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Abstract  

Cancer is a leading cause of death worldwide, necessitating novel therapies and effective patient 

stratification. Copy Number Alterations (CNAs), characterized by chromosomal imbalances 

and genomic instability, are a hallmark of cancer. They contribute to tumorigenesis, treatment 

resistance, and poor prognosis, and together with immune evasion, CNAs shape the "cancer-

immune set point," crucial for effective immunotherapy. Recent studies reveal CNAs impact 

the immune system, influencing immune evasion and therapy responses. However, the specific 

effects of CNAs on the cancer-immune set point remain unclear. This research project aimed 

to uncover new insights into the relationship between CNAs and immune transcriptional 

profiles using spatial transcriptomics data across various cancer types. We applied 

bioinformatics techniques using transcriptional components (TCs) derived from consensus 

independent component analysis (c-ICA) of 10,817 bulk transcriptomic profiles. Gene set 

enrichment analysis identified 235 TCs associated with immunological processes (immune-

TCs), while Transcriptional Adaptation to CNA (TACNA) profiling identified 476 TCs 

capturing the transcriptional effects of CNAs (CNA-TCs). We used in-house tools for 

Projection and Colocalization analyses to obtain activity scores and correlation values for these 

TCs, evaluating the association between transcriptional processes affected by CNAs and 

immune processes. We identified the top 12 positively and inversely colocalized TCs in spatial 

transcriptomics samples and conducted literature search on the genomic regions where CNAs 

are present and the top genes. Most results aligned with existing literature, with some genes 

identified as cancer drivers and biomarkers in specific cancers, while others require further 

exploration. This project provides a comprehensive landscape of the association between CNAs 

and immune transcriptional footprints across various cancers using spatial transcriptomics. This 

approach could offer new insights into anti-cancer immune responses and guide the 

development of targeted cancer therapies. 

 

Keywords: spatial transcriptomics, CNAs, immune evasion, cancer-immune set point, c-

ICA, GSEA, TACNA profiling.   
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Abbreviations:  
APCs Antigen - presenting cells 

cfDNA Circulating cell-free DNA 

c-ICA Consensus independent component analysis 

CIN Chromosomal instability 

CNAs Copy number alterations 

CNA-TCs TCs capturing CNA-related processes 

CRC Colorectal cancer 

CTLA-4 Cytotoxic T lymphocyte - associated protein 4 

EDA Exploratory data analysis 

ESCC Esophageal squamous cell carcinoma 

GOBP Gene ontology – biological processes 

GSEA Gene set enrichment analysis  

H&E Hematoxylin & eosin staining 

HCC Hepatocellular carcinoma 

HLA Human leukocyte antigen 

HLA-DPA1 Major histocompatibility complex, class II, DP alpha 1 

HLA-DRB5 Major histocompatibility complex, class II, DR beta 5 

IFNs Interferons 

IL Interleukin 

Immune-TCs TCs capturing immune-related processes 

LOH Loss of heterozygosity 

MHC Major histocompatibility complex 

MM Mixing matrix 

MSigDB Molecular signatures database  

mtROS Mitochondrial reactive oxygen species 

NK Natural killer cells 

NSCLC Non-small cell lung cancer 

PC1 First principal component 

PCA Principal component analysis 

PD-1 Programmed cell death protein 1 

PI3K 1-phosphatidylinositol 3-kinase 

PLEKHG7 Pleckstrin homology and RhoGEF domain containing G7 

RSEM RNA-seq with expectation maximization 

SCNAs Somatic copy number alterations 

TACNA Transcriptional Adaptation to CNA profiling 

TC Transcriptional component 

TCGA The cancer genome atlas 

TLR Toll-like receptors. 

TMB Tumor mutational burden 

TME Tumor microenvironment  

TNBC Triple-negative breast cancer 

TNF Tumor-necrosis factor  

Top colocalized 

TCs 

CNA- and/or immune-TCs exhibiting the highest/lowest correlation 

values from the colocalization analysis, including both the most 

positively and inversely colocalized TCs. 

TP53 Tumor protein P53  

Tregs Regulatory T cells 
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1. Introduction 

Cancer is a leading cause of death worldwide and novel treatments need to be developed.  

Traditional approaches such as radiation, chemotherapy, surgery and immunotherapy used in 

treatment schemes to reduce or completely eradicate cancer cell proliferation, have undoubtedly 

improved survival rates among cancer patients [1]. However, many still face recurrence and 

struggle to survive in long term, partially due to the inherent evolutionary nature of cancer, 

which allows it to develop resistance to chemotherapy [1] [2]. Thus, understanding the 

underlying molecular mechanisms is crucial for developing innovative therapeutics. In this 

research project, we delve into two critical cancer hallmarks which drive cancer progression: 

genomic instability and immune evasion. 

 

1.1 Copy Number Alterations (CNAs): drivers of cancer progression  

Genomic instability, a hallmark of cancer, drives random mutations, encompassing 

chromosomal rearrangements, facilitating cancer cell survival, growth and metastasis (Fig. 1) 

[3]. This instability, often characterized by chromosomal instability (CIN), is marked by 

frequent chromosomal missegregation during mitosis and significantly contributes to 

chromosomal alterations in cancer [2]. Aneuploidy, involving changes in the copy number of 

chromosomal segments, is prevalent in human tumors and is considered a primary cause of 

tumorigenesis [4]. It includes both broad somatic copy number alterations (CNAs) across large 

chromosomal regions and smaller focal CNAs [5], which are pervasive across all human 

malignancies, in approximately 50% of hematological tumors and 90% of solid cancers [6].  

CNAs formation has been suggested to occur via processes connected to somatic alterations in 

DNA structure [7], such as replication stress causing double-strand breaks to accumulate in 

common genomic regions, thereby enhancing the occurrence of amplifications and deletions 

[8]. Accumulation of CNAs occurs in the majority of cancer types throughout disease 

progression [9] [10], with recurrent patterns linked to tumor prognosis and progression [11]. In 

translational research, analyzing CNA patterns across various cancer types is crucial for 

developing novel therapeutic strategies [12]. Large-scale studies have revealed recurrent CNA 

profiles spanning various cancer types [12], and utilizing CNAs in circulating cell-free DNA 

(cfDNA) as biomarkers has shown promise in classifying cancer types and their tissue origins 

[13] [14] [15]. 

Moreover, CNAs have been directly linked to the expression of driver genes [16] [17], where 

homozygous or heterozygous deletions can decrease tumor suppressor genes (e.g. CDKN2A/B, 

TP53, ATM loci) and copy number amplifications can boost the expression of oncogenes (e.g. 

MYC, MYCN, REL loci) [12] [18]. Recent research highlights the importance of chromosomal 

CNAs as a significant source of treatment resistance and poor prognosis for cancer patients [2]. 

For instance, the ovarian cancer cell line HeLa, when exposed to varying doses of methotrexate, 

developed resistance and recurrently gained extra copies of chromosome 5, which contains the 

DHFR gene targeted by methotrexate [19]. Despite significant advancements, the relationship 

between chromosomal abnormalities and tumor development remains incompletely understood 
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[6]. The effect of aneuploidy and CNAs varies greatly depending on the context [6] and factors 

such as tumor stage, cell type, genetic make- up, tumor microenvironment (TME) and immune 

system interactions [20]. While generally considered detrimental, under specific circumstances, 

these alterations can provide a fitness advantage, driving tumorigenesis [20].  

 

Figure 1: The hallmarks of cancer. The current definition of the hallmarks of cancer comprises eight 

hallmark capabilities and two enabling characteristics [21]. The two provisional emerging hallmarks 

introduced in 2011 [3], “reprogramming cellular metabolism” and “avoiding immune destruction”, have 

been validated enough to be integrated into the fundamental set, alongside the original six acquired 

capabilities that were proposed in 2000 [22]. (Picture obtained from Hanahan [21]) 

 

1.2  Immune evasion in cancer  

The immune system plays a crucial role in cancer immune destruction by preventing or 

eliminating the development and spread of early neoplasias, micrometastases, and advanced 

tumors [3]. This surveillance process is encapsulated in the cancer immunity cycle [23]. 

Immune evasion, a hallmark of cancer, involves the selection of tumor variants that develop 

resistance to immunological attacks, mainly by T cells and natural killer (NK) cells [24] [25]. 

Investigating the mechanisms through which the tumor somatic copy number alteration 

(SCNA) levels affect the immune evasion is crucial, as this could enhance the effectiveness of 

immune checkpoint blockade [26]. Immune evasion can be achieved by neoantigen editing, 

antigen presentation abnormalities, tumor infiltration suppression, and/or immune cell 

cytotoxicity [26]. Within the tumor site, tumor cells produce neoantigens, often resulting from 

non-synonymous somatic mutations [27]. These neoantigens are presented on the cell surface 

via the major histocompatibility complex (MHC) molecules to initiate the cancer immune cycle 

[27]. Antigen-presenting cells (APCs), like dendritic cells, harbor antigens in the body and 

present their fragments via MHC I or MHC II [23]. Upon capturing a cancer neoantigen and 

receiving signals from proinflammatory cytokines or cellular debris, APCs migrate to lymph 

nodes, where they stimulate the growth and maturation of naive T cells into cytotoxic effector 

T cells by receiving cues from proinflammatory cytokines or cell debris [23]. Subsequently, 

these activated effector T cells travel to the tumor location, where they identify cancer cell 

peptide-MHC I complexes via docking with their T cell receptors, leading to the eradication of 
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the tumor cells [23]. Cancer cells elimination further enhances the cancer immunity cycle by 

releasing more cancer neoantigens and immunogenic signals [23].  

Nevertheless, disruptions to this cycle may occur if vital immune components are lacking or 

impaired in the microenvironment [23]. The genetic loss of the interferon (IFN) gene cluster 

and the epigenetic suppression of inflammatory mediators are direct mechanisms that impact 

the immune response within the TME [27]. Moreover, oncogenic changes, including RAS 

protein activation, can directly stimulate inflammation within the tumor, angiogenesis, and 

immune suppression [28]. Cancer cells may also evade immune surveillance by reducing tumor 

antigen presentation or completely destroying the antigen presentation system [27]. Strategies 

aimed at blocking inhibitory molecules that control immunological responses, forming the basis 

of immune checkpoint blockade treatments, are crucial for overcoming immune evasion [29]. 

