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Abstract
This thesis applies the geometric approach to control theory of

linear systems to the class of passive linear systems. The assump-
tion of passivity of a given linear system proves to be so restrictive,
that explicit characterisations of the weakly unobservable subspace,
the strongly reachable subspace, as well as their intersection and sum,
can be given in terms of subspaces of the matrices A,B,C,D that fully
encompass the dynamics of the system. The thesis provides these, as
well as their derivations, and the relevant restrictions that passivity
imposes. Lastly, these results are applied to the nine-fold canonical
decomposition of a general linear system, from which a six-fold decom-
position is derived.
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1 Introduction

The study of passivity in systems theory originated from modelling of
physical systems, particularly electrical circuits. Governed by physical laws,
such systems often have associated quantities that are internally conserved,
and such behavior of conservation was sought to be exploited in order to
derive various properties. Such notions were generalised into the concept of
a theoretical storage function as a non-negative function of the state of the
system, whose change in time is bounded from above by a given supply rate.
The study of passivity then, became the study of such systems when defining
the supply rate to be the inner product between the input and output of
the system. The application of passivity to linear time-invariant systems,
done by Jan C. Willems, demonstrated that all storage functions of passive
linear systems can be bounded from above and below by quadratic storage
functions. As such the study of passivity of linear systems is equivalent to
the study of quadratic storage functions associated with such systems.

Separately, much work has been done on the study of general linear
systems. Of particular importance to the thesis is the geometric approach
to linear systems, whose development was motivated by the disturbance
decoupling problem. Geometric properties, compiled in ”Control theory for
Linear Systems” by H. Trentelman, A. Stoorvogel and M. Hautus, prove
to be instrumental in providing properties and solutions to problems by
merely considering subspaces associated with the matrices describing the
linear system.

Insofar as to the author’s knowledge, a geometric approach to passive
linear systems was never applied, as such the main objective of this thesis is
to do so. Utilising basic properties that passivity imposes on linear systems,
the thesis provides an explicit characterisation of the strongly reachable
subspace (S∗), the weakly unobservable subspace (V∗), their intersection
(R∗), and their sum (N ∗) in terms of subspaces associated with the ma-
trices (A,B,C,D) governing all behavior of the linear system. The thesis
demonstrates that

S∗ = ⟨A | B kerD ∩ C−1 imD⟩+B kerD (1)

V∗ = C−1 imD (2)

R∗ = ⟨A | B kerD ∩ C−1 imD⟩ (3)

N ∗ = Rn. (4)

Lastly, the thesis concludes by applying the derived subspace represen-
tations to the nine-fold canonical decomposition of a general linear system,
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attained by H. Aling and J. M. Schumacher. Passivity then reduces such a
decomposition to a six-fold one.
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2 Preliminaries

2.1 Linear Algebra

Perhaps unsurprisingly, the primary tool used to study linear systems
turns out to be linear algebra, and this is no different in this thesis. We
will however restrict our scope to vector spaces over the real numbers, and
denote such spaces as Rn where the exponent n signifies the dimension of
the space. Similarly we shall denote matrix spaces over the reals by Rn×m

where m and n denote the number of rows and columns respectively. The
transpose of M will be denoted with the superscript MT .

The thesis assumes a thorough understanding of linear algebra and linear
systems, as well as a grasp of the most important results from calculus.
While calculus is employed quite sparingly, linear algebra dominates the
thesis, and so we begin by introducing relevant definitions and results from
the field.

2.1.1 Subspaces of a Matrix

For the following definitions of this subsection let M ∈ Rn×m.

Definition 2.1 (Image). The image of M , denoted imM , is the set of all
vectors y ∈ Rn, such that,

y = Mx, for some x ∈ Rm.

Definition 2.2 (Kernel). The kernel of M, denoted kerM , is the set of all
vectors x ∈ Rm such that,

Mx = 0.

The image and kernel of a matrix along with the image and kernel of
its transpose are commonly referred to as the four fundamental subspaces
associated with a matrix. They encompass the most important behaviors of
the matrix as a map from one vector space to another, and are the building
blocks upon which later subspace characterisation is attained.

The introduction of the image and kernel of the transpose as fundamental
might at first seem arbitrary, but it turns out they are intricately linked
through the concept of the orthogonal complement.

Definition 2.3 (Orthogonal complement). Let V ⊆ Rn be a subspace. The
orthogonal complement, denoted with the superscript V⊥ is defined as the
set of all y such that

xT y = 0, for all x ∈ V.
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Lemma 2.4. The kernel of a matrix M is equal to the orthogonal comple-
ment of the image of the transpose of M , i.e. kerM = (imMT )⊥.

Proof. Let x denote an arbitrary vector in kerM , and MT y an arbitrary
vector of the image of MT . The inner product between them, then is given
as

xTMT y

which we can rearrange as
(Mx)T y

which when considering that x is a member of the kernel of M yields

xTMT y = 0T y = 0

which shows that
kerM ⊆ (imMT )⊥.

To prove the lemma we must also show the reverse inclusion. As such
consider an arbitrary element x in the orthogonal complement of imMT .
We have xTMT y = 0 which we again rearrange as

(Mx)T y = 0.

Now, the above statement holds for all possible vectors y which would imply
Mx = 0, and so x is a member of the kernel of M, as such

(imMT )⊥ ⊆ kerM.

Which proves that
kerM = (imMT )⊥.

Apart from the fundamental subspaces, we would like to capture the
behavior of linear maps when we restrict our domain or co-domain. To this
extent we define the image and inverse image of a subspace in relation to a
matrix M .

Definition 2.5 (Image of a subspace). Let V ⊆ Rm. The subspace MV ⊆
Rn is defined as the set of all vectors y such that,

Mx = y, for some x ∈ V.
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Definition 2.6 (Inverse image of a subspace). Let W ⊆ Rn. The inverse
image is denoted as the subspace M−1W ⊆ Rm and is the set of all vectors
x such that,

Mx = y, for some y ∈ W

Note here that M need not be invertible despite the notation used. It
does however allow us to capture the essence of invertibility. For example if
we have given that Mx = y, then the inverse image M−1{y} = {x}+kerM
which proves to be a useful property when characterising more complicated
subspaces.

