
Towards Self-Supervised Handwritten Text
Recognition Using Generative Adversarial

Networks

Lisa Koopmans

University of Groningen

Towards Self-Supervised Handwritten Text Recognition
Using Generative Adversarial Networks

Master’s Thesis

To fulfill the requirements for the degree of
Master of Science in Artificial Intelligence

at University of Groningen under the supervision of
Dr. Maruf A. Dhali (Artifical Intelligence, University of Groningen)

and
Prof. dr. L.R.B. Schomaker (Artificial Intelligence, University of Groningen)

and

Lisa Koopmans (s3933083)

July 4, 2024

3

Abstract
Handwritten text recognition (HTR) heavily relies on supervised deep learning, which requires vast
amounts of data. However, annotating handwritten documents takes much time and effort. While
transfer learning and data augmentation have been used to reduce the need for labeled data, they do
not eliminate it. This thesis proposes a new approach that leverages handwritten text generation for
the self-supervised training of HTR models. It is based on the idea that images with the same style and
text are more similar than those with different texts. In the proposed framework, synthetic images are
produced using the predicted text of an HTR network. A loss function then computes the similarity
between the input and synthetic images. We first explored the framework with the simpler MNIST
dataset. Experiments were conducted with three different losses operating on pixels of the images or
extracted feature maps. The best-performing model achieved a 91.99% classification accuracy. The
findings indicate operating on higher-level features is required for decent performance. These results
were used to apply the proposed framework to HTR. The generative model GANwriting was trained
on half the IAM dataset to produce images with arbitrary style and content. It was integrated with a
CNN-BLSTM HTR network architecture. Experiments with two image-based and two style-invariant
losses were conducted, where self-supervised HTR models were trained on data independent from
GANwriting. When no useful information was learned by the models, stylistic differences between
input and synthetic images were minimized by conducting experiments with the image-based losses
on data recreated with GANwriting. The results on recreated data showed the image-based self-
supervised models could only achieve good performances when using transfer learning. Starting from
a pretrained HTR model, the best-performing model had character and word error rates of 0.44% and
1.56% on synthetic test data, and 36.08% and 66.40% on real test data. Overall, our findings showed
a high-quality generative model and background knowledge are necessary for adequate performance
of image-based self-supervised HTR.

4

Acknowledgments
This thesis has been a significant challenge, teaching me how to approach research when the results
are not as promising. I would like to express my gratitude to Dr. Maruf Dhali for his invaluable
ideas and guidance that shaped the experiments of this research and kept me motivated. I would also
like to thank Prof. Dr. Lambert Schomaker for his insights that enabled me to approach the problem
from various angles and for inspiring me to tackle the complexities of handwritten text recognition
with self-supervised learning. Lastly, I thank the Center for Information Technology of the University
of Groningen for their support and for providing access to the Hábrók high performance computing
cluster.

5

Contents
Page

1 Introduction 7
1.1 Research Questions . 10
1.2 Thesis Outline . 10

2 Background 11
2.1 A Brief Overview of Training Neural Networks . 11

2.1.1 Convolutional and Recurrent Neural Networks 12
2.2 Handwritten Text Recognition . 12
2.3 Handwritten Text Generation . 14

3 Testing the Framework: MNIST 18
3.1 Dataset . 18
3.2 Supervised Handwritten Character Recognition . 19

3.2.1 Model Architecture . 19
3.2.2 Implementation Details . 20
3.2.3 Evaluation . 21

3.3 Handwritten Character Generation . 21
3.3.1 Model Architecture . 21
3.3.2 Implementation Details . 23
3.3.3 Experimental Setup . 23
3.3.4 Evaluation . 24

3.4 Self-Supervised Character Recognition . 24
3.4.1 Model Integration . 24
3.4.2 Loss Functions . 25
3.4.3 Implementation Details & Evaluation . 28

3.5 Results . 28
3.5.1 Supervised Handwritten Character Recognition 28
3.5.2 Handwritten Character Generation . 29
3.5.3 Self-supervised Handwritten Character Recognition 32

3.6 Discussion . 36
3.6.1 Summary & Conclusions . 36
3.6.2 Discussion . 37

4 Methods 38
4.1 Dataset . 38

4.1.1 Image Preprocessing . 40
4.1.2 Text Label Encoding . 41

4.2 Supervised Handwritten Text Recognition . 42
4.2.1 Model Architecture . 42
4.2.2 Implementation Details . 43
4.2.3 Evaluation . 43

4.3 Handwritten Text Generation . 44
4.3.1 Model Architecture . 44
4.3.2 Implementation Details . 46

6 CONTENTS

4.3.3 Evaluation . 46
4.4 Self-supervised Handwritten Text Recognition . 47

4.4.1 Model Integration . 47
4.4.2 Loss Functions . 47
4.4.3 Experimental Setup . 49
4.4.4 Evaluation . 50

5 Results 51
5.1 Supervised Handwritten Text Recognition . 51
5.2 Handwritten Text Generation . 54
5.3 Self-supervised Handwritten Text Recognition . 57

5.3.1 Results on Real IAM-HTR Data . 57
5.3.2 Results on Recreated IAM-HTR Data . 62

6 Conclusions 65

7 Discussion 67

Bibliography 69

Appendices 76
A A Siamese Network for a Style-Invariant Loss . 76

A.1 Dataset . 76
A.2 Network Architecture . 77
A.3 Implementation Details . 77
A.4 Evaluation . 78
A.5 Results . 78

B Results of Preliminary Self-Supervised HTR Experiments with Different Learning
Rates on Real IAM-HTR data. 80

C Results of Preliminary Self-Supervised HTR Experiments with Different Learning
Rates on Recreated IAM-HTR data. 81

D Results of Image-based Self-Supervised HTR for Learning New Words 82

Chapter 1 INTRODUCTION 7

1 Introduction

Machine learning algorithms are commonly divided in two categories: supervised learning and un-
supervised learning. In supervised learning, an algorithm learns a mapping from the input data to
an output using a set of corresponding labels, whereas in unsupervised learning, such labels are not
given. Unsupervised learning algorithms instead rely on the similarity between data samples to learn
about the properties of the underlying structure and relationships in the data to produce an answer
[1]. Many problems are solved as supervised problems, specifically so in deep learning, where neural
networks are trained by minimizing the error between the network prediction and the ground truth
label. One field in particular that heavily relies on supervised learning is handwritten text recognition
(HTR), which is the task of transcribing scanned handwritten documents to computer-readable text
(e.g. ASCII). This allows for further applications on the scanned documents such as keyword searches
and machine translation.

A good HTR system is able to transcribe handwriting in any writing style and text. This results in
a complex task with highly variable data. Considering the writing styles, for example, HTR models
need to deal with the between- and within-writer variability; each person has their own writing style,
and a single person’s handwriting varies each time they write. This is caused by both biological
differences and environmental influences, which affect, for example, the pen grip, physical position,
and pen pressure. On paper, this variability is visible through differences in, e.g., slant, curvature, and
character size. The task of differentiating between writer styles, also known as writer identification,
has been studied for decades, which further shows the complexity of the task.

As HTR is the task of transcribing handwritten texts from images to digital text, it involves lan-
guage processing. The endless number of character combinations for the formation of words and
sentences significantly contributes to the HTR problem’s complexity. HTR is commonly dealt with
as a classification or sequence processing problem. A classification approach is simpler since it does
not have to account for time dependencies, but when applied to higher levels than singular characters,
it quickly becomes infeasible. Already at the word level, there are thousands of possible classes. Se-
quence processing approaches predict the likelihood of a character being present at a time step, which
allows for greater flexibility and modeling of character dependencies. However, these HTR models
learn the dependencies specific to the language and lexicon present in the data they have been trained
on, causing them to struggle with generalizing to unseen textual contents or capturing rare character
combinations. Additionally, both classification and sequence processing approaches would not be
able to deal with texts written in scripts not present in the data.

Due to the highly variable nature of the data for HTR tasks w.r.t. writer styles, languages, and
scripts, HTR systems require a large number of annotated samples to produce accurate transcriptions
and generalize well. However, obtaining these takes much time and effort. This is especially the case
for the application to handwritten documents, where expertise in paleography is required. Previous
research has explored various methods to improve HTR performance when working with a limited
number and variety of annotated data. Two common methods are transfer learning and data augmen-
tation. Transfer learning encompasses a knowledge transfer between neural networks by fine-tuning
the weights of a neural network that is pretrained on a related task. This can speed up training times
and has been shown to improve HTR performance [2]. With data augmentation, the data variability
is increased by creating new samples through the application of, e.g., geometrical and morphological
operations to existing data. This can also be done with handwritten text generation (HTG), a field
that aims to produce realistic images of handwriting in arbitrary writer styles and text. Synthetic im-
ages produced with these methods have been shown to improve the quality of transcriptions for both
modern and historical documents [3], [4].

8 Chapter 1 INTRODUCTION

Figure 1: The proposed framework for image-based self-supervised HTR. It uses a pretrained HTG
conditioned on style and textual content representations, resulting from their respective encoders,
to generate synthetic images with HTR-predicted text. A loss function computing the dissimilarity
between the input and synthetic images then informs the HTR of the quality of its prediction.

Producing images with arbitrary writer styles and text, HTG has the potential to eliminate the need
of real data for HTR systems. However, despite the rapid advances in HTG in recent years, synthetic
images are not yet representative enough of real handwritten samples and thus cannot yet replace
real data [5]. The approaches to data augmentation that apply transformations to existing data are
further limited in that they cannot increase the data’s variability w.r.t. language. Moreover, transfer
learning approaches still require annotated data for fine-tuning the pretrained networks to the HTR
task. Hence, there remains the question of whether the need of annotated data to train HTR systems
can be further reduced and even eliminated. This is the matter that the current thesis aims to address.
To do so, we consider a type of unsupervised learning that does not rely on labels, but where the data
serves as its own ground truth: self-supervised learning.

Krishnan et al. [6] proposed TextStyleBrush, which uses a partially self-supervised approach to
text generation for style and content disentanglement based on the similarity of real and generated
images. The idea behind the self-supervision of TextStyleBrush is that texts in the same font or
writing style are more similar compared to texts in differing styles. Likewise, it could be argued that
two images in the same writer style, and with the same texts are more similar to each other than two
images in the same style, but with differing texts. Inspired by TextStyleBrush, this thesis hence aims
to explore the notion of self-supervised learning through image-based similarity to eliminate the need
for labels when training an HTR system. Specifically, we propose a novel self-supervised framework
in which an HTR system is trained based on the similarity of an input image and a synthetic image
that contains the HTR-predicted text. Pretrained HTG models are ideal for producing these synthetic
images, as they can produce images with arbitrary texts and ensure the writer styles in the input
and synthetic images are similar. Training an HTR system in such a manner also allows for further
improvement of existing models on unseen, unlabelled data and, therefore, could be an alternative to
post-processing methods that leverage language models.

The schematic of the proposed framework in Figure 1 portrays how the pretrained generator of
an HTG model can be integrated with HTR for self-supervised training. It is essentially an extension

Chapter 1 INTRODUCTION 9

Figure 2: The standard supervised HTR framework. Here, a loss function informs the HTR network
of the quality of its prediction through a comparison with the ground truth label that corresponds to
the input image.

of the supervised HTR framework as shown in Figure 2, where instead of the text label, the input
image is considered the ground truth, and the generator of an HTG model is inserted between the
HTR network prediction and loss computation. The question remains, however, how the integration
of HTG and HTR models can be implemented. Moreover, unlike supervised HTR, the proposed
framework should learn based on image similarity. Due to the novelty of the framework, it is an
open question of what type of loss function is appropriate for learning differences in handwritten
texts and images. The aforementioned questions as well as the feasibility of the framework were first
explored with handwritten character recognition, being the simplest approach to HTR as it is an image
classification task. Then, the proposed image-based self-supervised framework was investigated with
the more complex sequence processing task of handwritten word recognition.

For the implementation of the proposed framework, it has to be noted that HTG models are con-
ditional generative networks. Typically, a style encoder extracts a latent representation of the desired
writer style based on single or multiple images. Similarly, a content encoder extracts a latent repre-
sentation of the desired text. These style and content representations are then input into a generator
network to produce a synthetic image. The general process of this is portrayed in Figure 1. Adapting
the supervised HTR framework to a self-supervised framework then requires the generator to take in
the HTR-predicted text and encoded style of the input image to produce a synthetic image. Hence,
the HTR predictions need to be mapped to the latent content representation. Training any neural net-
work, however, requires that all operations performed on the input that lead to the loss computation
are differentiable. Therefore, we propose to directly input the predicted class probabilities of the HTR
model to the generator. To enable this, the generator is conditioned on one-hot encoded text labels.

Neural networks are trained by minimizing the objective function, i.e., the loss function. There-
fore, an appropriate loss function is necessary for a network to learn information relevant to the task.
The proposed framework aims to maximize the similarity, i.e. minimize the dissimilarity, between
real and synthetic images based on their textual content. Therefore, an appropriate loss function for
image-based self-supervised HTR needs to capture the differences in text such that the correct charac-
ters are predicted and present in the synthetic data. Taking inspiration from image reconstruction and
generation tasks, we experimented with three image-based losses that operate directly on the image
pixels or on higher-level information by comparing extracted feature maps. Results suggested that
a higher level of information is necessary for substantial learning to occur in the image-based self-

10 Chapter 1 INTRODUCTION

supervised framework. This was used to apply image-based self-supervised learning with HTG on
word recognition. When initial experiments with these image-based losses did not show promising
results, inspiration was also drawn from the field of word spotting, where images are matched based
on textual content regardless of style. As such, two style-invariant losses were investigated in addition
to the image-based losses.

1.1 Research Questions
To summarize, this thesis aims to reduce the need of annotated data for the training of HTR systems
through image-based self-supervised learning and HTG. In order to be effectively used for HTR, such
a system should be able to learn knowledge of the task by itself, as well as further improve existing
HTR models on new data. However, due to its novelty, it has to be explored how to implement and
train such a framework. As such, the following primary and secondary research questions are studied:

Can self-supervised learning based on the similarity between real images and synthetic images
that contain predicted text and are produced with handwritten text generation models be

effectively used for handwritten text recognition?

RQ1 How can handwritten text generation be effectively incorporated into image-based self-
supervised handwritten text recognition?

RQ2 What is an appropriate loss function for training the image-based self-supervised hand-
written text recognition framework?

RQ3 Can pretrained supervised handwritten text recognition models be improved using image-
based self-supervised learning?

1.2 Thesis Outline
First, Chapter 2 provides the relevant theoretical background and related literature on HTR and HTG.
In Chapter 3, the primary research question as well as the first and second secondary questions are
addressed through the application of the proposed image-based self-supervised framework to hand-
written character recognition. Based on these findings, the methodology to answer the primary and
secondary research questions for handwritten word recognition is explained in Chapter 4. The results
are then presented in Chapter 5, for which conclusions are made concerning the research questions
in Chapter 6. Lastly, Chapters 7 discusses the weaknesses of the proposed methodology and suggests
directions for future research.

Chapter 2 BACKGROUND 11

2 Background

2.1 A Brief Overview of Training Neural Networks
This section serves to provide a brief explanation of how neural networks are trained. Additionally,
we explain the types that we focus on in this thesis. The explanations provided in this section are
based on [1].

Neural networks can be described as non-linear function approximators that use layers of nodes,
also termed neurons, that have weighted connections to each other. The input and output layers are
considered visible layers, and any layer in between are hidden layers. A very basic neural network
with multiple layers is the multi-layer perception (MLP). Deep neural networks can then be described
as variations of MLPs with over three hidden layers. They are hierarchical models, in which each
hidden layer learns features on a lower level than the layer before it, allowing it to form complex
representations. This is possible due to the non-linearity that activation functions introduce. The
activation function determines the output of a neuron. How the output h of a layer with weights W is
computed for an input x can be described mathematically as in Equation 1. The activation function
is indicated by σ, and the vector b is the bias term, which are trainable parameters that shift the
activation function.

h = σ(WT x+b) (1)

Now that it is clear what a neural network consists of, the question remains how it exactly learns
to approximate functions. Neural networks are trained by iteratively updating the weights such that
the error between the network predictions and what the network should have predicted is minimized.
This error is computed by a cost function, also called the loss function. The network weights are
updated by moving in the direction of the negative gradient of the loss function, a process called
gradient descent. The magnitude of the updates is controlled by the learning rate. By basing the
network weight updates on the loss’s gradient, the possible loss functions are constrained to include
only those that are differentiable. Since computing the gradient of the loss over the entire dataset is
computationally expensive, the gradient is commonly evaluated over a randomly sampled single data
point (stochastic gradient descent), or over a randomly sampled mini-batch. Different variations of
stochastic gradient descent optimization have been proposed for more stable and faster training by,
e.g., including past gradients in the calculations.

To minimize training times, it is important that the gradient computation can be done as efficiently
as possible. For this, the back-propagation algorithm is used. Given a neural network with i layers
and parameters (weights and biases) θi for each function hi, the gradient of the loss is defined as the
partial derivatives of L with respect to each θi, i.e. ∇L = [δL

δθ1
(θ), ..., δL

δθi
(θ)]. The back-propagation

algorithm computes the partial derivatives efficiently by recursively applying the chain rule to the
input of each function hi. If any further operations are performed on the network output before
the loss computation, the partial derivatives over these operations are also computed. In libraries
specialized for training neural networks such as TensorFlow and PyTorch, each operation involved in
the loss computation is traced and automatically differentiated. The gradients are stored during the
backward pass.

A model that can only perform well for the specific cases present in the training data has not
learned about the data generating distribution (also source distribution). Therefore, neural networks
are tested on unseen data to ensure they have not only learned the specific patterns in the training
data but that they generalize well. Next to training and test sets, a validation set is used for tuning
a network’s hyper-parameters. If a model has a high loss on the training set, it indicates it cannot

12 Chapter 2 BACKGROUND

capture well the patterns in the data; the model is underfitting. On the other hand, when the difference
between the training loss and validation loss is increasing or large, the model is too specific to the
training set and is overfitting. To prevent this, a network can be regularized by for example applying
additional constraints to the loss function.

2.1.1 Convolutional and Recurrent Neural Networks

In this thesis, we will use two types of neural networks: feed-forward neural networks, specifically
convolutional neural networks (CNN), and recurrent neural networks (RNN). In feed-forward net-
works, the information is propagated forward through the network layers without any feedback cycles.
The CNN is a specialized type of MLP where convolutions are applied to grid-like data (commonly
image data). A convolutional layer consists of multiple kernels that move over the input and are con-
volved with it at each time step. Using the same kernel multiple times on the same input (i.e., weight
sharing) allows for a significant reduction in parameters compared to dense layers, where each neuron
in one layer is connected to each neuron in the next. To maintain the data’s dimensionality, padding
is usually applied. Additionally, pooling operations further reduce the number of parameters and add
invariance to small translations by summarizing neighborhoods of the data. Consecutively applying
convolutions to an input image allows for hierarchical feature extraction, as each deeper layer extracts
more abstract features.

RNNs are a type of neural network specific to sequential data. In RNNs, the output at the current
time step depends on the input at the current time step and the output of the previous time step. For
this, an RNN unit has a hidden state that captures the sequence information, serving as a ‘memory‘.
RNNs notoriously suffer from the vanishing and exploding gradients problems, which occur when
the gradients become near zero (vanishing), or very large (exploding). This is because the gradients
of RNNs are computed with back-propagation through time, where the back-propagation algorithm is
applied to the unfolded feedback cycles in the recurrent units. The unfolded RNN is usually very deep
and consists of repeated operations on the same weights as network weights are shared across time
steps, making the vanishing and exploding gradients problems much more likely to occur. Another
problem with RNNs is that the output at each time step is most influenced by the most recent output
of an earlier time step (i.e., t −1), which makes long-term dependencies difficult to obtain. One way
to mitigate this problem is to introduce connections with a higher time delay. This also reduces the
vanishing and exploding gradients problems, as the gradients vanish or explode exponentially with
respect to the number of time-steps [7].

2.2 Handwritten Text Recognition

Handwritten text recognition is a challenging problem that researchers have been tackling for decades.
This is because the data does not originate from the same source distribution; there is a large variety
in handwriting styles and language structures produced by different people. In other words, the data
is not independently, identically distributed.

Except at the character level, HTR is considered a sequential problem. Before deep learning
became feasible, hidden Markov models (HMM) were employed where word models were built
based on character-level features in implicit- and explicit segmentation methods [8]. Later, hybrid
approaches that combine neural networks with HMMs were proposed for line recognition [9]. How-
ever, these models were limited as HMMs do not consider context and need hand-crafted features for
a good performance. Due to their ability to incorporate context and sequential nature, RNNs were
a viable alternative to HMMs, and have become a key component in HTR models. RNNs output

Chapter 2 BACKGROUND 13

a probability distribution over the possible characters for each time step. To train RNNs for HTR,
Graves et al. [10] proposed the CTC framework, where the inclusion of a blank, no-label, symbol
eliminated the need for explicit alignments between the images and labels.

