-to-digital converter pins on the

Arduino board and give an analogue output between 0 and 1023. Flex sensors work as a resistor in a

voltage divider circuit, so an increase in resistance changes the output voltage. The sensitivity and

the baseline value of the output can be altered by changing the fixed resistor in the circuit. The

output value of the flex sensors was used to determine the state of the gripper, opening below a set

value and closing again if it rises above this value.

The flex sensors have an offset value in relaxed state that decreases when the sensor is bent.

Despite using two fixed resistors both labelled 8.2 kilohms, flex sensor 1 and flex sensor 2 have a

different offset value measurement in relaxed state. This was accounted for during design. The

output of the flex sensors was used to both open and close the gripper. The flex sensors were

connected to the breadboard by soldering them to cut jumper wires, and they were attached to the

glove with duct tape. As the entirety of the flex sensor needs to be stuck to the glove to notice

bending of the fingers, duct tape was chosen rather than sewing the flex sensors onto the glove or

using self-adhesive Velcro.

For a flex sensor to give values when connected to an Arduino microcontroller, it needs to be

implemented into a voltage divider circuit. It is then able to give an output using the following

equation:

𝑉𝑜𝑢𝑡  =  𝑉𝑖𝑛 ⋅
𝑅𝑓𝑖𝑥𝑒𝑑

𝑅𝑓𝑖𝑥𝑒𝑑 + 𝑅𝑓𝑙𝑒𝑥

(3)

Equation (3) is the standard equation for a voltage divider. It uses 5V for the input voltage Vin, and

approximately 8.2 kilohms for the fixed resistors Rfixed. Rflex is the flex sensor in the voltage divider,

and Vout is the output value that is ultimately converted from analog to digital. In this design, the

fixed resistor is positioned between the input voltage and the flex sensor, with the flex sensor

connecting the fixed resistor to ground. This causes the output voltage to decrease when the flex

sensors are bent.

The code for the flex sensors was combined with the code for the MPU sensors. In the loop function,

the code first reads data from flex sensor 1, then flex sensor 2, MPU 1 and finally MPU 2. The time

between the readings of the different sensors is negligible. Flex sensor 1 is connected to A0 and flex

sensor 2 is connected to A1. To use the data from the readings for all sensors, the output values

deltaRoll, deltaPitch, flexValue1, and flexValue2 were converted to string format. This data string

format was then printed to Python for serial communication between the ports.

Python serial communication
The sensors on the glove and the ARM are not directly connected in hardware, but through port-to-

port communication facilitated by Python using two USB ports on a computer device. By naming the

two communication ports and setting the baud rate to the rate the Arduino board operates at

(115200), the data can be sent from the Arduino port to the OpenCR port. The Python monitor prints

the data the OpenCR board receives, that being the changes in roll and pitch angles, and the values

the flex sensors read.

OpenCR commands
The code for the OpenCR board was written using data retrieved from Dynamixel Wizard 2.0. By

using the example sketch usb_to_dxl for the OpenCR board [42], the ARM could be connected to the

Wizard and manually moved into the desired positions. The wizard also showed the IDs for all servo

motors, and allowed for movement of each servo motor separately while showing the exact angles.

The control tables for the manipulator and each servo motor could also be found using the Wizard,

which showed the locations of the addresses for values such as ‘present current’, ‘current limit’ and

‘goal position’.

The OpenCR board connected to the ARM receives the data string from Python and uses this data in

an Arduino code to move the 5 servo motors it consists of. Before reading any data, the code

activates the torque for the servo motors so that the ARM remains stable. In the setup function, it

sets the baud rate to the baud rate of the glove data, 115200.

In moveServosToPosition, the servo motors of the ARM are set to respond to their functions. This is

not the case for servo motor 15, as ID 15 corresponds to the gripper, which is moved by the flex

sensors rather than the MPUs. The gripper is defined in the function closeGripper, where it is set to a

full closing position at 2700 when the flex sensors are relaxed. In the Dynamixel Wizard the angle for

a full closing position was found to be 238 degrees. To convert the servomotor angles to encoder

counts the OpenCR board can read, the following formula was used:

𝐸𝐶  =  
𝛼 ⋅ 4096

360

(4)

In the equation (4), α is the angle of the servomotor in degrees and EC is the number of encoder

counts. This equation had to be used to move the servomotor in the correct position, as it has a

rotation of 360 degrees in which it can assume 4096 positions as specified by the XM430-W350

datasheet [43]. With this formula, the angle in degrees is converted to encoder counts. When the

gripper is holding an item, it cannot fully assume the closing position of 238 degrees. To prevent the

gripper from becoming unresponsive due to its inability to fully achieve the set position, the bool

function isGripperHoldingItem checks to see if the current of the gripper servomotor is increased

during closing, which happens when it squeezes an item it holds. If the specified current threshold is

reached, it stops attempting to close and allows for commands again.

In the main loop function, the board checks if serial communication is established. If there is, it

receives the data string from the port and reads the values. The servomotors are moved into

position based on the deltaPitch value. If it is below a certain value, it will move into the ‘giving’

position. If it is above a certain value, it will move into the ‘base’ position. The manipulator does not

move if deltaPitch has a value between these two limits. The values necessary for the limits of

deltaPitch were determined by testing the glove on its own and reading the data output in the serial

monitor of Arduino. The ‘base’ and ‘giving’ positions can be seen in figure 7 and 8 and are achieved

by changing the angles of the motors that need to be adjusted in OpenCR. The desired positions and

their corresponding angles were found using the Dynamixel Wizard. The loop function also opens

the gripper based on the flex sensor values. If either of the flex sensors drops below a certain value,

the gripper moves to a fully open position. The angle for a full open gripper is 110 degrees,

converted to 1252 using equation (4). The values for the flex sensors were found using the serial

monitor output of separate glove testing. If the flex sensors raise above the limit again, the gripper

acts according to the closeGripper function, which closes the gripper either fully or until the current

limit is reached. All values read by the OpenCR board are also printed in the Python monitor to check

if the values are as expected and read correctly by the board.