It turns out that, as with our four fundamental subspaces, the image and
inverse image of a subspace are also related to each other by the orthogonal
complement.

Lemma 2.7. The orthogonal complement of the image of a subspace V
under multiplication by M is equal to the inverse image of its orthogonal
complement under the transpose of M , i.e. (MV)⊥ = (MT )−1V⊥.

Proof. Consider an element x in (MV)⊥, then by definition

xTMv = 0, for all v ∈ V
(MTx)T v = 0, for all v ∈ V

MTx ∈ V⊥

x ∈ (MT )−1V⊥

(MV)⊥ ⊆ (MT )−1V⊥.

Now to demonstrate the reverse inclusion, consider x to be an element of
(MT )−1V⊥, then by definition, we have:

MTx ∈ V⊥

(MTx)T v = 0, for all v ∈ V
xT (Mv) = 0, for all v ∈ V

x ∈ (MV)⊥

(MT )−1V⊥ ⊆ (MV)⊥.

Combining both derived inclusions yields equality, proving that

(MV)⊥ = (MT )−1V⊥.
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While the so far covered definitions and lemmas are results from general
linear algebra, we’d like to touch upon concepts much more interconnected
with linear systems. To this end we define subspace invariance under matrix
multiplication.

Definition 2.8 (Subspace invariance). Let M be a square matrix, (M ∈
Rn×n). A subspace V is called M-invariant if

MV ⊆ V.

The property of invariance shows up quite frequently when dealing with
problems in linear systems. However, for arbitrarily chosen matrices and
subspaces, invariance is not the norm. As such, we’d like to encapuslate this
property of invariance for more general subspaces that need not themselves
be invariant.

Definition 2.9. The smallest M-invariant subspace containing V is denoted
by ⟨M | V⟩ and is the unique subspace satisfying the following three proper-
ties:

1. V ⊆ ⟨M | V⟩
2. M⟨M | V⟩ ⊆ ⟨M | V⟩
3. If N is a M-invariant subspace containing V, ⟨M | V⟩ ⊆ N

Definition 2.10. The largest M-invariant subspace contained in V is de-
noted by ⟨V | M⟩ and is the unique subspace satisfying the following three
properties:

1. ⟨V | M⟩ ⊆ V
2. M⟨V | M⟩ ⊆ ⟨M | V⟩
3. If N is a M-invariant subspace contained in V, N ⊆ ⟨V | M⟩

Invariance is perhaps the quintessential tool in the study of linear sys-
tems, and we will see it appear throughout the thesis.

2.1.2 Definite Matrices

The concept of matrix definiteness in the context of linear systems arose
from the physical realities that such systems often model. In this section,
we introduce the most important properties of such matrices.
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Definition 2.11 (Symmetric matrix). A square matrix is called symmetric
if it is equal to its transpose, i.e. M = MT . We denote the set of all
symmetric matrices of dimension n as Sn

Definition 2.12 (Definite matrix). Let M be in Sn. M is called positive
semidefinite if

xTMx ⩾ 0, for all x ∈ Rn.

It is called positive definite if instead this inequality can be made strict, i.e.

xTMx > 0, for all x ∈ Rn and x ̸= 0.

The set of all positive semidefinite matrices is denoted as Sn+, and of all pos-
itive definite matrices as Sn++. A matrix M is called negative (semi)definite
if −M is positive (semi)definite.

The function f(x) = xTMx is called the quadratic form associated with
M . The fact that it is always non negative for positive (semi)definite matri-
ces M is sought after as it allows for the modelling of non-negative physical
quantities, such as energy.

Such matrices posses quite useful properties.

Lemma 2.13. Let M be in Sn
+. Then x ∈ kerM if and only if xTMx = 0.

Proof. First assume x ∈ kerM . This implies Mx = 0, which implies
xTMx = 0.

Now assume that xTMx = 0, since M is positive semidefinite, M =
NTN for some matrix N . Plugging this into our assumption yields

0 = xTNTNx

= ||Nx||.

This in turn, necessitates Nx = 0, which when multiplied from the left by
NT grants us our desired result since Mx = NTNx = 0 and so x is in the
kernel of M .

The above effectively shows the equivalence between a vector annihi-
lating the quadratic form associated with a matrix and that same vector
annihilating the matrix itself. This, in turn, allows us to show that a vector
belongs to the kernel of a matrix by instead showing the quadratic form is
equal to zero, which is often much easier.

Additionally, throughout the thesis, positive semidefinite matrices will
frequently obtain the formM+MT , which gives rise to even more properties.
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Lemma 2.14. Let M be such that M +MT ∈ Sn
+. Then,

i. kerM ⊆ ker(M +MT )

ii. kerM = kerMT

Proof. We begin with a proof of (i). Take an arbitrary element x ∈ kerM ,
then Mx = 0. Now note that

xT (M +MT )x = xTMx+ xTMTx

= xTMx+ xTMTx

= xT (Mx) + (Mx)Tx

= 0.

As such xT (M +MT )x = 0. Now since M +MT ∈ Sn
+, we use Lemma 2.13,

which implies x ∈ ker(M +MT )

For the proof of (ii). Note that by (i), we have x ∈ kerM ⇒ x ∈ ker(M +
MT ), so (M +MT )x = 0. Expanding gives Mx+MTx = 0 which simplifies
to MTx = 0 and so x ∈ kerMT . The reverse inclusion also holds by
symmetry of the argument with respect to transposition. Therefore we
conclude that

kerM = kerMT .

From the above, we can see that such a construction imposes symmetry
of the kernel with respect to transposition.

2.2 Linear Input-State-Output Systems

Having introduced the relevant concepts from linear algebra, we turn our
attention to the main mathematical object of study in this thesis, namely
the linear system.