Standard RNNs are prone to suffer from the vanishing and exploding gradients problems, and
struggle to maintain long-term dependencies. To mitigate these issues, long short-term memory
(LSTM) architectures, a type of RNN, are used in HTR systems with the CTC framework [11]. In-
side an LSTM unit, three gates, each with their own learnable parameters, control the information
flow based on the current input and the output at the previous time step. Additionally, a cell state
stores the cross-time dependencies. A forget gate controls what of the previous cell state to use, an
input gate controls what of the input at the current time step to use, and an output gate controls what
information of the current cell state to output [12]. Standard, unidirectional LSTMs are still limited,
however, as they only consider past information. Hence, bi-directional LSTMs (BLSTMs), where
two LSTM layers simultaneously process the input sequence in forward and backward directions, are
commonly used instead.

Though combining BLSTMs and the CTC framework improved the state-of-the-art at the time,
it did not eliminate the need for hand-crafted features. Moreover, it was required to reduce stylis-
tic differences between samples in preprocessing for good performances [11]. Circumventing the
need for hand-crafted features, Graves and Schmidhuber [13], input raw pixels to a multidimensional
LSTM (MDLSTM) network with CTC, which adds recurrent connections along both the spatial and
temporal dimensions of the data. Later, Shi et al. [14], proposed a convolutional recurrent neural
network (CRNN) architecture, where features are extracted with a CNN and an RNN predicts the
label sequences. Applying MDLSTMs to a variation of this architecture, Voigtlaender et al. [15] out-
performed the previous MDLSTM frameworks. While showing impressive results, MDLSTMs are
computationally expensive. Consequently, research turned to cheaper alternatives.

Puigcerver [16] showed that using a CNN with BLSTM layers could achieve similar performance
to CNN-MDLSTMs while being computationally less expensive. Alternatively, Bluche and Messina
[17] proposed the Gated-CRNN (GRCNN), where gates in the CNN determined a feature’s relevancy
for a certain position. In [18], de Sousa Neto et al. aimed to improve upon Puigcerver [16]’s re-
sults, while maintaining a low number of parameters like Bluche and Messina [17]. They adapted
the GRCNN such that the gates were applied to only half the features. Additionally, they used bi-
directional gated recurrent units (BGRU) instead of BLSTMs. A BGRU unit has a hidden state and
two gates: a reset gate that allows for discarding information irrelevant to the future, and an update
gate that controls the information flow from the previous hidden state [19]. The proposed architecture
outperformed both Puigcerver [16] and Bluche and Messina [17].

Alternative approaches to RNN-based HTR have also been investigated, specifically on the word
level. Almazán et al. [20] simplified word spotting and recognition to the nearest neighbor search
by mapping the text labels and features extracted from word images to a common d-dimensional
character-level word attribute space, termed pyramid of histogram characters (PHOC). Krishnan et al.
[21] built upon this by using deep CNN features of a word image classification model, HWNet [22],
instead of hand-crafted ones. Recently, an improved version of HWNet was applied to an adapted
version of the PHOC framework, where a common subspace for a joint feature representation between
text labels and word images was learned, reaching state-of-the-art results [23]. These nearest-neighbor
approaches are limited, however, as they rely on lexicons. Avoiding this, Mondal et al. [24] applied
object recognition for sequential character detection and identification to recognize English text.

Like how nearest-neighbour approaches rely on lexicons, many of the RNN-based architectures
rely on statistical language models in post-processing to obtain improved results. This can be espe-
cially useful for out-of-vocabulary (OOV) words, which HTR models struggle to generalize to. These

14 Chapter 2 BACKGROUND

language models are typically n-gram language models trained on an external corpus or on the lexicon
of the training data [13], [15] - [18]. N-gram language models give a probability of the next word or
character based on the previous n− 1 words or characters. Besides language models, heuristics are
also used for decoding the RNN predictions. One such method that is used at inference time to im-
prove recognition results is the beam search algorithm [8], [18], which performs a tree-search where
only the n-best candidate sequences at each time step are considered [25]. Beam search can operate
on both the character and word level, and incorporate language models [26].

In recent years, HTR research has focused more on attention-based architectures. These mod-
els reduce the need for language models in post-processing by considering the language modeling
abilities of the networks themselves. Attention-based models are commonly sequence-to-sequence
(seq2seq) encoder-decoder models, where an encoder produces a feature sequence, and the decoder
maps this to characters. An attention mechanism then allows for better alignment between input im-
ages and their labels by focusing on more relevant features at each decoding step. Michael et al. [27]
proposed such a network, achieving competitive results using only beam search. Around the same
time, Kang et al. [28] proposed a seq2seq model architecture, but with content- and location-based
attention as well as label smoothing. Additionally, Poulos and Valle [29] explored non-linear atten-
tion mechanisms. Their model was trained s.t. the current character prediction was conditioned on
the previous one, which would enable better generalization to out-of-vocabulary words.

Following the successes of the transformer architecture in natural language processing, HTR mod-
els started to adopt this architecture as well. Transformers [30] address the memory limitations of
recurrent networks for longer sequences and their lack of parallelization capabilities by relying on
attention mechanisms. Kang et al. [31] proposed a transformer-based architecture that operates on the
character level and can learn language-related character dependencies. This allows for generalization
to OOV words without the use of explicit language models. While Kang et al. [31] used a ResNet
first to extract one-dimensional representations of text lines, Li et al. [32] used a pretrained vision
transformer and initialized the decoder weights with a pretrained language model in TrOCR. The lat-
ter, they motivate, altogether eliminates the need for language models in post-processing. Leveraging
these models proved to result in high performance, as the authors report they achieved new state-of-
the-art results. The downside of transformer architectures, however, is that they are computationally
expensive and require especially large amounts of labeled data. For comparison, the CNN-BGRU
HTR-Flor model [18] had 0.8 million parameters, whereas the smallest TrOCR model [32] had 64
million parameters.

2.3 Handwritten Text Generation

HTG aims to produce realistic images of handwritten text, written in a desired style, and with a
desired text. The main motivation behind HTG is to leverage it for HTR, where data labels are costly
to obtain. Especially the ability to produce images conditioned on content would enable a greater
variety of words present in the data, potentially aiding in the prediction of OOV words.

Early works on HTG concatenate handwritten glyphs consisting of one to three characters through
fitted curves or polynomials [33]. Another approach, by Graves [34], was to use LSTMs with a sliding
window over a desired character sequence for synthesizing text line images. However, since Alonso
et al. [35] proposed the use of generative adversarial networks (GANs) for the generation of hand-
written word images, GANs have been the focus of HTG. A standard GAN consists of two models:
a generator G that produces an image from randomly sampled noise z, and a discriminator D that
discriminates between synthetic and real images. The objective of the generator is to produce im-
ages that the discriminator deems as real, while that of the discriminator is to correctly identify these

Chapter 2 BACKGROUND 15

as synthetic images. This can be summarized in the objective function given in Equation 2, where
pdata(x) is the data distribution, x the data, and pz(z) the prior of the noise. The first term represents
the discriminator’s objective function, while the second term represents that of the generator. For
more details on the GAN, we refer to [36].

min
G

max
D

L(D,G) = Ex∼pdata(x)[log(D(x)]+Ez∼pz(z)[log(1−D(G(z)))] (2)

Alonso et al. [35] adapted the GAN in two ways. First, they conditioned the generator on content
by concatenating a content embedding encoded with a BLSTM network with the noise input and
injecting it into intermediate layers of the generator network. Second, inspired by Odena et al. [37],
a text recognition network was added to enforce the content in the generated images. This HTR
model was trained concurrently with the generator and discriminator models with the CTC loss. To
incorporate it in the GAN, its loss on the synthetic images, and the conditioned content input was
added as an extra term to the generator’s objective function. While the HTG model was able to
generate images with a certain content, the images did not look natural; artifacts were present, and
ink traces were blurry. Additionally, the style could not be controlled.

Fogel et al. [38] introduced ScrabbleGAN, which could produce images of unconstrained lengths
with arbitrary contents. The network could do this by generating each character separately and lever-
aging the receptive fields of CNNs to learn connections between characters. The discriminator worked
similarly. As in [35], ScrabbleGAN used an auxiliary text recognizer. Additionally, the style was con-
trolled with noise vectors that were kept constant between characters of the same word. Both Alonso
et al. [35] and Fogel et al. [38] added 100,000 synthetic images to two separate HTR benchmark
datasets and showed a slight improvement in performance. However, considering the large amount of
data samples added, their effectiveness w.r.t. generalization to real data is questionable.

While ScrabbleGAN could generate images with characters in the same style based on a noise
vector, it could not reproduce the styles of specified writers. Kang et al. [39] noted the model suffers
from mode collapse due to its low variability in writing styles, which can be partly attributed to
the assumption that all characters have the same widths. Conditioned on both style and content,
GANwriting [39] generated more realistic images than previous HTG models. To condition the GAN
on style, the authors extracted a style embedding in a few-shot manner from word images of the
same writer. The content was embedded both character-wise and globally to allow for OOV word
generation. To enforce the conditioned style and content in the synthesized images, losses from an
auxiliary writer classifier and HTR network applied to synthetic data were added to the generator
loss as separate terms. The synthetic word images appeared more realistic and readable compared to
previous models, but GANwriting has a prominent weakness: it can only produce good quality word
images when the words are no longer than seven characters.

HiGAN [40] uses a similar approach to ScrabbleGAN for content encoding, enabling it to produce
images of arbitrary lengths. It overcomes the need for few-shot style extraction by introducing a
style reconstruction loss that minimizes the difference in encoded styles of the real and synthetic
images. Additionally, a writer classifier was used, as well as a regularization term to match the style
latent space with the prior random distribution. The authors improved HiGAN in [41], terming their
new model HiGAN+. They reduced artifacts such as blurriness and improved style imitation by
adding a patch-level discriminator, a content reconstruction loss, and a contextual loss between high-
level features extracted with the writer classifier. While HiGAN+ produced higher-quality images
than previous HTG models, it is a complex model with eight loss terms for the generator’s objective
function, which shows that HTG is a complex problem.

Following a similar paradigm with auxiliary networks, several other GAN-based models have

16 Chapter 2 BACKGROUND

been proposed. For example, TextStyleBrush [6] was trained with a self-supervised framework com-
bining a text-specific perceptual loss, two reconstruction losses that compare high-level features be-
tween synthetic and input images, and a content loss. While TextStyleBrush has high potential due
to its self-supervised nature, its implementation details were not reported in detail. Another model,
JokerGAN [42], enhanced the quality of synthetic images by adding an input specifying the vertical
position of characters. Finally, AFFGANwriting [43] improved image quality by fusing local and
global style features extracted with a VGG-19-based style encoder.

Like HTR, research on HTG has also incorporated transformer architectures in their frameworks.
For example, Kang et al. [44] extended GANwriting to the line level and replaced the seq2seq HTR
model with a transformer architecture. Moreover, the authors of JokerGAN incorporated a vision
transformer for character-wise content encoding in their adapted architecture, JokerGAN++ [45].
Bhunia et al. [46] claim to be the first to propose a transformer-based generative network, called
Handwriting Transformers (HWT), where the self-attention mechanisms allow for the encoding of
both global and local style features. Building upon HWT, Pippi et al. [47] improved the quality
of synthetic images for rare characters by encoding the desired text as a concatenation of vector
representations of its corresponding unifont character images.

More recently, diffusion models have gained more attention in HTG research due to their high
image quality. Diffusion models are trained by learning to reverse a process where sampled noise
is added to input data across time steps such that the data ends up looking like Gaussian noise [48].
HTG literature commonly uses the Denoising Diffusion Probabilistic Model (DDPM) [49], which
uses an alternative loss function based on the error between the true noise and the estimated noise.
One such method proposed for HTG is Conditional Text Image Generation with Diffusion Models
(CTIG-DM) [50]. The network is conditioned on encodings of the unique visual characteristics of
the input images, semantic context, and writer style by inputting them to the network at each time
step with a corresponding input image. The authors showed that an HTR model trained on 200,000
synthetic images generated by the CTIG-DM network was able to achieve model performance similar
to the HTR model trained on only real data, and a significantly better performance when trained on
mixed data.

DDPMs are lengthy to train and require high computational resources as they operate directly on
images and a separate model is trained at each time step. Hence, latent diffusion models (LDM) were
proposed [51], where the diffusion process is applied to an image’s latent representation. This method
was used for WordStylist [5], where an embedding layer and a transformer block were used to encode
the desired writer index and content, respectively. The style encoding and noise vector were directly
input to the noise predictor network, and the content encoding was injected into intermediate layers
of the network. The authors compared WordStylist with two other models: GANwriting [39], and
SmartPatch [52], the latter of which extends GANwriting with a patch-based discriminator and HTR-
based attention mask. They showed an improved performance of WordStylist, both qualitatively and
quantitatively. One method they used to show this is by training a word-level HTR model on the IAM
database separately with a training set of real images and with the same training set recreated with
the different HTG models. The HTR models were then tested on real data for comparison. To then
give an indication of the effectiveness of HTG models for HTR, we show the results for this method
reported by Nikolaidou et al. [5] in Table 1, where the CER and WER are the character and word
error rates, respectively.

Chapter 2 BACKGROUND 17

Table 1: Test results of an HTR model tested on real IAM data. The HTR models were trained on real
training IAM data, and on the training data recreated with GANwriting, SmartPatch, and WordStylist.
The results are as reported in [5].

Training Data CER (%) WER (%)

Real IAM 4.86 ± 0.07 14.11 ± 0.12
GANwriting IAM 38.74 ± 0.57 68.47 ± 0.32
SmartPatch IAM 36.63 ± 0.71 65.25 ± 1.02
WordStylist IAM 8.80 ± 0.12 21.93 ±0.17
Real IAM + GANwriting IAM 4.87 ± 0.09 13.88 ± 0.10
Real IAM + SmartPatch IAM 4.83 ± 0.08 13.90 ± 0.22
Real IAM + WordStylist IAM 4.67 ± 0.08 13.28 ± 0.20

18 Chapter 3 TESTING THE FRAMEWORK: MNIST

3 Testing the Framework: MNIST
This Chapter explores the feasibility of the proposed image-based self-supervised learning framework
by applying it to Handwritten Character Recognition (HCR). Being a classification problem of single
characters, this minimizes the complexity of the task compared to higher-level HTR. Specifically, the
framework was applied to the handwritten single digits of the benchmark dataset MNIST. Simplify-
ing the HTR problem in this manner allows us to focus on 1) whether the proposed framework has
the potential to be used for word-level HTR, 2) how the proposed framework can be implemented,
and 3) what loss functions could be used for self-supervised HTR. We first show that the character
recognition model can achieve a good performance in a supervised setting before integrating it with a
pretrained generator into the self-supervised framework.

The experiments detailed in this Chapter were implemented in Python. The models were imple-
mented with TensorFlow [53]. The code is publicly available at https://github.com/Lisa-dk/
self-supervised-mnist.git.

Figure 3: Example images from the MNIST dataset.

3.1 Dataset

To test whether the proposed framework can be used for HCR, we used the MNIST dataset [54]. This
is a widely used benchmark dataset for handwritten digit classification on which relatively simple
neural networks achieve high performances. This is due to the fact that the images contain little
noise, and the digits are centered in each image. Consequently, algorithms only have to account for
the differences between the character shapes and not for their spatial positions. The MNIST dataset
consists of 70,000 28 x 28 grayscale images of the handwritten digits 0 to 9. The images have pixel
values between 0 and 255. Examples are shown in Figure 3. Figure 4 shows that the classes of the
dataset are uniformly distributed. Moreover, to get an indication of class separability, we visualized
the data with t-SNE on the flattened raw images in Figure 5. Overall, it shows clear clusters for each
digit class, indicating that they are separable.

https://github.com/Lisa-dk/self-supervised-mnist.git
https://github.com/Lisa-dk/self-supervised-mnist.git

Chapter 3 TESTING THE FRAMEWORK: MNIST 19

Figure 4: Number of samples per class of the MNIST dataset

We used the training and testing splits constructed by Lecun et al. [54], containing 60,000 and
10,000 images, respectively. To maintain independence between the character recognition and char-
acter generation models, the training set was split in half, resulting in two datasets: MNIST-HCR,
and MNIST-GEN. The test set served as a hold-out set for MNIST-HCR. Consequently, there are
30,000 training images for the MNIST-GEN and MNIST-HCR datasets each, and 10,000 test images
for MNIST-HCR. All images were divided by 255 to rescale them in the range of [0, 1]. This prepro-
cessing step was performed for all images in both datasets to ensure compatibility between the HCR
and generative models.

3.2 Supervised Handwritten Character Recognition

3.2.1 Model Architecture

Keeping the integration of the HCR architecture with the pretrained HCG model into the self-supervised
framework in mind, we prioritized simplicity over an optimal supervised model performance. Hence,
we designed a simple three-layer CNN network for HCR that, although not state-of-the-art, could
achieve a good performance. As shown in Figure 6, our CNN architecture consists of three convo-
lutional layers for feature extraction, where the first two layers have 64 channels, and the third 128
channels. To each layer, 3 x 3 kernels were applied. In the first two layers, this was with stride 2, and
in the third layer, with stride 1. The activation function was Leaky ReLU, which has a small gradient
for negative inputs, preventing a discontinued gradient flow that occurs otherwise with the standard
ReLU function [1]. After the first two convolutional layers dropout was applied with a probability
of 0.2 to prevent overfitting. The network then had a final 10-dimensional dense layer, where the
Softmax activation function computed the class probabilities for each of the 10 digits.

20 Chapter 3 TESTING THE FRAMEWORK: MNIST

Figure 5: Data visualization of the MNIST dataset with t-SNE.

28x28x64 14x14x64 7x7x128
10

Fl
at

te
n

 Conv2d (3x3)
+ Leaky ReLU
+ Dropout

 Conv2d (3x3)
+ Leaky ReLU

 Dense
+ Softmax

28x28x1

 Conv2d (3x3)
+ Leaky ReLU
+ Dropout

Figure 6: The CNN architecture for supervised and self-supervised HCR, using three convolutional
layers for feature extraction and a dense layer for digit classification.

3.2.2 Implementation Details

Since character recognition is a multiclass classification problem, the HCR architecture was trained
with the Cross-Entropy loss as expressed in Equation 3. Here, C is the number of classes, yi is the
probability of the ground truth label for class i, and ŷi is the predicted probability for class i. Moreover,
the Adam optimizer was applied with a learning rate of 0.001 and the batch size was set to 256. The
learning rate and batch size were chosen as they resulted in good performance but were not further
optimized with hyperparameter tuning.

LCE =−
C

∑
i=1

yilog(ŷi) (3)

Chapter 3 TESTING THE FRAMEWORK: MNIST 21

3.2.3 Evaluation

The supervised HCR model was trained with 5-fold cross-validation on the MNIST-HCR dataset. To
prevent overfitting, early stopping was applied to the validation loss with a patience of 5 epochs. To
minimize the dependency of the results on the weight initialization and training set, the test results
were obtained by taking the mean of the predicted class probabilities per k-fold. Since there were
no heavy class imbalances, the models were evaluated with accuracy, i.e., the fraction of correctly
predicted samples. In addition, the confusion matrix was computed on the test set to gain better
insight into the model’s performance. To contextualize the model’s performance, the final test results
were compared with DropConnect, a state-of-the-art model by Wan et al. [55]. Here, the model
used dropout not on the activations, but on the network weights. They used data augmentation and
a learning rate scheduler as well as a smaller batch size of 128. Moreover, Wan et al. [55] obtained
their test results in the same manner as we did. Because the same test set was used, the results could
be directly compared.

3.3 Handwritten Character Generation
3.3.1 Model Architecture

A generative architecture that has been shown to perform well for character generation with the
MNIST dataset is the Deep Convolutional GAN (DCGAN) [56]. This architecture uses convolu-
tions for feature extraction in the discriminator and up-sampling in the generator, which allows for a
higher resolution of synthetic images and more stable training. Moreover, a DCGAN is more simple
than other proposed variations of character generators and will thus be easier to integrate with the
image-based self-supervised framework. It should, however, be conditioned on the digit classes. One
such model was implemented by Keras [57] and is publicly available1. The model is a DCGAN where
both the discriminator and generator are conditioned on the digit classes, following the approach of
Mirza and Osindero [58]. We adapted this model to TensorFlow to ensure compatibility with the HCR
architecture.

G

D

z～N(0,1)

Real/fake?

y

Real images

Fake images

Figure 7: Overview of Chollet et al. [57]’s conditional DCGAN architecture. Here, a generator G
produces synthetic images from randomly sampled noise z with the given digits y. A discriminator
predicts whether the images of the given digits are real or not.

1https://github.com/keras-team/keras-io/blob/master/examples/generative/conditional_gan.py

https://github.com/keras-team/keras-io/blob/master/examples/generative/conditional_gan.py

22 Chapter 3 TESTING THE FRAMEWORK: MNIST

7x7x138

Up-conv2d
(4x4) +
LeakyReLU

14x14x128 28x28x128

Reshape

yi

z～N(0,1) 28x28x1

Up-conv2d
(4x4) +
LeakyReLU

Conv2d
(7x7) +
Sigmoid6272

Dense +
LeakyReLU

Figure 8: The DCGAN’s generator architecture, using one dense and three up-sampling layers to
produce synthetic images. It was conditioned on the digit classes by embedding the randomly sampled
noise z with a label yi.

