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Abstract

The Standard Model of particle physics remains an extensive yet incomplete description of
the physics behind fundamental particles and their interactions. Among the issues not ad-
dressed by the model are the lepton flavour anomalies, suggesting that the third generation
of leptons requires an alternative description. The R(D) and R(D∗) anomalies concerning
the semileptonic τ decay mode of a B meson constitute a combined 3.3σ deviation from
the Standard Model prediction. Potential explanations of these phenomena include novel
bosonic particles – leptoquarks, allowing for a direct transition mechanism between quarks
and leptons. They appear naturally in generalisations of the Standard Model gauge group to
Grand Unified Theories. In this work, three leptoquark models were presented as manifes-
tations of the UV-complete SU(5), SO(10), and the Flavoured Gauge models. The scalar lep-
toquarks were determined to exist with a mass of an order of TeV within the unified SU(5)
and SO(10) models, whereas the last vector leptoquark was identified to emerge from the
non-universal gauge model, with a mass of approximately 1.6 TeV. The inclusion of any of
the leptoquark particles was proven to resolve the R(D(∗)) anomalies while simultaneously
accounting for the agreement between certain other observables. A potential observation
of one of these bosons would constitute evidence for a larger symmetry structure in the
Universe.
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1 Introduction

The Standard Model of particle physics is widely regarded as one of the most successful the-
ories, describing the realm of fundamental particles and their interactions with remarkable
accuracy. Albeit an outstanding model, it is troubled by a wide range of uncertainties and
unexplained issues. These include, for instance, the number of free parameters to be deter-
mined experimentally or the apparent symmetry between different generations of quarks
and leptons [1, p. 223]. Moreover, another crucial problem emerges when considering the
universality of lepton flavours, stating that the relative strength of the electroweak interac-
tion involving different generations of leptons is precisely equivalent. It is only broken by
the Yukawa interaction coupling the leptons to the Higgs field [2]. In essence, it implies that
the decays containing various lepton flavours depend only on the available phase space and
helicity suppression effects [3]. This fact has been thoroughly tested through semileptonic
decay modes of heavy mesons, such as the measurements of the R(D) and R(D∗) observ-
ables, involving the branching fraction of beauty-charm quark transitions in B-meson decays

R(D(∗)) =
B(B → D(∗)τν̄τ)

B(B → D(∗)ℓν̄ℓ)
.

The decays involving the third generation of leptons were observed to occur much more
frequently than predicted, within three standard deviations from the Standard Model result,
constituting a violation of lepton flavour universality [4, p. 21].

This violation of the established expectations naturally hints at possible extensions of the
theory, including new physics beyond the Standard Model. Of particular theoretical interest
are the elusive Grand Unified Theories (GUTs), where larger symmetry groups containing
the Standard Model as a subgroup are employed in hopes of rectifying the anomalies and
providing a mathematically concise way to describe elementary particles by utilising repre-
sentations of a single gauge group. One of the fundamental features of such new physics
models is the existence of leptoquarks — bosons coupling simultaneously to quarks and
leptons, providing a direct mechanism to transform between the individual particles [5]. In
the context of solutions to the R(D(∗)) anomalies, three leptoquarks often appear: the scalar
doublet R2, scalar singlet S1, and the vector singlet U1, all equipped with different trans-
formation properties [6]. Definite experimental observation of one of these particles may
provide evidence for the applicability of the Grand Unified Theories, elucidating the larger
symmetry structure within the Universe.

This thesis aims to provide a bottom-up approach to the explanations of lepton flavour
anomalies in measurements by determining whether the proposed leptoquark models are
directly manifested within given Grand Unified Theories and other mathematical structures
beyond the Standard Model. The relevant symmetry groups on which the analysis will fo-
cus include flavour non-universal gauge groups with a SU(4)× SU(3)× SU(2)×U(1) sub-
group. Moreover, more traditional extensions, such as SO(10) and the UV-complete version
of SU(5), will also be discussed.

For these purposes, first, a formal overview of the Standard Model will be presented to
establish a solid foundation allowing for comprehending the various symmetries of the the-
ory, the convention of labelling particles depending on their transformation characteristics,
as well as the concept of spontaneous symmetry breaking. Consequently, the current state of



5 Chapter 1 Introduction

the R(D) and R(D∗) observable measurements will be presented to identify the properties
of the predicted particles. Finally, the relevant GUT frameworks will be discussed to deter-
mine which ones provide suitable representations of the necessary leptoquarks, constituting
possible Standard Model extensions based on the current experimental data.
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2 The Standard Model

Modern particle physics is written in the language of gauge theory, in which the Lagrangian
of a given system determining its dynamics may be modified with a choice of a gauge – a
set of additional constraints that reduces the number of degrees of freedom. The symmetry
group of the system’s action, referred to as the gauge group, is comprised of all possibly
spacetime-dependent transformations that result in an equivalent description, utilising the
existing redundancy in the parameters [7]. For the Standard Model, the gauge group GSM is
a direct product of three Lie groups

GSM ≡ SU(3)C × SU(2)L × U(1)Y,

constituting the colour SU(3)C, isospin SU(2)L, and hypercharge U(1)Y internal symmetry
groups, corresponding to the strong and electroweak interactions, respectively. These are
identified with the aforementioned relevant quantum numbers, determining the transfor-
mation properties of particles.