Definition 2.15 (Linear Input-State-Output Systems). A linear input-state-
output system, denoted by Σ(A,B,C,D), is a set of first-order differential
equations with respect to continuous time (t ∈ R) of the form:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
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Here x(t), u(t), y(t) are vector-valued functions in time where x(t) ∈ Rn is
called the state, u(t) ∈ Rm is called the input, y(t) ∈ Rp is called the output,
and ẋ(t) := d

dtx(t), and A,B,C,D are matrices of appropriate dimensions.
For a given initial condition x(0) = x0 and locally integrable input function
u(t), the solution xx0,u(t) is called the state trajectory, with the corresponding
solution yx0,u(t) being called the output trajectory.
(NB. Once defined, often Σ(A,B,C,D) will be denoted simply as Σ, and
x(t), u(t), y(t) as x, u, y)

What is remarkable, is that while the definition of a linear system is
reliant on the notion of the derivative, it is often the case that we can
describe various properties of such a system solely in terms of linear algebraic
properties. This is commonly referred to as the geometric approach, the core
concepts of which we introduce now.

2.2.1 Fundamental Subspaces of Σ(A,B,C,D)

In the following section, we will list the definitions used in the geometric
approach to the study of linear systems, adapted from Trentelman, Stoor-
vogel, and Hautus 2002.

Let Σ(A,B,C,D) be a system as in Definition 2.15.

Definition 2.16 (Reachable subspace). The subspace ⟨A | imB⟩ is called
the reachable subspace of Σ. It is the smallest A-invariant subspace contain-
ing imB and has the property that, x ∈ ⟨A | imB⟩ if and only if there exists
an input function u(t) and time t1 ⩾ 0, such that x0,u(t1) = x.

Definition 2.17 (Unobservable subspace). The subspace ⟨kerC | A⟩ is
called the unobservable subspace of Σ. It is the largest A-invariant sub-
space contained in kerC and has the property that, x0 ∈ ⟨kerC | A⟩ if and
only if yx0,0(t) = 0 for all times t.

Definition 2.18 (Weakly unobservable subspace). The weakly unobservable
subspace of Σ, denoted by V∗, is the largest subspace V of Rn such that:[

A
C

]
V ⊆ (V × 0) + im

(
B
D

)
.

The weakly unobservable subspace has the property that for all x0 ∈ V∗, there
exists an input function u(t) such that yx0,u(t) = 0 for all times t ⩾ 0.

Definition 2.19 (Strongly reachable subspace). The strongly reachable sub-
space of Σ, denoted by S∗, is the smallest subspace S of Rn such that:[

A B
] [
(S × Rp) ∩ ker

(
C D

)]
⊆ S.
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The strongly reachable subspace can be seen as the equivalent of the reach-
able subspace when restricting inputs to the set of impulse functions (see
Trentelman, Stoorvogel, and Hautus (2002) p. 368).

Proposition 2.20. (Duality between the weakly unobservable subspace and
the strongly reachable subspace)
We define the dual of a linear system Σ(A,B,C,D) as ΣT := Σ(AT , CT , BT , DT ),
then there is a strong relation between the subspaces of the dual with its orig-
inal, namely:

S∗(Σ)⊥ = V∗(ΣT )

and
V∗(Σ)⊥ = S∗(ΣT ).

See Trentelman, Stoorvogel, and Hautus 2002 p.186 for details.

Definition 2.21 (The controllable weakly unobservable subspace). The
controllable weakly unobservable subspace, denoted by R∗, is the intersection
of the weakly unobservable subspace and the strongly reachable subspace.

R∗ := V∗ ∩ S∗.

Definition 2.22 (The distributionally weakly unobservable subspace). The
distributionally weakly unobservable subspace, denoted by W∗ ,is the sum of
the weakly unobservable subspace with the strongly reachable subspace.

W∗ := V∗ + S∗.

These properties allow for a much easier analysis of linear systems. They
prove the existence of specific input functions driving desired system behav-
ior without the need to explicitly define them. If we treat the system Σ as
a map from the space of input functions to the space of output functions,
these subspaces allow us to prove injectivity and surjectivity of such a map.

2.2.2 Passivity

Having defined the linear system, and concepts associated with it, we
proceed to the restriction that we are interested on imposing onto the sys-
tem, that being passivity. Passivity arises quite intuitively when modelling
physical systems, where we deal with certain conserved quantities, most of-
ten energy. These laws of conservation are often only present implicitly in
such models, and so we’d like to quantify such behavior much more con-
cretely.
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Definition 2.23 (Passive system). A system Σ, whose input and output
spaces are of equal dimenstion, is called passive if there exists a P ⩾ 0 such
that the dissipativity inequality (DI)

1

2
xT (t0)Px(t0) +

∫ t1

t0

uT (τ)y(τ)dτ ⩾
1

2
xT (t1)Px(t1),

holds for all times t0, t1 with t0 ⩽ t1, and for all trajectories (u, x, y) of Σ.

We call w(t) := uT (t)y(t) the supply rate function, and s(x) := 1
2x

TPx
the associated storage function of the system. Passivity then tells us that
such a storage function is internally conserved, and only increasing in the
presence of an external supply rate.

While the definitions for the supply rate and storage might seem arbi-
trary, it turns out that, specifically for passive linear electric circuits, one
can always derive an associated linear system model such that the above
definition of passivity holds.

Such a definition, however, is often impractical to deal with and so we
seek out an easier to work with characterisation.

Proposition 2.24 (Linear matrix inequality of passivity). A linear system
Σ(A,B,C,D) is passive if and only if there exists P ⩾ 0 such that:[

0 CT

C D +DT

]
−
[
ATP + PA PB

BTP 0

]
⩾ 0.