Duplicate
+ reshape

28x28x64 14x14x64

Conv2d (3x3)
+ Leaky ReLU
+ Dropout

Conv2d (3x3) +
Leaky ReLU +
Dropout

7x7x128

Global
Maxpool

Dense

1

yi

Figure 9: The DCGAN’s discriminator architecture using a two-layer CNN. It was conditioned on the
digit classes by concatenating the input image with the image representation of its label yi.

An overview of the conditional DCGAN is shown in Figure 7. The architecture contains a gen-
erator G that produces synthetic images from a set of randomly sampled noise vectors with labels y,
and a discriminator D that classifies a set of images as real or generated given their labels. The aim
of the generator is then to generate images that are classified as real images by the discriminator. We
now describe the generator and discriminator model architectures and how they were conditioned on
class labels.

The generator model’s architecture is shown in Figure 8. It was conditioned on one-hot encoded
labels by concatenating them with 128-dimensional random Gaussian noise vectors. The random
sampling was done with a seed of 1337 and ensured variability among same-class synthetic images.
The noise-embedded labels were processed by a dense layer with 7 x 7 x 138 neurons and reshaped
to an image with these dimensions. The final image was then generated using two transposed con-
volutional layers. The first two layers had 128 channels with 4 x 4 kernels that moved with stride 2.
The padding parameter was set such that an image’s height and width increased with the factor of the
stride. The final layer was a standard convolutional layer and had 1 channel with a 7 x 7 kernel that
slid over the input with stride 2. This resulted in a 28 x 28 x 1 synthetic image. The LeakyReLU
activation function was applied after each layer in the network, except for the final transposed convo-
lutional layer. Here, the Sigmoid activation was used.

The discriminator model’s architecture is shown in Figure 9. The left part of the figure displays
how the discriminator was conditioned on the class labels. The one-hot labels were duplicated 10

Chapter 3 TESTING THE FRAMEWORK: MNIST 23

times and reshaped to 28 x 28 x 10 images. This was concatenated with the input image, resulting
in 28 x 28 x 11 content-embedded images. A CNN with two convolutional layers processed this
into feature maps, which were reduced to a 128-dimensional feature vector with global max pooling.
A single output neuron then returned the probability of the input image being real or not. The two
convolutional layers had 64 and 128 channels, respectively, with 3 x 3 kernels that moved with stride
2. The Leaky ReLU activation function was applied after each convolutional layer, as well as dropout
with a probability of 0.2 to prevent overfitting.

3.3.2 Implementation Details

The DCGAN was trained with the adversarial loss as shown in Equation 4 [58], where pz(z) is the in-
put noise prior, y are the ground truth labels, and x the input images. The generator and discriminator
were simultaneously trained such that first, the discriminator is updated by minimizing the first term
of L(D,G), and second, the generator is updated by minimizing the second term. The models were
trained using the Adam optimizer with a learning rate of 0.0003. The batch size was set to 64.

min
G

max
D

L(D,G) = Ex∼pdata(x)[log(D(x|y)]+Ez∼pz(z)[log(1−D(G(z|y)))] (4)

3.3.3 Experimental Setup

To maximize the quality of synthetic images, data augmentation was applied. Based on preliminary
experiments, each training image was augmented once with a random rotation and shearing, in both
x and y axes, within the range of -10 to 10 degrees. A comparison between non-augmented and
augmented images can be seen in Figure 10. Considering data augmentation could also reduce syn-
thetic image quality, the DCGAN was trained in two settings: a non-augmented setting with only
non-augmented images and an augmented setting with both non-augmented and augmented images.

(a) Non-augmented (b) Augmented

Figure 10: Non-augmented (a) and augmented (b) samples of MNIST.

24 Chapter 3 TESTING THE FRAMEWORK: MNIST

Real
images

Fake
images

Inception
v3

Inception
v3

N(μr, ∑r)

N(μg, ∑g)

Fréchet
Distance

Figure 11: Schematic of the FID calculation

3.3.4 Evaluation

To train the DCGAN, the MNIST-GEN dataset was randomly split such that 90% of the images were
reserved for training (27,000 samples), and 10% for validation (3,000 samples). The number of train-
ing epochs for the models was based on the training and validation losses, as well as the synthetic
image quality. The synthetic image quality was evaluated visually by generating 10 images per digit
class every 5 epochs. Additionally, the Fréchet inception distance (FID) between was for quantitative
evaluation on the MNIST-GEN validation set. Because calculating the FID is computationally expen-
sive, this was only computed from when the losses started to converge and when the synthetic images
no longer appeared to improve visually.

The FID is the Fréchet distance between the normal distributions with means and covariance ma-
trices µr, Σr for real images, and µg, Σg for generated images. These are extracted from the feature
maps of the Inception-V3 network pretrained on ImageNet [59]. A schematic overview is shown in
Figure 11, and the detailed computation is given in 5. The FID is not an optimal metric for image
quality, however. It assumes the extracted feature maps are normally distributed and suffers from bi-
ases due to the feature maps’ high dimensionality. Additionally, considering handwriting specifically,
the extracted features may be sub-optimal as the inception-V3 network is trained on natural images.
Nevertheless, it is standard to evaluate the synthetic image quality in HTG with the FID and a study
on various evaluation metrics for HCG is outside the scope of this thesis.

d(N (µr,Σr),N (µg,Σg))
2 = ||µg −µr||22 +Tr(Σg +Σr −2(ΣgΣr)

1
2) (5)

3.4 Self-Supervised Character Recognition
3.4.1 Model Integration

After having established the HCR network architecture in Section 3.2 and the generative model in
Section 3.3, we can now consider integration into the image-based self-supervised HCR framework.
We emphasize the generator model was pretrained and will not be further trained in the self-supervised
setting. This prevents potential training instabilities and allows us to focus on the framework’s im-
plementation and loss functions. To then integrate the generator and HCR models, the compatibility
of their inputs and outputs has to be ensured on two fronts: image preprocessing and label encoding.
The next section will address another important component: the loss function. A schematic overview
of the image-based self-supervised framework given these components is shown in Figure 12.

Image preprocessing. To compare the input and synthetic images with a loss function, their
pixel values need to be on the same scale. To ensure this, we applied identical processing to the

Chapter 3 TESTING THE FRAMEWORK: MNIST 25

HCG and self-supervised HCR pipelines. This is also most efficient w.r.t. computational costs
of the framework.

Label encoding. The fact that the DCGAN was conditioned on one-hot labels simplifies the
integration of the pretrained into the self-supervised framework. It enables us to directly input
the HCR-predicted class probabilities into the generator for producing the synthetic images.
If the generator was not conditioned on one-hot labels, additional operations would have been
necessary for decoding and re-encoding the HCR predictions. This can be complicated since
these operations would need to be differentiable. Moreover, information about the classes with
lower probability predictions would be lost. Therefore, using one-hot encoded labels increases
the computational efficiency and uses all available information.

z～N(0,1)

Figure 12: Schematic overview of the image-based self-supervised HCR framework. The generator
G is pretrained with the DCGAN architecture as described in Section 3.3.

3.4.2 Loss Functions

An appropriate loss function for self-supervised HCR is one that is minimized when the input and
synthetic images contain the same digit. If the loss does not capture the differences in character
shapes well, there is a risk of the HCR network exploiting the generator to produce images that, while
minimizing the loss, do not contain legible or correct digits. Following the same reasoning, image-
based self-supervision, as proposed in this thesis, can be posed as an image reconstruction problem;
the HCR network needs to learn to make predictions such that the generator produces images akin to
the input images.

Posing self-supervised HCR as an image reconstruction problem, we can take inspiration from
loss functions used in this field. Specifically, loss functions were considered that are used to train
autoencoders, a type of generative model where an encoder maps images to a latent space, and a
decoder reconstructs the images from this. The performances of several loss functions for such models
were studied by Khare et al. [60] on various datasets, including the MNIST dataset. They showed
that the Mean Squared Error (MSE) and the Binary Cross-Entropy (BCE), in particular, resulted
in images with the best quality. Therefore, these objective functions were considered for image-
based self-supervised HCR. A third objective function that was considered is the perceptual loss,

26 Chapter 3 TESTING THE FRAMEWORK: MNIST

which measures differences in style and content between images and showed good results for image
generation tasks [61]. These functions are detailed as follows.

MSE The MSE loss penalizes larger differences between pixel values more heavily, being the
mean of the squared pixel differences. The MSE is given by Equation 6, where H and W are
the image height and width, and ŷ and y are the synthetic and input images, respectively.

LMSE(ŷ,y) =
1

HW
||y− ŷ||22 (6)

BCE Like the MSE loss, the BCE loss penalizes larger differences between the image pixels
more heavily, but does so by a logarithmic penalty. The BCE loss for an image is given by
Equation 7.

LBCE(ŷ,y) =− 1
HW

W

∑
i=1

H

∑
i=1

[yi, jlog(ŷi, j)+(1− yi, j) · log(1− ŷi, j)] (7)

Perceptual loss [61] Unlike the MSE and BCE losses that directly compare pixels of the input
images, the perceptual loss operates on a higher level: it compares pixels of extracted feature
maps. In this manner, the perceptual loss encourages the generated images to be perceptually
similar to the input images. The extracted feature maps are the activations of the jth layer of the
VGG-16 network, pretrained on ImageNet. The perceptual loss is computed as in Equation 8,
where C is the number of channels of the feature maps and φ the pretrained VGG-16 network.

Lp(ŷ,y) =
1

C jH jWj
||Φ j(ŷ)−Φ j(y)||22 (8)

To determine which jth layer to use for feature extraction, feature maps were extracted at var-
ious layers of the VGG-16 network and used to train k-nearest neighbors (kNN) classifiers (k
= 5). Specifically, the convolutional layers before each max pooling layer were considered, ex-
cept for the first max pooling layer. These were chosen based on an initial exploration of t-SNE
dimensionality reduction. Hence, feature maps were extracted from the 4th, 7th, 10th, and 13th
convolutional layers, which correspond to the 5th, 9th, 13th, and 17th layers in the pretrained
VGG-16 network provided by TensorFlow [53].

The kNN classifiers were trained with 5-fold cross-validation on the MNIST-HCR dataset and
evaluated with accuracy. The results in Table 2 show that the extracted feature maps at the 7th
convolution resulted in the highest accuracy (98.97%± 0.11%), while those extracted at the
13th convolution resulted in the lowest accuracy (93.90%± 0191%). These results reflect the
class separability of the feature maps visualized with t-SNE, shown in Figures 13, 14, 15, and
16, respectively. Specifically, much overlap between classes can be observed at the 13th con-
volution’s feature maps (Figure 16), and the least at the 7th convolution’s feature maps (Figure
14). Based on these results, the activations of feature maps extracted at the 7th convolutional
layer were used to compute the perceptual loss.

Chapter 3 TESTING THE FRAMEWORK: MNIST 27

Table 2: Results of kNN classifiers trained with 5-fold cross-validation on the MNIST-HCR dataset.
The models were trained on the activations of the feature maps extracted at the n-th convolution with
the VGG-16 network pretrained on ImageNet

Nth convolution Validation accuracy (%)

4th 97.80 ± 0.17
7th 98.97 ± 0.11
10th 98.42 ± 0.10
13th 93.90 ± 0.19

Figure 13: T-SNE of VGG- 16 features maps at
the 4th convolutional layer.

Figure 14: T-SNE of VGG- 16 features maps at
the 7th convolutional layer.

Figure 15: T-SNE of VGG- 16 features maps at
the 10th convolutional layer.

Figure 16: T-SNE of VGG- 16 features maps at
the 13th convolutional layer.

28 Chapter 3 TESTING THE FRAMEWORK: MNIST

3.4.3 Implementation Details & Evaluation

The image-based self-supervised models were trained with the MSE, BCE, and perceptual loss func-
tions and used the Adam optimizer. The initial learning rate was set to 0.001 for all models. Based
on preliminary experiments, a multi-step learning rate scheduler was used that decreased the learning
rate to 0.0003, 0.0001, and 0.00001 after 1000, 3000, and 5000 iterations, respectively. The batch
size was set to 256.

The self-supervised models were trained on the MNIST-HCR dataset with 5-fold cross-validation.
Early stopping was applied to the validation loss with a patience of 5 epochs to prevent overfitting.
Following the supervised setting, the models were evaluated with accuracy, and on test data the con-
fusion matrix, too. Moreover, the models’ test performances were obtained by taking the mean of the
predicted class probabilities from the models resulting from each k-fold.

3.5 Results
3.5.1 Supervised Handwritten Character Recognition

The supervised HCR model was trained with 5-fold cross-validation on MNIST-HCR and tested on
an unseen test dataset. The test results were obtained by taking the mean of the Softmax probabilities
from the models resulting from each k-fold. The evaluation was done with accuracy, and on the test
set, the confusion matrix was used as well. To contextualize the model’s performance, its test results
were compared to DropConnect [55], a state-of-the-art model.

Table 3 shows the validation and test accuracies of our supervised HCR model and DropConnect.
Considering the validation accuracy for our HCR model, there was only a small variation between
k-folds, which can also be observed in the loss curve shown in Figure 17. For the performance on the
test set, the confusion matrix in Figure 18 shows that the most misclassified samples were images of
the digits 7 and 8. Samples of the digit 0 were least frequently misclassified. Moreover, no clear bias
to a particular class can be observed. Comparing the supervised HCR model to DropConnect, the
results show that DropConnect had an increased test accuracy (99.79%) compared to ours (98.82%),
indicating that the HCR architecture used in this thesis is sub-optimal. We have to consider, how-
ever, that next to a different architecture, DropConnect was trained on the full MNIST training data,
which was also augmented. Moreover, a learning rate scheduler was used to further optimize model
performance.

Table 3: Validation and test results of supervised HCR. The validation results are on the MNIST-HCR
dataset.

Model Validation Accuracy (%) Test Accuracy (%)

Ours 97.97 ± 0.10 98.82
DropConnect [55] - 99.79

Chapter 3 TESTING THE FRAMEWORK: MNIST 29

Figure 17: Loss curves of the supervised HCR
model for 5-fold cross-validation.

Figure 18: Confusion matrix of supervised HCR
on test data.

3.5.2 Handwritten Character Generation

The DCGAN was trained on 90% of the MNIST-GEN dataset (27,000 samples), and validated on 10%
(3 000 samples). The models were trained with non-augmented data only in a non-augmented setting,
and both non-augmented and augmented data in the augmented setting. The quality of synthetic
images was superficially analyzed by generating 10 images per class. Additionally, the models were
evaluated quantitatively on the validation set with the FID. To determine the models’ training duration,
we considered that the losses for the model in the non-augmented setting converged after 200 epochs
(see Figure 19). Likewise, as computing the FID is computationally expensive, it was computed in
steps of 25 epochs, starting from the 150th epoch. At this epoch, the loss curves for the model in the
non-augmented setting started to converge and no clear visual improvements of the synthetic images
could be observed.

The loss curves for the generator and discriminator models of the DCGAN in non-augmented and
augmented settings are shown in Figures 19 and 20. While the loss curves are not informative with
regard to synthetic image quality, they do inform us about the models’ stability. The loss curves for
the models in both settings show an increasing loss for the discriminators and a decreasing loss for the
generators. Additionally, Comparing the non-augmented and augmented settings, it can be seen that
the DCGAN in the augmented setting converged much sooner and was overall more stable. However,
instability can be observed from epoch 150 in the validation losses, especially in the discriminator’s
validation loss.

A set of synthetic images is shown across epochs 150, 175, and 200 for models in the non-
augmented setting in Figure 21 and in the augmented setting in Figure 22. Common artifacts can
be observed between experimental settings and epochs. For one, parts of digits sometimes appear
distorted or missing. This is most common for images of the digit 2 in both the non-augmented
setting and augmented settings. Another type of artifact is the presence of an extra ink blob, for
example in some images of the digit 6 in Figure 21(a), and of the digit 9 in Figure 22(c). These
images, however, do not allow for an objective or complete comparison between generative models.
Hence, the FID was used for model evaluation.

Table 4 shows the FID for DCGAN models in the non-augmented and augmented settings, where

30 Chapter 3 TESTING THE FRAMEWORK: MNIST

lower FID indicates improved synthetic image quality. The results then indicate an increased syn-
thetic image quality at epoch 200 compared to epochs 175 and 150 for both settings. Additionally,
the DCGANs in the non-augmented setting showed an overall improved synthetic image quality com-
pared to the augmented setting. Lastly, the FID was the lowest for synthetic images generated with
the DCGAN at epoch 200 in the non-augmented setting. Hence, we conclude this DCGAN produced
synthetic images with the highest quality.

(a) Discriminator loss

(b) Generator loss

Figure 19: DCGAN loss curves on the non-
augmented MNIST-GEN dataset.

(a) Discriminator loss

(b) Generator loss

Figure 20: DCGAN loss curves on the augmented
MNIST-GEN dataset.

Table 4: FID DCGANs computed between real and synthetic images on MNIST-GEN validation set.

Epoch FID Non-augmented FID Augmented

150 12.286 12.317
175 12.034 12.288
200 11.936 12.137

Chapter 3 TESTING THE FRAMEWORK: MNIST 31

(a) Epoch 150 (b) Epoch175 (c) Epoch 200

Figure 21: Synthetic images of the DCGAN trained on non-augmented MNIST-GEN images after
150 (a), 175 (b), and 200 epochs (c)

(a) Epoch 150 (b) Epoch 175 (c) Epoch 200

Figure 22: Synthetic images of the DCGAN trained on augmented MNIST-GEN images after 150
(a), 175 (b), and 200 epochs (c)

Table 5: Validation and test accuracy across loss functions for self-supervised HCR models trained
on MNIST-HCR with 5-fold cross-validation.

Approach Loss function Validation accuracy (%) Test accuracy (%)

Self-supervised MSE 63.11 ± 7.14 66.87
BCE 60.61 ± 1.95 62.44
Perceptual 89.61 ± 1.29 91.99

Supervised CE 97.97 ± 0.10 98.82

32 Chapter 3 TESTING THE FRAMEWORK: MNIST

3.5.3 Self-supervised Handwritten Character Recognition

Self-supervised HCR models were trained on the MNIST-HCR dataset with 5-fold cross-validation
and tested on a separate, unseen dataset. Results on HCG showed the best-performing DCGAN was
trained for 200 epochs in the non-augmented setting. Therefore, this model’s generator was used for
image-based self-supervised HCR. The self-supervised models were trained with the BCE, MSE, and
perceptual loss functions. They were evaluated with accuracy and on the test set with the confusion
matrix as well. Test results were obtained by taking the mean of predicted class probabilities between
folds. Additionally, the learning processes were observed with the loss curves.

Figures 23a, 23b, and 23c show the loss curves for the self-supervised models trained with the
MSE, BCE, and perceptual loss, respectively. The MSE loss curves appear more sensitive to the
weight initialization, indicated by the diverging trajectories between the folds. Moreover, they do
not show a clear convergence to a certain value. The BCE loss curves also do not converge to a
distinct value and show instability within the folds, with sudden increases or decreases. In contrast,
the Perceptual loss curves are stable and relatively consistent between and across folds, and appear to
converge around the same value.

The observations from the loss curves w.r.t. variability between folds are reflected in the validation
accuracies displayed in Table 5. It shows that the MSE loss had the highest variability, as indicated
by the standard deviation (7.14%), and the perceptual loss was the lowest (1.29%). Additionally,
while the MSE loss resulted in an increased mean classification accuracy relative to the BCE loss,
comparing their standard deviations, it was less robust to different initial weights or training and
validation splits. On both validation and test data, the self-supervised HCR model trained with the
perceptual loss outperformed the other two models. However, compared to supervised HCR (97.97
± 0.10% and 98.82%), the MSE and BCE losses led to extremely limited performance, and the
perceptual loss achieved only a decent performance with validation and test accuracies of 89.61 ±
1.29% and 91.99%.

To gain more insight into the models’ performances, we consider the confusion matrices in Figures
24a, 24b, and 24c of the MSE, BCE, and perceptual losses, respectively. Here, it can be seen that the
model trained with the MSE loss had a strong bias towards digit 1, and misclassified a substantial
number of images with the digit 0 as the digit 5 or 6. Additionally, images of the digit 4 were often
predicted as a 9. The confusion matrix for the self-supervised model trained with the BCE loss
also shows substantial biases, but towards classes 0 and 8. Specifically, the majority of class 1 was
incorrectly classified as 8. The perceptual loss, in contrast, did not show any clear biases to a particular
class. However, like the MSE and BCE losses, there were relatively frequent misclassifications of
images with the digit 5 as the digit 3. Considering the t-SNE data visualization of the MNIST dataset
in Figure 5, there was a slight overlap visible between these two classes. This was not the case,
however, for the extracted feature maps for the perceptual loss (see Figure 14).