Depending on the energy scale, the gauge group describing the symmetry of the theory may
degenerate to a different group in a process known as spontaneous symmetry-breaking. Within
the Standard Model, one such transition is the electroweak symmetry-breaking, where the
electroweak sector SU(2)L ×U(1)Y breaks into the electromagnetic symmetry group U(1)Q,
identified with the electric charge

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)Q.

This mechanism is crucial to many extensions of the Standard Model, with Grand Unified
Theories being the prime example.

The aim of this section is to establish a suitable mathematical framework for describing the
particles and their properties under GSM. Identifying these characteristics will allow for
generalising the treatment to certain Grand Unified Theories and recognising the footprint
of new physics particles, such as the leptoquarks responsible for lepton flavour anomalies.
Moreover, the mechanism of spontaneous symmetry-breaking will also be discussed to pro-
vide a solid foundation for the phenomenology of the various symmetry-breaking chains in
Standard Model extensions. The arguments presented in this section are largely based on
”The Algebra of Grand Unified Theories” by John Baez and John Huerta [8, pp. 487–511].

2.1 Particle representations

In many applications, it is convenient to represent the action of a group using the familiarity
of linear algebra. Representations of groups provide a formal way of expressing the ele-
ments of a group as invertible matrices acting on a given vector space. In terms of particle
physics, the concerned vector space is often a finite-dimensional Hilbert space H in which
particle states exist. Depending on the dimension of the representation n, this vector space
may be simply represented through the set of complex numbers Cn.

If G is an arbitrary matrix Lie group, the representation Π of the group is a homomorphism
mapping an element g of G to an n × n invertible matrix Mn×n, an element of the general
linear group GL, defined on the appropriate n-dimensional Hilbert space H, mirroring the
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set of transformations imposed by the group in question

Π : G → GL(n;H)

g 7→ Mn×n(g).

If under the action of the group, there exist smaller invariant subspaces of the Hilbert space
that remain unchanged by the transformations

H = H1 ⊕H2 ⊕ . . . ,

the representation is deemed reducible and may consequently be decomposed into individual
irreducible representations

Π = Π1 ⊕ Π2 . . . .

Fundamental particles of the Standard Model are modelled as basis vectors of the individual
invariant subspaces of the general Hilbert space. In physics literature, it is common to refer
to these vector spaces themselves as representations, which is the convention that will be
used in this work when referring to particles as representations.

The representations of the groups in GSM provide a means of transforming between particles
through the exchange of bosons. These particles emerge when considering the Lie algebra g
of a matrix Lie group G – the set of all matrices X, such that eλX ∈ G, for all real parameters
λ [9, pp. 36–37]. In essence, the Lie algebra facilitates approximating the group structure for
elements close to the identity, used when applying infinitesimal transformations.

Consider the adjoint map ΨA obtained by conjugating an element X ∈ g by some A ∈ G [9,
p. 43]

ΨA : G → GL(g)

A 7→ AXA−1.

The mapping induces a linear transformation on the Lie algebra, resulting in a group homo-
morphism, since if A ∈ G and X, Y ∈ g:

ΨA(XY) = AXYA−1 = AX

I︷ ︸︸ ︷
A−1A YA−1 = ΨA(X)ΨA(Y).

By extension, the mapping constitutes a real adjoint representation of G, acting on g [9, p. 70].
Each Lie group homomorphism induces a corresponding Lie algebra homomorphism, so the
adjoint representation extends to a representation of the Lie algebra [9, p. 41]. Furthermore, g
may be complexified by forming a linear combination of its elements through the following
form

g1 + ig2, g1, g2 ∈ g.

This results in a complex algebra, denoted as gC [9, pp. 48–49]. Depending on the dimension,
there is an appropriate number of generators that span the space. These generators of the
complexified adjoint representation of the group are precisely associated with bosons, acting
on the corresponding particle space H. The mechanism of nucleon-nucleon interactions
serves as a suitable illustration of this principle.
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Example (Nucleon-nucleon interactions)
In 1935, Hideki Yukawa conjectured the existence of a hypothetical U-field, mediating
the interactions between nucleons. He predicted that the carriers of this force, named pi-
ons, would be approximately 200 times more massive than the electron [10]. In 1947, Ce-
cil Powell and Giuseppe Occhialini confirmed the existence of two electrically charged
states π+ and π− in a cosmic ray experiment, with the neutral state π0 being discovered
consequently in 1949 in a particle accelerator experiment at Berkeley [11], [12].

Let protons and neutrons be the basis vectors of the complex space C2

p =

(
1
0

)
, n =

(
0
1

)
.

Guided by the similarity of interactions based on whether the concerned particle is a
neutron or a proton, in 1936, Benedict Cassen and Edward Condon suggested that the
force is invariant under the symmetry group SU(2) [13]. Even though this proved to be
a significant simplification, it is still considered appropriate to a large degree.

The Lie algebra su(2), after complexification, becomes a three-dimensional algebra sl(2; C),
with a basis corresponding to the different pion states [14]

π+ =

(
0 1
0 0

)
, π0 =

(
1 0
0 −1

)
, π− =

(
0 0
1 0

)
.

In an example of a nucleon-nucleon interaction, a proton may absorb a negatively charged
pion, transforming into a neutron. In terms of representation theory, this is described by
the action of one of the basis states of sl(2; C) on the Hilbert space of the nucleon C2,
signifying the approximate mechanism of the strong interaction.