Proof. We first assume the system is passive, as such we have:

1

2
xT (t0)Px(t0) +

∫ t1

t0

uT (τ)y(τ)dτ ⩾
1

2
xT (t1)Px(t1),

for all times t0, t1 such that t0 ⩽ t1, and for all trajectories (u, x, y) of Σ.
For simplicity we will omit the notations of x(t), u(t), y(t) as functions

of t, instead denoting them simply as x, u, y, except when evaluated at a
specific point in time. We rearrange to obtain:∫ t1

t0

uT (τ)y(τ)dτ ⩾
1

2
xT (t1)Px(t1)−

1

2
xT (t0)Px(t0)

Now by the fundamental theorem of calculus, for a given function W (t) such
that d

dtW (t) = uT (t)y(t), we can rewrite the above as:

W (t1)−W (t0) ⩾
1

2
xT (t1)Px(t1)−

1

2
xT (t0)Px(t0)
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Now take t0 ̸= t1 such that t1 − t0 > 0, then dividing both sides of the
inequality gives:

W (t1)−W (t0)

t1 − t0
⩾

1
2x

T (t1)Px(t1)− 1
2x

T (t0)Px(t0)

t1 − t0
.

We now take the limit of both sides as t1 approaches t0 to obtain

lim
t1→t0

W (t1)−W (t0)

t1 − t0
⩾ lim

t1→t0

1
2x

T (t1)Px(t1)− 1
2x

T (t0)Px(t0)

t1 − t0

which when recalling the definition of the derivative simplifies to

d

dt
W (t0) ⩾

d

dt
(
1

2
xTPx)(t0).

Recalling how we defined W (t) we finally we obtain

uT (t0)y(t0) ⩾
d

dt
(
1

2
xTPx)(t0).

However, the choice of t0 was arbitrary, so the statement holds for all t, and
as such:

uT y ⩾
d

dt
(
1

2
xTPx)

2uT y ⩾
d

dt
(xTPx)

uT y + yTu ⩾ ẋTPx+ xTPẋ.

Now, recall the structure of a linear system, namely:

ẋ = Ax+Bu

y = Cx+Du.

Plugging in the expressions for ẋ and y into the derived inequality yields:

uT (Cx+Du) + (Cx+Du)Tu ⩾ (Ax+Bu)TPx+ xTP (Ax+Bu).

Expanding and rearranging terms gives us

0 ⩾ xT (ATP + PA)x+ uT (BTP − C)x+ xT (PB − CT )u− uT (D +DT )u

which can be nicely rewritten in block form as:

0 ⩾
[
xT uT

] [ATP + PA PB − CT

BTP − C −(D +DT )

] [
x
u

]
14



or equivalently as:

[
xT uT

]([0 CT

C D +DT

]
−

[
ATP + PA PB

BTP 0

])[
x
u

]
⩾ 0.

Now note that passivity applies to all possible states and inputs, as such the

above statement applies to any arbitrary vector

[
x
u

]
∈ Rn+m showing that

indeed: [
0 CT

C D +DT

]
−
[
ATP + PA PB

BTP 0

]
⩾ 0.

The ”if” statement follows analogously, by following the algebraic steps
in inverse order, until one obtains:

uT y ⩾
d

dt
(
1

2
xTPx).

Which when integrating from t0 to t1, yields:∫ t1

t0

uT ydτ ⩾
∫ t1

t0

d

dτ
(
1

2
xTPx)dτ

⩾
1

2
xT (t1)Px(t1)−

1

2
xT (t0Px(t0)

which when rearranged gives

1

2
xT (t0)Px(t0) +

∫ t

t0

uT ydτ ⩾
1

2
xT (t1)Px(t1)

as desired.

This theorem transports the definition of passivity from one that relies
on calculus to one that encapsulates passivity with linear algebra. This in
turn allows for subspace characterisation in a much more simple manner.

However, due to the sheer size of the block matrix associated with the
passivity inequality, it would be impractical to work with. As such, we
introduce simplified notation.

Definition 2.25 (Output Matrix and State map). Let Σ(A,B,C,D) be a
passive system. We define the output matrix S as

S :=

[
0 CT

C D +DT

]
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and the state map L : Sn → Sn+m as

L(P ) :=

[
ATP + PA PB

BTP 0

]
from which the dissipativity inequality for linear systems can be simply rewrit-
ten as

S − L(P ) ⩾ 0.

For a given Σ the set of all matrices P satisfying the dissipativity inequality
is denoted as P ⊆ Sn+, more concretely

P := {P ⩾ 0 : S − L(P ) ⩾ 0}.

Having obtained a linear algebraic formulation of passivity, we now turn
our attention to the various consequences that arise upon its assumption. In-
deed, the assumption of passivity imposes many restrictions on the matrices
(A,B,C,D) of a linear system.

Proposition 2.26 (Consequences of passivity). Let Σ(A,B,C,D) be a pas-
sive system. The following statements hold:

(i) D +DT ⩾ 0

(ii) kerD ⊆ ker(D +DT )

(iii) kerD = kerDT

(iv) imD = imDT .

Furthermore, for P ∈ P

(v) (PB − CT ) ker(D +DT ) = {0}

(vi) kerP ⊆ kerC

(vii) kerP is A-invariant

(viii) kerP ⊆ ⟨kerC | A⟩.

Proof. (i): Consider x =

[
0
µ

]
for an arbitrary µ ∈ Rm, then

xT (S − L(P ))x = µT (D +DT )µ ⩾ 0

which by arbitrary choice of µ implies (D +DT ) ⩾ 0.
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(ii) and (iii): These statements directly follow from (i) and Lemma 2.14.

(iv): This is a direct consequence of taking the orthogonal complement of
(iii) and applying Lemma 2.4.

(v): Consider again x =

[
0
µ

]
this time with µ ∈ ker(D +DT ). Then

xT (S − L(P ))x = µT (D +DT )µ = 0

since by assumption µ ∈ ker(D + DT ). However, since S − L(P ) ⩾ 0 and
xT (S −L(P ))x = 0, by Lemma 2.13, x ∈ ker(S −L(P )) which then implies
(S − L(P ))x = 0. Now

0 = (S − L(P ))x

= CTµ− PBµ+ (D +DT )µ

= (CT − PB)µ.