Lastly, the synthetic images with the class predictions are considered for a small set of 16 images
of the test set. In this manner, it can be seen whether the predicted classes are indeed generated in
the images. These images are shown in Figures 25, 26, and 27 for the self-supervised HCR models
trained with the MSE, BCE, and perceptual loss, respectively. For the models trained with the MSE
and BCE loss functions, a noteworthy observation is that the synthetic images, in several cases, do
not actually contain the digit of the predicted class. This also occurs once in the set of images for
the perceptual loss. To investigate this further, we consider the predicted class probabilities for a case
from the MSE loss. Specifically, we consider the case in the third and fourth column of Figure 25
where the digit 0 was misclassified as the digit 5, but the image showed a 0 still. The predicted class
probabilities are as follows:

Chapter 3 TESTING THE FRAMEWORK: MNIST 33

(a) MSE loss (b) BCE loss

(c) Perceptual loss

Figure 23: Loss curves for the self-supervised HCR models trained with the MSE loss (a), BCE loss
(b), and perceptual loss (c) using 5-fold cross-validation.

[0.392,0.0,0.0,0.0,0.0,0.404,0.03,0.005,0.169]

Here, the index of the probability represents the digit class. It can be seen that the model was not
confident in its prediction of the digit 5, as the predicted probability for the digit 0 was similar (a 0.012
difference). This ambiguity propagated to the generator, which produced an image that appeared like
the digit 0. To confirm this is not a coincidence, we consider another case, but from the BCE loss. In
the fourth row and last two columns in Figure 26, the model misclassified the digit 5 as a 3, but the
synthetic image ambiguously shows a 0 or 3. This, too, is reflected in the predicted class probabilities,
which are as follows:

[0.399,0.0,0.088,0.5,0.0,0.005,0.005,0.0,0.002,0.0]

34 Chapter 3 TESTING THE FRAMEWORK: MNIST

(a) MSE loss (b) BCE loss

(c) Perceptual loss

Figure 24: Confusion matrices on test data for the self-supervised HCR models trained with the MSE
loss (a), BCE loss (b), and perceptual loss (c). Test predictions were made by ensembling the HCR
models resulting from 5-fold cross-validation.

Chapter 3 TESTING THE FRAMEWORK: MNIST 35

Figure 25: Input images and their corresponding synthetic images that contain the digits predicted by
the self-supervised HCR model trained with the MSE loss. The real images are shown in a column
first, and then the synthetic images. GT = ground truth.

Figure 26: Input images and their corresponding synthetic images that contain the digits predicted by
the self-supervised HCR model trained with the BCE loss. The real images are shown in a column
first, and then the synthetic images. GT = ground truth.

36 Chapter 3 TESTING THE FRAMEWORK: MNIST

Figure 27: Input images and their corresponding synthetic images that contain the digits predicted
by the self-supervised HCR model trained with the perceptual loss. The real images are shown in a
column first, and then the synthetic images. GT = ground truth.

3.6 Discussion

3.6.1 Summary & Conclusions

This Chapter served as an initial exploration of image-based self-supervised HTR by applying the
framework to the simpler HCR task. Specifically, we used the MNIST dataset to investigate the
feasibility of the framework, how it can be implemented, and what type of image-based loss functions
could be used to train it. To do so, a DCGAN was trained on half the MNIST dataset and integrated
with a simple CNN architecture into the self-supervised framework. The models were integrated by
directly inputting the HCR-predicted class probabilities to the DCGAN’s pretrained generator. This
was possible as the generator was conditioned on one-hot encoded labels. Moreover, it was ensured
that the image preprocessing was identical between the HCG and self-supervised HCR pipelines.

Inspired by the task of image reconstruction, we experimented with two low-level (MSE and
BCE loss) image-based losses and one high-level (perceptual loss) image-based loss to train the self-
supervised HCR system. The self-supervised models were then trained and evaluated on data inde-
pendent from the DCGAN, using 5-fold cross-validation and an unseen test set. The models’ loss
curves indicated relevant information to the HCR task was learning. However, this was only limited,
especially so for the MSE and BCE losses, which achieved low test accuracies (66.87% and 62.44%,
respectively). The perceptual loss led to a much better performance, with a 91.99% test accuracy.
This suggests that high-level information is necessary for the image-based self-supervised model to
learn substantial information. When compared to the HCR architecture’s performance in a supervised
setting (98.82% test accuracy), however, the perceptual loss showed a decreased performance. Still,
with an accuracy close to 92%, the proposed framework shows potential for further application to
HTR.

Given these results, the following conclusions can be made w.r.t. the framework’s feasibility,
implementation, and loss functions:

Chapter 3 TESTING THE FRAMEWORK: MNIST 37

• By directly using the predicted class probabilities of the HCR model and using a pretrained
generative model conditioned on one-hot encoded labels, substantial information can be learned
with image-based self-supervised HCR.

• The proposed image-based self-supervised HCR framework can achieve decent performance,
but only when the loss function compares higher-level information extracted from input and
synthetic images.

3.6.2 Discussion

The presented methodology has several points of improvement. For one, the results of the HCR
architecture in the supervised setting showed that it was not optimal compared to the state-of-the-art
model DropConnect. Hence, the performance of the self-supervised models could still be improved by
using a different architecture. Considering the differences in the training procedure between our HCR
model and DropConnect, data augmentation, a learning rate schedule, and a smaller batch size could
also be considered to further improve the self-supervised model’s performance. However, the main
component of the self-supervised architecture that can be improved upon is the generative model, as
the loss computation relies on the quality of the synthetic images.

The generative model was selected considering those trained for 150, 175, and 200 epochs in
the augmented and non-augmented settings. This was determined based on the fact that the training
loss of the generator in the non-augmented setting started to converge after 150 epochs and that the
synthetic images did not appear to improve visually. The augmented setting was not considered
separately, and the discriminator and generator’s validation losses in this setting showed increased
instability in the final 50 epochs. It therefore could have been the case that the DCGANs trained for
fewer epochs in the augmented condition (but also in the non-augmented condition) had a lower FID,
meaning the selected generator might have been sub-optimal.

Another reason that the performance of the self-supervised HCR models was limited could be that
there was no consideration for the writer style in the generation process for synthetic images. For
example, if a correct prediction was made, then the synthetic images with the correct digit could have
been slanted while the input image it was compared to was not. This may be the reason why the
low-level MSE and BCE losses did not perform well in contrast to the perceptual loss. While the per-
ceptual loss does extract higher-level features, it still directly compares the pixels of extracted feature
maps, which are also affected by the writing style. In the same manner, the artifacts, specifically more
severe character distortions, likely limited the performance as well. For this reason, augmenting the
training data with a set of synthetic images could improve performance.

The results of the self-supervised models also showed that the generator produces ambiguous
synthetic images due to uncertain predictions being directly input to the generator. It could also
be argued, however, that this is a positive property of the architecture. The dissimilarity with the
input image will be higher with ambiguous synthetic images, compared to when there is a clear
character in the synthetic image. Therefore, it could aid in more confident correct predictions. This
also highlights the need for a loss function that can capture the differences in character shapes well.
As aforementioned, it should not be too specific on the shape, but more general so that it captures
the content information instead of the stylistic information. Given the results and the aforementioned
explanations, higher-level loss functions should then especially be considered for the more complex
word recognition task.

38 Chapter 4 METHODS

4 Methods
In Chapter 3, we showed the proposed self-supervised framework was able to learn substantial in-
formation for HCR by 1) using a loss function comparing higher-level information through extracted
feature maps, and 2) directly inputting the predicted HCR class probabilities to a pretrained genera-
tor, which was conditioned on one-hot encoded labels. This Chapter builds upon these findings by
applying image-based self-supervised learning to word recognition, posed as a sequence processing
task (see Figure 2). Through a series of experiments, we thus address the primary research question of
whether the proposed framework can be effectively used for HTR, as well as the secondary questions
of how the framework can be implemented, with what loss function it should be trained, and whether
it can further improve existing HTR systems. Following our approach to self-supervised HCR, the
HTR architecture and HTG model were first established before they were integrated into the proposed
framework.

The methodology presented in this Chapter was implemented in Python. Specifically, the net-
work architectures were implemented with PyTorch [62]. The code is publicly available at https:
//github.com/Lisa-dk/handwriting-recognition

4.1 Dataset
For the selection of a dataset, two requirements of the generative model need to be considered w.r.t.
the image-based self-supervised framework. First, it needs to be able to produce synthetic images
containing the text HTR-predicted texts. Second, the text needs to have the same writer as the input
image. This means the HTG model needs to be conditioned on both content and writer style. To
enable this, a dataset is needed which contains labels for both the text and writing styles of its images.
One benchmark for HTR that has both is the IAM handwriting database [63].

The IAM database consists of 1539 pages of English texts, handwritten by a total of 657 writers.
The pages are grayscale PNG images that were scanned with a resolution of 300 DPI and have pixel
values ranging from 0 to 255. The writers are labeled as integers, and the text labels are strings in
ASCII format. Moreover, the pages were automatically segmented into line and word images. As
aforementioned, it was determined to focus on word recognition as the HTR task is more complex
on higher levels of abstraction due to the higher number of possible character sequences, additional
language structures, and fewer available data samples. Additionally, state-of-the-art HTG models
operate on word images. In total, there are 115,320 variably-sized word images in the IAM database.
Figure 28 shows six examples of such images.

Following the HTG literature, the training and test partitions of the IAM database provided by
Kang et al. [39] were used. We refer to this dataset as IAM. The dataset contains words with a
minimum of two and a maximum of seven characters. The punctuation and digits were filtered from

Figure 28: Samples of the IAM database.

https://github.com/Lisa-dk/handwriting-recognition
https://github.com/Lisa-dk/handwriting-recognition

Chapter 4 METHODS 39

Figure 29: The IAM-GEN and IAM-HTR partitions of the IAM data split by Kang et al. [39]. Both
partitions contained 50% of the IAM dataset, maintaining the writer styles’ class proportions. The
IAM-GEN data splits are writer-independent. The IAM-HTR has in-vocabulary (IV) and out-of-
vocabulary (OOV) subsets.

the text labels. The data splits are mutually exclusive w.r.t. writer styles to allow testing for the HTG
models’ ability to generalize to unseen writer styles. Hence, the training and validation sets contain
339 and 161 writer styles, and 44,421 and 18,437 word images, respectively. Similarly to MNIST,
the IAM training and validation sets were each split in half to maintain independence between the
HTR and HTG models. This was done by assigning 50% of the samples for each writer to one
of two datasets: IAM-GEN and IAM-HTR. IAM-GEN was used for training the generative model,
and IAM-HTR for training the HTR models. As the focus of HTR is on correctly predicting the
text independent of the writer’s style, the writer-independent IAM-HTR training and validation sets
were merged and refactored. Consequently, only the IAM-GEN dataset was mutually exclusive w.r.t.
writers. An overview of the datasets, including the number of samples and writer identifiers (wids)
per subset, is shown in Figure 29.

In the HTR literature, it is repetitively argued that HTR systems struggle to generalize to new,
out-of-vocabulary words. However, concrete results supporting this are difficult to find. Therefore,
to confirm and further investigate this, the IAM-HTR dataset was split into an in-vocabulary dataset
(IAM-HTR-IV), and an out-of-vocabulary dataset (IAM-HTR-OOV), where the latter contained a
small set of words separate from the in-vocabulary dataset. Both had their own training, validation,
and test sets. The IAM-HTR-OOV dataset included the set of words (3354 images in total) for which
there were a minimum of three and a maximum of six samples in the IAM-HTR dataset. In this
manner, each data split of IAM-HTR-OOV contained at least one sample of each word. When there
were four samples of a word, two were included in the training set, and one in the validation and test
sets each. For five samples, two were included in the training and validation sets each, and one in the
test set. For six samples, two were included in each IAM-HTR-OOV data split.

The IAM-HTR-IV dataset contained all samples for the set of words that were not in the IAM-
HTR-OOV set (28206 samples total). Of these samples, 70% was included in the training set, and
15% in the validation and test sets each. While the samples were selected randomly, it was ensured
that each writer’s style was present in each of the splits. Only in the validation set one writer style
was not included as it had only two samples.

40 Chapter 4 METHODS

4.1.1 Image Preprocessing

In Chapter 3, it was proposed to use identical image preprocessing between the HCR and HCG
pipelines to ensure compatibility between the models. Additionally, it reduces the computational costs
of image-based self-supervised HTR by minimizing the number of operations for the loss computa-
tion. This is more so relevant for word recognition as IAM’s word images are larger than MNIST’s
28 x 28 digit images. Therefore, the preprocessing was kept identical between HTR and HTG models
as well. Because generative models are commonly sensitive to the image preprocessing procedure,
the image preprocessing steps of the HTG model used for self-supervised HTR were followed. For
the self-supervised HTR experiments in this thesis, GANwriting [39] was used as a generative net-
work. We elaborate on this decision in Section 4.3. The model takes and generates 64 x 216 grayscale
images with a pixel range of [-1, 1]. The preprocessing steps can be summarized as follows:

1. Resizing to the networks’ input size of 64 x 216 pixels.

2. Intensity normalization to [0, 1] through division by 255.

3. Inversion.

4. Standardization with the z-score using a mean and standard deviation of 0.5. Consequently,
pixel values ranged from -1 to 1.

To resize the word images to the desired height and width of 64 and 216 pixels, the images were
resized to the height ratio (i.e. hnew =

himg
64). However, if the width of the resulting images was greater

than the desired width of 216 pixels, the superfluous part was removed, regardless if any characters
were present. This resulted in 1) a loss of information and 2) incorrect labels. Therefore, the first
preprocessing step was adapted. This was done by first padding the height of small images, and then
resizing the images by maintaining the aspect ratio. These steps can be detailed as follows:

1. Height padding Word images less than half the desired height of 64 pixels were padded with ∆h
white pixels such that the images were centered vertically. This was computed as in Equation 9,
where h is the image height. When resizing small word images as described in 2., this prevents
a ‘zooming in‘ effect of large characters, and a ‘zooming out‘ effect of small characters. While
this did not affect many word images, it alleviated some scaling differences between characters
in word images after resizing. Examples of this are shown in Figure 30.

∆h = ⌊64
h
⌋ · (1− h

64
) (9)

2. Resizing to 64 x 216 Images were resized maintaining the aspect ratio, following de Sousa Neto
et al. [18]. This was based on the maximum ratio f of an image’s height h and width w to the
desired values. The new height and width were then computed as in Equation 10, where d is
the image dimension’s size, dnew is its new size, and dt its target size. This ensured the resized
image did not exceed the dimensions of 64 x 216. If either the height or width was smaller than
the intended size, padding was applied with the most frequent pixel value in the image.

dnew = max(min(
d
f
,dt),1) (10)

Chapter 4 METHODS 41

Figure 30: Examples of how extra padding to the images’ heights prevent a ‘zooming in‘ effect in
resized images.

4.1.2 Text Label Encoding

To determine how to encode the text labels, it had to be considered that in the self-supervised HTR
framework, GANwriting’s generator has to produce word images with the HTR-predicted class prob-
abilities. As in the image-based self-supervised HCR framework, it was most efficient and simple
to directly input the HTR predictions to the generator. Moreover, this allows for the consideration
of the HTR model’s confidence in its predictions. Consequently, GANwriting’s generator had to be
conditioned on one-hot encoded text labels. However, these encoded labels should represent the same
characters for the pretrained generator and the HTR architecture. This is especially relevant when
using a pretrained HTR model. If the indices of the HTR model’s predictions represent different
characters than the one-hot labels the generator is conditioned on, the synthetic images would contain
characters different than those that were predicted. Therefore, the same vocabulary should be used to
encode the labels for the HTG and HTR models.

The vocabulary contained the 26 alphabetical characters in both upper and lower case. Addition-
ally, it contained start, end, and padding tokens as well as a token used to represent characters the
computer could not recognize. The vocabulary thus consisted of 56 characters in total. The start
and ending tokens were required by GANwriting, and the padding token was needed to match the
dimension of the label representation with the number of time steps predicted by the HTR model.
Unrecognized characters were a rare occurrence, and the token mostly served for future extensions to
other datasets. The labels were encoded by firstly adding the start and end tokens, secondly mapping
the characters to their corresponding indices in the vocabulary, thirdly adding padding tokens, and
lastly mapping the labels to their one-hot vectors. The implementation for this was adapted from
[18].

42 Chapter 4 METHODS

Figure 31: Overview of the Puigcerver model architecture. Figure obtained from [16].

4.2 Supervised Handwritten Text Recognition

4.2.1 Model Architecture

Given that the proposed self-supervised framework involves two deep learning models and an image-
based loss, it is computationally expensive. Therefore, it would be ideal for the HTR model to have
a simple, lightweight architecture that is also able to achieve performance similar to the state-of-
the-art. Initially, we intended to use the HTR-Flor model [18], which meets both of these criteria.
It contains only 0.8M parameters, compared to 64M in the state-of-the-art model TrOCR, and per-
forms similarly. However, HTR-Flor was implemented in TensorFlow, which was incompatible with
GANwriting’s implementation in PyTorch. We found this to be a general discrepancy between HTR
and HTG. The pretrained generator was converted to TensorFlow with ONNX, but the synthetic im-
ages produced by the converted generator differed from those generated by the non-converted model.
Rather than investigating the potential causes, we aimed to focus on successfully implementing the
self-supervised framework. As GANwriting was relatively complex, and GANs are prone to non-
convergence, mode collapse, and vanishing gradients, it was decided to implement a simpler HTR
architecture in PyTorch instead of implementing GANwriting in TensorFlow. Consequently, the rel-
atively simple CNN-BLSTM by Puigcerver [16] was used. To implement this in PyTorch, the code
structure of de Sousa Neto et al. [18] was adopted.

The Puigcerver CNN-BLSTM architecture is shown in Figure 31. It contains five convolutional
blocks for feature extraction and five recurrent blocks for sequence processing. The feature maps ex-
tracted with the convolutional blocks are reduced to one-dimensional feature vectors through column-
wise concatenation. The convolutional layers had 16, 32, 48, 64, and 80 channels, respectively. Addi-
tionally, max pooling with a 2 x 2 kernel was applied only to the first three convolutions, and dropout
with a probability of 0.2 was applied only to the last three convolutions. Regarding the recurrent
blocks, dropout was applied after each BLSTM layer with a probability of 0.5. The number of hidden
units of the BLSTM layers was fixed to 256.

During initial experimentation, the Puigcerver model combined with the aforementioned image
preprocessing and text label encoding performed worse than reported in [16]. Likely, this resulted
from applying the model to word recognition instead of line text recognition. To then obtain better
performance, the Puigcerver architecture was adapted by replacing column-wise concatenation with
column-wise max pooling. Retsinas et al. [64] argue that this improves HTR performance as it in-
troduces translation invariance with regard to the characters’ vertical position in the images. The
adaptation also reduces the size of the feature vectors from B x W x H x C to B x C, with B, H, W,
and C being the batch size, height, width, and number of channels of the feature maps, respectively.

Chapter 4 METHODS 43

4.2.2 Implementation Details

Puigcerver [16] trained their network with the CTC framework [13], which is commonly used for
line-level HTR. Normally, a network outputs a conditional class probability distribution across time
steps. The probability of a single label sequence, or alignment, is then the product of its predicted
character probabilities. In the CTC framework, an extra blank symbol such as ε is introduced to
model consecutive characters. In this framework, repeated characters are first collapsed into a single
character, and then blank symbols are removed. Without the blank symbol, a prediction for an input
image with, e.g., the word “peers“ could be “ppeeeersss“, which would be collapsed to “pers“. With
a blank symbol, consecutive characters can be prevented from being collapsed: “ppεeeεerss“ would
be merged to “pεeεers“. With the removal of the blank symbol, the final prediction would be ‘peers‘.
In this manner, there is no need for an explicitly defined alignment between the input and text labels.
The probability of a possible label sequence l for an input x, p(l|x) is then the sum of the probabilities
of each possible alignment. Given this, the CTC loss is expressed as in Equation 11.

LCTC =−log(p(l|x) (11)

As aforementioned, during the initial experimentation of the Puigcerver model with the CTC loss,
the results were relatively low compared to those reported in [16]. The CTC loss may be a better
fit for higher-level HTR since this has less explicit alignments. Hence, we also experimented with
the Cross-Entropy (CE) loss, given by Equation 3. Its multiclass and probabilistic nature make it
suited for the sequential word recognition task. Moreover, with the application of a pretrained HTR
model for self-supervised word recognition in mind, the CE loss function is more compatible with the
pretrained generator as it does require an extra blank symbol in the vocabulary.

Given the adaptation of the architecture and the two loss functions, a total of four experiments
were conducted, where models were trained with either column-wise concatenation or max pooling,
and either the CTC or CE loss. In all experiments, the network was trained with the Adam optimizer,
using an initial learning rate of 0.0001. The learning rate was reduced by a factor of 0.2 when the
validation loss did not increase for at least 5 epochs. The batch size was set to 16 samples.

4.2.3 Evaluation

The supervised HTR models were trained on the IAM-HTR-IV training set and evaluated on the HTR-
IAM-IV and HTR-IAM-OOV validation and test sets. Early stopping was applied with a patience of
10 epochs on the IAM-HTR-IV validation set. To prevent tuning on the test set, the best model
architecture was selected based on the validation results. To obtain the predicted word, the sequences
of predicted character probabilities were decoded greedily by taking the argmax at each time step;
the predicted character at time step t was the most likely character at this time step. The resulting
tokens were first mapped to their corresponding characters in the vocabulary, after which the start,
end, padding, and unrecognized characters were removed.