 

1.3 The association between the immune-profile and CNAs in cancer  

The immune profile of an individual is influenced by a multitude of extrinsic factors, like  

sunlight exposure, infections, the microbiome, medications, as well as intrinsic characteristics 

such as tumor genetic make-up, cytokine secretion, germline genetics, age or negative 

regulators (e.g. PD-L1/PD-1 axis) (Fig. 2) [30]. These factors establish the "cancer-immune set 

point," which is the balance between variables that either stimulate or inhibit anticancer 

immunity, denoting the threshold that must be crossed for immunotherapy to be effective for 

cancer patients [30].  

An inflammatory microenvironment in tumors reflects changes in several cellular and external 

variables (Fig. 2b) [30]. The cellular composition of the tumor, such as immune cells in the 

parenchyma or at the invasive edge, can indicate the extent of inflammation [24] [31]. 

Additionally, proinflammatory cytokines such as type I and type II IFNs, interleukin (IL)-12, 

IL-23, IL-1β, tumor-necrosis factor (TNF)-α, and IL-2 are present in inflamed tumors and create 

a more favorable environment for T-cell activation and growth [30]. Nevertheless, it needs to 

be clarified if these cytokines cause or result from cellular influx [30]. On the other hand, non-

inflamed tumors typically express cytokines linked to immune suppression or tolerance and 

may involve cells linked to immune suppression or tissue homeostasis, such as regulatory T 

cells (Tregs), myeloid-derived suppressor cells, and tumor-associated macrophages (M2 

macrophages) [30]. A range of cytokines, chemokines, and tumor-associated cell types dictate 

the level of inflammation needed for an effective antitumor immune response post-

immunotherapy [30]. Figure 2b illustrates a bell curve representing the population distribution 

of patients, where minor variations in these variables may shift the balance between tolerance 

and immunity, determining whether a patient or a specific tumor responds to immunotherapy 

[30].  

Recent studies have investigated the relationship between CNAs and the immune system across 

various cancer types, revealing significant insights into how these genetic changes influence 

immune evasion and therapy responses. It has been demonstrated that broad and focal CNA 

loads exhibit varying associations with gene expression markers linked to immune evasion, cell 

proliferation, and other cancer hallmarks  [26] [32], implicating CNAs in the carcinogenic 
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process through distinct pathways [5]. High levels of broad CNAs are strongly correlated with 

immune evasion markers in various cancer types and with a decreased immunotherapy response 

(e.g. in non-small cell lung cancer (NSCLC) and melanoma [26] [32] [33]). Conversely, 

elevated levels of focal events are associated with proliferation markers [26] and often have 

greater prognostic value in contrast with broad CNAs [34]. Therefore, gene dosage imbalance 

controlling specific gene changes may rule the interplay between the cancer genome and the 

immune system [5]. Furthermore, the strength and direction of the correlation between CNAs 

and tumor immunity may vary across different cancer types [33] [35] [36] [37], highlighting 

the necessity of examining the effects of CNAs in the context of each cancer tissue [5]. 

Davoli et al. [26] found that high SCNA levels are associated with immune evasion 

mechanisms, including decreased expression of cytotoxic immune cell markers and reduced 

leukocyte infiltration, leading to poorer outcomes in anti-CTLA-4 therapy for melanoma 

patients. Similarly, Thorsson et al. [32] identified six immune subtypes across 33 cancer types, 

linked to specific driver mutations and chromosomal alterations affecting immune cell 

infiltration, emphasizing the role of CNAs in shaping the tumor-immune microenvironment. In 

high-grade serous ovarian cancer, Jiménez-Sánchez et al. [36] demonstrated that immune cell 

exclusion is correlated with the Myc amplification and upregulated Wnt signaling, indicating a 

connection between CNAs and immune suppression. Additionally, Braun et al. [37] showed 

that in advanced clear cell renal cell carcinoma, chromosomal alterations, like the loss of 

9p21.3, correlate with resistance to  programmed cell death protein 1 (PD-1) blockade, further 

illustrating the impact of CNAs on the efficacy of immunotherapy. Bassaganyas et al. [5] 

focused on hepatocellular carcinoma (HCC) and showed that tumors with high broad CNA 

burdens exhibit immune exclusion traits and genetic dysfunctions, such as tumor protein P53 

(TP53) mutations and DNA repair issues, while those with low CNA burdens present an 

immune-active profile with high inflammation and cytolytic activity. This study suggests that 

CNA scores could be predictive markers for immunotherapy response in HCC. Additionally, 

Budczies et al. [35] revealed that high CNA load is associated with low immune cell infiltrates 

across several cancer types, such as pancreatic adenocarcinoma, bladder urothelial carcinoma, 

stomach adenocarcinoma, esophageal carcinoma, breast invasive carcinoma, prostate 

adenocarcinoma, and papillary thyroid carcinoma. This negative correlation suggests that 

tumors with high CNA load tend to have a less active immune environment, which may impact 

the effectiveness of immunotherapies. Furthermore, a recent pan-cancer study by Bhattacharya 

et al. [38] introduced a novel computational method called Transcriptional Adaptation to CNA 

(TACNA) profiling. Through the analysis of over 34,000 gene expression profiles from cancer 

samples, they revealed how transcriptional adaptation to CNAs is linked to specific biological 

processes, and identified four genes that may play a role in tumor immune evasion when their 

expression is influenced by CNAs. Overall, these findings underscore the critical role of CNAs 

in shaping the cancer-immune microenvironment, often reducing immune cell activity and 

infiltration, contributing to immune evasion and therapy resistance. 

Even though these studies highlight the significance of CNA burden in immunotherapy 

response, the specific effects of particular CNAs on the anti-cancer immune response remain 

unclear. Moreover, none of the abovementioned studies, nor any other published research, has 

employed spatial transcriptomics tools across multiple cancer types in combination with 



 

8 

 

consensus Independent Component Analysis (c-ICA) methodology, as explained in detail in 

the Materials & Methods section, to investigate this field. Current studies that conduct 

transcriptional analyses often face the challenge of mixed biological signals, where the more 

dominant signals tend to overshadow others, potentially obscuring critical subtle biological 

processes. This challenge could be addressed using c-ICA to desegregate these signals. 

A recent, unpublished study of our research group explored the influence of CNAs on the 

cancer-immune set point in a pan-cancer setting, utilizing a novel spatial transcriptomics 

analysis, which included c-ICA on over 290,000 transcriptomic profiles. This analysis 

identified transcriptional patterns in the transcriptional components (TCs), associated with 

CNA burden and immune processes, which were further linked to specific biological pathways. 

The TCs explaining 90% variance in datasets were used in c-ICA. The study revealed a 

significant association between immune-TCs and high CNA burden across various cancer types 

was demonstrated, where immune-TCs were significantly inversely or positively associated 

with high CNA burden in more than 5 types of cancer. Of note, the majority (66%) of the 

immune-TCs exhibited an inverse correlation with high CNA burden.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Factors of the cancer-immune set point. (A) Representation of cancer immunity and its 

variables influencing the cancer-immune set point, with each factor according to its primary action in 

the cancer-immunity cycle, indicated by rings [30]. (B) Multiple factors influence the balance between 

tolerance and immunity. Anticancer immunity is influenced by various factors that can result in the 

development of activated T-cell immunity or tolerance [30]. Factors such as genetics, age, microbiota, 

infections, sunlight exposure, and immune- suppressive medications, affecting the expression of 

cytokines and cell types that establish the cancer-immune set point [30]. The bell curve illustrates 

population differences in these factors, which affect whether a tumor will exhibit an inflamed or non-

inflamed phenotype, establishing the cancer-immune set point [30]. Most people likely have a small 

imbalance between tolerogenic and immunogenic factors, indicating that random factors may influence 

whether a given patient, or tumor, responds to immunotherapy [30]. n: number of people (Pictures 

obtained from Chen & Mellman [30]) 

A B 
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1.4 Research project aim 

The aim of this research project was to uncover new insights into the relationship between the 

CNAs and the immune transcriptional profiles using spatial transcriptomics data across various 

cancer types. By employing a pan-cancer approach we aimed to comprehensively understand 

how CNAs influence the cancer-immune set point across a large number of different cancer 

samples, by investigating transcriptional patterns associated with CNAs and immune processes. 

To achieve this, we employed spatial transcriptomics tools together with the TACNA 

methodology, which is described in the Materials & Methods section. The main objective of 

this study was to assess the colocalization of the CNA-TCs and immune-TCs on the spatial 

transcriptomics data. To achieve this, the workflow presented in Figure 3 was followed.  

First, bulk transcriptomic profiles derived from tumor biopsies from the public repository The 

Cancer Genome Atlas (TCGA) (10,817 profiles) were collected. To decompose the bulk 

transcriptome profiles into statistically independent TCs, c-ICA was applied, explaining 100% 

of the variance. This was previously conducted within the framework of a project in our 

research group. Following, Gene Set Enrichment Analysis (GSEA) was performed on the TCs 

to identify enriched biological pathways. Subsequently, Exploratory Data Analysis (EDA) on 

the spatial transcriptomics data was required, to obtain summary statistics and evaluate the data 

quality and distribution. Next, we identified the CNA-TCs and immune-TCs, which represented 

TCs reflecting the transcriptional effect of CNAs and immune-related processes respectively. 

For the Colocalization analysis of the identified TCs on the spatial transcriptomics cancer 

samples, the Projection method was required first to obtain the activity scores of the TCs. 

Finally, to address the main objective of this project, literature search of intriguing patterns in 

biological pathways was conducted, based on the findings from the Colocalization analysis. 
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Figure 3: Workflow of the research project. (A) Bulk transcriptomics profiles, (B) consensus 

Independent Component Analysis (c-ICA), (C) Gene Set Enrichment Analysis (GSEA) on TCGA 100% 

explained variance TCs, (D) Exploratory Data Analysis (EDA) on the spatial transcriptomics samples, 

(E) Identification of CNA-TCs and immune-TCs. (F) Projection of CNA-TCs and immune-TCs on 

spatial transcriptomics samples, (G) Colocalization of the identified TCs on spatial transcriptomics 

samples and analysis of intriguing patterns in biological pathways. (Pictures for c-ICA and GSEA 

representations were obtained from [39] and [40] respectively.) 