Since µ ∈ ker(D +DT ) was selected arbitrarily, this shows that indeed (v)
holds.

(vi): Consider x =

[
ξ
0

]
for an arbitrary ξ ∈ kerP . By algebraic manipulation

along with P being symmetric, one can again show that xT (S−L(P ))x = 0,
which by Lemma 2.13 implies

0 = (S − L(P ))x

= (BTP − C)ξ

= Cξ

and so
ξ ∈ kerC.

(vii): This statement follows by first noting that ATP + PA is negative
semidefinite (Analogous to the proof of (i), along with the fact that for
ξ ∈ kerP , ξT (ATP + PA)ξ = 0, as such by lemma 2.13,

(ATP + PA)ξ = 0

PAξ = 0

17



Aξ ∈ kerP

A kerP ⊆ kerP.

(viii): This statement directly follows from (vi) and (vii) since ⟨A | imB⟩ is
the largest A-invariant subspace contained in kerC.

Passivity imposes symmetry on the four fundamental subspaces of D,
particularly statement (iii) which implies that if Dµ = 0 then µTD = 0.
Perhaps most importantly however is statement (v) which says that if Dµ =
0 then PBµ = CTµ. These two statements appear most often throughout
the proofs in the following sections, so it is useful to keep them in mind.

We wish to say a bit more about two particular intersections, B kerD ∩
C−1 imD and CT kerDT ∩ (BT )−1 imDT .

Proposition 2.27. Let Σ(A,B,C,D) be a passive system. Then, we have:

(i) B kerD ∩ C−1 imD ⊆ kerP

(ii) ⟨A | B kerD ∩ C−1 imD⟩ ⊆ kerP

(iii) ⟨A | B kerD ∩ C−1 imD⟩ ⊆ kerC

(iv) ⟨A | B kerD ∩ C−1 imD⟩ ⊆ C−1 imD

(v) (⟨A | B kerD ∩ C−1 imD⟩ + B kerD) ∩ C−1 imD = ⟨A | B kerD ∩
C−1 imD⟩

Proof. (i): Consider an element x ∈ B kerD ∩ C−1 imD. As it is in the
intersection, it obeys the properties of both subspaces, as such we can rewrite
x as x = Bµ for some element µ ∈ kerD as well as knowing that there exists
some vector u such that Cx = Du. Putting both results together yields
CBµ = Du, which when multiplying from the left by µT , and rearranging,
yields (CTµ)TBµ = (DTµ)Tu. By statement (iii) of Lemma 2.26 DTµ = 0,
and by statement (v) of Lemma 2.26 CTµ = PBµ, which then implies
µTBTPBµ = 0, which when remembering how x was defined yields xTPx =
0, which by Lemma 2.13 shows x ∈ kerP .

(ii): First note that ⟨A | B kerD ∩ C−1 imD⟩ ⊆ ⟨A | kerP ⟩ by (i). Then
by the A-invariance of kerP (statement (vii) of Lemma 2.26) ⟨A | kerP ⟩ ⊆
kerP , and so ⟨A | B kerD ∩ C−1 imD⟩ must also therefore be in kerP .

18



(iii): The statement follows from (ii) and from noting that kerP ⊆ kerC by
statement (vi) of Lemma 2.26.

(iv): This statement follows from (iii) and by noting that kerC ⊆ C−1 imD.

(v): While the construction of the statement of (v) might seem overly com-
plicated and arbitrary, this particular subspace appears multiple times in
the following section and as such it is worthwhile to characterise it.

The proof of (v) can be easily demonstrated by the closedness of sub-
spaces under addition. Take x ∈ (⟨A | B kerD ∩ C−1 imD⟩ + B kerD) ∩
C−1 imD, then x = η + ζ, for some η ∈ ⟨A | B kerD ∩ C−1 imD⟩ ⊆
C−1 imD and ζ ∈ B kerD. However note two key things, firstly x is
also in the right subspace of the intersection, so x ∈ C−1 imD, addition-
ally by (iv) η ∈ C−1 imD and so, since subspaces are closed under addition
ζ = (x−η) ⊆ C−1 imD. Remembering how we defined ζ we just showed that
ζ ∈ B kerD∩C−1 imD. Even more remarkable is that this suggests that ζ ∈
⟨A | B kerD∩C−1 imD⟩, and so finally x = η+ζ ∈ ⟨A | B kerD∩C−1 imD⟩.

To show the reverse inclusion. take x ∈ ⟨A | B kerD ∩ C−1 imD⟩, it
is obviously in ⟨A | B kerD ∩ C−1 imD⟩ + B kerD and by (iv) it is also in
C−1 imD so it must also be in their intersection, showing inclusion both
ways and finalizing the proof.

Proposition 2.28. Let Σ(A,B,C,D) be a passive system. Then

CT kerDT ∩ (BT )−1 imDT = 0.

Proof. Let x be in CT kerDT ∩ (BT )−1 imDT . Then x = CTµ = PBµ
for some µ ∈ kerDT (by statement (iii) and (v) of Lemma 2.26) and there
exists a u such that BTx = DTu. Combining the two equations gives us
BTPBµ = DTu. Then, multiplying both sides from the left by µT and using
statement (iii) of Lemma 2.26 yields µTBTPBµ = 0, However, by Lemma
2.13 this would imply that PBµ = 0. Then x which is equal to PBµ must
also necessarily be zero.

As we will soon see in the following section, these two subspaces alone
almost fully explicitly characterise the geometric structure of a passive linear
system.
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3 Geometric Structure of Passive Systems

In the following section, we consider a passive linear system Σ(A,B,C,D)
and compute the weakly unobservable, strongly reachable subspaces as well
as their sum and intersection.

Theorem 3.1 (Strongly reachable subspace of a passive system). The strongly
reachable subspace of a passive linear system is

S∗ = ⟨A | B kerD ∩ C−1 imD)⟩+B kerD.