To evaluate the models, the character error rate (CER) and word error rate (WER) were used.
These are the standard evaluation metrics used in HTR literature. The CER and WER were computed
over the decoded predicted character sequences and ground truth text labels. The CER is the Lev-
enshtein distance between the two strings divided by the number of characters N in the ground truth
label, usually expressed as a percentage (see Equation 12). The Levenshtein distance is the minimum
number of character insertions I, deletions D, and substitutions S necessary to transform one string
into another.

44 Chapter 4 METHODS

CER =
I +D+S

N
·100 (12)

The WER is computed as the Levenshtein distance on the word level between two strings of text
divided by the total number of words in the ground truth. For word recognition, this becomes the
percentage of incorrectly predicted samples WI to the total number of samples WT in the dataset (see
Equation 13).

WER =
WI

WT
·100 (13)

4.3 Handwritten Text Generation
4.3.1 Model Architecture

Recent research on HTG shows a growing trend towards diffusion models, which have demonstrated
impressive image quality w.r.t. content and particularly, writer style. Diffusion models may replace
GANs as the state-of-the-art in HTG, but for usage in combination with external models such as in
the proposed framework they significantly increase the computational costs and, consequently, the
training times. State-of-the-art GANs, on the other hand, are difficult to integrate with other models
due to their high complexity. Balancing image quality and model complexity, we used GANwriting
[39] for the generative model. Moreover, its implementation is publicly available2.

GANwriting leverages four types of models: a generative model H, a discriminator D, a writer
classifier W , and a handwritten text recognizer R. Each of these models has its own functionality: the
generative model produces synthetic images, and the discriminator, writer classifier, and handwritten
text recognizer, respectively, enforce realism, writer style, and legible text in the synthetic images.
An overview of all components of GANwriting is shown in Figure 32.

Figure 32: An overview of the GANwriting architecture, adapted from [39]. Here, X is the set of
word images, W is the set of writer identifiers, and A is the vocabulary. The generator is conditioned
on style and content representations extracted by the style- and content encoders. The discriminator,
writer classifier, and word recognizer enforce realism, writer style, and text legibility in the synthetic
images.

2https://github.com/omni-us/research-GANwriting

https://github.com/omni-us/research-GANwriting

Chapter 4 METHODS 45

The generative architecture generates images using a style encoder S, a content encoder C,
and a conditional generator G. The style encoder has a VGG-19-BN architecture that operates
on a set of K word images written by the same writer (i.e. style images, Xi) and produces a
style representation F̂s. The style encoder encodes a writer’s style by learning to map the style
images to a latent space, such that, the textual contents and writer’s style are disentangled. To
mimic within-writer variability, the set of style images was obtained by shuffling the full set of
images corresponding to a single writer, and selecting the first K images. If less than K word
images were available, the available samples were duplicated.

The content encoder consists of three components: an embedding layer e, and two fully con-
nected neural networks (FCNs) g1 and g2. The embedding layer is a linear layer that maps each
character c in the text input t to a one-dimensional character representation, which is input to the
FCNs. Both FCNs have three dense layers with 1024, 2048, and 4096 neurons, respectively.
The ReLU activation function and batch normalization are applied after each layer. FCN g1
forms a character-wise content representation Fc by processing each embedded character e(c)
individually and stacking them together. Fc is then concatenated with the style representation
F̂s to a single feature representation F . This would allow for the generation of images with
OOV words. FCN g2 forms a global content representation fc by processing the concatenated
character embeddings. This is then split into four pairs of parameters to be input to interme-
diate layers of the generator network. To enable integration of the generative architecture with
the HTR network, the embedding layer was removed and the one-hot encoded text labels were
directly input to g1 and g2.

Instead of directly being input to the generator, the feature representation F is first processed
by a dense layer l with 512 neurons. The generator network then consists of two residual
blocks (512 channels, 3 x 3 kernels, stride=1) with adaptive instance normalization (AdaIN)
layers [65] that align the channel-wise mean and variance of l(F) with the partitions of fc.
Following the residual blocks are three nearest-neighbor up-sampling and convolutional layers
(256, 128, 64 channels, 3 x 3 kernels, stride=1) with the ReLU activation function, and a final
convolutional layer (1 channel, 7 x 7 kernel, stride=1) with the tanh activation function that
outputs the synthetic image x̄.

The discriminator predicts the probability of an input image being real or synthetic. In GAN-
witing, the discriminator network consists of a convolutional layer with 16 channels, followed
by six residual blocks with ReLU activations. Average pooling is applied after each block ex-
cept for the last. Each of these six residual blocks contains two residual sub-blocks, totaling 12
residual blocks. Each second sub-block has an extra convolution (three total) compared to the
first. The convolutions in the six blocks have 32, 64, 128, 256, and 512, and 1024 channels of 3
x 3 kernels with a stride of 1, respectively. Finally, a convolution is applied with 1024 channels
and a 2 x 2 kernel with stride 7. This reduces the output size for a single image to 1024 x 1.

The writer classifier enforces the stylistic properties in the synthesized images. It uses the
same network architecture as the discriminator model, where the classification layer has 500
channels instead of 1024, corresponding to the number of writers in the dataset.

The text recognizer enforces the desired content to be present in the synthesized images. The
network is an attention-based seq2seq model [66]. It has an encoder with a VGG-19-BN archi-
tecture and two Bidirectional GRU layers. The decoder is a two-layer, one-directional GRU,
followed by a dense layer with 500 neurons, corresponding to the number of writers. The at-

46 Chapter 4 METHODS

tention mechanism aligns the context feature vector of the decoder with the feature vector from
the encoder. For more details on the attention mechanism, we refer to [66] and [39].

4.3.2 Implementation Details

GANwriting was trained end-to-end, which the authors claim leads to improved results. In one train-
ing epoch, the weights of each model R, W , D, and H were updated in that order. If one model’s
weights were updated, that of the other models remained frozen. The text recognizer and writer clas-
sifier were trained only on real images with the Kullback-Leibler Divergence (KLD) and CE loss.
The KLD loss is given by Equation 14, where l is the number of characters in the encoded ground
truth label, |A| the vocabulary size, y the encoded ground truth label, and ŷ the predicted character
probabilities.

LR =
l

∑
i=1

|A|

∑
j=1

yi, jlog(
yi. j

ŷi, j
) (14)

The discriminator was trained on real and synthetic images with the adversarial loss as defined in
Equation 4. The generator was trained with a summation of the losses of the text recognizer, writer
classifier, and discriminator computed on synthetic images and conditioned inputs, given by Equation
15.

LH = LD +LW +LR (15)

To train GANwriting, the proposed hyperparameters by the authors were used. Hence, all four
models were optimized with the Adam optimizer. The learning rates were 0.0001 for the discriminator
and generator and 0.00001 for the text recognizer and writer classifier. The batch size was set to 8.
Different batch sizes were experimented with to decrease training times, but these produced sub-
optimal results. The style representations were extracted from K = 25 style images as opposed to
the 15 proposed by Kang et al. [39] to compensate for the reduced number of training samples in
IAM-GEN compared to IAM.

4.3.3 Evaluation

GANwriting was trained on the IAM-GEN training set and evaluated with the validation set, following
the same experimental setup as proposed in [39]. Since the training and validation sets are writer-
independent, the validation set indicates the model’s ability to generalize to unseen writer styles. To
maximize the available data, no separate test set was used. Data from the IAM-HTR was also not
used to prevent selecting a model in favor of it. In addition to the words present in the training set,
22,500 unique words from the Brown corpus [67] were used as text input. This allowed the generator
to handle a wider variety of words. The number of training epochs was determined based on the
convergence of the losses and the final model was selected based on the quality of synthetic images
between the training epochs.

The quality of the synthetic images was evaluated through comparison with real images and the
FID (see Equation 5). While there is discourse about the appropriateness of the FID for synthetic
images with handwriting (see Section 3.3.4), the metric is the only one consistently used in HTG.
Therefore, the FID was used for model selection. Specifically, the FID was computed every 250
epochs starting from when the losses began converging.

Another method that indicates image quality is the comparison of the performance of an HTR
architecture on real data when it is trained separately on a real and recreated training set [5]. If the

Chapter 4 METHODS 47

synthetic images are similar to the real images, the performance of the two models on real test data
should be similar. Evaluating GANwriting in this manner during training is infeasible, however, as
recreating a dataset such as IAM-GEN is time-consuming. Therefore, this method is only applied to
the final model. Specifically, it was applied to the IAM-HTR dataset since experiments for image-
based self-supervised HTR already require it to be recreated.

4.4 Self-supervised Handwritten Text Recognition

4.4.1 Model Integration

When making decisions about data preprocessing and model architectures in the previous sections,
the integration of HTR and HTG into the self-supervised framework was carefully considered. To
reiterate, we proposed to incorporate a pretrained generator into a self-supervised HTR framework
by directly inputting the predicted character probabilities to this generator, and computing the loss
between the resulting synthetic image, and the HTR’s input image. Moreover, the synthetic and input
images’ texts should have the same writing style. For the HTR architecture, the best-performing
supervised model was used. For the HTG architecture, GANwriting was used.

Following the methodology for image-based self-supervised HCR in Section 3.4, the image pre-
processing and text label encoding were identical between the HTG and HTR pipelines, and GAN-
writing was conditioned on one-hot encoded text labels. Unlike the HCG’s generator, GANwriting’s
generator was also conditioned on writer style. Hence, for self-supervised HTR there was an ad-
ditional question of how to ensure that the synthetic and input images have the same writer styles.
Considering that the style encoder requires a set of K style images, there were two options: 1) du-
plicate the input image K times, or 2) use writer labels to randomly select K word images from the
same writer, with replacement. As the second method resulted in a ‘higher quality of synthetic im-
ages, we opted for this method. The next section discusses the last key component to training the
self-supervised framework: the loss function.

4.4.2 Loss Functions

Through the experiments for image-based self-supervised HCR, we found that high-level loss func-
tions are necessary for good model performance. Therefore, only higher-level loss functions were
considered for self-supervised HTR. Specifically, the perceptual loss was investigated further after it
showed potential for self-supervised HCR. Additionally, experiments were conducted with the Struc-
tural Similarity Index Measure (SSIM), which has been employed as an image quality evaluation
metric as well as a loss function for image reconstruction tasks [68].

Results for GANwriting showed that it struggles to imitate the writer’s styles, resulting in stylistic
differences between real and synthetic images. These include differences in slant, character shape,
and scale. Preliminary experiments suggested this is detrimental even when using higher-level loss
functions such as the perceptual loss. Therefore, we propose two style-invariant losses in addition to
the image-based perceptual and SSIM loss functions. These are a Siamese Network loss, inspired by
the field of word spotting, and a text-based content loss. The following details each of the four loss
functions.

Perceptual Loss [61] This loss function was considered as it resulted in decent performance
for self-supervised HCR. However, this does not guarantee similar results for self-supervised
HTR, where the data has a considerably higher variability. Following the experiments for self-

48 Chapter 4 METHODS

supervised HCR, the perceptual loss was computed with the activations of feature maps ex-
tracted at the 7th convolution. The perceptual loss is given by Equation 8.

Structural Similarity Index Measure The SSIM is a metric commonly used to evaluate image
quality in image generation tasks, including that of HTG. It has also shown to be useful in
image reconstruction tasks [68], which is to an extent similar to the current task, where an
HTR network learns to predict character sequences such that the synthetic images generated
with these are similar to the input images. The SSIM compares images w.r.t. their luminance,
contrast, and structure. It is computed per pixel with a sliding symmetric Gaussian window. Let
p and p̂ be pixels in a pair of input and synthetic images, such that p and p̂ are at the center of
an image patch defined by the sliding window. The SSIM is then computed as in Equation 16,
where µ and σ represent the mean and standard deviations of the image patches, and σp̂p the
covariance between the patches of the input and synthetic images. C1 and C2 are constants. The
SSIM ranges from -1 to 1, where 1 indicates perfectly similar images. The SSIM loss between
a pair of input and synthetic images (y, ŷ) is then given by Equation 17, where P is the number
of pixels.

SSIM(p, p̂) =
(2µp̂µp +C1)(2σ p̂p +C2)

(µ2
p̂ +µp2 +C2)(σ

2
p̂ +σ2

p +C2)
(16)

LSSIM(y, ŷ) = 1− 1
P

P

∑
i=1

SSIM(yi, ŷi) (17)

Siamese Network Loss One method to circumvent stylistic differences and focus on textual
content is to train a Siamese Network on same- and different-word images. This was inspired
by Barakat et al. [69], where a Siamese Network was successfully employed for word spotting.
Such a network learns to extract feature representations such that a distance metric is small for
images belonging to the same class, and large for images belonging to different classes. It does
this by mapping pairs of input images to their respective feature representations, using the same
network for both inputs. Applied to word images, images with the same text are considered
to belong to the same class, and to a different class otherwise. In this manner, we aimed to
circumvent the stylistic differences between the synthetic and real images.

Given a pretrained Siamese Network φ that is able to extract distinct feature representations that
are similar when real and synthetic images contain the same words and dissimilar when they
contain different words, the Siamese Network loss is computed as in Equation 18, where y and
ŷ are real and synthetic images, respectively.

Lsia = ||φ(ŷ)−φ(y)||22 (18)

The Siamese Network employed for the loss computation was trained on a refactored IAM-
GEN dataset (IAM-GEN-SIA) that contains all writer styles in its training, validation, and test
sets. Moreover, for each real image in this dataset, two similar and two dissimilar real and syn-
thetic image pairs were generated with GANwriting’s best-performing generator. The Siamese
Network was trained with the contrastive loss function, where the Euclidean distance was used
as the distance function. The network was then evaluated by computing the Euclidean distance
between the similar and dissimilar image pairs on the validation and test sets. Comparing the
distances between similar pairs (µ = 0.107, σ = 0.07) and dissimilar pairs (µ = 0.539, σ = 0.057)

Chapter 4 METHODS 49

on the IAM-GEN-SIA test set, a two-tailed t-test indicated that the similar pairs had a statis-
tically significant smaller mean distance (t(2282) = 161.024, p < 0.005). Therefore, it could
be expected for the Siamese Network loss on the IAM-HTR dataset to indicate whether a real
image and its corresponding synthetic image are similar on IAM-HTR. The methodology and
results of the Siamese Network are further detailed in Appendix A

Content Loss While the Siamese Network loss was designed to circumvent the stylistic dif-
ferences between real and synthetic images, its potential weakness is that it does not explicitly
encode the word images’ texts. Hence, we also introduced a style-invariant text-based con-
tent loss that explicitly encodes the word images’ texts. The idea behind this content loss is
similar to the Siamese Network loss, where instead of using a pretrained Siamese Network, a
pretrained HTR model is applied to the real and synthetic images. Hence, the formula is the
same as Equation 18, where φ now represents the pretrained HTR network.

For the pretrained HTR network, the experimental setup of the best-performing network of the
experiments conducted in the supervised setting was used. The network was pretrained on the
IAM-GEN-SIA dataset to ensure independence with the self-supervised HTR model. Its per-
formance on the IAM-GEN-SIA training and test set are shown in Table 6, and its performance
in comparison to the best-performing HTR model trained on IAM-HTR is shown in Table 7.
Its increase in performance, depicted by an overall decrease in CER and WER, indicates the
IAM-GEN-SIA dataset may have contained higher-quality images. Important to note is that the
self-supervised HTR model’s performance could only be as good as the pretrained HTR model’s
performance on the IAM-HTR dataset, with the pretrained network acting as a bottleneck.

Table 6: Performance of the best-performing supervised HTR model trained and evaluated on the real
images of IAM-GEN-SIA.

Validation set Test set
Training Data CER (%) WER (%) CER (%) WER (%)

IAM-GEN-SIA 11.34 28.00 12.09 28.96

Table 7: Performance of the best-performing supervised HTR model trained on the real images of
IAM-GEN-SIA, evaluated on the IAM-HTR validation sets.

IV-Validation OOV-Validation
Training Data CER (%) WER (%) CER (%) WER (%)

IAM-GEN-SIA 10.89 26.38 24.39 63.39
IAM-HTR 15.14 32.91 45.57 92.84

4.4.3 Experimental Setup

The self-supervised HTR system was trained on the IAM-HTR-IV training dataset and evaluated
with the IAM-HTR-IV and -OOV validation and test sets. To answer the primary research question of
whether the proposed self-supervised framework can be effectively used for HTR, experiments were
conducted where the system was trained from scratch. Specifically, the HTR network weights were

50 Chapter 4 METHODS

initialized with the He uniform initialization scheme for more stable training [70]. The models were
trained with an initial learning rate of 0.001, which was determined based on preliminary experiments,
where larger or smaller learning rates did not result in the learning of relevant information.

Next to training from scratch, transfer learning was used with the best-performing supervised HTR
network, trained on IAM-GEN-SIA. This was the same HTR model as was used for the text-based
content loss. With experiments in this pretrained self-supervised setting, we aimed to address the
research question of whether the proposed self-supervised HTR framework can be used to improve
existing HTR models. Since the supervised HTR model was trained with an initial learning rate of
0.0001, this was also used as an initial learning rate for experiments in the pretrained setting.

The experiments in the ‘training from scratch‘ and pretrained settings were conducted for each
of the perceptual, SSIM, Siamese Network, and text-based content loss functions to investigate the
optimal loss function for the proposed self-supervised HTR framework. Since the HTR model in the
pretrained setting was the same as that used for the text-based content loss, it is unlikely to show
improvements in this setting. To confirm this, however, the content loss was still included in the
experiments in the pretrained setting. Considering then both the training from scratch and pretrained
settings, a total of 8 experiments were performed.

When the above experiments did not lead to promising results, especially for the image-based
losses, it was considered to conduct the experiments in the training from scratch and pretrained set-
tings on the IAM-HTR dataset recreated with synthetic images. By minimizing the stylistic differ-
ences between input and synthetic images in this manner, it could be investigated whether the low
model performances were caused by the pretrained generator not accurately imitating the writer’s
styles. Since these experiments focus on the style, they were only performed with the two image-
based losses. Therefore, an additional four experiments were conducted. Based on preliminary ex-
periments, the models in the pretrained setting were trained with an initial learning rate of 0.0003
instead of 0.0001 (see Appendix C). This learning rate was also considered for the pretrained setting
on real data, but this was not found to be beneficial (see Appendix B). To explicitly show whether
the self-supervised HTR framework can be used to learn new words, the experimental settings of the
best-performing models were also used to train the self-supervised models on the IAM-HTR-OOV
dataset. This is further addressed in Appendix D.

All models were trained with the Adam optimizer. As aforementioned, when training from
scratch, the initial learning rate was 0.001. In the pretrained setting, this was 0.0001, and 0.0003
on the real and recreated IAM-HTR datasets, respectively. Moreover, when the IAM-HTR-IV valida-
tion loss did not decrease for more than 10 epochs, the learning rate was reduced by a factor of 0.5.
The batch size was set to 16. Additionally, to prevent overfitting, early stopping was applied when
the IAM-HTR-IV validation loss did not decrease for more than 15 epochs.

4.4.4 Evaluation

Following the evaluation of the supervised HTR models, the self-supervised HTR models were eval-
uated with the CER and WER. The performances of the self-supervised HTR models could thus also
be compared to the best-performing supervised model trained on the IAM-HTR set. Additionally, the
loss curves were considered to indicate whether learning occurred, and a set of synthetic images with
HTR-predicted text was analyzed to obtain a deeper understanding of the results and dynamics of the
self-supervised framework.

Chapter 5 RESULTS 51

5 Results
This Chapter reports the results of the experiments described in Chapter 4. Based on the results of
experiments conducted for supervised HTR, an HTR architecture was selected for the self-supervised
HTR framework in Section 5.1. Likewise, in Section 5.2, the best-performing pretrained generator
was selected and used in the self-supervised HTR system. Lastly, Section 5.3 reports the results of
the experiments performed with the image-based and style-invariant losses for self-supervised HTR.

5.1 Supervised Handwritten Text Recognition
To determine the optimal HTR model architecture and experimental setup, HTR models were trained
in a supervised setting on the IAM-HTR-IV training set and evaluated with the IAM-HTR-IV and -
OOV validation and unseen test sets. The best-performing model architecture and experimental setup
were then used in the self-supervised HTR experiments. Supervised models with Puigcerver’s [16]
CNN-BLSTM architecture were trained where in one setting, column-wise concatenation was used
to reduce the CNN’s feature maps to one-dimensional vectors, and in a second setting, column-wise
max-pooling was used. Performances of the CTC and CE loss functions were also compared, resulting
in four models. To contextualize this model’s performance, a comparison is made with the literature.
The best-performing model was selected based on the CER and WER on the validation sets to prevent
tuning on the test set.

Table 8 displays the results on the IAM-HTR validation sets. It shows that column-wise max
pooling led to an increased performance compared to column-wise concatenation for both the CE
and CTC losses, indicated by a decrease in CER and WER for both IV and OOV validation sets.
For the HTR trained with the CE loss, this decrease was strongest with a 56.37% reduction in CER
and a 40.61% reduction in WER on IV validation data. This indicates that HTR models benefit from
extracting features that focus on the characters’ horizontal position, as is the result of column-wise
max pooling. Given these results, we selected the Puigcerver architecture adapted with column-wise
max pooling as the best-performing architecture.