Figure 7 and 8. The gripper in its base (left) and giving (right) positions.

Test protocol
The experiment was conducted over the course of two weeks in the electronics lab. The design was

tested by one person, the developer, using five items. The items were successfully handed over from

ARM to the user twenty times. A ‘handover’ is defined as the robot, already holding the item and in

‘base’ position’, moving into the ‘giving’ position towards the user, releasing the item when the user

has grasped it, and moving back to ‘base’ position once the handover is finished. Before testing was

conducted, the user followed guided training to familiarise with the method and improve

consistency. The ARM was tested on its ability to correctly hand over an item by the user sitting in

front of it at a desk. Handovers were timed separately on a stopwatch, meaning the times below

have an error rate of 0 to 2 seconds, as the operator was also managing the stopwatch. Handovers

were performed consecutively per item.

Table 2. Specifics of the items used during testing of the glove control.

Item number Item description Length (mm) Width or

diameter (mm)

Weight (g)

1 Empty cardboard

coffee cup

90 55-80 (varies

among length)

18.8

2 500ml bottle of

water, half filled

230 64 302.7

3 500ml bottle of

water, empty

230 64 41.2

4 Cardboard box of

tea

120 80 40.3

5 Whiteboard eraser 143 50 84.7

With the codes uploaded to their respective boards and the serial communication being established

through Python, the glove can be connected to the ARM for gesture control. The MPU sensors were

calibrated while the glove was in resting position on the hand before testing was performed. Timing

the handover started when the ARM was in base position holding the item, and stopped when the

ARM returned to base position after it handed over the item. Specifics of the items used during

testing can be found in table 2. Different shapes, dimensions and weights were used for testing.

Handover times were noted of the successful handovers. If a handover failed, no time was noted and

it was counted as a failed handover instead. A failed handover is defined as the user unable to take

over the item from the ARM due to failure of the design or the ARM. If the ARM let go of the item

before the user could grasp it, or if the ARM retracted before the handover was performed and

without the user intending for the ARM to do so, it would count as a failure. The total handovers

performed per item were the twenty successful handovers plus the number of failed handovers.

Error rate was calculated in percentages by dividing the number of failed handovers by the number

of total handovers performed.

To interpret the data, IBM SPSS Statistics 29.0.2.0 was used. Handover time was plotted in histogram

and Q-Q plot form to analyse the data and determine if it has a normal distribution. A Shapiro-Wilk

test was performed to fully ascertain that the handover time was normally distributed. These tests

were performed with all hundred readings grouped together.

 A one-way ANOVA test was performed to analyse the handover times of all items. The items served

as independent variables in the test, and their handover times were used as dependent variables.

The purpose of the analysis was to determine whether there were significant differences in

handover times among the items. As the tests were performed using the same test person for every

item, the items are not completely independent variables. Classical ANOVA assumes independent

variables. This discrepancy can potentially influence the statistical analysis and interpretation of

results.

RESULTS
Testing of the handover method was performed according to the test protocol. A full list of times for

every item can be found in the Appendix. In table 3, the overall results per item can be found.

Table 3. Handover results and statistics per item, approximated to two decimal places.

Item Average

time (s)

Total

number of

handovers

Standard

deviation

(s)

Range of

time (s)

Failed

handovers

Error

rate

Empty

cardboard

coffee cup

9.08 23 1.78 6.79 - 13.81 3 13.04%

500ml bottle of

water, half

filled

8.84 27 2.04 6.64 - 13.41 7 25.93%

500ml bottle of

water, empty

8.53 25 1.45 6.50 - 12.47 5 20.00%

Cardboard box

of tea

5.99 23 1.59 3.97 - 10.15 3 13.04%

Whiteboard

eraser

6.36 24 1.57 4.23 - 10.08 4 16.67%

Handovers were performed a total of 122 times, of which 22 attempts failed, giving an overall error

rate of approximately 18.03%. The overall mean time for all 100 successful handovers is

approximately 7.76 seconds, with an overall handover time range from 3.97 seconds to 13.81

seconds. The overall standard deviation over all handovers was 2.15 seconds.

The Shapiro-Wilk test resulted in a p-value of 0.007, indicating a normal distribution in handover

time. An ANOVA test was performed with all 5 items as separate groups for which a p-value of below

0.001 was found. Full results of the statistical tests and graphs can be found in the Appendix.

DISCUSSION
Interpretation of the results
The average handover time of the tested method was 7.76 seconds with a success rate of 81.97%.

The error rate is high in comparison with other studies that tested specifically on handover, which

usually range between 1% to 10% [38, 39]. Handover time is very fast in comparison to other

designs. The aforementioned studies both had an average handover time of over a minute for solely

a handover task, but also had a much more complex set-up. Future advancements should focus on

improving success rate of the handover, which may cause an increase in handover time.

Both graphs and the Shapiro-Wilk test showed a normal distribution of the time of all handovers.

The ANOVA test showed a p-value of below 0.001 for the times of the five items. It should be noted

that all handovers were performed by one person, making the variables not truly independent and

affecting the ANOVA data analysis. This lack of independence could potentially bias the results, as

the variability in handover times may not fully reflect real-world scenarios where multiple individuals

might be involved. In addition to this, the last two items to be tested were the items with the fastest

handover times. Multiple handovers by the user could have improved the user's skill during testing,

leading to faster times for the last items.

In real-world scenarios, it is not realistic that the user is always sitting right in front of the ARM, in

the exact location the giving position moves to. In those scenarios, the ARM also has to grasp an

item first before it can hand it over to the user, rather than it already being positioned with the item

like in the tests. The handover is also designed for stroke survivors, who may have less upper body

mobility. Testing was done by the able-bodied developer of the design, who is very familiar with the

set-up and knows exactly how it works. It is expected that real-world handover times and error rate

will be higher than the results found in this project.