  



 

11 

 

2. Materials and Methods  

2.1 Data acquisition 

Pre-processed and standardized level 3 RNA-Seq (version 2) data for 21 cancer samples from 

The Cancer Genome Atlas (TCGA) were collected through the Broad GDAC Firehose portal 

[41]. The TCGA data consisted of 10,817 profiles transcriptional profiles generated with RNA-

Seq analysis, containing 20,392 genes [41]. For each sample, RNA-Seq with Expectation 

Maximization (RSEM) gene normalized data (identifier: illuminahiseq_rnaseqv2-

RSEM_genes_normalized) were retrieved [42]. Additionally, RNA-Seq expression level read 

counts underwent further normalization in order to guarantee a constant normalization, using 

FPKMUQ (Fragments per Kilo-base of transcript per Million mapped reads upper quartile 

normalization). The most recent gene annotations, including HGNC, NCBI ID, and Ensembl 

ID, were retrieved by accessing the relevant data from the HUGO Gene Nomenclature 

Committee [43] in October 19, 2020. This step aimed to ensure that the gene annotations used 

in the analysis were comprehensive and up-to-date. Absent NCBI IDs and Ensembl IDs were 

supplemented with the latest non-curated data derived from external databases. 

Spatial transcriptomics data were obtained from publicly available samples in the 10x 

Genomics Visium repository. The datasets comprised spatial transcriptomic profiles of cancer 

samples in h5 format, accompanied by stained images, scale factors, and tissue positions, where 

spots devoid of tissue filtered out. The selection of these samples was based on their availability 

within the platform at the time of study. Individual identifiers for all samples used in this 

research project are provided in Table 1. Prior to analysis, we performed quality control of the 

data. Genes that showed no expression in any spot within a spatial transcriptomic image were 

excluded. Additionally, we employed the SpatialFeaturePlot function on the raw data to 

visualize the total expression of all genes across the spots within each spatial transcriptomics 

sample. This allowed for a comprehensive examination of gene expression patterns across the 

entire image. Next, the "LogNormalize" function in Seurat v5.0.3 [44] was used to normalize 

the raw counts of every spot in the image, in order to account for variance in sequencing depth 

across data points. Through the normalization method the raw counts of each spot were divided 

by the total counts for that spot, multiplying the result by a scaling factor of 10,000, and then 

transformed using the log(x+1) function. To mitigate platform-specific effects, Principal 

Component Analysis (PCA) was performed on the correlation matrix of the log-normalized 

data of preprocessed transcriptomic profiles. The dominant features and patterns captured by 

the first principal component (PC1), constituting the maximum variance direction in the data -

approximately 85% of the total variance- reflects platform-specific variability and exhibits 

consistent loadings across all samples. By excluding this component, we generated 

transcriptomic profiles devoid of platform-specific artifacts. 

Table 1: Spatial transcriptomics datasets analyzed in this research project. 

Sample Cancer type Additional information Reference link in 10x Genomics 

GB1 Brain cancer, glioblastoma   https://www.10xgenomics.com/datasets/human-

brain-cancer-11-mm-capture-area-ffpe-2-standard 
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GB2 Brain cancer, glioblastoma   https://www.10xgenomics.com/datasets/human-

glioblastoma-whole-transcriptome-analysis-1-

standard-1-2-0 

LC1 Lung cancer, neuroendocrine 

carcinoma 

Stage (AJCC): IB, TNM system: 

T2aN0MX 

https://www.10xgenomics.com/datasets/human-

lung-cancer-11-mm-capture-area-ffpe-2-standard 

LC2 Lung cancer, squamous cell 

carcinoma 

 https://www.10xgenomics.com/datasets/human-

lung-cancer-ffpe-2-standard 

CRC1 Colorectal cancer, 

adenocarcinoma 

Stage (AJCC): II-A, TNM 

system: T3 

https://www.10xgenomics.com/datasets/human-

colorectal-cancer-11-mm-capture-area-ffpe-2-

standard 

CRC2 Large intestine colorectal 

cancer 

 https://www.10xgenomics.com/datasets/human-

intestine-cancer-1-standard 

CRC3 Invasive adenocarcinoma of 

the large intestine 

 https://www.10xgenomics.com/datasets/human-

colorectal-cancer-whole-transcriptome-analysis-1-

standard-1-2-0 

OC1 Ovarian serous carcinoma High grade https://www.10xgenomics.com/datasets/human-

ovarian-cancer-11-mm-capture-area-ffpe-2-

standard 

OC2 Ovarian cancer, serous 

papillary carcinoma 

 https://www.10xgenomics.com/datasets/human-

ovarian-cancer-1-standard 

OC3 Endometrial adenocarcinoma 

of the ovary 

 https://www.10xgenomics.com/datasets/human-

ovarian-cancer-targeted-immunology-panel-stains-

dapi-anti-pan-ck-anti-cd-45-1-standard-1-2-0 

M1 Skin cancer, malignant 

melanoma 

 https://www.10xgenomics.com/datasets/human-

melanoma-if-stained-ffpe-2-standard 

PC1 Prostate cancer Block 1E333_Tp11 Section 1, 

Stage II, Total Gleason score: 7, 

Sex: Male 

https://www.10xgenomics.com/datasets/human-

prostate-cancer-adjacent-normal-section-with-if-

staining-ffpe-1-standard 

PC2 Prostate cancer Block 1D1061_Tp11 Section 1, 

Stage IV, Total Gleason score: 7, 

Sex: Male 

https://www.10xgenomics.com/datasets/human-

prostate-cancer-acinar-cell-carcinoma-ffpe-1-

standard 

PC3 Prostate cancer Block 1E500_Tp12 Section 1, 

Stage III, Total Gleason score: 7, 

Sex: Male 

https://www.10xgenomics.com/datasets/human-

prostate-cancer-adenocarcinoma-with-invasive-

carcinoma-ffpe-1-standard-1-3-0 

BC1 Breast cancer Block 738811QB Section 1. 

Grade II, Ethnicity: Asian, Age: 

73 

https://www.10xgenomics.com/datasets/human-

breast-cancer-ductal-carcinoma-in-situ-invasive-

carcinoma-ffpe-1-standard-1-3-0 

BC2 Breast cancer Stage AJCC/UICC - T2N0M0, 

ER positive, PR negative, Hercep 

Test 2+, Block ID: 1168993F, 

Tumor grade III, Age: 60s 

https://www.10xgenomics.com/datasets/human-

breast-cancer-visium-fresh-frozen-whole-

transcriptome-1-standard 

BC3 Breast cancer, invasive ductal 

carcinoma  

Stage AJCC/UICC, Group IIA, 

ER positive, PR negative, Her2 

positive and annotated with: 

ductal carcinoma in situ, lobular 

carcinoma in situ, invasive 

carcinoma 

https://www.10xgenomics.com/datasets/human-

breast-cancer-block-a-section-1-1-standard-1-1-0 

BC4 Breast cancer Section 2 of BC3 https://www.10xgenomics.com/datasets/human-

breast-cancer-block-a-section-2-1-standard-1-1-0 

BC5 Breast cancer, invasive lobular 

carcinoma  

Stage AJCC/UICC, Group I, ER 

positive, PR positive, HER2 

negative. 

https://www.10xgenomics.com/datasets/human-

breast-cancer-whole-transcriptome-analysis-1-

standard-1-2-0 

CC1 Invasive cervical cancer, 

squamous cell carcinoma  

T1bN0M0 IB, Block 

C00084155.1a 

https://www.10xgenomics.com/datasets/human-

cervical-cancer-1-standard 

IDC1 Infiltrating ductal carcinoma 

of the breast 

Tumor grade - III, AJCC/UICC 

Stage - T2N0M0, AJCC/UICC 

Stage group - IIA, ER - Positive, 

PR - Negative, Hercep test - 2+, 

Menopausal age at excision: 50+ 

https://www.10xgenomics.com/datasets/invasive-

ductal-carcinoma-stained-with-fluorescent-cd-3-

antibody-1-standard-1-2-0 
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2.2 Exploratory Data Analysis (EDA) on the spatial transcriptomics samples 

After the quality control on the spatial transcriptomics samples, the read-counts were examined 

to identify of missing values, and summary statistics, including Mean, Median, Min, Max, 1st 

quartile, and 3rd quartile, were computed for each gene and spot across all spatial 

transcriptomics samples. This was done to assess data quality, identify disparities, ensure 

quality control, detect outliers, and understand the overall data distribution. 

 

2.3 Consensus Independent Component Analysis (c-ICA) 

To separate the bulk transcriptome profiles into statistically independent TCs, the statistical 

technique c-ICA was performed in a prior study conducted by our research group, according to 

a previously outlined methodology [38]. The bulk transcriptional profiles contained 

measurements for p genes (mixed multivariate signals) and the resulting TCs (constituent 

source signals) exhibit non-Gaussian distributions. Briefly, i TCs of dimension 1×p are 

extracted when c-ICA is applied to a gene expression dataset consisting of p genes and n 

samples. These TCs capture distinct transcriptional patterns that correspond to underlying 

characteristics, such as biological processes, and each TC comprises p scalars which denote the 

direction and magnitude of the underlying biological process’s effect on gene expression levels. 

The c-ICA method comprised the following steps: (a) whitening the bulk transcriptional 

profiles, (b) ICA on the whitened transcriptional profiles, (c) consensus approach, and (d) 

normalizing the consensus mixing matrix. 

(a) Whitening the bulk transcriptional profiles 

Prior to performing ICA, it was necessary to whiten the bulk transcriptional profiles. Therefore, 

matrix X (which contained measurements for p genes in columns and bulk transcriptional 

profiles in rows) was converted into a new matrix Xwhitened. This transformation enhanced the 

statistical features of the whitened transcriptional profiles (unit variance, zero covariance, 

orthogonality). The pre-processing step of whitening is essential to improve the effectiveness 

of ICA, reduce dimensionality, and minimize noise.  

(b) Applying ICA on the whitened transcriptional profiles  

FastICA is a fixed-point and iterative algorithm used in ICA, explained by Hyvarinen (1999)  

[45]. Briefly, it starts with a random initialization and converges to a fixed point where the 

output of the algorithm becomes stable and does not change notably through more iterations, 

and finds a solution. Each iteration comprises two steps aimed at maintaining the statistical 

independence of the estimated source transcriptional patterns: first, the unmixing matrix is 

calculated using a selected non-linear contrast function and followed by orthogonalization. The 

iterative procedure continues until a predefined convergence criterion, denoted by a threshold 

value (Epsilon), is met, which is indicated as a shift in the unmixing matrix between iterations. 

This criterion guarantees that the algorithm will stop when the unmixing matrix W stabilizes 

and source transcriptional patterns achieve a sufficient degree of statistical independence. 
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Consequently, the bulk transcriptional profiles have been decomposed by the FastICA 

algorithm into their statistically independent source TCs upon convergence.  