Considering the loss functions, the results overall showed a decreased CER and WER on IV vali-
dation data for the CE loss compared to the CTC loss, and a decreased WER on OOV validation data.
Only the OOV CER of the CE loss was increased compared to that of the CTC loss across experi-
mental conditions. Since correctly predicted words are preferred over correctly predicted individual
characters, the WER was prioritized. Taking into account both the architecture and loss function,
it can be determined that the best-performing model used column-wise max pooling in combination
with the CE loss. This is further confirmed when comparing the CER and WER of models trained
with the CE and CTC losses in combination with column-wise max pooling on the test set (Table 9).

Table 8: Validation CER and WER on IAM-HTR per supervised HTR model configuration.

IV Validation OOV Validation
Method CER (%) WER (%) CER (%) WER (%)

CE + concatenation 34.70 55.42 68.89 99.42
CE + max pooling 15.14 32.91 45.57 92.84
CTC + concatenation 31.28 58.22 65.54 99.88
CTC + max pooling 20.65 51.86 43.66 95.84

52 Chapter 5 RESULTS

In Table 10, the best-performing model’s results on the IAM-HTR-IV test set are compared to
those achieved by word-level HTR models in the literature. It shows that our model performs sub-
stantially worse compared to previous research. It has to be noted, however, that our model has been
trained on roughly half the amount of data compared to models proposed in the literature. Addition-
ally, this comparison only serves to contextualize the performance of the adapted Puigcerver model
on the word level, as the results across models are reported for different test partitions of the IAM
dataset.

Next to the replacement of column-wise concatenation and the CTC loss with the CE loss, the
results also inform us about the generalizability of the HTR models to unseen data. Specifically,
the validation and test results both show a substantial increase in CER and WER, confirming the
suggestion made in HTR literature that handwritten text recognizers struggle to generalize to new
words. In fact, above 90% of the OOV words were transcribed incorrectly in both OOV validation
and test sets by all supervised models.

Table 9: Test CER and WER on IAM-HTR per supervised HTR model configuration.

IV Test OOV Test
Method CER (%) WER (%) CER (%) WER (%)

CE + max pooling 14.71 30.89 46.67 93.13
CTC + max pooling 20.40 51.07 44.28 96.48

Table 10: Word-level HTR results in the literature on the IAM database

Approach Method CER (%) WER (%)

Nearest neighbour PHOC [20] 11.27 20.01
Deep PHOC [21] 3.72 6.69
HWNET v3 [23] 1.67 3.62

Object recognition Mondal et al. [24] 9.53 29.21
Attention-based WordStylist Real IAM [5] 4.86 14.11

CNN-BGRU [28] 6.88 17.45

CRNN CE + max pooling ([16], adapted) 14.71 30.89

Chapter 5 RESULTS 53

Figure 33: GANwriting writer classifier loss curve

Figure 34: GANwriting HTR loss curve

Figure 35: GANwriting discriminator loss curve

54 Chapter 5 RESULTS

Figure 36: GANwriting generator loss curve

5.2 Handwritten Text Generation

The generative model GANwriting [39] was trained on the IAM-GEN dataset as portrayed in Figure
29. GANwriting was trained end-to-end, and evaluated with the FID on the validation set. Unfortu-
nately, the losses of the text recognizer, writer classifier, and discriminator models were saved only
on the synthetic images and not for their own training processes on real images. Though this limits
the analysis of the loss curves, they can still inform us about the system’s overall stability and conver-
gence. Considering this, the system was trained for 3000 epochs as the generator’s validation loss had
converged at this point. Since the FID calculations involve recreating the IAM-GEN validation set,
the FID was computed only from epoch 1750, when the generator loss started to converge. Lastly, we
also compare the performance of the best-performing supervised HTR model on real validation data,
when it is trained on the IAM-HTR dataset with real images, and on IAM-HTR recreated with the
best-performing generator model.

The loss curves for the writer classifier, text recognizer, discriminator, and generator models of
GANwriting on synthetic images are shown in Figures 33, 34, 35, and 36, respectively. Noticeable is
the writer classifier’s increasing validation, which is likely due to the training and validation sets being
writer-independent. The training loss indicates that from the 1000th epoch, the generator started to
better imitate the writer’s styles. These observations are also reflected in the generator’s loss. The
other loss curves do not display unexpected behavior during training: the HTR and generator losses
decrease, while the discriminator losses increase.

Figure 37 displays a set of 20 synthetic images across epochs and their real counterparts. Overall,
a discrepancy can be observed between the writers’ styles in the real and synthetic images. The model
appeared to struggle with slanted writer styles and produced mostly loose characters. Moreover, most
synthetic word images were on a different scale as their corresponding real word image. Considering
legibility, the generator struggled with creating the letters ‘w‘ and ‘m‘, as well as the combination
‘ng‘ in this set of images. Additionally, the all-capital word ‘THERE‘ (fourth row) does not have
clearly distinguishable characters in the synthesized images. At epoch 3000, artifacts are sometimes
present as an ink blob in the upper right of an image. It is difficult to draw any conclusions about
which model produces higher quality images based on this set of images, as it is only a small set.

The FID scores in Table 11 provide a more general and objective comparison of the image quality
of the synthesized images across epochs, where a lower FID indicates an increased synthetic image
quality. As such, the generator at epoch 3000 resulted in the best synthetic image quality (FID =

Chapter 5 RESULTS 55

Table 11: FID scores across epochs of GANwriting on IAM-GEN validation data.

Epoch 1750 2000 2250 2500 2750 3000

FID 46.12 40.96 42.93 38.08 30.65 30.36

30.36), and the worst at epoch 1750 (FID = 46.12). Based on these results, we conclude that the
generator model at epoch 3000 provides images of better quality compared to the models at previous
epochs, in terms of the FID. Therefore, this model was used for the HTR experiments in the self-
supervised setting.

To obtain a more thorough impression of the synthetic image quality, the best-performing super-
vised HTR model (using column-wise max pooling and the CE loss) was trained on the IAM-HTR
dataset with real images (real IAM-HTR), and on the IAM-HTR dataset recreated with the best-
performing generator (recreated IAM-HTR). We compared only the validation results, as these results
influenced the decision to use style-invariant losses for self-supervised HTR. Table 12 then shows the
results of the supervised HTR model trained on the recreated IAM-HTR dataset, and evaluated on
the real and recreated IAM-HTR validation sets. It shows the performance of the HTR model does
not generalize well to the real IAM-HTR validation data. Additionally, Table 13 shows the perfor-
mances of the HTR models evaluated on the real IAM-HTR validation datasets when they are trained
on either the real IAM-HTR or the recreated IAM-HTR dataset. It shows that the supervised HTR
model performed overall worse when trained on the synthetic images compared to the real images.
Only on the OOV validation data did the model trained on synthetic images perform slightly better
compared to real images, as indicated by the decreased WER. Overall, these results indicate that there
is a discrepancy between the real and synthetic images due to the aforementioned differences in style
and legibility.

Table 12: Real and Recreated IAM-HTR validation results of the supervised HTR model (using CE
and column-wise max pooling) trained with the recreated IAM-HTR dataset.

IV OOV
Validation Data CER (%) WER (%) CER (%) WER (%)

Recreated IAM-HTR 0.67 2.91 5.25 21.59
Real IAM-HTR 53.43 82.82 57.21 95.50

Table 13: Real IAM-HTR validation results of the supervised HTR model (using CE and column-
wise max pooling) trained on the real and recreated IAM-HTR dataset.

IV Validation OOV Validations
Training Data CER (%) WER (%) CER (%) WER (%)

Recreated IAM-HTR 53.43 82.82 57.21 95.50
Real IAM-HTR 20.65 51.86 43.66 95.84

56 Chapter 5 RESULTS

Figure 37: Generated images across epochs 1750 to 3000 in steps of 250 epochs.

Chapter 5 RESULTS 57

5.3 Self-supervised Handwritten Text Recognition

A total of 12 experiments were conducted to investigate self-supervised HTR. Here, we used the best-
performing HTR architecture, which leveraged column-wise max pooling, and the best-performing
generator, which was trained for 3000 epochs. A total of four loss functions were investigated, of
which two were the image-based perceptual and SSIM loss functions, and two were the style-invariant
Siamese Network and text-based content loss functions. The models were trained on the HTR-IAM-
IV training data and evaluated with the IAM-HTR-IV and -OOV validation and test sets. This was
done with real data, and separately with the IAM-HTR dataset recreated using the pretrained gen-
erator. The models’ weights were initialized with He uniform weight initialization (from scratch),
or with the best-performing supervised HTR model pretrained on the IAM-GEN-SIA dataset. All
models were evaluated with the CER and WER. In addition, model behavior was observed through
loss curves and a set of synthetic images containing predicted texts. We first report the results of the
experiments conducted on real data for the image-based and style-invariant losses, separately, and
then the results of the experiments on the recreated dataset.

5.3.1 Results on Real IAM-HTR Data

Table 14 shows the results of the self-supervised models on the real IAM-HTR dataset.

Image-based Losses When considering the image-based losses, both the SSIM and perceptual
losses showed extremely high error rates, with a WER of 100% in all training settings (from
scratch and pretrained), meaning not a single word was predicted correctly. For the models
trained from scratch, however, it cannot be said no learning occurred, as the loss curves in this
setting for both SSIM and perceptual losses decreased (see Figures 38 and 39, respectively). For
the self-supervised models in the pretrained setting, the high error rates indicate catastrophic
forgetting occurred, likely in the first epoch, as the corresponding loss curves (for both loss
functions) have similar starting points as the models when training from scratch. Then, it can
be seen that the self-supervised systems trained with the SSIM and perceptual losses converge
to relatively high values, though the minimum for both is 0.0.

Table 14: Self-supervised HTR results on the real IAM-HTR validation sets.

IV-Validation OOV-Validation
Loss Function Pretrained CER (%) WER (%) CER (%) WER (%)

SSIM No 96.33 100 94.14 100
Yes 95.64 100 95.06 100

Perceptual No 93.63 100 93.68 100
Yes 94.49 100 94.22 100

Siamese Network No 94.03 100 93.87 100
Yes 59.89 81.98 74.94 99.89

Content No 97.07 100 96.10 100
Yes 21.26 48.50 39.66 88.86

CE (pretrained HTR) - 10.89 26.38 24.39 63.39

58 Chapter 5 RESULTS

To obtain a deeper understanding of these low performances and model behavior, we turn to
Figures 42 and 43. These depict pairs of real input images and synthetic images containing the
predicted texts for the SSIM and perceptual losses, respectively. In the two Figures, for both
training from scratch from the pretrained models, the synthetic images are relatively similar,
with ‘i‘- or ‘j‘-like characters and similar artifacts. Moreover, it can be seen that the predicted
characters cannot be discerned in the synthetic images.

Figure 38: Self-supervised HTR trained with the
SSIM loss on real IAM-HTR data loss curve

Figure 39: Loss curve of self-supervised HTR
trained with the perceptual loss on real IAM-
HTR data.

Style-invariant losses The results for the style-invariant losses when the self-supervised models
were trained from scratch show, like the image-based losses, high error rates. Hence, while the
loss curves for the models trained from scratch with the Siamese Network and content losses
show a decreasing trend (see Figures 40 and 41, respectively), the information learned was not
useful for the HTR task. When the models were trained in the pretrained setting, the error
rates were substantially lower compared to training from scratch, specifically for the content
loss. However, when compared to the performance of the pretrained supervised HTR model, it
can be seen that information was not learned, but forgotten. This is reflected in the loss curves
corresponding to the pretrained setting, where an initial increase can be observed for both style-
invariant loss functions. Due to the early stopping that was applied, it is unclear whether the
proposed loss functions could have led to improved performances.

The loss curves do not explain all differences in performance, however. For the Siamse Network
loss, for example, the models trained from scratch and in the pretrained setting have similar
final loss values (on both IV and OOV data), even though the latter showed a substantially
lower CER and WER compared to the models trained from scratch. This can also be observed
in the performance of the text-based content loss on the HTR-IAM-OOV validation data in
the pretrained setting compared to the IAM-HTR-IV training and validation data when training
from scratch. This suggests the objective functions may not appropriately capture meaningful
differences between two images w.r.t. text.

Considering the pairs of real and synthetic images with predicted texts for the Siamese Network

Chapter 5 RESULTS 59

Figure 40: Loss curve of self-supervised HTR
trained with Siamese Network loss on real IAM-
HTR data.

Figure 41: Loss curve of self-supervised HTR
trained with the text-based content loss on real
IAM-HTR data.

loss in Figures 40, it can be seen that when the model was trained from scratch, there are more
characters present, but they are not necessarily legible. Some characters match those in the
predicted text, but overall the words do not match. Likely, the self-supervised HTR network
exploits weaknesses in the pretrained Siamese Network to minimize the loss in this manner. In
the pretrained setting, the predicted words are generally evident in the synthetic images, but the
predictions were still mostly incorrect.

For the text-based content loss, the image pairs for the self-supervised HTR models trained
from scratch and from the pretrained supervised HTR models are shown in Figures 45a and
45b, respectively. When training from scratch, it can be seen that, in the given set of images,
the synthetic images are similar to each other. This suggests that the self-supervised HTR
network learned to generate a certain pattern that minimizes the content loss sub-optimally; the
images clearly show no important information was learned. For the image pairs in the pretrained
setting, on the other hand, the predicted characters are clearly present.

Comparing the Siamese Network loss with the text-based content loss given the above results,
the explicitly encoded texts led to increased performance when leveraging background knowl-
edge of the supervised HTR model. This is likely due to the fact that the content loss leveraged
the same supervised HTR network as used for transfer learning. It could be that training this
self-supervised model with the text-based content loss for a longer time may result in the for-
getting of more information. When training the models from scratch, the images produced with
the Siamese Network loss’s self-supervised HTR model appeared more realistic. Still, neither
loss functions resulted in lexical, nor legible words.

60 Chapter 5 RESULTS

(a) From scratch (b) Pretrained

Figure 42: Input images and their corresponding synthetic images with the predicted text for the SSIM
loss trained (a) from scratch and (b) from the pretrained supervised HTR model.

(a) From scratch (b) Pretrained

Figure 43: Input images and their corresponding synthetic images with the predicted text for the
perceptual loss trained (a) from scratch and (b) from the pretrained supervised HTR model.

Chapter 5 RESULTS 61

(a) From scratch (b) Pretrained

Figure 44: Input images and their corresponding synthetic images with the predicted text for the
Siamese Network loss trained (a) from scratch and (b) from the pretrained supervised HTR model.

(a) From scratch (b) Pretrained

Figure 45: Input images and their corresponding synthetic images with the predicted text for the
text-based content loss trained (a) from scratch and (b) from the pretrained supervised HTR model.

62 Chapter 5 RESULTS

5.3.2 Results on Recreated IAM-HTR Data

The style-invariant losses were designed to investigate whether the stylistic differences between the
real and synthetic images were too great for considerable learning to have occurred with the image-
based losses. Given the above results on real images, it could be questioned whether these stylistic
differences are the real cause of the low performances. This was further investigated through exper-
iments where the self-supervised HTR framework was trained with the image-based losses on the
recreated IAM-HTR dataset.

Table 15 shows the results of the self-supervised HTR framework trained with the image-based
SSIM and perceptual loss functions on the recreated IAM-HTR dataset. Considering the models
trained from scratch, the results indicate only limited learning of relevant information occurred as
a result of minimizing the stylistic differences between input and synthetic images. Still, this is an
improvement in comparison to the model performances of the image-based losses on real training
images. The more promising results for the image-based losses with synthetic images, however, are
of the model performances in the pretrained setting. For both image-based loss functions, the overall
decreased CER and WER on the recreated IAM-HTR-IV and -OOV validation data in the pretrained
setting compared to the pretrained supervised HTR model indicates new information was learned
by training on synthetic images. These findings are reflected in the loss curves for the SSIM and
perceptual loss functions depicted in Figures 46 and 47, respectively. Overall, these results on recre-
ated IAM-HTR data suggest that the image-based self-supervised models trained with real images
performed badly partly due to the stylistic differences between the real and synthetic images.

To obtain more insight into the image-based self-supervised HTR models on the recreated IAM-
HTR dataset, we inspected the set of image pairs with input and synthetic images (containing the
predicted text) in Figures 48 and 49 for the SSIM and perceptual loss functions, respectively. For both
loss functions in the pretrained settings (Figures 48b and 49b), the predicted texts were clearly legible
in the synthetic images, showing that the models indeed learned relevant information. Regarding the
image-based models trained from scratch, some of the image pairs contain ‘i‘- or ‘j‘-like characters
along with artifacts, similar to the image pairs for the image-based losses with real data. Additionally,
the image pairs with synthetic data contained some of the predicted characters. Still, these image
pairs show the models could not learn information that is necessary for the HTR task from scratch.

Given the results in Table 15, the image-based self-supervised HTR model trained with the per-
ceptual loss in the pretrained setting had the best performance, having the lowest CER and WER on
the IAM-HTR-IV and -OOV validation sets. This model was therefore applied to the recreated and
real IAM-HTR test sets in order to analyze its generalizability. In addition, we compare it to the best-
performing supervised model trained on the real IAM-HTR dataset. Table 16 shows these results.
First, it can be observed that the performance of the self-supervised model on recreated IAM-HTR
test data is similar to that on the validation sets. Second, the model performance substantially de-
creases when applied to real IAM-HTR test data. This indicates that the model does not generalize
well to real data. However, this can likely be attributed to the quality of synthetic images limiting
the information that could be learned. Third, in comparison to the best-performing supervised HTR
model trained on real IAM-HTR data, the test results on the real images show that the image-based
self-supervised model performed worse for the IAM-HTR-IV test set, but slightly better on the IAM-
HTR-OOV test set. This may be due to the background knowledge learned by the supervised HTR
model pretrained on IAM-GEN-SIA, where the IAM-HTR-OOV words were not explicitly excluded.
Therefore, we consider the supervised HTR model to have a better overall performance, still.

Chapter 5 RESULTS 63

Table 15: Image-based self-supervised HTR results on the recreated IAM-HTR validation datasets.

IV Validation OOV Validation
Loss function Pretrained CER (%) WER (%) CER (%) WER (%)

SSIM No 66.79 85.12 87.99 100
Yes 0.70 2.71 2.28 9.32

Perceptual No 66.21 84.12 86.94 100
Yes 0.36 1.45 1.46 6.48

CE (pretrained HTR) - 5.60 17.05 14.84 49.65

Figure 46: Loss curve of self-supervised HTR
trained with SSIM loss on recreated IAM-HTR
data.

Figure 47: Loss curve of self-supervised HTR
trained with perceptual loss on recreated IAM-
HTR data.

Table 16: Results on real and recreated IAM-HTR test data of the best-performing supervised and
image-based self-supervised HTR models, trained on real and recreated IAM-HTR data, respectively.
The self-supervised HTR model was trained with the perceptual loss in the pretrained setting.

IV Test OOV Test
Test Data Method CER (%) WER (%) CER (%) WER (%)

Real IAM-HTR Image-based self-supervised 36.08 66.40 43.49 87.80
Supervised 14.71 30.89 44.67 93.13

Recreated IAM-HTR Image-based self-supervised 0.44 1.56 1.83 7.04

64 Chapter 5 RESULTS

(a) From scratch (b) Pretrained

Figure 48: Input images and their corresponding synthetic images with the predicted text for the SSIM
loss trained (a) from scratch and (b) from the pretrained supervised HTR model.

(a) From scratch (b) Pretrained

Figure 49: Input images and their corresponding synthetic images with the predicted text for the
perceptual loss trained (a) from scratch and (b) from the pretrained supervised HTR model.

Chapter 6 CONCLUSIONS 65

6 Conclusions
This thesis aimed to address the need for vast amounts of annotated data for handwritten text recog-
nition by proposing a novel self-supervised HTR framework relying on the similarity between input
and synthetic images, where the synthetic images contained the HTR-predicted text and were pro-
duced by pretrained handwritten text generators. The framework is based on the idea that two images
written in the same style and with the same text are more similar compared to two images with dif-
ferent texts. This thesis thus addresses the primary question of whether the proposed image-based
self-supervised HTR system leveraging HTG can be effectively used for HTR. To investigate this,
we asked how such a system can be implemented, what loss functions should be used for training
it, and whether it could further improve supervised HTR model performance. First, the feasibility
of the framework, its implementation, and potential loss functions were studied on the simpler HCR
task with the MNIST dataset. Based on these findings, the research questions were addressed for
handwritten word recognition posed as a sequence labeling task with the IAM database.