Problems during development and testing
The design started with the idea to have the ARM move freely with movement of the glove, rather

than moving between set positions. For this, the roll, pitch and yaw values of both sensors would be

used, as well as differences in these values between the sensors. During development, it became

clear that this necessitates the creation of a complex kinematic model capable of mapping hand

movements to the motion of the robotic setup. To achieve the project goals, it was decided to

reduce the model complexity and limit the motion of the robot accordingly. The ARM now moves

between two positions depending on movement of the hand. It has no rotation, which was initially

included in the design.

The gripper rarely responds to the bool function isGripperHoldingItem. This function should allow

the gripper to stop the attempt at closing when it detects it is holding an item. This causes a current

spike, which should stop the gripper’s movements and allow for new commands, such as the

command to open again. Regardless of what value the current threshold is set to, it only sporadically

performs the correct actions for this function. Attempts were made at solving the issue by making it

a closed loop function, but this did not show different results. To work around this, the angle the

gripper closes at was manually changed to a little below the width of each item the tests were

performed with, to allow the gripper to close and still take commands. This was done by changing

the encoder counts in the code every time a new item was tested. This workaround might have

impacted how well the gripper could hold each item, as it could not ‘squeeze’ items.

The Dynamixel manipulator also slows down significantly in performing actions after an unspecified

number of commands, and eventually completely stops responding. When this happens, the Arduino

code needs to be reuploaded to the OpenCR board before it responds again. This locking up seems

to be affected by object weight, and is also the reason why objects heavier than 302.7 grams could

not be tested despite the ARM's payload of 500 grams. It can be seen from the results that items

with a lighter weight have better handover times and a higher success rate. The weight of an item

might also have impacted the results.

In the giving position, the gripper of the ARM is 12.5 cm above ground. During movement from base

to giving position, the ARM moves its gripper down before it moves up to assume the giving position,

leaving less room between gripper and ground. This means that items held by the gripper could not

stick out below the gripper much, or else they would hit the ground during movement. This creates

an imbalance in the item while the gripper is holding it, which may have affected handover of long

items.

Possible hardware improvements
The most restricting problem currently is the movement limitations while wearing the glove due to

the wires and the boards it is connected to. Even when the wiring is bundled together, or changed in

direction or orientation, it sometimes obstructs hand movement. This includes the wiring from the

breadboard to the Arduino MKR. Additionally, the breadboard that necessitates the dual clock line

for the MPUs and allows for two voltage divider circuits for the flex sensors unintentionally functions

as an anchor and obstructs movement, making it difficult to fully stretch out the arm without

messing up the wiring

There are multiple ways to fix this, such as using longer wire, bundling them together and sewing

these bundles onto the glove itself to restrict their movement. Another option is using a battery-

powered Arduino board with Bluetooth connection, and integrating both the Arduino board and the

breadboard with the circuits onto the glove. This would however make the glove heavier and require

it to be longer. Even so, redesigning the current set-up so that the wires and boards no longer

obstruct the movement of the user would be a huge improvement.

Another aspect that can be improved is the connection of all the sensors to the glove. If they are not

well secured, it will directly impact the readings of the sensors. To make sure the flex sensors sense

every bending movement of the fingers, they were attached with duct tape to the glove, but this is

not a good permanent solution as duct tape loses its adhesive strength over time. The MPU sensors

are inserted in cases and attached to the glove with self-adhesive Velcro. While the cases are a snug

fit and do not allow for any movement of the MPU sensors within them, the Velcro is not very secure

and prone to being moved by the pulling of the jumper wires. To improve MPU readings, the sensors

should be attached directly onto the glove, either by sewing them on directly or creating sensor

casings with holes on the side that can be sewn onto the glove.

Possible software improvements
Currently, the gripper responds to the inputs of either flex sensor dropping below a set value. This

means that bending either the pointer finger or the thumb opens the gripper. The gripper can also

be set to open only when values for both flex sensors are dropped below their threshold. While this

threshold can be adjusted so that light bending of the fingers does not open the gripper, every time

the fingers fully bend the gripper opens. A way to improve this would be to add an on and off button

to the glove part of the operating system, so that the user can turn the glove manipulator on when

they need to move the robot arm, and off when they want to use the hand without moving the

robot arm and without taking off the glove. This functionality should be added without undoing the

initial calibration of the glove.

The number of readings taken for the initial calibration of the sensors on the glove can be changed.

During this project, 100 readings were taken, which takes about 6 seconds for calibration before

data can be used. This is a significant amount of time, and the user should be able to see when the

calibration is finished and they can move their hand. Currently, the serial output in Python displays

this, but for user convenience haptic feedback, such as a light lighting up when calibration is

complete, should be implemented.

Despite being able to calculate the roll and yaw values, the final operating system does not actually

use these values due to forced simplification of the final design. This is also because the roll and yaw

values are less reliable than the pitch value. Pitch measures the flexion and extension of the hand,

which is easy to perform, but roll measures the radial and ulnar deviation of the hand, which is an

uncomfortable gesture to make. Yaw measures the rotation of the hand, but when the hand rotates

the forearm automatically rotates as well, meaning only overall yaw values can be used. Because of

the unreliability of these values, only pitch angles were used to move the ARM, but the unused

angles can be used to for example allow rotation, something it cannot currently do.

Future use of the glove
The operating system designed for the specific DYNAMIXEL OpenMANIPULATOR-X RM-X52-TNM

robot arm can be used for different manipulators. Different manipulators use different joint motors,

so the code for the robot arm will have to be adjusted depending on what type is used, but the code

for the sensors and the serial communication can be used as is as an operating system for any

manipulator arm. As the glove system is completely separated from the manipulator, it can easily be

attached, detached, personalised and adapted if necessary.

The glove operating system has shown to be an effective method of human to robot handover, with

intuitive movements and short handover time. If the previously described improvements are

implemented, it will be a more comfortable method of handover, created with readily available and

affordable components. Future studies are necessary to determine if the method of handover

described in this project is intuitive in use for the demographic it was designed for, as it has only

been tested so far by the developer.