(c) Consensus approach  

The optimization method that fastICA utilizes may converge to local optima, especially in high-

dimensional or noisy data spaces, resulting in suboptimal solutions. With various random 

initializations of the unmixing matrix W, these local solutions could change, producing distinct 

sets of TCs Srun for every algorithm run. To address this issue, a consensus approach is 

employed, which gathers data from several fastICA algorithm runs -each with a unique random 

initialized unmixing matrix W- and determines which TCs were recovered from the various 

runs. With this method, TCs that are potentially noise artifacts specific to a certain run or arising 

from convergence to suboptimal local solutions are filtered away. By prioritizing the stable and 

robust TCs that consistently emerge across multiple runs, the consensus approach enhances 

reliability and robustness. The resulting consensus mixing matrix, MMconsensus, captures the 

weights that indicate the activity of each c-TC (consensus transcriptional component, Sconsensus) 

in a bulk transcriptional profile. The MMconsensus is derived by multiplying the bulk 

transcriptional profiles (matrix X) by the pseudo-inverse of the c-TCs (Sconsensus), 

mathematically represented as MMconsensus = X(Sconsensus)-1. 

(d) Normalizing the consensus mixing matrix 

In the analysis of bulk transcriptional profiles, there is significant variability in gene expression 

levels. This is frequently due to technical factors like platform inconsistencies or batch effects, 

rather than biological differences.  Moreover, the number of genes with high weights within 

each c-TC may vary, may inducing bias in the calculated MMconsensus, which could impede direct 

comparisons. To overcome this, a normalization methodology for the MMconsensus was applied.  

 

2.4 Gene Set Enrichment Analysis (GSEA) 

To evaluate the effectiveness of the TCs in capturing biological characteristics, gene set 

enrichment analysis (GSEA) was conducted by employing the in-house tool, AnalyzerTool6. 

The enrichment analysis was performed on the TCs using 3 gene set databases from Molecular 

Signatures Database (MSigDB) (MSigDB 2023.2.Hs version) [46]. The data collections used 

were: Gene Ontology - Biological Processes (GOBP), Reactome, and Positional. Gene sets with 

less than 10 genes or exceeding 500 genes were omitted from the analysis. The selected 

threshold was >= 3.0. GSEA was performed using the 2x2 Fisher's Exact Test, which was 

applied after dividing the genes into two groups based on gene set membership (member of the 

gene set vs non-member) and the scalar value in the TC (absolute value of scalar >= 3 vs < 3). 

Fisher's exact p-values were Z-transformed to facilitate comparison of gene sets with different 

sizes. 
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2.5 Identification of CNA-TCs & Immune-TCs  

To identify TCs capturing immune-related characteristics, we utilized the GOBP and Reactome 

databases in MSigDB. Initially, z-scores in the datasets that were generated from GSEA were 

transformed into p-values, followed by Bonferroni correction to perform multiple testing. Next, 

significance threshold of alpha=0.05 was applied to identify a subset of TCs exhibiting bio-

enriched gene sets. Subsequently, we narrowed them down by selecting TCs associated with 

immune-related pathways. To achieve this, we utilized gene sets derived from a previous study 

conducted within our group, where gene sets of immune-related biological pathways were 

defined by filtering all nodes in the GOBP which contained terms related to the immune system 

process (GO:0002376) as well as the REACTOME immune system pathway (R-HSA-168256). 

Through this approach, we ensured that only TCs specifically related to immune processes were 

included for further analysis. Finally, immune-enriched TCs were prioritized by rank and 

filtered to retain TCs with a rank of 1, indicating the highest enrichment of immune-related 

gene sets. TCs meeting these criteria were designated as immune-TCs, representing TCs 

strongly linked with immune processes. 

Likewise, to identify TCs associated with CNA processes, we utilized the Positional database 

following the same methodology outlined earlier. However, unlike the immune-related 

analysis, a specific gene set for subsetting was unavailable. Consequently, all TCs containing 

gene sets with p-values below the cutoff of 0.05 were selected for further analysis, representing 

TCs enriched for biological pathways. Next, TCs with statistically significant altered cytobands 

(CNAs) were retained. However, this approach resulted in excluding TCs that might capture 

CNA-related processes, as even one cytoband may contain CNAs in multiple genes. Therefore, 

we utilized the Transcriptional Adaptation to CNA profiling (TACNA profiling) technique [38] 

to identify the TCs that capture CNA-related pathways, which we termed CNA-TCs. Developed 

by Bhattacharya et al. [38], the TACNA method is a computational tool capable of assessing 

the influence of CNAs on gene expression patterns from gene expression profiles 

independently, without requiring paired CNA profiles. Thus, employing this approach, we 

identified CNA-TCs by selecting those containing more than 10 genes with CNAs.  

 

2.6 Projection of CNA-TCs & Immune-TCs onto spatial transcriptomics 

samples  

For the evaluation of the “activity” of CNA- and immune- TCs identified within the 

transcriptomic profiles of the spatial transcriptomics data, the in-house tool AnalyzerTool7 was 

employed. This is a Projection methodology through which the CNA- and immune- TC 

matrices were projected onto the spatial transcriptomics profiles of the spatial transcriptomics 

cancer samples (manuscript under preparation). Through this process, we acquired the projected 

mixing matrices (MM) from each dataset, containing the activity scores of each TC for all spots 

in every sample. In this method, the transcriptomic profiles of dataset A were projected onto 

the TCs matrix of dataset B, which derived from c-ICA analysis. Initially, the pseudo-inverse 

matrix after c-ICA analysis of dataset B was calculated (ref) and then we multiplied this matrix 

with the transcriptomic profiles of dataset A, focusing only on the shared genes between A and 
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B datasets, which resulted in the generation of the projected mixing matrix from dataset A. For 

every transcriptome profile in dataset A, the TC activity in this projected mixing matrix 

matched the TCs from dataset B.  

Nevertheless, a significant portion of the observed variation in the expression levels may stem 

from platform or batch effects rather than biological differences, which also affects the mixing 

matrix in the projection process, making it challenging to compare samples across different 

platforms and experiments. Therefore, Johnson transformation method was employed to correct 

the mixing matrix values. Initially, the skewness of gene weights within the TCs was evaluated, 

and due to negative values, all signs of the gene weights and their corresponding activity in the 

mixing matrix were flipped. Next, the following process was applied to all profile-TC activities 

in the Mixing Matrix (MM):  

1. Genes within each TC were randomly permuted for specific times, and the MM activity 

for the profile was calculated. These permutations generated the null distribution 

associated with the profile MM activity for that TC. 

2. The Johnson transformation was used to change the null distribution into a normal 

distribution in case the Anderson-Darling test revealed that it did not follow a normal 

distribution. Using one of the three families of distributions (S, SU, or SL), this 

transformation determines the parameters that minimize the null distribution's deviation 

from a normal distribution. This transformation was also implemented on the initial 

mixing matrix.  

3. The normally distributed null distribution was standardized to mean and standard 

deviation of zero and one, respectively. This standardization was also applied on the 

profile's activity value.  

4. Finally, the corrected TC activity was derived by computing the z-value using the 

transformed null distribution and the computed mixing matrix activity, the final 

corrected TC activity was generated. 

 

2.7 Colocalization of TC activities in spatial transcriptomics samples 

The colocalization technique relies on principles from microscopy image analysis and is 

adapted from a previously published colocalization analysis [47]. Using the permutation-

corrected mixing matrix, regions of low or high activity were identified by selecting locations 

where the TCs activity was above 2 for high activity TC processes and below -2 for low activity 

TC processes. Next, kernel density estimation was separately applied to regions of low and high 

TC activities for each image and TC using the R package ks 1.14.1. TCs with a minimum of 50 

spots showing low or high activity were included. Using the least-squares cross-validation 

bandwidth selector with the "Hlscv.diag" method and an initial bandwidth matrix of 

[(9,0),(0,9)], the ideal kernel bandwidth was selected. Moreover, the size of the binned 

background grid (bgridsize) is set to match the dimensions of the spots in the spatial 

transcriptomic image. Then, the "kde" function was then used to fit the kernel, and the weights 

used were the absolute TC activity (above 2) for each spot. Subsequently, only regions where 

the fitted kernel density was higher than the 75th percentile of all densities for a TC within an 
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image were selected for further analysis. The similarity between kernel densities of all TCs was 

evaluated by computing Pearson correlation coefficients (ρ). If two TCs' up- or downregulated 

regions exhibited a ρ of 1, they displayed colocalization, whereas they were spatially exclusive 

when showing a ρ of -1. 

In our analysis we took into account both positive and negative associations between CNA- and 

immune- TCs. For the quantification of these relationships, we used a colocalization score 

between TCs α and b and their regions with high activity and low activity, following the formula 

below: 

colocalization scorea,b = ( ρa_high activity, b_ high activity - ρa_ high activity, b_ low activity) - ( ρa_ low activity, b_ high 

activity - ρa_ low activity, b_ low activity) 

A colocalization score of 4 suggests that there is a strong spatial overlap between high CNA-

TC and high immune-TC activity, while a score of -4 demonstrates spatial overlap, but with 

opposite activity patterns, meaning high immune-TC activity is found where CNA-TC activity 

is low, and vice versa. A score near 0 indicates that the activities of CNA- and immune-TCs are 

mostly spatially distinct and these TCs are not associated.  
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3. Results 

3.1 Data acquisition 

Bulk transcriptomic profiles derived from tumor biopsies from the public repository TCGA 

(10,817 profiles, 20,392 genes, generated with RNA-Seq) were collected [41]. The 

transcriptomic profiles assembly covered a wide range of experimental conditions, tissue types, 

disease statuses, and chemotherapy responses. This strategy increases the likelihood of 

identifying transcriptional patterns associated with immune-related activities and CNA 

footprints across different biological contexts and clinical settings. A bulk transcriptomic 

profile combines the transcriptional patterns of all cell types in a tissue, reflecting its biological 

processes. Therefore, subtle patterns can be masked by more prominent ones, making them 

more difficult to identify. To address this, our research group previously applied c-ICA to the 

TCGA dataset, separating bulk transcriptome profiles into 9,709 statistically independent TCs, 

where each gene in a TC had a specific weight and sign, indicating the degree to which the TC's 

underlying biological process affects the gene's expression level and in which direction. This 

method isolated both subtle and prominent transcriptional patterns.  