To implement the image-based self-supervised framework, it was proposed to 1) directly feed the
HTR predicted probabilities to the pretrained generator, and 2) apply consistent image preprocessing
and label encoding for HTR and HTG models. To enable the latter, the textual contents of synthetic
images were controlled by conditioning the generator on one-hot encoded labels. For HCR on the
MNIST dataset, experiments were conducted with three different losses operating on pixels of the
images or extracted feature maps. Results showed a higher-level loss function is required for decent
HCR performance with the proposed implementation. Based on these findings, the proposed imple-
mentation of the framework was applied to word recognition. Here, the HTG model GANwriting [39]
was trained on half the IAM dataset to produce images with arbitrary writer styles and texts, and inte-
grated with a CNN-BLSTM HTR architecture [16], [64]. Initially, experiments were conducted with
two image-based losses, where the self-supervised HTR models were trained on data independent
from GANwriting, either from scratch or leveraging transfer learning. When these results were not
promising, the possibility of limitations imposed by stylistic differences between real and synthetic
images was investigated by proposing two style-invariant losses, and by applying the experiments
with image-based losses to data recreated with GANwriting. Only the image-based self-supervised
HTR models trained with the recreated data and leveraging transfer learning showed a capability of
learning new, relevant information. Still, these models did not generalize well to real data.

Given our findings, let us now first consider the secondary research questions before addressing
the primary research question.

RQ1 How can handwritten text generation be effectively incorporated into image-based self-
supervised handwritten text recognition?

For the incorporation of HTG into the image-based self-supervised HTR framework, the input
and synthetic images needed to be in the same range w.r.t. pixel values, and the character
indices needed to represent the same characters in the HTG and HTR models. We found that
directly inputting the HTR predictions to the pretrained generator, conditioning the generator
on one-hot encoded labels, and applying identical image preprocessing and label encoding
resulted, to an extent, in the image-based self-supervised HCR and HTR models learning
relevant information.

RQ2 What is an appropriate loss function for training the image-based self-supervised hand-
written text recognition framework?

From the losses considered, the perceptual loss function resulted in the lowest error rates for

66 Chapter 6 CONCLUSIONS

both image-based self-supervised HCR and HTR, therefore showing the most potential. How-
ever, this image-based loss only has potential for HTR when the input and synthetic images
have minimal stylistic differences. In a broader sense, we consider that, for image-based self-
supervised HCR, the loss functions directly comparing the input and synthetic image pixels led
to substantially higher error rates compared to the perceptual loss, which operates on extracted
feature maps. This shows high-level loss functions are necessary for a good performance of
image-based self-supervised models.

RQ3. Can pretrained supervised handwritten text recognition models be improved using image-
based self-supervised learning?
Image-based self-supervised HTR using a pretrained supervised HTR model showed de-
creased error rates compared to this pretrained model, indicating that training supervised HTR
models can be improved with the proposed framework. However, the results of our experi-
ments demonstrated that this is exclusive to when the stylistic differences between the input
and synthetic images are minimal. Otherwise, all information learned by the supervised HTR
model will be lost and overwritten, leading to high error rates.

Given the answers to the secondary research questions, we address the primary research question:

Can self-supervised learning based on the similarity between real images and synthetic images
that contain predicted text and are produced with handwritten text generation models be

effectively used for handwritten text recognition?

The results demonstrated that self-supervised HTR models with both image-based and style-invariant
losses for real images did not lead to lower error rates compared to a supervised HTR model. In fact,
word error rates were maximal when training the model from scratch. Moreover, when transfer learn-
ing was used, catastrophic forgetting occurred. While the style-invariant losses were less affected by
catastrophic forgetting, their error rates were still higher compared to the supervised model. However,
when trained on synthetic images, image-based self-supervised models learned limited information
when trained from scratch, and new information was learned when transfer learning was also used.
These findings suggest that the proposed implementation of an image-based self-supervised frame-
work can be effectively used for HTR only if there are minimal stylistic differences between the input
and synthetic images, and if background knowledge of HTR is used.

Chapter 7 DISCUSSION 67

7 Discussion

This Chapter provides a more in-depth discussion of the results and conclusions by addressing the
limitations of the methodology and possibilities for future research. To do so, we first consider the
HTR and HTG network architectures, and then the implementation and loss functions for the self-
supervised framework.

There are several limitations of the self-supervised framework that can be improved upon in future
studies on similar systems. Regarding the HTR architecture, the CNN-BLSTM by Puigcerver [16]
demonstrated the lowest error rates when adapted with column-wise max pooling [64] and trained
with the CE loss instead of the CTC loss. Compared to state-of-the-art word recognition models,
however, this was worse. Possible explanations for this are that the supervised HTR model in this
thesis was trained with only half the IAM dataset, with different partitions, and without data aug-
mentation. Moreover, it has to be noted that Puigcerver [16]’s original architecture has been shown
to be sub-optimal compared to others such as HTR-Flor for line text recognition [18]. Initially, we
had considered HTR-Flor’s architecture, but due to the incompatibility between its implementation in
TensorFlow and GANwriting’s implementation in PyTorch, Puigcerver’s architecture was opted for
instead. Possibly, if ensured to be compatible with the pretrained image generator, HTR-Flor’s archi-
tecture might result in improved performances of the image-based self-supervised HTR framework.
This suggestion will not have much influence, however, if the discrepancy between real images and
the synthetic images generated by GANwriting is not addressed.

GANwriting’s generator was limited w.r.t. both style and content. Specifically, it struggled to
imitate slanted and cursive writing styles, all-capital words, and letters such as ‘m‘ and ‘w‘. The
experiments conducted with self-supervised HTR on real and synthetic images showed that these
limitations were detrimental to self-supervised HTR models’s performances on real data. As such,
one of the key improvements for the proposed image-based self-supervised system is regarding the
quality of synthetic images. One way is to enhance GANwriting’s generator by including additional
constraints to the generator’s loss function to control for style, for example, with an extra patch-level
or contextual loss term, which improved performance for HiGAN+ [41]. Alternatively, GANwriting
could be replaced with a diffusion model such as WordStylist [5]. Although this will substantially
increase the computational costs, diffusion models are the current state-of-the-art in HTG. With such
a model, the question of whether image-based self-supervised HTR could be effectively applied to
real images could be studied more thoroughly. Next to additional constraints or model replacement,
the metric for HTG model selection should be appropriate for measuring the quality of handwritten
images, as the commonly used FID suffers from biases. Overall, it should be investigated which
metrics are fit for HTG so that a consensus can be reached in the field.

Having considered the HTR and HTG architectures, the methods applied for their integration
could also be further optimized. First, the image preprocessing might have been sub-optimal for the
HTR model. Since inverted images facilitate the image generation process and significantly enhance
synthetic image quality, the HTR models were trained with such images. However, in the HTR
literature, the models are commonly trained with images that have black ink and a white background.
Although the literature does not reason why non-inverted images are used, this trend suggests that
HTR architectures can extract more relevant information from them. Therefore, omitting the inversion
step in image preprocessing for the HTR pipeline might lead to increased model performances of both
the supervised and self-supervised HTR models. Even so, the self-supervised HTR system will likely
benefit more from optimizing its objective function.

The image-based self-supervised HTR models trained on synthetic images only showed good
performances when leveraging transfer learning. This suggests the image-based losses were too spe-

68 Chapter 7 DISCUSSION

cific to capture high-level differences in character shapes. Additional constraints, such as projec-
tion profiles, might allow the image-based self-supervised models to learn the necessary features. A
shortcoming of the perceptual loss, specifically, is that it operates on feature maps extracted with the
VGG-16 network pretrained on natural images, and not on handwritten images, likely resulting in sub-
optimal feature maps. Perhaps, more relevant features could be extracted by using a pretrained HTR
model, or a handwritten word classifier. Such features may result in increased model performances
when training without using background knowledge from related tasks as they more explicitly en-
code textual content. Of course, when extracting feature maps, such losses would still depend on the
quality of synthetic images.

Unfortunately, the style-invariant losses (studied on real data) did not result in the learning of
any information, not when the self-supervised HTR models were trained from scratch, nor when
using transfer learning. For the Siamese Network loss, this could have been due to the extracted
features being too implicit w.r.t. content, and the HTR model exploiting this. An alternative to the
Siamese Network loss, then, could be a word classifier as suggested for the perceptual loss. Instead of
operating on feature maps, feature vectors could be extracted with an extra dense layer. If trained on a
variety of writer styles, such features would also be style-invariant. For the low model performances
with text-based content loss, we consider that the pretrained supervised HTR model struggled to
generalize to unseen words. Many unseen character sequences must have been encountered while
training the self-supervised HTR model, especially when training from scratch. This would have
led to the comparison of inaccurate predictions. Additionally, in the transfer learning setting, we
consider that the discrepancy between real and synthetic images may have propagated to the predicted
character probabilities, resulting in increased error rates compared to the pretrained HTR model. A
text-based method more robust to out-of-distribution data might be by combining character detection
and identification, which was used or word recognition in [24].

Considering the overall effectiveness of the self-supervised system, it could be questioned if it is
realistic for practical use due to the high computational costs necessary to train both the system itself
and the HTG model. The findings of this thesis suggest that even if the issues with the differences
between input and synthetic images are resolved, the self-supervised HTR system might only be
effective for improving existing HTR models. In this case, there might be more efficient methods to
improve HTR model performances in post-processing. Staying true to the core idea behind image-
based self-supervised learning, perhaps synthetic images with HTR predictions could be compared
to input images, not for self-supervised learning but for verification. Such an approach would not
need additional training of an HTR model or labels; it would allow for automated verification of
transcriptions.

Next to the framework’s realism, its effectiveness in addressing the need for annotated labels
by HTR can also be questioned. While we have proposed several alternatives to further investigate
the effectiveness of the proposed self-supervised HTR framework, there remains the fact that only
the training of the HTR framework is self-supervised. To train the HTG model, annotated data is
still required. In fact, GANwriting needed both text and style labels. Moreover, the background
knowledge necessary for good model performances on synthetic images was acquired via a supervised
HTR model, which also required annotated data. In light of this, the self-supervised framework only
eliminates the need for labels when training the HTR model. It shows the high complexity of the HTR
problem and suggests that to obtain high-quality transcriptions of handwritten texts, annotated labels
are, to an extent, necessary for high-quality transcriptions.

BIBLIOGRAPHY 69

Bibliography
[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.

deeplearningbook.org.

[2] J. C. Aradillas Jaramillo, J. J. Murillo-Fuentes, and P. M. Olmos, “Boosting handwriting text
recognition in small databases with transfer learning,” in 2018 16th International Conference on
Frontiers in Handwriting Recognition (ICFHR), 2018, pp. 429–434.

[3] J. Zdenek and H. Nakayama, “Handwritten text generation with character-specific encoding for
style imitation,” in Document Analysis and Recognition - ICDAR 2023, G. A. Fink, R. Jain,
K. Kise, and R. Zanibbi, Eds. Cham: Springer Nature Switzerland, 2023, pp. 313–329.

[4] M. Spoto, B. Wolf, A. Fischer, and A. Scius-Bertrand, “Improving handwriting recognition
for historical documents using synthetic text lines,” in Intertwining Graphonomics with Human
Movements, C. Carmona-Duarte, M. Diaz, M. A. Ferrer, and A. Morales, Eds. Cham: Springer
International Publishing, 2022, pp. 61–75.

[5] K. Nikolaidou, G. Retsinas, V. Christlein, M. Seuret, G. Sfikas, E. B. Smith, H. Mokayed, and
M. Liwicki, “WordStylist: styled verbatim handwritten text generation with latent diffusion
models,” in International Conference on Document Analysis and Recognition. Springer, 2023,
pp. 384–401.

[6] P. Krishnan, R. Kovvuri, G. Pang, B. Vassilev, and T. Hassner, “TextStyleBrush: Transfer of
text aesthetics from a single example,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 7,
p. 9122–9134, jul 2023. [Online]. Available: https://doi.org/10.1109/TPAMI.2023.3239736

[7] T. Lin, B. Horne, P. Tiño, and C. Giles, “Learning long-term dependencies is
not as difficult with NARX networks,” in Advances in Neural Information Process-
ing Systems, D. Touretzky, M. Mozer, and M. Hasselmo, Eds., vol. 8. MIT
Press, 1995. [Online]. Available: https://proceedings.neurips.cc/paper files/paper/1995/file/
f197002b9a0853eca5e046d9ca4663d5-Paper.pdf

[8] A. El-Yacoubi, M. Gilloux, R. Sabourin, and C. Suen, “An HMM-based approach for off-line un-
constrained handwritten word modeling and recognition,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 21, no. 8, pp. 752–760, 1999.

[9] S. España-Boquera, M. Castro-Bleda, J. Gorbe-Moya, and F. Zamora-Martinez, “Improving
offline handwritten text recognition with hybrid HMM/ANN models,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 33, no. 4, pp. 767–779, 2011.

[10] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist temporal classification:
labelling unsegmented sequence data with recurrent neural networks,” in Proceedings of
the 23rd International Conference on Machine Learning, ser. ICML ’06. New York,
NY, USA: Association for Computing Machinery, 2006, p. 369–376. [Online]. Available:
https://doi.org/10.1145/1143844.1143891

[11] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber, “A novel
connectionist system for unconstrained handwriting recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 5, pp. 855–868, 2009.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/TPAMI.2023.3239736
https://proceedings.neurips.cc/paper_files/paper/1995/file/f197002b9a0853eca5e046d9ca4663d5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1995/file/f197002b9a0853eca5e046d9ca4663d5-Paper.pdf
https://doi.org/10.1145/1143844.1143891

70 BIBLIOGRAPHY

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,
no. 8, pp. 1735–1780, 11 1997. [Online]. Available: https://doi.org/10.1162/neco.1997.9.8.1735

[13] A. Graves and J. Schmidhuber, “Offline handwriting recognition with multidimensional
recurrent neural networks,” in Advances in Neural Information Processing Systems,
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds., vol. 21. Curran Associates,
Inc., 2008. [Online]. Available: https://proceedings.neurips.cc/paper files/paper/2008/file/
66368270ffd51418ec58bd793f2d9b1b-Paper.pdf

[14] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, pp. 2298–2304, 2015. [Online]. Available:
https://api.semanticscholar.org/CorpusID:24139

[15] P. Voigtlaender, P. Doetsch, and H. Ney, “Handwriting recognition with large multidimensional
long short-term memory recurrent neural networks,” in 2016 15th International Conference on
Frontiers in Handwriting Recognition (ICFHR), 2016, pp. 228–233.

[16] J. Puigcerver, “Are multidimensional recurrent layers really necessary for handwritten text
recognition?” in 2017 14th IAPR International Conference on Document Analysis and Recog-
nition (ICDAR), vol. 01, 2017, pp. 67–72.

[17] T. Bluche and R. Messina, “Gated convolutional recurrent neural networks for multilingual
handwriting recognition,” in 2017 14th IAPR International Conference on Document Analysis
and Recognition (ICDAR), vol. 01, 2017, pp. 646–651.

[18] A. F. de Sousa Neto, B. L. D. Bezerra, A. H. Toselli, and E. B. Lima, “HTR-Flor: A deep
learning system for offline handwritten text recognition,” in 2020 33rd SIBGRAPI Conference
on Graphics, Patterns and Images (SIBGRAPI), 2020, pp. 54–61.

[19] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using RNN encoder–decoder for statistical
machine translation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), A. Moschitti, B. Pang, and W. Daelemans, Eds. Doha, Qatar:
Association for Computational Linguistics, Oct. 2014, pp. 1724–1734. [Online]. Available:
https://aclanthology.org/D14-1179

[20] J. Almazán, A. Gordo, A. Fornés, and E. Valveny, “Word spotting and recognition with em-
bedded attributes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36,
no. 12, pp. 2552–2566, 2014.

[21] P. Krishnan, K. Dutta, and C. Jawahar, “Deep feature embedding for accurate recognition and re-
trieval of handwritten text,” in 2016 15th International Conference on Frontiers in Handwriting
Recognition (ICFHR), 2016, pp. 289–294.

[22] P. Krishnan and C. V. Jawahar, “Matching handwritten document images,” in Computer Vision –
ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer International
Publishing, 2016, pp. 766–782.

https://doi.org/10.1162/neco.1997.9.8.1735
https://proceedings.neurips.cc/paper_files/paper/2008/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://api.semanticscholar.org/CorpusID:24139
https://aclanthology.org/D14-1179

BIBLIOGRAPHY 71

[23] P. krishnan, K. Dutta, and C. V. Jawahar, “HWNET v3: a joint embedding framework for
recognition and retrieval of handwritten text,” International Journal on Document Analysis
and Recognition (IJDAR), vol. 26, no. 4, p. 401–417, dec 2023. [Online]. Available:
https://doi.org/10.1007/s10032-022-00423-6

[24] R. Mondal, S. Malakar, E. H. Barney Smith, and R. sarkar, “Handwritten english
word recognition using a deep learning based object detection architecture,” Multimedia
Tools and Applications, vol. 81, p. 975–1000, jan 2022. [Online]. Available: https:
//doi.org/10.1007/s11042-021-11425-7

[25] K. Hwang and W. Sung, “Character-level incremental speech recognition with recurrent neural
networks,” in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2016, pp. 5335–5339.

[26] H. Scheidl, S. Fiel, and R. Sablatnig, “Word beam search: A connectionist temporal classifica-
tion decoding algorithm,” in 2018 16th International Conference on Frontiers in Handwriting
Recognition (ICFHR), 2018, pp. 253–258.

[27] J. Michael, R. Labahn, T. Gruning, and J. Zollner, “Evaluating sequence-to-sequence models
for handwritten text recognition,” in 2019 International Conference on Document Analysis and
Recognition (ICDAR). Los Alamitos, CA, USA: IEEE Computer Society, sep 2019, pp. 1286–
1293. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/ICDAR.2019.00208

[28] L. Kang, J. I. Toledo, P. Riba, M. Villegas, A. Fornés, and M. Rusiñol, “Convolve, attend and
spell: An attention-based sequence-to-sequence model for handwritten word recognition,” in
Pattern Recognition, T. Brox, A. Bruhn, and M. Fritz, Eds. Cham: Springer International
Publishing, 2019, pp. 459–472.

[29] J. Poulos and R. Valle, “Character-based handwritten text transcription with attention networks,”
Neural Computing and Applications, vol. 33, p. 0563–10573, aug 2021. [Online]. Available:
https://doi.org/10.1007/s00521-021-05813-1

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural
Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[31] L. Kang, P. Riba, M. Rusiñol, A. Fornés, and M. Villegas, “Pay attention to what you read: Non-
recurrent handwritten text-line recognition,” Pattern Recognition, vol. 129, p. 108766, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0031320322002473

[32] M. Li, T. Lv, J. Chen, L. Cui, Y. Lu, D. Florencio, C. Zhang, Z. Li, and F. Wei, “TrOCR:
Transformer-based optical character recognition with pre-trained models,” 2022.

[33] R. I. Elanwar, “The state of the art in handwriting synthesis,” in 2nd International Conference
on New Paradigms in Electronics & information Technology (peit’013), Luxor, Egypt, 2013.

[34] A. Graves, “Generating sequences with recurrent neural networks,” ArXiv, vol. abs/1308.0850,
2013. [Online]. Available: https://api.semanticscholar.org/CorpusID:1697424

https://doi.org/10.1007/s10032-022-00423-6
https://doi.org/10.1007/s11042-021-11425-7
https://doi.org/10.1007/s11042-021-11425-7
https://doi.ieeecomputersociety.org/10.1109/ICDAR.2019.00208
https://doi.org/10.1007/s00521-021-05813-1
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0031320322002473
https://api.semanticscholar.org/CorpusID:1697424

72 BIBLIOGRAPHY

[35] E. Alonso, B. Moysset, and R. Messina, “Adversarial generation of handwritten text images con-
ditioned on sequences,” in 2019 International Conference on Document Analysis and Recogni-
tion (ICDAR), 2019, pp. 481–486.

[36] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing
Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds., vol. 27.
Curran Associates, Inc., 2014.

[37] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier GANs,”
in Proceedings of the 34th International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70. PMLR, 06–11 Aug
2017, pp. 2642–2651. [Online]. Available: https://proceedings.mlr.press/v70/odena17a.html

[38] S. Fogel, H. Averbuch-Elor, S. Cohen, S. Mazor, and R. Litman, “Scrabblegan: Semi-supervised
varying length handwritten text generation,” in 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020, pp. 4323–4332.

[39] L. Kang, P. Riba, Y. Wang, M. Rusiñol, A. Fornés, and M. Villegas, “GANwriting: Content-
conditioned generation of styled handwritten word images,” in Computer Vision – ECCV 2020,
A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds. Cham: Springer International Publish-
ing, 2020, pp. 273–289.

[40] J. Gan and W. Wang, “Higan: Handwriting imitation conditioned on arbitrary-length
texts and disentangled styles,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 9, pp. 7484–7492, May 2021. [Online]. Available: https:
//ojs.aaai.org/index.php/AAAI/article/view/16917

[41] J. Gan, W. Wang, J. Leng, and X. Gao, “HiGAN+: Handwriting imitation gan with
disentangled representations,” ACM Trans. Graph., vol. 42, no. 1, sep 2022. [Online]. Available:
https://doi.org/10.1145/3550070

[42] J. Zdenek and H. Nakayama, “JokerGAN: Memory-efficient model for handwritten text
generation with text line awareness,” in Proceedings of the 29th ACM International Conference
on Multimedia, ser. MM ’21. New York, NY, USA: Association for Computing Machinery,
2021, p. 5655–5663. [Online]. Available: https://doi.org/10.1145/3474085.3475713

[43] H. Wang, Y. Wang, and H. Wei, “AFFGANwriting: A handwriting image generation method
based on multi-feature fusion,” in Document Analysis and Recognition - ICDAR 2023, G. A.
Fink, R. Jain, K. Kise, and R. Zanibbi, Eds. Cham: Springer Nature Switzerland, 2023, pp.
302–312.