π− + p → n(
0 0
1 0

)(
1
0

)
=

(
0
1

)

2.2 Standard Model symmetries

2.2.1 Hypercharge U(1)

The unitary group of the first degree, U(1), in its defining representation, consists of all
complex phases which may be interpreted geometrically as the rotational symmetry group
of a circle

U(1) = {eiφ | φ ∈ [0, 2π)}.

Since this group consists of one-dimensional scalars equipped with regular multiplication,
it is an abelian group. Moreover, the hermitian conjugate of any element U ∈ U(1) is asso-
ciated with the inverse of the element

U†U = 1 =⇒ U† = U−1.
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The action of the U(1) group on an arbitrary particle state ψ ∈ H is represented via the
hypercharge quantum number Y

U · ψ = e3iYφψ,

where the factor of three in the exponential is present purely due to convention. Hence,
particles with a nonzero value of hypercharge interact with each other through the action of
U(1). Consequently, the vector space in which these particles exist may be labelled by CY,
since all irreducible representations of the group are one-dimensional. Moreover, the com-
plexified adjoint representation of the Lie algebra is isomorphic to C – hence, the interactions
are mediated by a one-dimensional element, referred to in the literature as the B-boson.

2.2.2 Isospin SU(2)

The special unitary group of the second degree encapsulates all 2 × 2 unitary matrices with
complex entries, equipped with unit determinant

SU(2) = {U ∈ C2×2 |U†U = I2×2 and det(U) = 1}.

An arbitrary element U ∈ SU(2), may be expressed in terms of three generators σi, such that

U = e−iφσi/2,

where σ1, σ2, σ3 correspond to the renowned Pauli matrices [15, p. 39]

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

In analogy with the quantum-mechanical spin of particles, the concept of isospin I3 may be
introduced, as an internal symmetry of a given system under the weak interaction. The
isospin-n/2 representation is the unique (n + 1)-dimensional irreducible representation of
SU(2), given by symmetric tensors of rank n. In this basis, the isospin of a given particle
ranges from −n/2 to n/2 in integer steps

I3 ∈
[
−n

2
,−n

2
+ 1, . . . ,

n
2
− 1,

n
2

]
.

Since the weak force interacts with left-handed particles and right-handed antiparticles, the
left-handed fermions form doublets (

ℓ

νℓ

)
L

,

(
u
d

)
L

∈ C2,

where u and d represent the up and down-type quarks of any flavour, but within the same
generation. On the other hand, the right-handed particles transform under the trivial repre-
sentation of SU(2), forming singlets

ℓR, νℓR , uR, dR ∈ C.

The force is mediated by three W bosons, being the basis of sl(2; C)

W+ =

(
0 1
0 0

)
, W0 =

(
1 0
0 −1

)
, W− =

(
0 0
1 0

)
.
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The quantum numbers identified via U(1) and SU(2) symmetries are related to each other
through the electric charge based on the Gell-Mann-Nishijima formula, introduced indepen-
dently by Tadao Nakano and Kazuhiko Nishijima in 1953, as well as Murray Gell-Mann in
1956 [16], [17]

Q = I3 +
Y
2

, (2.1)

where Q is the electric charge of the particle, I3 is its isospin component, and Y is the hyper-
charge. Initially, the symmetry was identified with the action of the strong interaction, how-
ever, in 1961, it was generalised to the weak force by Sheldon Glashow [18]. This formula
allows for a consistent way of categorising the particles based on their quantum numbers,
representing the transformation properties under the aforementioned groups.

2.2.3 Colour SU(3)

The special unitary group of the third degree is represented by 3× 3 unitary complex matri-
ces with unit determinant

SU(3) =
{

U ∈ C3×3 |U†U = I3×3 and det(U) = 1
}

.

Any given element U ∈ SU(3) may be written as follows

U = eiφλi/2,

where λi belongs to the set of eight traceless hermitian 3 × 3 matrices, known as the Gell-
Mann matrices, generating the su(3) Lie algebra of the group [15, p. 43], [19, p. 59], [20],

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0



λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =


1√
3

0 0

0 1√
3

0

0 0 − 2√
3

 .

After the complexification of the aforementioned basis, the generators of the resulting Lie
algebra sl(3; C) are associated with gluons, the mediators of the strong interaction. The
relevant Hilbert space is identified with the complex space C3 with the basis vectors corre-
sponding to the three quark colours. Each quark flavour spans C3, whereas leptons are not
affected by the action of the strong force - they are considered ”white”, spanning the space
C, transforming under the trivial representation of the group.

2.3 Labelling particles

In general, any given particle P within the Standard Model representation may be labelled
based on its transformation properties under the individual gauge groups

P ∼ (m, n, Y/2),
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where m and n are the dimensions of the representations of the SU(3) and SU(2) groups
respectively, and Y/2 is the rescaled hypercharge quantum number. The reason for the
adjustment of the hypercharge is largely conventional since the factor of 1/2 is also present
in the Gell-Mann-Nishijima formula (2.1), and hence allows for relating the isospin and the
electric charge straightforwardly.

Example (Left-handed leptons)
Any left-handed lepton ℓL is invariant under the strong force, transforming as a singlet
in C, being a one-dimensional vector space on which the representation acts. Further-
more, it forms a doublet in C2 alongside same-generation quarks, implying the SU(2)
representation must be two-dimensional. Lastly, the hypercharge associated with it is
−1. Therefore, the lepton may be labelled within the Standard Model as follows

ℓL ∼ (1, 2,−1/2).