 

3.2 Identification of 235 immune-TCs & 476 CNA-TCs  

To identify the TCs that capture the transcriptional effects of immune-related processes, we 

conducted GSEA. Though this approach we identified 119 immune-TCs to be significantly 

enriched in 411 immune-related gene sets in the GOBP collection, as well as 158 immune-TCs 

and 120 gene sets in the Reactome collection. Among these, 41 immune-TCs were common to 

both Reactome and GOBP datasets, resulting in a total of 235 unique immune-TCs. Regarding 

the identification of CNA-TCs, we initially analyzed the GSEA results from the Positional 

database. However, this method was rejected because it excluded TCs related to CNA 

processes, as even one cytoband can contain CNAs in multiple genes. Instead, the TACNA 

method was employed, which successfully captured all TCs related to CNA processes. We 

identified 476 CNA-TCs, each containing more than 10 genes within a genomic region affected 

by CNAs. The total number of CNA-TCs and immune-TCs was 711, with 16 TCs being 

common to both categories, indicating that these TCs capture both transcriptional effects 

influenced by CNAs and immune system processes. This resulted in a total of 695 unique CNA- 

and immune-TCs. Subsequently, we generated heatmaps to visualize the identified TCs and 

their enrichment scores, represented by z-scores, in the gene sets (Fig. 4). Hierarchical 
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clustering was performed using Pearson correlation (1-cor) as the distance measure and Ward's 

method (ward.D2) as the clustering method. 

Figure 4: Identification of CNA-TCs and immune-TCs in an extensive dataset. (A) Heatmap of 119 TCs 

significantly enriched in 411 immune-related gene sets from the GOBP dataset via GSEA. (B) Heatmap of 158 TCs 

significantly enriched in 120 immune-related gene sets from the Reactome dataset via GSEA. (C) Heatmap of 476 CNA-

TCs identified via the TACNA method. TACNA: transcriptional adaptation to CNA profiling; GSEA: gene set 

enrichment analysis; The z-scores in the heatmaps represent the enrichment scores; Color bar: values above zero 

indicating positively enriched TCs, and values below zero showing negatively enriched TCs. 
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In Figures 4a and 4b illustrating the immune-TCs from the GOBP and Reactome collections, 

we observe a variety of enrichment patterns, indicating that the TCs capturing immune 

processes are highly positively enriched (red) in some gene sets, while others are negatively 

enriched (green) or show no significant enrichment (yellow). This distribution highlights the 

diverse roles of immune-TCs across different immune processes. The overlap of 41 immune-

TCs between the Reactome and GOBP collections suggests a robust identification of immune-

related TCs, indicating consistency in capturing significant immune processes across different 

gene set collections. The broad range of 235 unique immune-TCs indicates comprehensive 

coverage of immune responses, including both activated and suppressed pathways. Moreover, 

the negatively enriched TCs provides insights into repressed immune mechanisms. Figure 4c, 

represents TCs capturing transcriptional effects of CNA-related processes in different genomic 

regions. The relatively uniform distribution of both positively and negatively enriched TCs 

indicates that CNA processes influence a wide range of transcriptional activities. This suggests 

a widespread impact of CNAs on gene expression patterns across various chromosomal regions. 

This highlights the complexity and diversity of transcriptional responses to CNAs, resulting in 

both upregulation and downregulation of gene expression. 

Additionally, we performed genomic mapping of the 476 CNA-TCs using gene annotation data 

to visualize the precise location of the copy number altered genomic region on the chromosomes 

(Appendix 2a). In Appendix 2b, the genomic plots of the 25 CNA-TCs containing at least 50 

genes with CNAs are shown. These plots visualize the distribution of TC gene weights across 

the genome, which helps in understanding the genomic distribution and significance of various 

TCs. Overall, the results demonstrate the efficacy of the integrated strategy of combining c-

ICA, GSEA, and TACNA on bulk transcriptomics to identify immune-TCs and CNA-TCs. This 

intermediate step was crucial for validating the results, ensuring the robustness of the identified 

TCs, and providing a foundation for further analysis. 

 

3.3 EDA to assess the data quality of cancer samples 

Moreover, we performed EDA on the spatial transcriptomics samples to gain insights into data 

quality and perform necessary preprocessing steps prior to further analysis. We visualized the 

read counts to display the total expression of all genes across the spots in the 21 spatial 

transcriptomics samples (Appendix 1). For instance, the breast cancer sample BC3 is 

represented in Figure 5a, where different regions of the tissue in the hematoxylin and eosin 

(H&E) staining show significant variance in read counts, potentially due to sequencing 

difficulties, technical limitations or inherent biological differences in certain areas. Moreover, 

Fig. 5b shows gene expression activity in various regions, with higher read counts indicating 

areas of increased transcriptional activity. Some regions display very low read counts compared 

to others with significantly higher expression (e.g. top right corner compared to bottom left 

corner). To account for this variance and mitigate platform-specific effects, we performed 

normalization and removed the PC1. This process generated transcriptomic profiles devoid of 
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platform-specific artifacts, allowing us to examine gene expression patterns across the entire 

sample. 

Additionally, to assess any disparities in the data, ensure quality control, detect outliers, and 

understand the overall data distribution, we examined the read-counts for missing values and 

computed summary statistics - mean, median, min, max, 1st quartile, and 3rd quartile- for each 

gene and spot across all 21 spatial transcriptomics samples (Appendix 1). Subsequently, we 

generated two types of histograms to visualize these values: spot-wise and gene-wise. Values 

of zero were excluded from the histograms to focus on the distribution of actively expressed 

genes and to avoid skewing the data representation. For instance, the spot-wise histograms of 

the sample BC3 (Fig. 5c) show a concentration of low mean and maximum values, indicating 

that the majority of spots have relatively low gene expression levels, with only a few spots 

showing higher expression. This could indicate that certain regions of the tissue have higher 

transcriptional activity, possibly corresponding to areas with higher cellular density or specific 

tissue types. Gene-wise histograms (Fig. 5d) include a histogram of minimum values, which 

reveals a high bar at 1 and two lower bars at 2 and 3, suggesting that most genes are detected 

in at least one spot, with some genes detected in two or three spots. All histograms display right-

skewed distributions with values close to zero and minimal variation. This indicates that the 

majority of genes are expressed at low levels across the sample, with only a few genes showing 

high average expression levels despite normalization. 

Furthermore, we plotted the expression of genes of interest to examine potential patterns in a 

spatial context. In the sample BC3, we visualized the expression of the ERBB2 (also known as 

HER2 or neu) gene [48] due to its extensive documentation in cancer biology and its association 

with tumor progression. ERBB2 is reported to be involved in a number of human cancers. About 

30% of human breast cancers [49] and many other cancer types, such as ovarian [49], stomach 

[50], bladder [51], salivary [52], and lung carcinomas [53], show amplification or 

overexpression of ERBB2 gene. Numerous studies have demonstrated that this amplification or 

overexpression impairs normal cellular regulatory mechanisms, leading to the development of 

aggressive tumor cells [54]. In Figure 5e, higher expression levels of ERBB2 are observed in 

the top right region, where most of the read-counts show most decreased expression levels. 

However, these spots showing the highest expression are among the lowest ERBB2 expressed 
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spots. This suggests a localized overexpression of ERBB2 in specific regions despite overall 

low read-counts in the area. Additionally, in the bottom left and right corners, where the read 

counts show the highest expression, ERBB2 expression levels are close to zero or zero. Across 

the sample, ERBB2 expression in most spots is consistently around a value of 2, indicating a 

relatively uniform expression level with exceptions in some regions. This pattern may reflect 

the heterogeneous nature of ERBB2 expression within the tissue, however, further research is 

needed to understand the underlying biological pathways. 

 

3.4 Colocalization of TC activities on spatial transcriptomics samples 

The primary objective of this research project was to assess the relationship between CNAs and 

immune transcriptional footprints in 21 spatial transcriptomics cancer samples. To achieve this, 

we applied the Projection methodology on the previously identified TCs to acquire the mixing 

matrices of the TCs, which contained their activity scores for all spots in every spatial 

transcriptomics sample. Using the activity scores of the 25 most robust CNA-TCs, each 

A C B 

D 

E 

Figure 5: Exploratory data analysis on spatial transcriptomics sample BC3. (A) H&E staining of BC3. (B) 

Visualization of read counts across all spots in BC3, displaying the total expression of all genes. Color bar: values 

represent raw expression counts, with red indicating high expression and blue indicating low expression. (C) Summary 

statistics for spots excluding values of zero. (D) Summary statistics for genes excluding values of zero. (E) Visualization 

of ERBB2 gene expression levels in BC3. Color bar: values above zero show high gene expression, while values lower 

than zero indicate low gene expression.   
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containing at least 50 genes with CNAs, we plotted them on spatial transcriptomics samples 

(Appendix 3a). This visualization aimed to elucidate the spatial distribution and activity of these 

significant TCs within different tissue samples. Understanding how these CNAs are spatially 

organized may help investigate their impact on tissue architecture and function. Mapping these 

components can provide insights into the spatial heterogeneity of CNAs and their roles in 

disease progression and tissue-specific gene expression patterns. Then, we conducted 

Colocalization analysis to obtain the correlation scores of all TCs with each other, evaluating 

whether specific patterns of high or low CNA-TC and immune-TC activities were reflected in 

the spatial distribution across different cancers. This analysis helped identify both positive and 

inverse colocalization between CNA-TCs and immune-TCs, providing insights into their spatial 

distribution within various cancer types. 

 

3.4.1 Correlation analysis reveals patterns of CNA-TCs and immune-TCs in cancer 

samples 

To investigate the patterns of CNA-TCs and immune-TCs in the spatial transcriptomics cancer 

samples, we generated two types of heatmaps per sample based on their correlation values 

(Appendices 3b and 3c). Hierarchical clustering was performed using Pearson correlation (1-

cor) as the distance measure and Ward's method (ward.D2) as the clustering method. 

Correlation values of zero were removed to better visualize the clustering of TCs.  

Figures 6 and 7 present examples of these heatmaps. In Figure 6a, all CNA-TCs are listed on 

both the x and y axes, with chromosome annotations distinguished by different colors. The 

CRC1 sample exhibits numerous and prominent clusters, indicated by regions with TCs that 

are either highly positively colocalized (red) or highly inversely colocalized (blue). This 

suggests that CRC1 may contain many clones characterized by TCs with CNAs in different 

chromosomes. For instance, a specific cluster in Fig. 6a shows TCs which are highly positively 

colocalized, capturing biological processes related to CNAs in chromosome 19. Some of the 

CNA-TCs identified in this cluster include TC8759, TC8693, TC7827, and TC7698 with their 

genomic plots displayed in Figure 6b, verifying their location in chromosome 19. The clustering 

of focal CNA-TCs on the same chromosome points toward a broader genomic region might be 
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implicated, possibly indicating a broader CNA affecting a significant portion of the 

chromosome (either deletion or amplification), such as an entire arm of chromosome 19. This 

highlights the importance of examining these clusters to understand the genomic alterations and 

their implications in cancer progression. 