CONCLUSION
This project evaluated the current state of robotic handovers in assistive aids and designed a method

of handover for an ARM with the objective of achieving seamless user interaction. The aim was to

develop a handover method specifically designed for stroke survivors that improves efficiency and

mode of control for an overall smoother HRI. To do so, a glove was designed with MPU-6050 and flex

sensors to give it the ability to read hand and finger movements. This allowed for gesture control of

the ARM.

The tests performed showed that compared to peers, the error rate was high at 18.03%, however

average handover times were very fast at 7.76 seconds. Average handover time differed significantly

between the five types of items tested. The handover times show promise of a fast method of

facilitating handover from robot to human while improving handover intuitiveness.

Improvements are necessary to increase the design's success rate and overall performance. Future

research should focus on reducing the error rate of handovers to make it a more eligible method for

ARM control. Additionally, testing should be performed by the target demographic to determine

whether it is a suitable method of control. Functions of the design that were ultimately dropped due

to limitations, such as making the ARM rotate, should also be researched to see if implementation is

possible.

REFERENCES
1. Koop, Y., Wimmers, R. H., Vaartjes, I., & Bots, M. L. (Eds.). (2021). Hart- en vaatziekten in

Nederland, 2021. Den Haag: Hartstichting.

2. Northwestern Medicine. (n.d.). Life after stroke. Retrieved 24-06-2024 from

https://www.nm.org/conditions-and-care-areas/neurosciences/comprehensive-stroke-

centers/life-after-stroke

3. Mohebbi, A. (2020). Human-Robot Interaction in Rehabilitation and Assistance: a Review.

Curr Robot Rep, 1, 131–144. https://doi.org/10.1007/s43154-020-00015-4

4. Basili, P., Huber, M., Brandt, T., Hirche, S., & Glasauer, S. (2009). Investigating Human-

Human Approach and Hand-Over. In H. Ritter, G. Sagerer, R. Dillmann, & M. Buss (Eds.),

Human Centered Robot Systems (pp. 151–160). Springer. https://doi.org/10.1007/978-3-

642-10403-9_16

5. Ortenzi, V., Cosgun, A., Pardi, T., Chan, W. P., Croft, E. A., & Kulić, D. (2021). Object

Handovers: A review for Robotics. IEEE Transactions on Robotics, 37(6), 1855–1873.

https://doi.org/10.1109/tro.2021.3075365

6. National Heart, Lung, and Blood Institute. (2023, May 26). What is a stroke? | NHLBI, NIH.

Retrieved 24-06-2024 from https://www.nhlbi.nih.gov/health/stroke

7. Chohan, S. A., Venkatesh, P. K., & How, C. H. (2019). Long-term complications of stroke and

secondary prevention: an overview for primary care physicians. Singapore Medical Journal,

60(12), 616–620.

8. Feigin, V. L., Abajobir, A. A., Abate, K. H., Abd‐Allah, F., Abdulle, A., Abera, S. F., Abyu, G. Y.,

Ahmed, M. B., Aichour, A. N., Aichour, I., Aichour, M. T. E., Akinyemi, R., Alabed, S., Al‐

Raddadi, R., Alvis‐Guzmán, N., Amare, A. T., Ansari, H., Anwari, P., Ärnlöv, J., ... Vos, T.

(2019). Global, regional, and national burden of neurological disorders, 1990–2016: a

systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology, 18(5),

459–480. https://doi.org/10.1016/s1474-4422(18)30499-x

9. Park, G. Y., Im, S., Lee, S. J., & Pae, C. U. (2016). The Association between Post-Stroke

Depression and the Activities of Daily Living/Gait Balance in Patients with First-Onset Stroke

Patients. Psychiatry Investig, 13(6), 659-664. https://doi.org/10.4306/pi.2016.13.6.659

10. Robinson, R. G., & Jorge, R. E. (2016). Post-Stroke Depression: A Review. The American

Journal of Psychiatry, 173(3), 221–231. https://doi.org/10.1176/appi.ajp.2015.15030363

11. Hackett, M. L., & Pickles, K. (2014). Part I: Frequency of Depression after Stroke: An Updated

Systematic Review and Meta-Analysis of Observational Studies. International Journal of

Stroke, 9(8), 1017-1025. https://doi.org/10.1111/ijs.12357

12. Kwok, T., Lo, R. C., Wong, E., Tang, W. K., Mok, V., & Kai-Sing, W. (2006). Quality of Life of

Stroke Survivors: A 1-Year Follow-Up Study. Archives of Physical Medicine and Rehabilitation,

87(9), 1177–1182. https://doi.org/10.1016/j.apmr.2006.05.015

13. Li, J., Yang, L., Lv, R., et al. (2023). Mediating effect of post-stroke depression between

activities of daily living and health-related quality of life: meta-analytic structural equation

modeling. Quality Life Research, 32, 331–338. https://doi.org/10.1007/s11136-022-03225-9

14. McCullagh, E., Brigstocke, G. H., Donaldson, N., & Kalra, L. (2005). Determinants of caregiving

burden and quality of life in caregivers of stroke patients. Stroke, 36(10), 2181–2186.

https://doi.org/10.1161/01.str.0000181755.23914.53

https://www.nm.org/conditions-and-care-areas/neurosciences/comprehensive-stroke-centers/life-after-stroke
https://www.nm.org/conditions-and-care-areas/neurosciences/comprehensive-stroke-centers/life-after-stroke
https://doi.org/10.1007/s43154-020-00015-4
https://doi.org/10.1007/978-3-642-10403-9_16
https://doi.org/10.1007/978-3-642-10403-9_16
https://doi.org/10.1109/tro.2021.3075365
https://www.nhlbi.nih.gov/health/stroke
https://doi.org/10.1016/s1474-4422(18)30499-x
https://doi.org/10.4306/pi.2016.13.6.659
https://doi.org/10.1176/appi.ajp.2015.15030363
https://doi.org/10.1111/ijs.12357
https://doi.org/10.1016/j.apmr.2006.05.015
https://doi.org/10.1007/s11136-022-03225-9
https://doi.org/10.1161/01.str.0000181755.23914.53