The leptons exist within a isospin-1/2 representation, and hence, I3 ∈ {− 1
2 , 1

2}, where
I3 = −1

2 is associated with the electron e and I3 = 1
2 refers to the electron neutrino νe,

analogously to any other generation of leptons. Using equation (2.1), the electric charges
of the particles may be found directly

Q(e) = −1
2
− 1

2
= −1,

Q(νe) =
1
2
− 1

2
= 0.

2.4 Spontaneous symmetry-breaking

Modern theories in the field of particle physics often rely on studying the symmetries of
the Lagrangian and the various paths in which they may be broken. Including additional
terms in the Lagrangian that violate the preexisting symmetry is known as explicit symmetry
breaking. Arguably more interesting scenario emerges when the system itself disrupts the
given symmetry in a process referred to as spontaneous symmetry breaking.

Following the treatment of Zee [21, pp. 223–229, 263–264], consider a generic scalar field
Lagrangian as a function of N fields φ⃗ = (φ1, φ2, . . . φN), including a potential function
V(φ). A particular example of such a function is the Ginzburg-Landau potential1

V(φ) = −1
2

µ2 φ⃗2 +
λ

4
(φ⃗2)2, (2.2)

such that the full Lagrangian is given as

L =
1
2

∂µ φ⃗∂µ φ⃗ +
1
2

µ2 φ⃗2 − λ

4
(φ⃗2)2. (2.3)

1Named in honour of Vitaly Ginzburg and Lev Landau who utilised this model in their study of energy
density in superconducting materials [22, p. 251]. It is also informally referred to as the Mexican hat or wine
bottle potential.
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Comparing this form to the Klein-Gordon Lagrangian for a real scalar field ϕ [23, p. 8]

LKG =
1
2

∂µϕ∂µϕ − 1
2

m2ϕ2, (2.4)

it may be concluded that the field given by equation (2.3) produces a particle with m = iµ.
However, this situation changes drastically when the symmetry is broken.

For the one-dimensional case N = 1, such that φ⃗ ≡ φ, the graph of the potential is illustrated
in figure 1 below.

Figure 1: Plot of the Ginzburg-Landau potential form for N = 1 with a constant λ > 0.

The minima v of the potential function may be explicitly calculated.

dV
dφ

= −µ2φ + λφ3 = 0

=⇒ −µ2 + λφ2 = 0, (φ ̸= 0)

φ ≡ v = ±
√

µ2

λ

In the framework of Quantum Field Theory, the probability of tunneling between the min-
ima is suppressed, since the width of the barrier is infinite. Therefore, the ground state of the
system is concentrated around one of the minima. However, it is arbitrary which minimum
it is, as they both represent the state of lowest energy for the system. This fact implies that
the reflection symmetry of φ 7→ −φ is spontaneously broken.

Choosing the ground state to be at +v and substituting φ = v+ φ′ in the original Lagrangian
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given by equation (2.3)

L =
1
2

∂µ φ′∂µ φ′ +
µ2

2
(v + φ′)2 − λ

4
(v + φ′)4

=
1
2

∂µ φ′∂µ φ′ +
µ2

2
(v2 + 2vφ′ + φ′2)− λ

4
(v4 + 4v3φ′ + 6v2φ′2 + 4vφ′3 + φ′4)

=
1
2

∂µ φ′∂µ φ′ +�������
(µ2v − λv3)φ′ +

(
µ2

2
− 3λ

2
v2
)

φ′2 +
µ2

2
v2 − λ

4
v4 +O(φ′3)

=
1
2

∂µ φ′∂µ φ′ − µ2φ′2 +O(φ′3),

where the constant terms have been omitted, as they produce no physical effect in the La-
grangian. Moreover, the terms of order φ′3 have been neglected, since they constitute higher-
order corrections. This form of the Lagrangian is identified with a particle with a real mass
parameter m =

√
2µ. The process of spontaneous symmetry-breaking forces the field to

assume one of the two minima and acquire a nonzero vacuum expectation value, ⟨φ⟩.

For higher-dimensional situations, e.g. with N = 2, the potential function is very similar, as
shown in figure 2.

Figure 2: Three-dimensional plot of the Ginzburg-Landau potential form for N = 2 with a constant
λ > 0. The fields φ1 and φ2 may be identified with the x and y-axes and V(φ1, φ2) with the z-axis of
the graph.

This potential has a continuous rotational symmetry, with an infinite spectrum of minima at
φ⃗ = ±

√
µ2/λ. Since all of the configurations are physically equivalent, a particular choice

for the field minima may be made

φ1 ≡ v =

√
µ2

λ
, φ2 = 0.

As previously, performing the substitution φ1 = v + φ′
1 and φ2 = φ′

2, the relevant La-
grangian after rearranging is given as

L =
1
2

∂µ φ′
1∂µ φ′

1 +
1
2

∂µ φ′
2∂µ φ′

2 − µ2φ′2
1 +O(φ′3

1,2).
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The field φ1 has an associated mass m =
√

2µ whereas, since there is no contribution from
φ2

2, the field φ2 has m = 0.

Example (Nambu-Goldstone theorem)
The aforementioned phenomenon entails that with each instance of breaking a contin-
uous symmetry of a Lagrangian, there is a corresponding massless field known as the
Nambu-Goldstone boson. This realisation is attributed to Yoichiro Nambu, who in 1960
elaborated on the ”hidden” nature of spontaneous symmetry breaking in superconduc-
tivity, and Jeffrey Goldstone, who a year later illustrated the quantum theory behind
the transition from a symmetric to an antisymmetric state, providing foundations for
Nambu’s idea [22, pp. 56, 61].