Proof. The proof relies on showing that the above defined subspace obeys
the extremal properties of a strongly reachable subspace, namely[

A B
] [
(S∗ × Rp) ∩ ker

(
C D

)]
⊆ S∗.

And it is contained in all other subspaces obeying the above property.

First we prove that the above defined subspace indeed obeys this property.
As such take an element s such that

s ∈
[
A B

] [
(S∗ × Rp) ∩ ker

(
C D

)]
.

In other words for some η ∈ S∗ and ζ satisfying Cη +Dζ = 0 our chosen s
takes the form s = Aη + Bζ. We want to show that s ∈ S∗ in order for it
to satisfy the definition.

First note that, since by assumption Cη + Dζ = 0, η ∈ C−1 imD, so
along with our other assumption about η, namely η ∈ S∗, η ∈ S∗∩C−1 imD.
Then by statement (v) of Lemma 2.27 this intersection is equal to ⟨A |
B kerD∩C−1 imD⟩. So η ∈ ⟨A | B kerD∩C−1 imD⟩, but by A-invariance,
Aη ∈ ⟨A | B kerD ∩ C−1 imD⟩ ⊆ S∗.

After showing that Aη ⊆ S∗ all that is now left to show is that Bζ is also
in S∗. To do so, recall that η ∈ ⟨A | B kerD∩C−1 imD⟩. Then by statement
(iii) of Lemma 2.27 η ∈ kerC, so Cη +Dζ = 0 simplifies to Dζ = 0 and as
such ζ must be in kerD, and therefore Bζ ∈ B kerD ⊆ S∗.

Putting both results together then, shows that s = Aη +Bζ ∈ S∗.

To finish the proof, we must also show that the S∗ we defined is the smallest
such subspace obeying this property. As such assume any other subspace S
satisfies [

A B
] [

(S × Rp) ∩ ker
(
C D

)]
⊆ S.
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Note that by this definition

A(S ∩ kerC) ⊆ S.

With this fact in hand, let us show that S∗ ⊆ S. Firstly, any subspace
contains 0, then[

A B
] [
(0× Rp) ∩ ker

(
C D

)]
= B kerD ⊆ S.

Now since B kerD ∩ C−1 imD is contained in B kerD it must also be in
S. The key element to the proof is then noting that by statement (iii) of
Lemma2.27 B kerD∩C−1 imD ⊆ kerC and so by definition of the strongly
reachable subspace, A(B kerD ∩ C−1 imD) ⊆ S. Lastly, by statements
(iii) of Lemma 2.27,(vi) and (vii) of Lemma 2.26 A(B kerD ∩ C−1 imD) ⊆
A kerP ⊆ kerP ⊆ kerC, and so A2(B kerD ∩ C−1 imD) ⊆ S.

Repeating this line of argument ad infinitum, we get that:

Ak(B kerD ∩ C−1 imD) ⊆ S, ∀k ∈ N

⟨A | B kerD ∩ C−1 imD⟩ ⊆ S.

Which when combined with the fact that B kerD ⊆ S shows

⟨A | B kerD ∩ C−1 imD⟩+B kerD = S∗ ⊆ S

for any other S satisfying the strongly reachable subspace inclusion.

Theorem 3.2. The weakly unobservable subspace of a passive linear system
is given by

V∗ = C−1 imD.

Proof. We exploit duality between the strongly reachable and the weakly
unobservable subspace given by the equality of statement 2.20, namely:

V∗(A,B,C,D) = S∗(AT , CT , BT , DT )⊥.

By Lemmas 2.4 and 2.7 (CT kerDT )⊥ = C−1 imD and so the statement
V∗(A,B,C,D) = C−1 imD being true is equivalent to proving

S∗(AT , CT , BT , DT ) = CT kerDT .

As such we now prove that S∗(AT , CT , BT , DT ) = CT kerDT . As with
our previous proof we must demonstrate that CT kerDT satisfies the sub-
space inclusion of a strongly reachable subspace and it is contained in all
other subspaces satisfying this inclusion.
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First we prove that CT kerDT obeys the strongly reachable subspace inclu-
sion, namely:[

AT CT
] [
(CT kerDT × Rp) ∩ ker

(
BT DT

)]
⊆ CT kerDT .

Take the vector pair (η, ζ) ∈ (CT kerDT × Rp) ∩ ker
(
BT DT

)
. By con-

struction η ∈ CT kerDT and BT η + DT ζ = 0. Combining the two grants
η ∈ CT kerDT ∩ (BT )−1 imDT . However by Lemma 2.28 this implies that
η = 0. Then ζ , which by definition satisfies BT η +DT ζ = 0 must actually
satisfy the stricter statement DT ζ = 0 and so ζ is an element of kerDT . As
such

(CT kerDT × Rp) ∩ ker
(
BT DT

)
⊆ 0× kerDT

which after multiplying from the left by the block matrix we indeed get what
we sought, i.e.[

AT CT
] [
(CT kerDT × Rp) ∩ ker

(
BT DT

)]
⊆ CT kerDT .

Now to show that it is the smallest such subspace, consider any other sub-
space S satisfying[

AT CT
] [

(S × Rp) ∩ ker
(
BT DT

)]
⊆ S.

Since 0 ∈ S, [
AT CT

] [
(0× Rp) ∩ ker

(
BT DT

)]
⊆ S.

However, [
AT CT

] [
(0× Rp) ∩ ker

(
BT DT

)]
= CT kerDT .

So indeed CT kerDT ⊆ S for all S satisfying the weakly unobservable sub-
space inclusion.

Having proved that S∗(AT , CT , BT , DT ) = CT kerDT , duality 2.20 then
implies V∗ = (CT kerDT )⊥ = C−1 imD concluding the proof.

Having now both computed V∗ and S∗ we can derive quite an interesting
statement as to their relation with each other.