15. Tsai, P. C., Yip, P. K., Tai, J. J., & Lou, M. F. (2015). Needs of family caregivers of stroke

patients: a longitudinal study of caregivers’ perspectives. Patient Preference and Adherence,

9, 449–457. https://doi.org/10.2147/PPA.S77713

16. Shibata, S., Sahbi, B. M., Tanaka, K., & Shimizu, A. (1997). An analysis of the process of

handing over an object and its application to robot motions. IEEE International Conference

on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

https://doi.org/10.1109/ICSMC.1997.625724

17. Huber, M., Lenz, C., Rickert, M., Knoll, A., Brandt, T., & Glasauer, S. (2008). Human

Preferences in Industrial Human-Robot Interactions. In International Workshop on Cognition

for Technical Systems.

18. Ortenzi, V., Cosgun, A., Pardi, T., Chan, W. P., Croft, E. A., & Kulić, D. (2021). Object

Handovers: A review for Robotics. IEEE Transactions on Robotics, 37(6), 1855–1873.

https://doi.org/10.1109/tro.2021.3075365

19. Shahria, M. T., Ghommam, J., Fareh, R., & Rahman, M. H. (2024). Vision-Based object

manipulation for activities of daily living assistance using assistive robot. Automation, 5(2),

68–89. https://doi.org/10.3390/automation5020006

20. Leroux, M., Raison, M., Adadja, T., & Achiche, S. (2015). Combination of eyetracking and

computer vision for robotics control. In Technologies for Practical Robot Applications.

https://doi.org/10.1109/tepra.2015.7219692

21. Ding, D., Styler, B., Chung, C., & Houriet, A. (2022). Development of a Vision-Guided Shared-

Control system for assistive robotic manipulators. Sensors, 22(12), 4351.

https://doi.org/10.3390/s22124351

22. Poirier, S., Routhier, F., & Campeau-Lecours, A. (2019). Voice Control Interface Prototype for

Assistive Robots for People Living with Upper Limb Disabilities. In International Conference

on Rehabilitation Robotics. https://doi.org/10.1109/icorr.2019.8779524

23. Langer, D., Legler, F., Kotsch, P., Dettmann, A., & Bullinger, A. C. (2022). I Let Go Now!

Towards a Voice-User Interface for Handovers between Robots and Users with Full and

Impaired Sight. Robotics, 11(5), 112. https://doi.org/10.3390/robotics11050112

24. Langer, D., Legler, F., Diekmann, P., Dettmann, A., Glende, S., & Bullinger, A. C. (2024). Got

it? Comparative Ergonomic evaluation of robotic object handover for visually impaired and

sighted users. Robotics, 13(3), 43. https://doi.org/10.3390/robotics13030043

25. Haseeb, M. A., Kyrarini, M., Jiang, S., Ristic-Durrant, D., & Gräser, A. (2018). Head Gesture-

based Control for Assistive Robots. In Proceedings of the 11th PErvasive Technologies

Related to Assistive Environments Conference (PETRA '18) (pp. 379–383). Association for

Computing Machinery. https://doi.org/10.1145/3197768.3201574

26. Canal, G., Escalera, S., & Angulo, C. (2016). A real-time Human-Robot Interaction system

based on gestures for assistive scenarios. Computer Vision and Image Understanding, 149,

65-77. https://doi.org/10.1016/j.cviu.2016.03.004

27. Mohebbi, A. (2020). Human-Robot Interaction in Rehabilitation and Assistance: a Review.

Current Robotics Reports, 1(3), 131–144. https://doi.org/10.1007/s43154-020-00015-4

28. Strabala, K. W., Lee, M. K., Dragan, A. D., Forlizzi, J. L., Srinivasa, S., Cakmak, M., & Micelli, V.

(2013). Towards seamless Human-Robot handovers. Journal of Human-robot Interaction,

2(1), 112–132. https://doi.org/10.5898/jhri.2.1.strabala

https://doi.org/10.2147/PPA.S77713
https://doi.org/10.1109/ICSMC.1997.625724
https://doi.org/10.1109/tro.2021.3075365
https://doi.org/10.3390/automation5020006
https://doi.org/10.1109/tepra.2015.7219692
https://doi.org/10.3390/s22124351
https://doi.org/10.1109/icorr.2019.8779524
https://doi.org/10.3390/robotics11050112
https://doi.org/10.3390/robotics13030043
https://doi.org/10.1145/3197768.3201574
https://doi.org/10.1016/j.cviu.2016.03.004
https://doi.org/10.1007/s43154-020-00015-4
https://doi.org/10.5898/jhri.2.1.strabala

29. Castro, A., Silva, F., & Santos, V. (2021). Trends of Human-Robot Collaboration in industry

contexts: handover, learning, and metrics. Sensors, 21(12), 4113.

https://doi.org/10.3390/s21124113

30. Chen, Q., Wan, L., & Pan, Y. (2023). Robotic pick-and-handover maneuvers with camera-

based intelligent object detection and impedance control. Transactions of the Canadian

Society for Mechanical Engineering, 47(4), 486–496. https://doi.org/10.1139/tcsme-2022-

0176

31. Yu, H., Kamat, V. R., Menassa, C. C., McGee, W., Guo, Y., & Lee, H. (2023). Mutual physical

state-aware object handover in full-contact collaborative human-robot construction work.