To showcase the proof of this statement, known as the Nambu-Goldstone theorem, con-
sider the existence of a conserved charge Q, responsible for a certain continuous sym-
metry. The statement of conservation is equivalent to noting that Q commutes with the
Hamiltonian

[H, Q] = 0.

Given the vacuum state |0⟩, it is defined as the state of zero energy, such that H |0⟩ =
0. Moreover, it possesses an invariance under the transformation associated with the
symmetry, i.e. Q |0⟩ = 0. If the symmetry is spontaneously broken this requirement no
longer applies

Q |0⟩ ̸= 0.

Applying the Hamiltonian to determine the energy of this specific state

HQ |0⟩ = HQ |0⟩ − QH |0⟩︸ ︷︷ ︸
0

= (HQ − QH) |0⟩ = [H, Q] |0⟩ = 0.

Hence, since the energy is zero, but the state does not correspond to the vacuum, it
necessitates the existence of a massless particle.

Goldstone’s theorem is crucial in the construction of the Higgs mechanism, where the
Higgs boson absorbs such a Nambu-Goldstone boson. It acquires mass through the
introduction of additional degrees of freedom in gauge theories, such as those based on
U(1) symmetry.

2.4.1 Electroweak symmetry-breaking

An example of the mechanism of spontaneous symmetry-breaking within the Standard
Model framework is manifested by the electroweak interaction modelled by the SU(2)L ×
U(1)Y gauge group. Following the outline of [24], the gauge bosons associated with the elec-
troweak interaction are the three W bosons and one B boson, constituting the gauge fields of
the theory. A complex scalar SU(2) doublet φ = (ϕ+, ϕ0)T is coupled to the fields producing
the following potential function

V(φ) = µ2|φ† φ|+ λ|φ† φ|2.
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As described previously, there is a freedom of choice for the minimum of the potential,
implying a nonzero vacuum expectation value of the field

⟨φ⟩ = 1√
2

(
0
v

)
.

Due to this choice, the doublet is assigned a hypercharge Y = 1, such that the electric charge
Q⟨φ⟩ = 0. This fact implies that even though the electroweak symmetry has been sponta-
neously broken, the vacuum expectation value is not changed under the action of Q, mean-
ing it is still a symmetry of the system. The effective symmetry of the theory has undergone
electroweak symmetry-breaking.
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3 Lepton Flavour Universality

The three generations of left-handed leptons, i.e. the electron e, the muon µ, and the tau τ,
are characterised by the same value of isospin I3 and electric charge Q. The same holds for
their respective neutrinos, where the quantum numbers are also irrespective of the family.

Particle Isospin I3 Hypercharge Y Electric charge Q

e/µ/τ −1/2 −1 −1
νe/νµ/ντ 1/2 −1 0

Table 1: Summary of all relevant left-handed lepton quantum numbers for the electroweak interac-
tion [8, p. 501].

Due to these characteristics, in the Standard Model framework, the three generations of
leptons interact in precisely the same way via the weak force, leading to the same strength
of the interaction between families, constituting the concept of Lepton Flavour Universality
(LFU). The only distinguishing factor among the different flavours is their coupling to the
Higgs field through the Yukawa interaction, which results in varying masses of the particles,
being significantly higher for the third generation [2, p. 85], [25]

me = 0.51099 MeV/c2,

mµ = 105.66 MeV/c2,

mτ = 1776.9 MeV/c2.

In terms of experimental evidence for that phenomenon, one common approach is to deter-
mine the branching fractions of decays including various lepton generations. In the current
theory, these should only be affected by the available phase space for the decay and helic-
ity suppression effects [3]. However, data from experiments such as Large Hadron Collider
beauty (LHCb) at CERN, Belle at KEK, or BaBar at Stanford have produced tensions with
the Standard Model expectations of the decays involving the third generation of leptons,
seemingly occurring much more likely than predicted, hinting at violations of flavour uni-
versality in phenomena deemed flavour anomalies.

Of specific experimental interest are the B-mesons, containing the beauty quark b, being
the second most massive quark right after the top t. Semileptonic decays of these hadrons
provide an accessible window into the flavour anomalies, as because of their large mass, all
three generations of leptons may be produced in the decay [3]. The LFU violations in B-
mesons decays are referred to as B flavour anomalies, existing in two specific types. Firstly,
the beauty-strange transition

b → sℓ+ℓ−,

producing a lepton-antilepton pair involves an exchange of a neutral boson, resulting in
neutral-current anomalies. On the other hand, the beauty-charm transition

b → cℓ−ν̄ℓ

results in a production of a lepton and a corresponding antineutrino, requiring a charged
W− boson to mediate the interaction, constituting charged-current anomalies [4, p. 1].
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3.1 R(D) and R(D∗) observables

An example of a charged-current semileptonic decay is the decay of a neutral B̄0 to a possi-
bly excited state of a D-meson D(∗)+ , where the parentheses encapsulate both D+ and D∗+

possibilities. The decay is represented in the Feynman diagram in figure 3 below.

B̄0 → D(∗)+τν̄τ (3.1)

Figure 3: Feynman diagram of the semileptonic B̄0 decay to D(∗)+τν̄τ.