Lemma 3.3. V∗ = (PS∗)⊥ for all P ∈ P

Proof. By statement (ii) of Lemma 2.27 and (v) of Lemma 2.26, PS∗ =
P ⟨A | B kerD ∩ C−1 imD⟩ + PB kerD = PB kerD = CT kerD. Then
using statement (iii) of Lemma 2.26 and Lemma 2.7 and 2.4 (PS∗)⊥ =
(CT kerD)⊥ = C−1 imD = V∗.
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What is more remarkable is that, upon the assumption that P is non-
singular, one can actually show that V∗ = S∗⊥.

Lemma 3.4. The controllable weakly unobservable subspace of a passive
linear system is given by

R∗ = ⟨A | B kerD ∩ C−1 imD⟩.

Proof. By definition
R∗ := V∗ ∩ S∗

which when plugging in our derived expressions for V∗ and S∗ yields

R∗ = (⟨A | B kerD ∩ C−1 imD⟩+B kerD) ∩ C−1 imD

however, by statement (v) of Lemma 2.27 this implies

R∗ = ⟨A | B kerD ∩ C−1 imD⟩

concluding the proof.

Lemma 3.5. The distributionally weakly unobservable subspace of a passive
linear system is given by

N ∗ = B kerD + C−1 imD.

Proof. Again by definition

N ∗ := V∗ + S∗.

then substituting the derived expressions for V∗ and S∗ produces

N ∗ = ⟨A | B kerD ∩ C−1 imD⟩+B kerD + C−1 imD

But note that by statement (iv) of Lemma 2.27 the subspace ⟨A | B kerD∩
C−1 imD⟩ is already contained in C−1 imD so we can rewrite the sum more
succinctly as

N ∗ = B kerD + C−1 imD.

Lemma 3.6. The distributionally weakly unobservable subspace of a passive
linear system is equal to the state space.

N ∗ = Rn.
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Proof. The above lemma is equivalent to the statement that N ∗⊥ = 0,
which we will now demonstrate. Using Lemma 2.7 we find the orthogonal
complement of our derived expression for N ∗ in Lemma 3.5:

N ∗⊥ = (B kerD + C−1 imD)⊥

= (B kerD)⊥ ∩ (C−1 imD)⊥

= (BT )−1 imDT ∩ CT kerDT .

But by Lemma 2.28 (BT )−1 imDT ∩ CT kerDT = 0 and so N ∗⊥ = 0 and
therefore, after taking the orthogonal complement of both sides, we arrive
at N ∗ = Rn.

It cannot be stated enough how remarkable the results of this section
are. Unlike the reachable and controllable subspaces, no closed form repre-
sentation of S∗,V∗,R∗,N ∗ can be achieved by using only the fundamental
subspaces of (A,B,C,D) for general linear systems. However, the assump-
tion of passivity not only allows us to achieve such representations, we can
also do so by exclusively using B kerD, C−1 imD and A-invariance.

Even more surprisingly, is that N ∗ turns out to be the whole state space
Rn. One important corollary of this, is that surjectivity of the system when
treated as a map from the input space to the output space, turns out to
be equivalent to the surjectivity of the matrix map

(
C D

)
. Additionally,

under the assumption that P is nonsingular, injectivity turns out to be

equivalent to the injectivity of the matrix map

(
B
D

)
.

4 Nine-fold Canonical Decomposition of a Passive
Linear System

4.1 Introduction

The following lists a result obtained by H. Aling and J. M. Schumacher
(see Aling and Shumacher 1984 p. 792), which will be stated without proof.
It is the culmination of the geometric approach to the study of linear systems,
and decomposes the system based on its fundamental subspaces.

Theorem 4.1 (Nine-fold Canonical Decomposition). Given a linear system
Σ(A,B,C,D) there exists a partition of the state space Rn into subspaces
Xi, the space of inputs Rm into subspaces Ui, and the space of outputs Rp

into subspaces Yi such that the following is true.
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1.

Rn =
9⊕

i=1

Xi

Rm = U1 ⊕ U2

Rp = Y1 ⊕ Y2

2.

⟨A | imB⟩ = X3 ⊕X4 ⊕X6 ⊕X7 ⊕X8 ⊕X9

⟨kerC | A⟩ = X1 ⊕X3 ⊕X7

S∗ = X7 ⊕X8 ⊕X9

V∗ = X1 ⊕X2 ⊕X3 ⊕X4 ⊕X7 ⊕X8

B−1V∗ ∩ kerD = U1

CS∗ + imD = Y2

3. The equivalent system obtained after an appropriate change of basis is
given by

[
A B
C D

]
=



A1,1 A1,2 0 0 A1,5 0 0 0 0 0 0
0 A2,2 0 0 A2,5 0 0 0 0 0 0

A3,1 A3,2 A3,3 A3,4 A3,5 A3,6 0 A3,8 A3,9 0 B3,2

0 A4,2 0 A4,4 A4,5 A4,6 0 A4,8 A4,9 0 B4,2

0 0 0 0 A5,5 0 0 0 0 0 0
0 A6,2 0 A6,4 A6,5 A6,6 0 A6,8 A6,9 0 B6,2

A7,1 A7,2 A7,3 A7,4 A7,5 A7,6 A7,7 A7,8 A7,9 B7,1 B7,2

0 A8,2 0 A8,4 A8,5 A8,6 0 A8,8 A8,9 B8,1 B8,2

0 A9,2 0 A9,4 A9,5 A9,6 0 A9,8 A9,9 0 B9,2

0 0 0 0 C1,5 C1,6 0 0 0 0 0
0 C2,2 0 C2,4 C2,5 C2,6 0 C2,8 C2,9 0 D2,2


where Ai,j : Xj → Xi, Bi,j : Uj → Xi, Ci,j : Xj → Yi and Di,j : Uj →
Yi.