Automation in Construction, 150, 104829. https://doi.org/10.1016/j.autcon.2023.104829

32. ROBOTIS. (2024). OpenManipulator-X. ROBOTIS e-Manual. Retrieved 24-06-2024 from

https://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/

33. Robotis. (n.d.). Chain example from the OpenManipulator [Computer software]. Robotis.

Retrieved 24-06-2024 from

https://emanual.robotis.com/docs/en/platform/openmanipulator_x/quick_start_guide/

34. RM-X52-TNM. (n.d.). ROBOTIS. Retrieved 24-06-2024 from

https://en.robotis.com/shop_en/item.php?it_id=905-0024-000

35. OpenCR1.0. (n.d.). ROBOTIS. Retrieved 24-06-2024 from

https://en.robotis.com/shop_en/item.php?it_id=903-0257-000

36. SMPS 12V 5A PS-10 [US-110V]. (n.d.). ROBOTIS. Retrieved 24-06-2024 from

https://en.robotis.com/shop_en/item.php?it_id=903-0126-00

37. InvenSense. (2013). MPU-6000 and MPU-6050 Product Specification Revision 3.4. Retrieved

24-06-2024 from https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-

Datasheet1.pdf

38. JicJac. (2006, November 30). Various Clothing. OpenClipart. Retrieved 24-06-2024 from

https://www.openclipart.org/detail/11225/various-clothing

39. Weisstein, E. W. (n.d.). Euler Angles. In MathWorld--A Wolfram Web Resource. Retrieved 24-

06-2024 from https://mathworld.wolfram.com/EulerAngles.html

40. Adafruit. (2024). MPU6050 6-DoF Accelerometer and Gyro Guide: Arduino. Adafruit.

Retrieved 24-06-2024 from https://learn.adafruit.com/mpu6050-6-dof-accelerometer-and-

gyro/arduino

41. Spectra Symbol. (2014). Flex Sensor [PDF]. Retrieved 24-06-2024 from

https://cdn.sparkfun.com/assets/9/5/b/f/7/FLEX_SENSOR_-

_SPECIAL_EDITION_DATA_SHEET_v2019__Rev_A_.pdf

42. ROBOTIS. (2024). DYNAMIXEL Workbench - USB to DXL Example. ROBOTIS e-Manual.

Retrieved 24-06-2024 from

https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_workbench/

43. ROBOTIS. (2024). XM430-W350. ROBOTIS e-Manual. Retrieved 24-06-2024 from

https://emanual.robotis.com/docs/en/dxl/x/xm430-w350/

https://doi.org/10.3390/s21124113
https://doi.org/10.1139/tcsme-2022-0176
https://doi.org/10.1139/tcsme-2022-0176
https://doi.org/10.1016/j.autcon.2023.104829
https://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/
https://emanual.robotis.com/docs/en/platform/openmanipulator_x/quick_start_guide/
https://en.robotis.com/shop_en/item.php?it_id=905-0024-000
https://en.robotis.com/shop_en/item.php?it_id=903-0257-000
https://en.robotis.com/shop_en/item.php?it_id=903-0126-00
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://www.openclipart.org/detail/11225/various-clothing
https://mathworld.wolfram.com/EulerAngles.html
https://learn.adafruit.com/mpu6050-6-dof-accelerometer-and-gyro/arduino
https://learn.adafruit.com/mpu6050-6-dof-accelerometer-and-gyro/arduino
https://cdn.sparkfun.com/assets/9/5/b/f/7/FLEX_SENSOR_-_SPECIAL_EDITION_DATA_SHEET_v2019__Rev_A_.pdf
https://cdn.sparkfun.com/assets/9/5/b/f/7/FLEX_SENSOR_-_SPECIAL_EDITION_DATA_SHEET_v2019__Rev_A_.pdf
https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_workbench/
https://emanual.robotis.com/docs/en/dxl/x/xm430-w350/

APPENDIX A: CODE SCRIPTS
Arduino board script: glove_control

#include <Adafruit_MPU6050.h>
#include <Adafruit_Sensor.h>
#include <Wire.h>

const int flexSensorPin1 = A0; // Analog pin A0 to which the first flex

sensor is connected
const int flexSensorPin2 = A1; // Analog pin A1 to which the second flex

sensor is connected

Adafruit_MPU6050 mpu1;
Adafruit_MPU6050 mpu2;

#define NUM_READINGS 100 // Amount of calibration readings

float basePitch1[NUM_READINGS], baseRoll1[NUM_READINGS];
float basePitch2[NUM_READINGS], baseRoll2[NUM_READINGS];
float avgPitch1, avgRoll1;
float avgPitch2, avgRoll2;
unsigned long lastTime;

void setup(void) {
 Serial.begin(115200); // Sets baud rate
 while (!Serial) delay(10);

 Serial.begin(9600); // Initialise serial communication at 9600 bps

 if (!mpu1.begin(0x68)) {
 Serial.println("Failed to find MPU6050 chip 1");
 while (1) delay(10);
 }

 if (!mpu2.begin(0x69)) {
 Serial.println("Failed to find MPU6050 chip 2");
 while (1) delay(10);
 }

 Serial.println("MPU6050 sensors initialized. Calibrating sensors..."); //

Calibration message, user should not move hand when message is displayed

 calibrateSensors();
 lastTime = millis();
}

void calibrateSensors() {
 for (int i = 0; i < NUM_READINGS; i++) {
 sensors_event_t a1, g1, temp1;

 sensors_event_t a2, g2, temp2;

 mpu1.getEvent(&a1, &g1, &temp1);
 mpu2.getEvent(&a2, &g2, &temp2);

 basePitch1[i] = atan2(a1.acceleration.y, a1.acceleration.z) * 180 / PI;