Since this decay involves the production of the tau τ, being the heaviest third-generation
lepton, of particular interest are the observables R(D(∗)), being the ratio of the branching
fraction of this decay, named the signal mode, to one containing a lepton of the lower gen-
eration ℓ = e, µ, referred to as the normalisation mode

R(D(∗)) =
B(B → D(∗)τν̄τ)

B(B → D(∗)ℓν̄ℓ)
. (3.2)

Based on Lattice QCD calculations, the Standard Model expectations for R(D) and R(D∗)
are estimated to be [26], [27]

R(D)SM = 0.299 ± 0.011, (3.3)

R(D∗)SM = 0.252 ± 0.003. (3.4)

From an experimental standpoint, based on the unified results from LHCb, Belle, and Babar,
the Heavy Flavour Averaging group (HFLAV) compiled averages of the measurements [28]

R(D)AVG = 0.342 ± 0.026, (3.5)

R(D∗)AVG = 0.287 ± 0.012. (3.6)

constituting a significant discrepancy between the theoretically established values, resulting
in 1.6σ deviation in R(D) and 2.5σ deviation in R(D∗) [28]. Furthermore, the anomaly is
even more pronounced when simultaneously considering the results from R(D) and R(D∗),
which yield a combined 3.3σ disagreement [28].

To compactify the extent of the measurement discrepancy with the current theory, the quan-
tities ∆R(D) and ∆R(D∗) may be defined as follows

∆R(D) ≡ R(D)AVG

R(D)SM
− 1, (3.7)
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∆R(D∗) ≡ R(D∗)AVG

R(D∗)SM
− 1, (3.8)

utilising the comparison between the averaged experimental value and the Standard Model
calculation with perfect agreement corresponding to ∆R(D∗) = 0. Using the data from
equations (3.3), (3.5), and (3.4), (3.6), the current state of anomaly may be calculated

∆R(D) ≈ 0.14 ± 0.09, (3.9)

∆R(D∗) ≈ 0.14 ± 0.05. (3.10)

Note that due to the nature of the measurement, the uncertainty in the R(D) observable is
significantly higher, yielding less reliable predictions. Therefore, most analyses focus only
on the R(D∗) ratio. Moreover, it has been observed that in the decays where the involved
leptons are of the first or second generations, the observable ratio is approximately 1.04 ±
0.05, yielding a virtually zero ∆R(D∗), within proper uncertainty bounds [4, p. 21]. This fact
provides substantial evidence for treating the new physics effects as affecting only the third
generation of leptons since, in that sector, the anomalies are the most apparent.

3.2 Leptoquark hypothesis

In discussions concerning the experimental flavour anomalies, the mention of leptoquarks
often appears as a potential explanation for the peculiar phenomena. These particles are
bosons that simultaneously couple to quarks and leptons, providing a direct transformation
mechanism between them. Since in the current state of the Standard Model, the direct cou-
pling of quarks and leptons is not allowed, leptoquarks emerge naturally in the extensions
of the theory to Grand Unified Theories, aiming to unify matter and fundamental forces.

The distinguishing characteristic of the leptoquarks is the introduction of a novel quantum
number, the fermion number F, being a combination of the baryon B and lepton L numbers
defined for many elementary particles [5, p. 3]

F = 3B + L. (3.11)

Based on this quantity, in accordance with the convention adopted by Buchmüller, Rückl,
and Wyler in 1987, the particles may be divided into categories of F = −2 and F = 0, re-
spectively [29]. The spin-zero bosons, known as scalar leptoquarks, include the S and R states,
whereas the spin-one particles - vector leptoquarks - consist of V and U states. These particles
exist in various multiplets, differing in their transformation properties under the represen-
tations of GSM = SU(3)× SU(2)×U(1). The leptoquarks are assigned a subscript denoting
the dimension of the SU(2) representation for the particular particle. The summary of all
relevant scalar and vector leptoquarks may be found in the tables 2 and 3 below.
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Type SU(3)× SU(2)× U(1) F

S1 (3̄, 1, 1/3) −2
S̃1 (3̄, 1, 4/3) −2
S3 (3̄, 3, 1/3) −2
R2 (3̄, 2, 7/6) 0
R̃2 (3̄, 2, 1/6) 0

Table 2: Summary of scalar (spin 0) leptoquarks [5, p. 4].

Type SU(3)× SU(2)× U(1) F

V2 (3̄, 2, 5/6) −2
Ṽ2 (3̄, 2,−1/6) −2
U1 (3̄, 1, 2/3) 0
Ũ1 (3, 1, 5/3) 0
U3 (3, 3, 2/3) 0

Table 3: Summary of vector (spin 1) leptoquarks [5, p. 4].

Alongside the subscript determining the transformation properties of the leptoquarks under
the SU(2) group, it is also customary to identify the electric charges of the particles with a
superscript. These may be calculated using the Gell-Mann-Nishijima formula (2.1) and the
isospin representation.

Example (Electric charge of U3)
The vector triplet leptoquark

U3 ∼ (3, 3, 2/3),

transforms under a three-dimensional representation 3 of SU(2). It also corresponds to
the isospin-1 representation, furnished with the following values of I3

I3 ∈ {−1, 0, 1} .

Moreover, its hypercharge quantum number, Y = 4
3 . Consequently, the electric charges

of the individual states contained in U3 may be calculated using equation (2.1)

Q = I3 +
Y
2
∈
{
−1

3
,

2
3

,
5
3

}
.