Figure 7 illustrates the clustering of immune-TCs in the OC2 sample. Notably, a small cluster 

of TCs, which are positively colocalized (dark red), includes the following TCs and their top 

gene sets, each characterized by a rank of 1, indicating that these TCs were most enriched in 

these pathways: (a) TC4962: antigen presentation, folding, assembly, and peptide loading of 

class I MHC (found in the Reactome dataset), (b) TC8928: 

Figure 6: Clustering of CNA-TCs on the spatial transcriptomics sample CRC1. (A) Heatmap of CNA-TCs on the 

CRC1 sample with chromosome annotations. Color bar: values above zero indicate positive colocalization (red), while 

values lower than zero indicate inverse colocalization (blue). (B) Genomic plots of clustered CNA-TCs (TC8759, 

TC8693, TC7827, TC7698) on chromosome 19, indicating broader CNAs. x axis: chromosomes, y axis: gene weights. 

A 
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negative regulation of activated T cell proliferation (GOBP), (c) TC2717: PD1 signaling 

(Reactome), and (d) TC641: MHC class II antigen presentation (Reactome). The clustering of 

these immune-TCs suggests a common biological theme centered on antigen presentation and 

immune regulation. The positive colocalization of these TCs highlights a coordinated 

expression pattern of genes involved in immune responses and regulatory pathways. By 

examining the top gene sets associated with these TCs, we can infer that they play crucial roles 

in antigen presentation and T cell regulation, contributing to the immune landscape of the OC2 

cancer sample. This clustering approach may provide insights into the spatial organization of 

immune-related transcriptional patterns and their potential impact on the tumor 

microenvironment. 

 

 

 

 

 

 

 

Figure 7: Clustering of immune-TCs on the spatial transcriptomics sample OC2. Color bar: values 

above zero indicate positive colocalization (red), while values lower than zero indicate inverse 

colocalization (blue). 
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3.4.2 Identification of the top 12 colocalized TCs 

To identify CNA- and immune-related transcriptional patterns that co-occur or spatially repel 

each other, we examined the highest and lowest correlation values between pairs of TCs. We 

termed “top colocalized TCs” as those CNA- and immune-TCs showing the highest positive or 

negative correlation values derived from the Colocalization analysis. This includes both the 

most positively colocalized TCs and the most inversely colocalized TCs, indicating strong 

spatial proximity or repulsion, for three distinct groups: CNA-TCs, immune-TCs, and CNA- 

and immune-TCs.  

In Figure 8, the colocalization plots of the identified top colocalized TCs on the spatial 

transcriptomics samples are illustrated. The highest positive correlation score between CNA-

TCs was found between TC3557 and TC6547 in the cancer sample OC2 (correlation value: 

+3.64, Fig. 8a left), where both TCs capture the transcriptional effect of CNAs in genomic 

regions on chromosome 19 (Fig. 9a). Conversely, the lowest correlation value between CNA-

TCs was between TC8914 and TC9155 in CRC2 (correlation value: -3.185, Fig. 8a right), 

indicating an inverse colocalization, with CNAs located on different chromosomes, 8 and 20 

respectively (Fig. 9b). Regarding the immune-TCs, the highest positive colocalization was 

between TC372 and TC641 in BC3 (correlation value: +3.394, Fig. 8b left), showing high 

Figure 8: Identification of the top colocalized TCs. (A) Colocalization plots of the top colocalized CNA-TCs. Left: 

TC3557 and TC6547 in the spatial transcriptomics sample OC2, which show the highest positive colocalization among all 

cancer samples. Right: TC8914 and TC9155 in the spatial transcriptomics sample CRC2, showing the highest inverse 

colocalization among all cancer samples. (B) Colocalization plots of the top colocalized immune-TCs. Left: TC372 and 

TC641 in BC3, with the highest positive colocalization. Right:  TC4121 and TC641 in GB1, with the highest inverse 

colocalization. (C) Colocalization plots of the top colocalized CNA- & immune-TCs. Left: TC8628 and TC8538 in BC1, 

with the highest positive colocalization. Right: TC7834 and TC8928 in OC2, with the highest inverse colocalization. Color 

bar: an activity score above zero indicates high TC activity, while a score below zero indicates low TC activity.  
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spatial proximity. The most significant inverse colocalization between immune-TCs was found 

for TC4121 and TC641 in GB1 (correlation value: -3.026, Fig. 8b right). The strongest positive 

colocalization between CNA-TCs and immune-TCs was observed in BC1, marked by TC8628 

and TC8538 (correlation value: +3.203, Fig. 8c left). Notably, TC8628 functioned as both a 

CNA-TC and an immune-TC exhibiting a dual impact on genomic changed and immune system 

activity, while TC8538 represented the immune-TC. The highest inverse colocalization by 

immune-TCs was observed between TC7834 and TC8928 in OC2 (correlation value: -3.176, 

Fig. 8c right), with TC7834 representing the CNA-TC and TC8928 the immune-TC. Lastly, 

Appendix 3d provides an example of TCs with a correlation value of zero, indicating no 

colocalization and spatial separation, specifically showing the CNA-TCs TC1039 and TC3753 

in CRC3. 

Table 2 presents the top colocalized immune-TCs and their top pathways, as identified by 

GSEA, with a rank of 1 indicating the highest level of enrichment in immune-related processes. 

Moreover, the top genes within each TC were identified based on the highest gene weight, 

highlighting the genes that most significantly contribute to the observed transcriptional patterns. 

Additionally, Table 3 lists the top colocalized CNA-TCs along with the chromosomes and 

cytobands where their CNAs are located. Based on these information we conducted literature 

search, which is further discussed in the report.  

 

Table 2: Summary of top colocalized immune-TCs. This table lists the top colocalized immune-TCs, 

the database where they were found, their top associated pathways, corresponding genes, and the 

chromosomes in which they are located. Entrez ID: unique, stable and tracked integers as gene 

identifiers by NCBI [55]. 

Figure 9: Genomic plots of the top colocalized CNA-TCs. (A) TC3557 and TC6547, which are positively 

colocalized TCs, show CNAs in genomic regions on chromosome 19. (B) TC8914 and TC9155, which are 

inversely colocalized TCs, exhibit CNAs on chromosome 8 and chromosome 20, respectively.  
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Table 3: Summary of top colocalized CNA-TCs. 

CNA-TCs Chromosome Cytoband BP_Mapping 

TC3557 19 p13.13 12949739.75 

TC6547 19 p13.2 10365552 

TC8914 8 p21.3 22249866.5 

TC9155 20 q13.13 49909012 

TC8628 10 q23.31 89305658 

TC7834 20 q11.23 36246691.75 

 

3.4.3 Investigation of top colocalized TCs across cancer samples 

To investigate whether the top colocalized TCs are positively or inversely colocalized also in 

other cancer samples, we examined their correlation scores across all spatial transcriptomics 

cancer samples, as depicted in Table 4. 
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Table 4: Correlation scores of the top colocalized TCs from the Colocalization analysis of spatial 

transcriptomics samples. A high positive correlation value indicates positive colocalization of the TCs, 

whereas a high negative correlation value indicates inverse colocalization.  
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The top positively colocalized CNA-TCs (TC3557 and TC6547), found in OC2, also show high 

correlation values in OC1, OC3, GB1, CRC1, CRC3, LC2, and PC2. The top inversely 

colocalized CNA-TCs (TC8914 and TC9155), found in CRC2, exhibit high negative values in 

the sample OC2, as well. However, in the rest of the cancer samples, their correlation values 

are close to zero, indicating no significant spatial association. Additionally, the highest 

positively colocalized pair of immune-TCs (TC372 and TC641) identified in BC3 also shows 

high correlation values in BC2, BC4, BC5, CRC3, IDC1, OC2, and OC3. In the remaining 

samples, their values are close to zero, with zero in CC1 and CRC2 samples. The highest 

inversely colocalized pair of immune-TCs (TC4121 and TC641) found in GB1 shows very low 

values in other samples, approximating zero, indicating a lack of colocalization and spatial 

separation in almost all other cancer samples. Moreover, the top positively colocalized CNA- 

and immune-TCs (TC8628 and TC8538) identified in BC1 also exhibit high colocalization in 

BC2, BC3, BC4, CRC1, CRC3, GB2, IDC1, LC2, M1, and OC1. Finally, the top inversely 

colocalized CNA- and immune-TCs (TC7834 and TC8928) identified in OC2 also exhibit high 

negative correlation values in GB1. However, in the rest of the cancer samples, these values 

approach zero, suggesting spatial separation. The consistent high correlation values of top 
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colocalized TCs across multiple cancer samples suggest that certain transcriptional patterns 

may be characteristic of specific cancer types or subtypes.  

Additionally, we investigated which pair of CNA- and immune-TCs with correlation score 

above 2 is present in the majority of the cancer samples. We discovered that it was TC8628 and 

TC8538 in 11 cancer samples: BC1, BC4, BC3, OC1, M1, LC2, BC2, CRC1, IDC1, CRC3, 

and GB2. These samples are listed in order from the highest to the lowest correlation value for 

these TCs. Of note, these TCs were also identified earlier as the top colocalized CNA- and 

immune-TCs (Fig. 8c). Similarly, we examined the pair of CNA- and immune-TCs with 

correlation score below -2, which was TC8914 and TC9516 in 6 cancer samples: OC2, CRC2, 

OC1, LC1, PC3, and CRC1, listed from higher to lower correlation scores. Notably, TC8914 

was also a hit in the top inversely colocalized CNA-TCs in the sample CRC2 (Fig. 8a). Further 

research into these findings may provide insights into the spatial heterogeneity of cancer and 

its potential impact on disease progression and treatment response. 