// Pitch and roll are calculated according to equations (1) and (2)
 baseRoll1[i] = atan2(-a1.acceleration.x, sqrt(a1.acceleration.y *

a1.acceleration.y + a1.acceleration.z * a1.acceleration.z)) * 180 / PI;
 basePitch2[i] = atan2(a2.acceleration.y, a2.acceleration.z) * 180 / PI;
 baseRoll2[i] = atan2(-a2.acceleration.x, sqrt(a2.acceleration.y *

a2.acceleration.y + a2.acceleration.z * a2.acceleration.z)) * 180 / PI;

 delay(50);
 }

 float sumPitch1 = 0, sumRoll1 = 0;
 float sumPitch2 = 0, sumRoll2 = 0;

 for (int i = 0; i < NUM_READINGS; i++) {
 sumPitch1 += basePitch1[i];
 sumRoll1 += baseRoll1[i];
 sumPitch2 += basePitch2[i];
 sumRoll2 += baseRoll2[i];
 }

 avgPitch1 = sumPitch1 / NUM_READINGS;
 avgRoll1 = sumRoll1 / NUM_READINGS;
 avgPitch2 = sumPitch2 / NUM_READINGS;
 avgRoll2 = sumRoll2 / NUM_READINGS;

 Serial.println("Calibration complete."); // Now user can move hand
 Serial.print("Base Pitch1: "); Serial.println(avgPitch1);
 Serial.print("Base Roll1: "); Serial.println(avgRoll1);
 Serial.print("Base Pitch2: "); Serial.println(avgPitch2);
 Serial.print("Base Roll2: "); Serial.println(avgRoll2);
}

void loop() {
 int flexValue1 = analogRead(flexSensorPin1); // Read the analog value

from the first flex sensor
 int flexValue2 = analogRead(flexSensorPin2); // Read the analog value

from the second flex sensor

 sensors_event_t a1, g1, temp1;
 sensors_event_t a2, g2, temp2;

 mpu1.getEvent(&a1, &g1, &temp1);
 mpu2.getEvent(&a2, &g2, &temp2);

 unsigned long currentTime = millis();
 float deltaTime = (currentTime - lastTime) / 1000.0;
 lastTime = currentTime;

 float pitch1 = atan2(a1.acceleration.y, a1.acceleration.z) * 180 / PI -

avgPitch1; // Pitch and roll are calculated according to equations (1)

and (2)
 float roll1 = atan2(-a1.acceleration.x, sqrt(a1.acceleration.y *

a1.acceleration.y + a1.acceleration.z * a1.acceleration.z)) * 180 / PI -

avgRoll1;

 float pitch2 = atan2(a2.acceleration.y, a2.acceleration.z) * 180 / PI -
avgPitch2;
 float roll2 = atan2(-a2.acceleration.x, sqrt(a2.acceleration.y *

a2.acceleration.y + a2.acceleration.z * a2.acceleration.z)) * 180 / PI -

avgRoll2;

 float deltaPitch = pitch2 - pitch1; // Gives the angles between the two

MPUs. Numbering is important, changes +/- in the values if switched
 float deltaRoll = roll2 - roll1;

 // Format data string
 String dataString = String(deltaPitch) + "," + String(deltaRoll) + "," +

String(flexValue1) + "," + String(flexValue2);
 Serial.println(dataString);

 delay(500);
}

Python script: serial_ports

import serial
import threading
import time

mkr_port = 'COM9' # Adjust COM if necessary
opencr_port = 'COM5'
baud_rate = 115200 # Baud rate of the sensors in the Arduino code

def open_serial_port(port, baud_rate): # Defines opening of the ports
 try:
 ser = serial.Serial(port, baud_rate, timeout=2)
 print(f"Opened port: {port}")
 return ser
 except serial.SerialException as e:
 print(f"Error opening port {port}: {e}")
 return None

mkr_serial = open_serial_port(mkr_port, baud_rate)
opencr_serial = open_serial_port(opencr_port, baud_rate)

if not mkr_serial or not opencr_serial:
 print("Failed to open one or more serial ports. Exiting.")
 exit()

def relay_mkr_to_opencr(): # Establishes one way communication (Arduino to

OpenCR)
 while True:
 try:
 if mkr_serial.in_waiting > 0:
 data = mkr_serial.readline().decode().strip()
 if data:
 opencr_serial.write((data + "\n").encode())
 print("Sent to COM5 (Robot Arm):", data)
 except serial.SerialException as e:
 print(f"Error reading from MKR: {e}")
 break

def relay_opencr_to_mkr(): # Prints received data, necessary for calibration
 while True:
 try:
 if opencr_serial.in_waiting > 0:
 data = opencr_serial.readline().decode().strip()
 if data:
 mkr_serial.write((data + "\n").encode())
 print("Received from COM5 (Robot Arm):", data)
 except serial.SerialException as e:
 print(f"Error reading from OpenCR: {e}")
 break

thread_mkr_to_opencr = threading.Thread(target=relay_mkr_to_opencr)
thread_opencr_to_mkr = threading.Thread(target=relay_opencr_to_mkr)

thread_mkr_to_opencr.start()
thread_opencr_to_mkr.start()

try:
 while True:
 time.sleep(1)
except KeyboardInterrupt:
 print("Exiting...")
finally:
 if mkr_serial.is_open:
 mkr_serial.close()
 if opencr_serial.is_open:
 opencr_serial.close()
 print("Serial ports closed.")

OpenCR board script: robot_control

#include <DynamixelSDK.h>

#define DEVICENAME "1" // Adjust to the correct USB port

#define BAUDRATE 1000000

#define PROTOCOL_VERSION 2.0

#define DXL_ID_11 11 // Servo motor IDs

#define DXL_ID_12 12

#define DXL_ID_13 13

#define DXL_ID_14 14

#define DXL_ID_15 15

dynamixel::PortHandler *portHandler;

dynamixel::PacketHandler *packetHandler;

void setup() {

 Serial.begin(115200); // Baud rate from the sensors

 portHandler = dynamixel::PortHandler::getPortHandler(DEVICENAME);

 packetHandler =

dynamixel::PacketHandler::getPacketHandler(PROTOCOL_VERSION);

 if (portHandler->openPort()) {

 Serial.println("Succeeded to open the port!");

 } else {

 Serial.println("Failed to open the port!");

 return;

 }

 if (portHandler->setBaudRate(BAUDRATE)) {

 Serial.println("Succeeded to change the baudrate!");

 } else {

 Serial.println("Failed to change the baudrate!");
 return;