One of the defining characteristics of leptoquarks is their fractional charge assignment. These
bosons may couple the up-type quarks (Q = ±2/3) or down-type quarks (Q = ±1/3) to the
charged or uncharged leptons (Q = ±1 or Q = 0). Hence, all possible electric charge states
of leptoquarks include [5, p. 4]

Q ∈
{
±5

3
,±4

3
,±2

3
,±1

3

}
.
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The viable leptoquark models proposed by Sakaki et al. as potential explanations of the
R(D(∗)) anomalies in accordance with experimental data accommodate the vector singlet
U2/3

1 , scalar doublet R2/3
2 , as well as the scalar singlet S1/3

1 [6]. The Feynman diagram dis-
playing the b → cτν̄τ decay is presented in figure 4 below.

Figure 4: Feynman diagram of the leptoquark-mediated b → cτν̄ decay.

The analysis was performed under the assumption that all leptoquarks lie within the same
mass of the order of 1 TeV. The interaction Lagrangian producing contributions to the b →
cℓν̄ℓ process was introduced, and based on it, the Wilson coefficients, specifying the coupling
strength of various terms, were calculated at the aforementioned mass scale. Finally, the
synthesised leptoquarks were constrained by the experimental data gathered through B̄ →
Xsνν̄ and B̄ → D(∗)τν̄τ decays [6]. Based on this procedure and the induced limits, the
U1, R2, and S1 particles are the only viable leptoquark models used in hypotheses of R(D(∗))
observable explanations.

The study of Grand Unified Theory manifestations in the framework of flavour anomalies
in the following sections will focus on these three individual leptoquark states. It is impor-
tant to note that the aforementioned leptoquark study contains several possible limitations,
for example, through the choice of experimental constraints imposed on the theoretical pre-
dictions. Due to the vast amount of experimental data available within the field of flavour
physics, it is not feasible to include all possible restrictions. Therefore, even though the find-
ings are widely accepted in the field, the analysis might not account for certain tensions with
other observables.
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4 Grand Unified Theories

The search for the origin of the symmetry between various generations of quarks and leptons
guided the development of various theoretical frameworks - Grand Unified Theories (GUTs),
which might conceivably provide a common mathematical structure to these fundamental
particles. A defining characteristic of GUTs is the combination of the strong, electromag-
netic, and weak interactions into a single force, described by an individual gauge group
at extreme temperatures. A comparison of the GUT energy scale to other magnitudes is
included in figure 5 below.

Figure 5: Physical energy scales, including the average GUT unification energy [1, p. 205], [23].

The unified structure experiences a series of spontaneous symmetry-breaking events, caus-
ing the group to effectively reduce to a particular subgroup, depending on the energy [1,
p. 204]. However, for the new theory to be consistent with the established framework of
particle physics, the last stage of the symmetry breaking must include the Standard Model
gauge group GSM.

Leptoquarks appear naturally in such theories, due to the necessity of unification of matter
imposed by the single gauge group. A symmetry group of a larger dimension requires
more generator elements to fully describe it, each corresponding to a different boson, as
established previously. Moreover, the dimensions of the Hilbert space on which a given
representation of the group acts would also be larger, allowing for more possible particle
states. Historically, the discussion of leptoquarks began with Jogesh Pati and Abdus Salam’s
1974 paper introducing the symmetry structure known in the literature as the Pati-Salam
Model (PSM) [30], [31]

SU(4)× SU(2)L × SU(2)R.

The SU(4) gauge group is employed as an attempt to unify matter particles, treating lep-
tons as the fourth colour of quarks. Alongside the familiar SU(2)L, an additional SU(2)R
factor is applied, acting on the right-handed particles, constituting the left-right symmetry
of the theory. The relevant particles are treated as doublets or singlets, depending on the
transformation properties under the combined group SU(2)L × SU(2)R [8, p. 530]

SU(2)L : C2 ⊗ C,

SU(2)R : C ⊗ C2.

PSM remains an important group in discussions of various GUTs, where it is employed as
an intermediate stage in the symmetry-breaking chain, allowing for the unification of the
gauge couplings at high energies.



22 Chapter 4 Grand Unified Theories

In the remainder of this section, three different GUT-like models will be introduced, with
each one describing one of the leptoquarks shown to be hypothetically responsible for alle-
viating the R(D(∗)) anomalies.

4.1 UV-complete SU(5)

4.1.1 Georgi-Glashow Model

The original mention of a SU(5)-based Grand Unified Theory followed from Howard Georgi
and Sheldon Glashow’s 1974 paper, describing the precise mechanism in which all elemen-
tary forces may be combined [32]. It was proposed as the minimal extension of the Standard
Model group, where the symmetry breaking proceeds in a single step at the energy scale
ΛU > 1015 GeV, estimated based on the proton lifetime τp > 1034 years [33]. The degenera-
tion of the symmetry is illustrated in figure 6.

Figure 6: Group diagram of SU(5) including breaking into the Standard Model.

The main idea behind this form of unification is combining the notion of isospin and colour,
creating five basis vectors denoted as u, d, r, g, b ∈ C5, corresponding to values of isospin up
and down, as well as the three quark colours, respectively [8, p. 513]. In essence, within this
theory, leptons and quarks are compacted into a single fermion representation. Due to this
construction, the direct processes between the two aforementioned types of particles emerge
naturally, constituting hints for the physical realisability of leptoquarks.