 

3.4.4 Variability of the correlation scores of TCs across the samples 

To assess and compare the distribution of correlation values of TCs within each cancer sample, 

we generated histograms displaying these values across all samples. These histograms illustrate 

the frequency of TC colocalization, highlighting the number of TCs that are colocalized (e.g., 

+3 for most positively colocalized TCs and -3 for most inversely colocalized TCs) versus those 

that are not (i.e., have zero correlation values). This analysis provides insights into the extent 

of spatial colocalization of CNA-TCs and immune-TCs within each sample. Appendix 4 

contains the histograms of the correlation scores between immune-TCs, and CNA-TCs with 

immune-TCs in the spatial transcriptomics samples, while Figure 10 illustrates the histograms 

of the correlation scores between CNA-TCs. In our analysis of 21 spatial transcriptomics 

samples, we observed notable deviations in the histograms of correlation scores between CNA-

TCs, immune-TCs, and CNA-TCs with immune-TCs. Specifically, the GB1 sample exhibited 

a unique pattern, with significantly fewer non-colocalized TCs across all three histogram types. 

This indicates a higher number of significantly colocalized TCs in GB1, suggesting a strong 

association between CNAs and immune transcriptional footprints in this particular sample. 

However, this trend was not consistent in the GB2 sample, which showed a high number of 

TCs with zero correlation values, especially in the immune-immune and CNA-immune 

histograms, contradicting the observations in GB1. This observation might point to issues with 

the transcriptomics data quality in GB1 from the 10x Genomics platform. Additionally, CNA-

TCs generally displayed a higher frequency of non-colocalized TCs compared to immune-TCs. 

However, CNA-TCs also exhibited a higher frequency of colocalized TCs, which may be 

attributed to their larger total number (476) compared to immune-TCs (235). The highest 

number of zero correlation values for TCs was observed in specific samples: BC1 and CRC3 

for CNA-CNA correlations, CC1 and CRC3 for CNA-immune correlations, and CC1, CRC3, 

GB2, OC3, PC1, and PC2 for immune-immune correlations. The patterns observed, particularly 

in CRC3, suggest weaker associations between CNAs and immune footprints in these samples. 
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These findings highlight the variability in the association between CNAs and immune 

transcriptional footprints across different cancer types and samples.  

 

 

  

Figure 10: Histograms of the correlation scores between CNA-TCs in the spatial transcriptomics samples. x axis: 

correlation values, y axis: total amount of TCs (frequency), +3: most positively colocalized TCs, -3: most inversely 

colocalized TCs, zero correlation value: not colocalized TCs.  
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4. Discussion  

In this research project, our main objective was to uncover new insights into the association 

between CNAs and the immune transcriptional footprints using spatial transcriptomics data in 

a pan-cancer setting. We addressed this by applying c-ICA on bulk transcriptomic profiles from 

the public repository TCGA to retrieve TCs capturing biological processes, which were then 

analyzed using GSEA. Through GSEA analysis and the TACNA methodology, we identified 

476 CNA-TCs and 235 immune-TCs for further investigation. Using the Projection method, we 

obtained mixing matrices containing the activity scores of these TCs, which were subsequently 

used in the Colocalization analysis. By examining the correlation scores of the CNA- and 

immune-TCs we identified the top 6 colocalized pairs of TCs in the spatial transcriptomics 

samples. Finally, we conducted a literature search on these top 12 colocalized TCs to elucidate 

the underlying biological transcriptional patterns, and shed light on how CNAs influence the 

cancer-immune set point. 

During this study, utilizing spatial transcriptomics tools, we successfully generated a 

comprehensive landscape encompassing the transcriptional effects of CNAs and immune 

processes in 21 spatial transcriptomics cancer samples. These data are available on a public 

website, which could serve as a valuable resource for further research. Using the correlation 

scores of the TCs, we generated two types of heatmaps illustrating the clustering of the CNA- 

and immune-TCs for each transcriptomic sample, revealing patterns between TCs (Appendices 

3b and 3c). However, due to time constraints and the magnitude of the data during this project, 

these results could not be investigated in depth; nevertheless, they may provide valuable 

information for future research. Furthermore, a series of scripts has been developed for data 

analysis. These scripts facilitate the visualization of genes and TCs within these samples and 

provide tools for evaluating their colocalization, among other functionalities. 

 

Top colocalized CNA-TCs 

Literature search for the top positively colocalized CNA-TCs (TC3557 and TC6547, which 

contain CNAs located in the genomic regions 19p13.13 and 19p13.2 respectively) in the OC2 

sample revealed consistency with previous data. Approximately 20% of ovarian cancers exhibit 

alterations in 19p13, often involving chromosomal translocations with material from 

chromosome 11 [56] [57] [58] [59] [60]. Specifically, in the study by L. Wang et al. [61], 

fusions between 11q13.2 and 19p13.2 were verified in 45% of primary ovarian cancer cell 

cultures. Moreover, in the study by Shih et al. [62], analysis of high-grade serous carcinomas 

from the TCGA database revealed elevated DNA copy numbers at the ch19p13.2 locus in 18% 

of samples. Of note, seven genes in this region showed significant DNA copy number and RNA 

expression correlations, ranking among the top 100 potential 'driver' genes [62]. Additionally, 

54 of these top 100 genes were located in chromosome 19 subregions, indicating frequent 

structural rearrangements [62]. The positive colocalization of these TCs implies a potential 

interaction where specific genes within these genomic regions may mutually influence their 

expression patterns in a spatial context. The spatial proximity of these TCs may facilitate 

physical interactions between regulatory elements, such as enhancers or transcription factors, 
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within these genomic regions. This proximity could enhance the coordinated expression of 

genes involved in similar biological processes that are present especially in the phenotype of 

ovarian cancer. 

Literature search was also conducted for the top inversely colocalized CNA-TCs, TC8914 and 

TC9155, which contain CNAs in the genomic regions 8p21.3 and 20q13.13, respectively, 

identified in the CRC2 sample. Studies have shown that chromosomal losses on the short arm 

of chromosome 8 are implicated in a wide range of colorectal cancers (CRC), particularly on 

the short arm with loss of heterozygosity (LOH) occurring at rates between 30% and 50%, 

particularly in regions 8p23.1-pter and 8p21, suggesting the presence of tumor suppressor genes 

[63] [64] [65] [66]. Moreover, LOH on 8p is associated with advanced and aggressive CRC, 

with minimal deletion regions at 8p22 and 8p21 linked to clinically aggressive disease markers 

[65] [67] [68]. Conversely, frequent amplifications on the chromosomal region 20q13 are 

observed in CRC [69]. An amplicon at 20q11–20q13 was detected in over 70% of CRC 

samples, including several elevated cancer-related genes, such as AHCY, POFUT1, and RPN2 

[70]. TPX2 (20q11.21) and AURKA (20q13.2) were identified as oncogenes driving this 

amplicon [71]. Moreover, Aust et al. [72] found 20q13.2 amplification in 53% of CRC cases, 

correlating with worse overall survival, faster tumor progression, and association with left-sided 

colon tumors and lower histologic grade. Low-level 20q gains are common in breast, bladder, 

colon, and ovarian cancers, with high-level amplifications of 20q13.2 being less frequent [73]. 

Bui et al. [74] discovered a gain in 20q13.33 in 50.9% of CRC cases and 62.8% of colon polyps, 

suggesting its potential as an early detection biomarker and a therapy target. Overall, our 

findings align with previous studies, highlighting the relevance of these regions in CRC. The 

inverse correlation between deletions on 8p21.3 and amplifications on 20q13.13 suggests 

potential roles in cancer progression, possibly through spatially exclusive biological pathways. 

For example, tumor suppressor genes on 8p21.3 may counteract oncogenic processes driven by 

amplified genes on 20q13.13. This inverse relationship may also involve synthetic lethality, 

where the deletion of 8p21.3 genes creates a cellular environment requiring 20q13.13 

amplification for survival. Targeting these regions therapeutically could exploit synthetic 

lethality to eliminate cancer cells effectively. 

 

Top colocalized immune-TCs 

TC372 and TC641 were found to be the top positively colocalized immune-TCs, found in the 

BC3 sample. In TC372, the major histocompatibility complex, class II, DR beta 5 (HLA-DRB5) 

was identified as the top gene within its respective pathway, while the top gene for TC641 was 

the major histocompatibility complex DP alpha 1 (HLA-DPA1). HLA-DRB5 has been linked to 

predicting gliomas and skin cutaneous melanoma, but is not primarily associated with breast 

cancer [75] [76]. Interestingly, in the bioinformatics analysis by Wu et al. [77] on TCGA data, 

HLA-DRB5 expression was not significantly different between breast cancer and normal 

samples. Likewise, HLA-DPA1 has not been reported to associate with breast cancer in the 

literature. However, our analysis suggests a potential role for both these genes in antigen 

presentation processes and immune responses in breast cancer. Further research should be done 

to elucidate their specific associations in this type of cancer.  
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TC4121 and TC641 were identified as the top inversely colocalized immune-TCs in the GB1 

sample. The top genes for TC4121 and TC641 were explored: calcium channel regulatory 

subunit α2δ-3 (CACNA2D3) and HLA-DPA1, respectively. In the study by Leone et al. [78], 

CACNA2D3 was significantly associated with shorter survival in glioblastoma (GB) patients 

(median 200 days vs. 450 days, P < 0.03) and was found to be underexpressed. Previous 

research identified CACNA2D3 as a potential tumor suppressor in esophageal squamous cell 

carcinoma (ESCC), lung and renal cell carcinomas, where it exhibited deletion, LOH, and 

reduced expression [79] [80] [81]. Functional analysis further supported CACNA2D3's tumor 

suppressive role [82]. Jin et al. [83] showed that CACNA2D3 is often downregulated in gliomas 

and linked to poor survival, while its overexpression increases intracellular calcium, inducing 

apoptosis and inhibiting cell proliferation, migration, invasion, and tumor development. 

Conversely, Yu & Fu [84] identified CACNA2D3 as one of the six genes highly expressed in 

GB, conflicting with the previous findings. CACNA2D3 methylation has been associated with 

shorter survival in gastric cancer [82], and proposed as a biomarker for metastasis risk in breast 

cancer [85]. These findings suggest CACNA2D3 could serve as a potential marker in GB, given 

its known roles in other cancers, emphasizing its importance in cancer therapy through calcium 

channel regulation and apoptosis induction. Regarding the HLA-DPA1 gene, literature search 

did not yield relevant results concerning its relation to GB. However, HLA-DPA1 was identified 

in both the top positively and inversely colocalized pairs of immune-TCs in BC3 and GB1 in 

our analysis, suggesting its potential involvement in immune evasion mechanisms and the 

modulation of the tumor immune microenvironment. The inverse colocalization of TC4121 and 

TC641 suggests that their top genes are expressed in a mutually exclusive manner within the 

tumor microenvironment. This could indicate that the biological pathways regulated by 

CACNA2D3 and HLA-DPA1 may inhibit each other's processes. For instance, the tumor 

suppressor activity of CACNA2D3 might counteract the immune evasion mechanisms 

facilitated by HLA-DPA1, or vice versa. Additionally, this inverse colocalization could imply 

synthetic lethality, where the loss of CACNA2D3's tumor suppressive function necessitates the 

presence of HLA-DPA1-driven immune evasion for cell survival. Understanding this 

relationship could provide insights into potential therapeutic strategies, such as targeting these 

pathways to exploit their mutual exclusivity in cancer treatment. 