 }

 // Enable Torque for all servos

 packetHandler->write1ByteTxRx(portHandler, DXL_ID_11, 64, 1);

 packetHandler->write1ByteTxRx(portHandler, DXL_ID_12, 64, 1);

 packetHandler->write1ByteTxRx(portHandler, DXL_ID_13, 64, 1);

 packetHandler->write1ByteTxRx(portHandler, DXL_ID_14, 64, 1);

 packetHandler->write1ByteTxRx(portHandler, DXL_ID_15, 64, 1);

}

void moveServosToPosition(int servo11, int servo12, int servo13, int

servo14, int servo15) {

 packetHandler->write4ByteTxRx(portHandler, DXL_ID_11, 116, servo11);

 packetHandler->write4ByteTxRx(portHandler, DXL_ID_12, 116, servo12);

 packetHandler->write4ByteTxRx(portHandler, DXL_ID_13, 116, servo13);

 packetHandler->write4ByteTxRx(portHandler, DXL_ID_14, 116, servo14);

 if (servo15 != -1) {

 packetHandler->write4ByteTxRx(portHandler, DXL_ID_15, 116, servo15);
 }

}

bool isGripperHoldingItem() { // Should allow the gripper to open when

not fully closing due to holding an item

 uint16_t current;

 int dxl_comm_result = packetHandler->read2ByteTxRx(portHandler,

DXL_ID_15, 126, ¤t); // 126 is the address for present current

 if (dxl_comm_result != COMM_SUCCESS) {

 Serial.println(packetHandler->getTxRxResult(dxl_comm_result));

 }

 return current > 5000; // Current threshold for the gripper in mA,

adjust if necessary

}

void closeGripper() {

 int closePosition = 2700; // Gripper close (238 degrees = ~2700 EC =
full close)

 int increment = 10; // Small steps for closing

 while (true) {

 packetHandler->write4ByteTxRx(portHandler, DXL_ID_15, 116,
closePosition);

 delay(100); // Small delay to allow the servo to move

 if (isGripperHoldingItem()) {

 break; // Stop closing when item is held

 }
 closePosition -= increment; // Incrementally close more

 if (closePosition <= 0) {

 break; // Safety check to prevent over-closing

 }

 }

}

void loop() {

 if (Serial.available() > 0) {

 String data = Serial.readStringUntil('\n');

 if (data.length() > 0) {
 float deltaPitch, deltaRoll;

 int flexValue1, flexValue2;

 sscanf(data.c_str(), "%f,%f,%f,%d,%d", &deltaPitch, &deltaRoll,

&flexValue1, &flexValue2);

 // Move servos based on delta pitch value

 if (deltaPitch <= -15) { // Adjust value if necessary. If MPU 1

and 2 are switched, this value becomes positive
 // Giving position

 moveServosToPosition(360 * 4096 / 360, 240 * 4096 / 360, 100 *

4096 / 360, 180 * 4096 / 360, -1); // Servomotor ID 12 and 13 move and

decide position

 } else if (deltaPitch >= 25) { // Adjust value if necessary. If

MPU 1 and 2 are switched, this value becomes negative

 // Base position

 moveServosToPosition(360 * 4096 / 360, 140 * 4096 / 360, 210 *

4096 / 360, 180 * 4096 / 360, -1);

 }

 // Control gripper based on flex sensor values
 if (flexValue1 < 300 || flexValue2 < 400) { // Adjust if

necessary. May change if flex sensor position in voltage divider circuit

is swapped, or resistor value differs

 // Open gripper

 packetHandler->write4ByteTxRx(portHandler, DXL_ID_15, 116,

1252); // Gripper open at 110 degrees (110/360 * 4096)
 } else {

 // Close gripper

 closeGripper();

 }

 // Print out the received data for debugging, shown through Python

 Serial.print(" Pitch: "); Serial.print(deltaPitch);

 Serial.print(" Roll: "); Serial.print(deltaRoll);

 Serial.print(" Flex Sensor 1: "); Serial.print(flexValue1);

 Serial.print(" Flex Sensor 2: "); Serial.println(flexValue2);

 }

 }

}

APPENDIX B: MPU-6050 CASING

Figure 9: Full drawing of the 3D-printed casings used for the MPU-6050 sensors. Drawing and casings created and provided
by Paul Fetchenhauer, used with permission.

APPENDIX C: FULL DATA AND RESULTS
Table 4: Individual handover times per item.

Handover

attempt

Time for

item 1 (s)

Time for

item 2 (s)

Time for

item 3 (s)

Time for

item 4 (s)

Time for

item 5 (s)

1 10.47 13.41 7.69 4.34 4.72

2 11.76 11.84 6.50 10.15 6.10

3 13.81 7.77 9.13 6.38 9.97

4 12.72 9.53 6.89 6.16 5.90

5 8.96 6.64 8.12 6.04 5.84

6 9.43 7.27 7.48 7.05 4.50

7 8.56 6.84 8.94 5.99 5.38

8 9.17 8.57 6.92 3.97 6.74

9 8.23 11.86 9.93 7.25 5.81

10 7.92 7.91 8.16 4.84 6.08

11 8.64 8.90 12.47 5.76 4.92

12 8.35 8.98 8.61 4.51 8.07

13 7.83 7.42 7.45 8.31 6.65

14 8.98 8.36 7.76 6.36 7.74

15 9.49 13.26 8.18 4.17 6.98

16 8.13 7.87 10.72 8.59 10.08

17 7.22 7.55 9.68 4.75 5.19

18 6.79 6.87 7.61 5.16 6.83

19 7.38 8.24 10.38 4.78 5.54

20 7.84 7.62 7.92 5.24 4.23

Figure 10: Histogram graph of the frequency distribution of handover time.

Figure 11: Q-Q plot distribution of the handover time.

Figure 12: Full results of the performed Shapiro-Wilk test in SPSS.

Figure 13: Full results of the performed ANOVA test in SPSS