4.2 Characterisation of a passive system

Theorem 4.2. A passive system admits to a six-fold canonical decompo-
sition as defined above, with X5,X6,X8 = 0 and X7 = ⟨A | B kerD ∩
C−1 imD⟩. Additionally, U1 = kerCT ∩ kerD and Y2 = imC + imD and
therefore contains the output reachable subspace.
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Proof. We can show X5,X6 = 0 as they are the only two subspaces not
present when considering the sum S∗+V∗. As such (X5⊕X6)∩(S∗+V∗) = 0,
but by Lemma 3.6 S∗ + V∗ = Rn and so (X5 ⊕X6) ∩Rn = 0, implying that
X5 ⊕X6 = 0.

To investigate X7, note that it is the subspace uniquely identified by

X7 = S∗ ∩ V∗ ∩ ⟨kerC | A⟩
= R∗ ∩ ⟨kerC | A⟩.

However note that R∗ ⊆ ⟨kerC | A⟩ by statements (viii) of Lemma 2.26 and
(ii) of Lemma 2.27, so

X7 = R∗ = ⟨A | B kerD ∩ C−1 imD⟩.

With X7 defined we can now show X8 = 0 which follows by first considering
that by construction we have X7⊕X8 = V∗∩S∗ = R∗ = X7, as such X8 ⊆ X7,
but since by definition X7 ∩ X8 = 0, we must necessarily have X8 = 0.

To show U1 = kerCT ∩ kerD consider the definition of U1

U1 := B−1V∗ ∩ kerD.

As such
µ ∈ U1 ⇒ CBµ = Du and µ ⊆ kerD.

Then

µTCBµ = µTDu

µTBTPBµ = 0

PBµ = 0

CTµ = 0

µ ∈ kerCT

and so
U1 ⊆ kerCT ∩ kerD.

The reverse inclusion is evident after considering

µ ∈ kerCT ∩ kerD

26



CTµ = 0 ⇒ PBµ = 0 ⇒ CBµ = 0 ⇒ CBµ = D(0)

Bµ ∈ C−1 imD

Bµ ∈ V∗

µ ∈ B−1V∗.

The proof of Y2 = imC + imD is a bit more involved and first requires to
show that U1 = Y⊥

2 .

Y⊥
2 = (CS∗ + imD)⊥

= (CS)∗⊥ ∩ imD⊥

= (CS)∗⊥ ∩ kerD.

Now to investigate (CS∗)⊥, first note that, since ⟨A | B kerD∩C−1 imD⟩ ⊆
kerC

CS∗ = C(⟨A | B kerD ∩ C−1 imD⟩+B kerD) = CB kerD

and therefore
Y⊥
2 = (CB kerD)⊥ ∩ kerD

Y⊥
2 = (BTCT )−1 imD ∩ kerD.

Now take an µ ∈ Y⊥
2 , by the above BTCTµ = Du and µTD = 0, as such

µTBTCTµ = 0

µTBTPBµ = 0.

Using Lemma 2.13 then gives

PBµ = 0

Bµ ∈ kerP ⊆ kerC ⊆ V∗

µ ∈ B−1V∗

µ ∈ U1.

By arbitrary choice, we conclude that Y⊥
2 ⊆ U1, to show the reverse in-

clusion take an arbitrary µ ∈ U1. By properties of U1, Dµ = 0 and
µ ∈ B−1(C−1 imD) = (CB)−1 imD so we also have that

CBµ = Du,
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additionally for all y ∈ Y2, y = CBµ2 +Du2, as such

µT y = µTCBµ2 + µTDu2

= (CTµ)TBµ2

= (PBµ)TBµ2

= µTBTPBµ2

= µTBTCTµ2

= (CBµ)µ2

= uTDTµ

= 0.

So µ ∈ Y⊥
2 , and therefore U1 ⊆ Y⊥

2 , which when combined with the previous
result demonstrates that indeed U1 = Y⊥

2 .
Then the statement we sought out to prove, namely Y2 = imC + imD

is evident, as
Y2 = U⊥

1

Y2 = (kerCT ∩ kerD)⊥

Y2 = kerCT⊥ + kerD⊥

which by statement (iii) of Lemma 2.26 and Lemma 2.4 yield

Y2 = imC + imD.

4.3 Characterisation of a passive system with positive defi-
nite storage function

In the following section we assume along with passivity, the existence of
a positive definite P satisfying the passivity inequality. It turns out that
such a positive definite matrix existing has multiple consequences.

Firstly, X7 = 0 and as such we can reduce our previously defined sixfold
decomposition to a five-fold decomposition. This follows since, if P is posi-
tive definite, kerP = 0 by Lemma 2.13, and X7 = R∗ ⊆ kerP by statement
(ii) of Lemma 2.27. Additionally, since both X7 and X9 are equal to zero,
then X9 = S∗ which by statement (ii) of Lemma 2.27 gives X9 = B kerD.
What is also interesting is that we can derive an even stricter definition for
U1.
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Lemma 4.3. U1 = kerB ∩ kerD.

Proof. Using statement (v) of Lemma 2.26

µ ∈ kerCT ∩ kerD ⇐⇒ CTµ = 0

⇐⇒ PBµ = 0

⇐⇒ Bµ = 0 since kerP = 0

⇐⇒ µ ∈ kerB ∩ kerD.

The above effectively means that any u(t) ∈ U1 does not affect the
behavior of the system, which along with the fact that the output reachable
subspace is fully contained in Y2, allows for the reduction of the input and
output space by discarding U1 and Y1, without loss of behavior.

Remark 4.4. A passive system with positive definite storage function ad-
mits to a 5 fold canonical decomposition as defined above, with X5,X6,X7,X8 =
0 and Y1 and U1 not playing a role in the dynamics of the system. In ap-
propriate coordinates, we can write the block matrix as:

[
A B
C D

]
=



A1,1 A1,2 0 0 0 0
0 A2,2 0 0 0 0

A3,1 A3,2 A3,3 A3,4 A3,9 B3,2

0 A4,2 0 A4,4 A4,9 B4,2

0 A9,2 0 A9,4 A9,9 B9,2

0 C2,2 0 C2,4 C2,9 D2,2


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