 

Top colocalized CNA- and immune-TCs 

TC8628 and TC8538 were identified as top positively colocalized CNA- and immune-TCs in 

the BC1 sample. Of note, this pair of TCs was also found to have a correlation score above 2 in 

the majority of the spatial transcriptomics samples. TC8628 captures both CNA- and immune-

related processes. It contains CNAs in the genomic region 10q23.31 and its top identified gene 

is interferon induced protein with tetratricopeptide repeats 2 (IFIT2). The top gene for TC8538 

is interferon alpha-inducible protein 6 (IFI6). In sporadic breast carcinomas, LOH is common 

in the 10q23 region, which includes the PTEN gene, with the incidence ranging from 10% to 

40% [86] [87] [88]. PTEN regulates the 1-phosphatidylinositol 3-kinase (PI3K) pathway, which 

influences cell proliferation and survival [89], and it inhibits tumor growth by down-regulating 

this pathway, leading to G1 phase arrest and cell death [90] [91] [92]. Reduced PTEN levels 

are common in breast cancer and linked to worse outcomes such as disease-related death, lymph 

node metastasis, and loss of estrogen receptor staining, suggesting PTEN's role as a tumor 
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suppressor [93]. This was further validated by the study of S. H. Chang et al. [94], which found 

that loss of PTEN expression in invasive ductal breast cancer samples was significantly 

associated with more aggressive cancer characteristics, including lymph node metastasis, and 

advanced stage of cancer. 

IFIT2 is associated with various cancer types, including chronic myeloid leukemia, esophageal 

cancer, ESCC, oral cancer, and triple-negative breast cancer (TNBC) [95] [96] [97] [98] [99]. 

Decreased IFIT2 expression correlates with more aggressive cancer traits, such as increased 

proliferation, invasion, migration, epithelial to mesenchymal transition, and cancer stem cell-

like phenotypes, suggesting its role as a tumor suppressor [96] [98]. Moreover, Koh et al. [99], 

identified IFIT2 as a significant factor in treatment resistance, including chemotherapy and 

radiation, among TNBC patients. Notably, higher IFIT2 expression levels were associated with 

better prognosis and higher relapse-free survival. Additionally, this study found that baicalein 

downregulates IFIT2 expression, thereby sensitizing resistant TNBC cells to treatment and 

promoting apoptosis, suggesting that targeting IFIT2 with baicalein could be a promising 

strategy to overcome resistance in TNBC therapies. 

IFI6 (also known as G1P3) plays a significant role in cancer progression, particularly in breast 

cancer and ESCC. In breast cancer, IFI6 contributes to metastasis by increasing mitochondrial 

reactive oxygen species (mtROS), which enhances cell migration and invasion [100]. 

Suppressing mtROS or knocking down IFI6 reduces these metastatic behaviors, suggesting that 

targeting IFI6's mitochondrial functions could improve clinical outcomes [100]. Moreover, 

Davenport et al. [101] found that IFI6 is localized in the endomembrane system and 

mitochondria of breast cancer cells, promoting apoptosis resistance and cancer cell survival. In 

ESCC, IFI6 is highly expressed and associated with aggressive disease and poor prognosis 

[102]. Moreover, it plays a role in maintaining redox balance, preventing ROS accumulation 

and mitochondrial dysfunction; depleting IFI6 increases ROS levels, leading to apoptosis, 

highlighting its therapeutic potential [102]. 

Overall, our findings align with previous data, validating the association of TC8628 and 

TC8538 with breast cancer. Their positive colocalization suggests a potential synergistic 

relationship between specific CNA and immune pathways. The dual role of TC8628, identified 

as both a CNA- and an immune-TC, indicates that the genomic alterations at 10q23.31 might 

not only drive tumor growth through genetic mechanisms, but also modulate the immune 

environment to enhance cancer progression. Moreover, the involvement of PTEN and IFIT2 in 

TC8628 suggests that alterations in this region may impact tumor suppressor pathways and 

immune responses simultaneously. The loss of PTEN, a well-known tumor suppressor, coupled 

with the immune-modulating effects of IFIT2, underscore the multifaceted impact of CNAs in 

this genomic region. IFI6’s role in enhancing mtROS and promoting metastasis underscores its 

contribution to a pro-tumorigenic microenvironment. Future research should focus on 

elucidating these mechanisms, as it could provide insights into new therapeutic targets. 

Interventions designed to disrupt these synergistic pathways could potentially lead to better 

clinical outcomes for breast cancer patients. 

Finally, TC7834 and TC8928 were identified as the top inversely colocalized CNA- and 

immune-TCs in the OC2 sample. TC7834 contains CNAs located in the genomic region 

20q11.23, and the top identified gene in TC8928 is pleckstrin homology and RhoGEF domain 
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containing G7 (PLEKHG7). Although the current literature does not provide evidence of their 

direct involvement in ovarian cancer progression, our analysis suggests a potential association 

and highlights the need for further investigation. The inverse colocalization of these TCs 

suggests that they may participate in biological pathways that are spatially exclusive within the 

tumor immune microenvironment. This implies that the cellular processes regulated by the 

CNAs in the 20q11.23 region and those influenced by PLEKHG7 do not coexist in the same 

tumor regions. This could be due to distinct microenvironmental niches within the tumor, where 

different selective pressures drive the expression of these genes exclusively. For example, the 

CNAs in 20q11.23 might be associated with cellular proliferation and survival mechanisms that 

are not compatible with the immune-related functions regulated by PLEKHG7. Understanding 

these interactions could provide insights into ovarian cancer's heterogeneity and contribute to 

developing targeted therapies that exploit these biological processes. 

 

Conclusion and future perspectives  

This study provides a comprehensive landscape of the association between CNAs and immune 

transcriptional footprints across diverse cancer samples using spatial transcriptomics data. Our 

bioinformatics analysis identified numerous colocalized TCs, involving both CNA- and 

immune-related processes. Through computational methodologies, we gained new insights into 

the tumor immune microenvironment's complexity and its implications in cancer progression. 

By investigating the top genes and genomic regions of the top 12 colocalized TCs through 

literature search, we highlighted their significance in driving tumor-immune interactions and 

cancer characteristics. However, the precise underlying molecular mechanisms behind these 

associations between TCs reflecting the transcriptional effect of CNAs or immune processes in 

a spatial context are not yet known, and further research is needed.  

Interestingly, the CNA- and immune-TCs, TC8628 and TC8538, showed strong positive 

colocalization in the majority of cancer samples, particularly in CRC and breast cancer. These 

TCs, sharing spatial proximity, with TC8628 being both a CNA- and immune-TC, suggest that 

CNAs in the genomic region 10q23.31 may modulate immune-related pathways involving 

IFIT2 and IFI6, contributing to cancer progression and resistance. This association was present 

in multiple cancer phenotypes, making these TCs promising candidates for further 

investigation. Future research should focus on elucidating the molecular mechanisms 

underlying these interactions. Validation experiments, potentially in a wet-lab setting, are 

necessary to test this hypothesis and could reveal novel therapeutic targets for CRC and breast 

cancer.   

An important limitation of this study was the limited number of spatial transcriptomics samples 

included. Future research should expand this analysis to incorporate data from additional public 

repositories that are currently available and include more cancer samples per cancer type. This 

would enhance our understanding of the transcriptional landscape by incorporating a broader 

range of tumor immune microenvironments. Notably, the GB1 sample showed discrepancies in 

the distribution of colocalized and non-colocalized TCs compared to GB2 and the rest of the 

cancer samples, indicating the need to ensure the data quality of GB1. Additionally, other highly 
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colocalized CNA- and immune-TCs could be explored, beyond the top 12 identified in this 

analysis, to uncover novel patterns and insights specific to each cancer type. Furthermore, 

integrating single-cell analysis could offer much-needed information about the specific cell 

types present in each spot across the spatial transcriptomics samples. This could enable a more 

holistic approach to unravel the heterogeneity of tumor-immune cell populations and elucidate 

their dynamic interactions within spatially resolved contexts.  

Regarding computational challenges, the frequent updates to the Seurat package present a 

challenge, as its properties often change during the spatial transcriptomics analysis. Therefore, 

it must be installed and handled carefully to ensure accurate and reliable results. To address 

this, the development of harmonized versions would be beneficial, as it would streamline the 

workflow, reduce potential errors, and enhance the reproducibility and reliability of the results. 

In conclusion, this research project demonstrates the significance of spatial transcriptomics and 

offers a comprehensive framework for investigating the underlying mechanisms of the 

transcriptional effects of CNAs and their associations with immune footprints in a big pool of 

cancer samples. This approach could provide new insights into their interactions, the spatial 

organization, the anti-cancer immune response in different cancer types, and inform the 

development of innovative, targeted cancer therapies. 
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Data availability 

Pre-processed and standardized level 3 RNA-Seq (version 2) data for 21 cancer samples from 

the TCGA public data repository were collected through the Broad GDAC Firehose portal 

(https://gdac.broadinstitute.org/) [41]. The spatial transcriptomics data were collected from the 

10x Genomics public database and they are available at 

https://www.10xgenomics.com/research-areas/cancer/visium-discovery-hub. Data generated 

during this research project are available in the website 

https://sites.google.com/student.rug.nl/research-project2-s5340411.  

 

Code availability 

R version 4.3.3 was used for the development of the code. The scripts required to reproduce the 

analysis in this research project are available on GitHub at 

https://github.com/IroAnagn/Research-project-II-in-MSc-Biomedical-Sciences.  

  

https://www.10xgenomics.com/research-areas/cancer/visium-discovery-hub
https://sites.google.com/student.rug.nl/research-project2-s5340411
https://github.com/IroAnagn/Research-project-II-in-MSc-Biomedical-Sciences
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