[44] L. Kang, P. Riba, M. Rusiñol, A. Fornés, and M. Villegas, “Content and style aware generation
of text-line images for handwriting recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 44, no. 12, pp. 8846–8860, 2022.

[45] J. Zdenek and H. Nakayama, “Handwritten text generation with character-specific encoding for
style imitation,” in Document Analysis and Recognition - ICDAR 2023, G. A. Fink, R. Jain,
K. Kise, and R. Zanibbi, Eds. Cham: Springer Nature Switzerland, 2023, pp. 313–329.

https://proceedings.mlr.press/v70/odena17a.html
https://ojs.aaai.org/index.php/AAAI/article/view/16917
https://ojs.aaai.org/index.php/AAAI/article/view/16917
https://doi.org/10.1145/3550070
https://doi.org/10.1145/3474085.3475713

BIBLIOGRAPHY 73

[46] A. Bhunia, S. Khan, H. Cholakkal, R. Anwer, F. Khan, and M. Shah, “Handwriting
transformers,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Los
Alamitos, CA, USA: IEEE Computer Society, oct 2021, pp. 1066–1074. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00112

[47] V. Pippi, S. Cascianelli, and R. Cucchiara, “Handwritten text generation from visual
archetypes,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). Los Alamitos, CA, USA: IEEE Computer Society, jun 2023, pp. 22 458–22 467.
[Online]. Available: https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.02151

[48] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning
using nonequilibrium thermodynamics,” in Proceedings of the 32nd International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research, F. Bach and D. Blei,
Eds., vol. 37. Lille, France: PMLR, 07–09 Jul 2015, pp. 2256–2265. [Online]. Available:
https://proceedings.mlr.press/v37/sohl-dickstein15.html

[49] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Advances
in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Had-
sell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp.
6840–6851. [Online]. Available: https://proceedings.neurips.cc/paper files/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf

[50] Y. Zhu, Z. Li, T. Wang, M. He, and C. Yao, “Conditional text image generation with diffusion
models,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2023, pp. 14 235–14 244.

[51] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image syn-
thesis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2022, pp. 10 684–10 695.

[52] A. Mattick, M. Mayr, M. Seuret, A. Maier, and V. Christlein, “SmartPatch: Improving handwrit-
ten word imitation with patch discriminators,” in Document Analysis and Recognition – ICDAR
2021, J. Lladós, D. Lopresti, and S. Uchida, Eds. Cham: Springer International Publishing,
2021, pp. 268–283.

[53] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015,
software available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[54] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, pp. 2278 – 2324, 12 1998.

[55] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization of neural networks
using DropConnect,” in Proceedings of the 30th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, S. Dasgupta and D. McAllester,
Eds., vol. 28, no. 3. Atlanta, Georgia, USA: PMLR, 17–19 Jun 2013, pp. 1058–1066.
[Online]. Available: https://proceedings.mlr.press/v28/wan13.html

https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00112
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.02151
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://www.tensorflow.org/
https://proceedings.mlr.press/v28/wan13.html

74 BIBLIOGRAPHY

[56] K. Cheng, R. Tahir, L. K. Eric, and M. Li, “An analysis of generative adversarial networks and
variants for image synthesis on MNIST dataset,” Multimedia Tools and Applications, vol. 79,
no. 19, 2020.

[57] F. Chollet et al., “Keras,” https://keras.io, 2015.

[58] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” 2014.

[59] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs trained by a
two time-scale update rule converge to a local nash equilibrium,” in Proceedings of the 31st
International Conference on Neural Information Processing Systems, ser. NIPS’17. Red Hook,
NY, USA: Curran Associates Inc., 2017, p. 6629–6640.

[60] N. Khare, P. S. Thakur, P. Khanna, and A. Ojha, “Analysis of loss functions for image recon-
struction using convolutional autoencoder,” in Computer Vision and Image Processing, B. Ra-
man, S. Murala, A. Chowdhury, A. Dhall, and P. Goyal, Eds. Cham: Springer International
Publishing, 2022, pp. 338–349.

[61] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-
resolution,” 2016.

[62] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style,
high-performance deep learning library,” in Advances in Neural Information Processing Systems
32. Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[63] U. Marti and H. Bunke, “The IAM-database: an English sentence database for offline hand-
writing recognition,” International Journal on Document Analysis and Recognition, vol. 5, pp.
39–46, nov 2002.

[64] G. Retsinas, G. Sfikas, B. Gatos, and C. Nikou, “Best practices for a handwritten text recognition
system,” 2024.

[65] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive instance nor-
malization,” in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp.
1510–1519.

[66] J. Michael, R. Labahn, T. Grüning, and J. Zöllner, “Evaluating sequence-to-sequence
models for handwritten text recognition,” 2019 International Conference on Document
Analysis and Recognition (ICDAR), pp. 1286–1293, 2019. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:81985132

[67] S. Bird, E. Klein, and E. Loper, Natural Language Processing with Python, 01 2009.

[68] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image restoration with neural
networks,” IEEE Transactions on Computational Imaging, vol. 3, no. 1, pp. 47–57, 2017.

[69] B. K. Barakat, R. Alasam, and J. El-Sana, “Word spotting using convolutional siamese network,”
in 2018 13th IAPR International Workshop on Document Analysis Systems (DAS), 2018, pp.
229–234.

https://keras.io
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://api.semanticscholar.org/CorpusID:81985132
https://api.semanticscholar.org/CorpusID:81985132

BIBLIOGRAPHY 75

[70] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification,” in 2015 IEEE International Conference on Computer
Vision (ICCV), 2015, pp. 1026–1034.

[71] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

76 APPENDICES

Appendices

A A Siamese Network for a Style-Invariant Loss
This section details the methodology and results of the Siamese Network used for the Siamese Net-
work loss in the self-supervised HTR framework (Section 4.4). This approach was inspired by Barakat
et al. [69], where a Siamese Network was trained for word spotting. They showed that image repre-
sentations learned by a Siamese Network could be used to rank the similarity of pairs of word images.
It does this by mapping pairs of input images to their respective feature representations, using the
same network for both inputs. For its application to self-supervised HTR, the aim was thus to train
a Siamese Network that can extract word image representations such that real and synthetic images
were similar if they contained the same text and dissimilar if they contained different texts, thereby
circumventing stylistic differences. We first describe the dataset for training the Siamese Network in
Section A.1. Then, the network architecture and its implementation details are given in Sections A.2
and A.3. Lastly, the model evaluation and results are described in Sections A.4 and A.5.

A.1 Dataset

When contemplating the design of the dataset to train the Siamese Network with, it has to be consid-
ered that the IAM-HTR dataset was used for training the self-supervised HTR system. To maintain
independence between the Siamese Network and this dataset, it was trained on the IAM-GEN dataset.
Unlike IAM-HTR, the data splits of IAM-GEN are mutually exclusive w.r.t. writer styles. Therefore,
the training and validation sets of IAM-GEN were merged and refactored into a training (70%, 21907
samples), validation (15%, 4565 samples), and test set (15%, 4824) such that each data split contained
all writer styles. This dataset is referred to as IAM-GEN-SIA. To create these splits, the same pro-
cedure as when creating the IAM-HTR-IV dataset was followed. Moreover, the preprocessing was
consistent with the HTR and HTG pipelines to ensure compatibility with these models.

In order for the Siamese Network to learn to extract feature representations of the word images
such that a pair of real and synthetic images containing the same text are similar, and dissimilar when
containing different texts, we created two similar, and two dissimilar image pairs. These pairs were
generated for each real image in the IAM-GEN-SIA dataset. The synthetic images were generated
with GANwriting’s best-performing pretrained generator. To create the positive (similar, 1) pairs, two
images were generated that contained the same text as the real image, s.t. one image contained the
same writer style, and one image a different, randomly selected, writer style. To create the negative
(dissimilar, 0) pairs, two images were generated in the same writer style as the corresponding real
image, but with different texts. Specifically, one image contained a randomly generated text label,
and one image contained the text of the real images that was edited. In addition, there was a 25%
chance of duplicating characters in both these text labels. Creating the text labels of the negative
pairs in this manner simulates the possible situations that could occur during the training of the self-
supervised HTR framework. Examples of positive and negative image pairs are shown in Figure 50.
The processes of obtaining the text labels for the negative pairs can be detailed as follows.

Random generation For the random generation of the text labels, a vocabulary consisting
of the 52 upper and lower case alphabetical characters was used. A random number of N =
{0,1,2, ..,10} characters were then randomly sampled from this vocabulary, weighted by their
frequencies in the IAM-GEN-SIA training set.

Label edits One of the synthetic images in each negative pair contained text that was obtained
by consecutively applying three random character edits to the text label of the corresponding

APPENDICES 77

‘be’

‘get’ ‘oooooe’

P
os
iti
ve

‘auket’ ‘strrrrrrrrr’

‘to’

N
eg
at
iv
e

Figure 50: Samples of the synthetic images for the positive and negative pairs with their real counter-
parts.

real image. These edits were one of random insertion, deletion, swapping, and replacement.
For the random insertion and replacement operations, a character was randomly sampled from
the vocabulary, weighted by the character frequencies in the IAM-GEN-SIA training set.

Duplication The duplication of characters was applied to the randomly generated and edited
labels with a 25% chance. If the duplication occurred, one or two characters (50% chance) in
the text label were randomly selected and duplicated a random number of N = {2,3,4,5} times.

A.2 Network Architecture

There are two common ways for a Siamese Network to learn a latent space for feature representations:
via binary classification (an input pair is the same class or not), or via an explicit distance calculation.
The latter method was used in [69], and facilitates interpretation. Hence, we also used this method.
An overview of the Siamese Network architecture is shown in Figure 51. It has two branches with
the same network architecture, whose weights are shared. Based on initial experimentation, the CNN
of the ResNet34 [71] architecture pretrained on ImageNet was selected for the extraction of feature
maps. These were then reduced to one-dimensional representations through adaptive average pooling.
Then, two dense layers with 256 neurons were used to obtain a final feature representation of the
input image. To the first dense layer, the ReLU activation function was applied, as well as batch
normalization for regularization.

A.3 Implementation Details

As aforementioned, the weights between the branches of the two input images were shared, meaning
that the same network was applied separately to the two input images to extract their feature repre-
sentations. The network was trained with the contrastive loss function depicted in Equation 19, where
D(x1,x2) is the Euclidean distance between the feature vectors of input images x1 and x2 with the
label y, and m = 1.0. The left term of the loss then penalizes large distances between similar pairs,
and the right term penalizes small distances between dissimilar image pairs.

Lcontr(x1,x2,y) = y ·D(x1,x2)
2 +(1− y)(max(0,m−D(x1,x2)))

2 (19)

78 APPENDICES

Resnet34

Resnet34

Euclidean
distance

Dense +
ReLU +

BatchNorm

256

Dense

256

Figure 51: Siamese Network architecture

The Siamese Network was trained with the RMSprop optimizer and an initial learning rate of
0.0001. The learning rate was decreased by a factor of 0.1 when the validation loss did not decrease
for more than two epochs. The batch size was set to 16. These parameters were selected through
tuning on the validation set.

A.4 Evaluation

The Siamese Network was trained on the IAM-GEN-SIA dataset and evaluated on its validation
and test set. Early stopping was applied with a patience of five epochs to prevent overfitting. To
evaluate the model’s performance, the Euclidean distances between the positive and negative pairs
were computed. Specifically, the mean distance across batches on the validation and test set was
computed. To verify whether the difference in distance between the positive and negative pairs was
statistically significant, a two-tailed t-test was performed on the test set.

A.5 Results

The results of the Siamese Network trained on the IAM-GEN-SIA dataset with the contrastive loss
are shown in Table 4 for the validation and test set. On both validation and test sets, there is a clear
difference in distance between the similar and dissimilar images. Moreover, the standard deviations
indicate only little variation between image pairs, suggesting that appropriate feature representations
were learned. Additionally, it can be observed that there is a minimal difference between the results
on the validation and test sets, suggesting that the model is able to generalize well to unseen data.
Considering the loss curve in Figure 52, it can be observed that only minimal overfitting occurred. A
two-tailed t-test conducted on the test results to compare the mean distances of similar and dissimilar
images indicated that the distance between similar images was significantly smaller than the distance
between dissimilar images (t(2282) = 161.024, p < 0.005).

APPENDICES 79

Table 17: Siamese network results on the IAM-GEN-SIA dataset.

Euclidean distance Validation set Euclidean distance test set

Similar images 0.105 ± 0.069 0.107 ± 0.070
Dissimilar images 0.541 ± 0.054 0.539 ± 0.057
Difference 0.435 ± 0.085 0.432 ± 0.089

Figure 52: Training and validation loss curves of the Siamese Network on IAM-GEN-SIA.

80 APPENDICES

B Results of Preliminary Self-Supervised HTR Experiments with Different
Learning Rates on Real IAM-HTR data.

This section reports and briefly discusses the results of experiments with self-supervised HTR trained
on real IAM-HTR data in the pretrained setting with learning rates of 1× 10−4 and 3× 10−4. The
results are shown in Table 18. The model performances for the SSIM and Perceptual losses showed a
slight decrease in CER and WER. However, this is likely due to randomness in the image generation
process during training, rather than a structural improvement due to an increased learning rate. We
consider this explanation, as the style-invariant losses showed a drastic decrease in model performance
with this increase in learning rate from 1×10−4 to 3×10−4.

Given the above, it was concluded that, for real images, the initial learning rate of 1×10−4 led to
improved self-supervised HTR model performances compared to the initial learning rate of 3×10−4.

Table 18: Self-supervised HTR model performances with different learning rates on real IAM-HTR
validation data. The models used transfer learning and were trained on real IAM-HTR data.

IV-Validation OOV-Validation
Loss Function Learning Rate CER (%) WER (%) CER (%) WER (%)

SSIM 1×10−4 95.64 100 95.06 100
3×10−4 95.48 100 94.85 100

Perceptual 1×10−4 94.49 100 94.22 100
3×10−4 94.22 100 93.70 100

Siamese Network 1×10−4 59.89 81.98 74.94 99.89
3×10−4 98.60 100 97.89 100

Content 1×10−4 21.26 48.50 39.66 88.86
3×10−4 95.13 100 95.10 100

APPENDICES 81

C Results of Preliminary Self-Supervised HTR Experiments with Different
Learning Rates on Recreated IAM-HTR data.

This section reports and briefly discusses the results of experiments with image-based self-supervised
HTR trained on recreated IAM-HTR data in the pretrained setting with learning rates of 1×10−4 and
3×10−4. The results are shown in Table 19. Comparing the results for the different learning rates, the
model performances for both the SSIM and Perceptual losses with learning rate 3× 10−4 showed a
decrease in CER and WER compared to the learning rate of 1×10−4. The more substantial decreases
in WER on the OOV validation data for both losses lead us to believe that this can be attributed to the
increased learning rate rather than the randomness in the image generation process.

Given the above, it was concluded that, for synthetic images, the initial learning rate of 3×10−4

led to improved image-based self-supervised model performances compared to the initial learning
rate of 1×10−4.

Table 19: Image-based self-supervised HTR model performances with different learning rates on
synthetic IAM-HTR validation data. The models used transfer learning and were trained on recreated
IAM-HTR-IV data.

IV Validation OOV Validation
Loss function Learning Rate CER (%) WER (%) CER (%) WER (%)

SSIM 1×10−4 0.94 3.64 5.07 22.16
3×10−4 0.70 2.71 2.28 9.32

Perceptual 1×10−4 0.44 1.84 1.90 8.75
3×10−4 0.36 1.45 1.46 6.48

82 APPENDICES

D Results of Image-based Self-Supervised HTR for Learning New Words
This section reports the results w.r.t. error rates of the experiments conducted with image-based
self-supervised HTR on the recreated IAM-HTR dataset in order to explicitly investigate whether
the proposed framework is able to learn new words. Specifically, the image-based self-supervised
models were trained on the IAM-HTR-OOV dataset with the SSIM and perceptual loss functions
and evaluated with both IV and OOV validation data. Additionally, we test the performance of the
best-performing model on the real IAM-HTR data in comparison to the best-performing supervised
HTR model (trained on real IAM-HTR data). As the results of the self-supervised models trained
on IAM-HTR-IV indicated, transfer learning was necessary for the learning of new features with the
image-based loss functions (see Section 5.3), and this was also used in the current experiments.

Table 20 shows the results of the image-based self-supervised HTR models trained on IAM-HTR-
OOV data for the IAM-HTR validation sets. Overall, the results show decreased error rates for both
SSIM and perceptual loss functions compared to the pretrained supervised HTR model, indicating
new relevant features were learned for both IV and OOV data. Additionally, the SSIM loss function
led to decreased error rates on the IV validation set compared to the perceptual loss function, while
this was reversed for the OOV validation set. Since the difference in performance on the IAM-HTR-
IV validation set is much smaller compared to the differences on the IAM-HTR-OOV validation set,
and these experiments focus on the latter, the image-based self-supervised model trained with the
perceptual loss was determined to be the best-performing model in the current experimental setup.

The error rates of the best-performing image-based self-supervised model trained on recreated
IAM-HTR-OOV data in comparison to the best-performing supervised HTR model trained on real
IAM-HTR-IV are shown in Table 21. First, we can observe a substantial increase in error rates of the
self-supervised model’s performance on real test data compared to recreated test data, which is in line
with the findings of Section 5.3. Second, it can be observed that training on recreated OOV data led
to increased model performance on real IAM-HTR-OOV test data compared to the supervised HTR
model. However, this was reversed for the real IAM-HTR-IV test set. Still, this may suggest that
new information was learned with the recreated IAM-HTR-OOV data that was also relevant to real
data. Another possibility is that the IAM-GEN-SIA contained some of the words that are in the OOV
dataset, which was learned by the pretrained supervised model and maintained by the self-supervised
model.

Table 20: Image-based self-supervised model performances on synthetic validation data. Both self-
supervised models used transfer learning and were trained on recreated IAM-HTR-OOV data. The
pretrained model was trained on real images of IAM-GEN-SIA.

IV Validation OOV Validation
Loss function CER (%) WER (%) CER (%) WER (%)

SSIM 3.48 12.93 2.57 8.86
Perceptual 3.81 13.66 1.29 5.68

CE (pretrained HTR) 5.60 17.05 14.84 49.65

APPENDICES 83

Table 21: Image-based self-supervised model performance for the perceptual loss on the IAM-HTR
test data in comparison with the best-performing supervised HTR model trained on real IAM-HTR-
IV data. The self-supervised model was trained on recreated IAM-HTR-OOV data.

IV Test OOV Test
Training Data Test Data Loss Function CER (%) WER (%) CER (%) WER (%)

OOV Real IAM-HTR Perceptual 34.33 64.31 36.63 79.46
IV CE 14.71 30.89 44.67 93.13

OOV Recreated IAM-HTR Perceptual 3.84 13.15 1.36 5.41

	Introduction
	Research Questions
	Thesis Outline

	Background
	A Brief Overview of Training Neural Networks
	Convolutional and Recurrent Neural Networks

	Handwritten Text Recognition
	Handwritten Text Generation

	Testing the Framework: MNIST
	Dataset
	Supervised Handwritten Character Recognition
	Model Architecture
	Implementation Details
	Evaluation

	Handwritten Character Generation
	Model Architecture
	Implementation Details
	Experimental Setup
	Evaluation

	Self-Supervised Character Recognition
	Model Integration
	Loss Functions
	Implementation Details & Evaluation

	Results
	Supervised Handwritten Character Recognition
	Handwritten Character Generation
	Self-supervised Handwritten Character Recognition

	Discussion
	Summary & Conclusions
	Discussion

	Methods
	Dataset
	Image Preprocessing
	Text Label Encoding

	Supervised Handwritten Text Recognition
	Model Architecture
	Implementation Details
	Evaluation

	Handwritten Text Generation
	Model Architecture
	Implementation Details
	Evaluation

	Self-supervised Handwritten Text Recognition
	Model Integration
	Loss Functions
	Experimental Setup
	Evaluation

	Results
	Supervised Handwritten Text Recognition
	Handwritten Text Generation
	Self-supervised Handwritten Text Recognition
	Results on Real IAM-HTR Data
	Results on Recreated IAM-HTR Data

	Conclusions
	Discussion
	Bibliography
	Appendices
	A Siamese Network for a Style-Invariant Loss
	Dataset
	Network Architecture
	Implementation Details
	Evaluation
	Results

	Results of Preliminary Self-Supervised HTR Experiments with Different Learning Rates on Real IAM-HTR data.
	Results of Preliminary Self-Supervised HTR Experiments with Different Learning Rates on Recreated IAM-HTR data.
	Results of Image-based Self-Supervised HTR for Learning New Words