Since in the confines of the Standard Model, the notions of isospin and colour are distinct,
they are treated separately, and the full five-dimensional space is split into

C5 = C2 ⊕ C3,

governing the individual components. The action of the group on this space must proceed
through a subgroup of SU(5), consisting of block diagonal matrices of unit determinant of
2 × 2 and 3 × 3 unitary block components. This subgroup may be denoted as S(U(2) ×
U(3)) [8, p. 513]. This subgroup is isomorphic to the Standard Model group modulo Z6,
accounting for the kernel ensuring that the map is injective [8, p. 514]

S(U(2)× U(3)) ∼= GSM/Z6.
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Proof (Group isomorphism by explicit construction)
Following the setup introduced in [8, p. 514], consider the map

ψ : SU(3)× SU(2)× U(1) → S(U(2)× U(3)) < SU(5)

(α, β, γ) 7→
(

γ3β 0
0 γ−2α

)
.

This map fulfills the homomorphism property, since for (α1, β1, γ1), (α2, β2, γ2) ∈ GSM:

ψ((α1α2, β1β2, γ1γ2)) =

(
(γ1γ2)

3β1β2 0
0 (γ1γ2)

−2α1α2

)
=

(
γ3

1β1γ3
2β2 0

0 γ−2
1 α1γ−2

2 α2

)

=

(
γ3

1β1 0
0 γ−2

1 α1

)(
γ3

2β2 0
0 γ−2

2 α2

)
= ψ(α1, β1, γ1)ψ(α2, β2, γ2),

where the fact that U(1) is an abelian group was used to commute γ with β ∈ SU(2)
and α ∈ SU(3). Moreover, this map is surjective by construction since all elements
of S(U(2) × U(3)) may be formed through appropriate combinations of α, β, and γ.
However, the kernel of ψ

ker ψ ≡
{
(α, β, γ) ∈ GSM |ψ(α, β, γ) =

(
I2×2 0

0 I3×3

)}
,

consists of all elements of the form (γ2I3x3, γ−3I2×2, γ). For γ2I3x3 ∈ SU(3) and for
γ−3I2×2 ∈ SU(2), γ must be the sixth root of unity: γ6 = 1, which may be confirmed by
calculation of the determinant of the individual matrices.

=⇒ ker ψ ∼= Z6

Since the kernel is naturally nontrivial, the previously established group homomor-
phism is not injective, and what follows is not an isomorphism. However, the first
isomorphism theorem may be utilised, stating that if an arbitrary map φ : G → H is a
homomorphism of groups, then

G/ ker φ ∼= Im φ < H.

For the surjective map ψ in question, its image is the entire group S(U(2)× U(3)), es-
tablishing the required isomorphism and concluding the proof

GSM/Z6
∼= S(U(2)× U(3)).

□



24 Chapter 4 Grand Unified Theories

The kernel of the map acts trivially on all fermions. As an example, since any left-handed
lepton transforms as ℓL ∼ (1, 2,−1/2), the action of the kernel on the lepton is as follows

(γ2I3×3, γ−3I2×2, γ) · ℓL = γ−3γ3·YℓL = γ−3γ−3ℓL = ℓL,

where the the hypercharge Y = −1 and the identity γ6 = 1 were used. This fact implies
that an alternative description for the Standard Model gauge group, resulting in the same
physical description, is GSM/Z6 [8, p. 516]. With this conclusion, the applicability of the
SU(5) model is retained since the regular symmetry group is contained as its subgroup.

The Standard Model fermions are placed in two separate 5- and 10-dimensional representa-
tions of SU(5), decomposing in the following way into the Standard Model representation
[34, pp. 27, 29]

5 = (3, 1,−1/3)⊕ (1, 2, 1/2),

10 = (3̄, 1,−2/3)⊕ (3, 2, 1/6)⊕ (1, 1, 1).

This structure is mirrored for each lepton generation, implying that to describe the en-
tire fermionic content of the theory, three copies of the aforementioned representations are
needed [34, p. 29].

Even though this prescription of the Georgi-Glashow Model is an appealing and a seem-
ingly natural extension of the Standard Model, it has been rejected as a realistic physical
theory. From a phenomenological standpoint, the model contains a variety of inconsistent
predictions, such as the proton lifetime being shorter than the current lowest bound, fermion
masses conflicting with experimental results, as well as the gauge coupling unification being
virtually unachievable [8, p. 512], [35, p. 3]. However, these problems may be circumvented
by manually introducing additional representations of the group not present in the usual
SU(5) structure. In the following section, one such model, referred to as the UV-complete
SU(5), will be investigated in hopes of identifying manifestations of scalar leptoquarks at
the TeV scale.

4.1.2 R2 scalar leptoquark

The minimal realistic SU(5) model consists of the previously established Georgi-Glashow
model equipped with an additional 45- and 15-dimensional representation. Incorporating it
ensures the possibility of gauge coupling unification and adjusts the fermion Yukawa cou-
plings, necessitating the agreement of their masses with experimental data [35, p. 3]. More-
over, the appearance of leptoquarks within the theory is simultaneous with the inclusion of
a 50-dimensional representation.

Following the treatment of Bečirević et al. [36], the UV-complete structure contains two
scalar leptoquarks

R2 ∼
(

3, 2,
7
6

)
,

S3 ∼
(

3, 3,
1
3

)
,

manifested within 45 and 50 representations, providing a heavy state of R2 and light states
of R2 and S3. As outlined in the previous sections, the R2 scalar is a candidate for a potential
explanation of the R(D(∗)) observable anomalies.
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In the publication by Popov et al. [37], the influence of the R2 leptoquark on R(D(∗)) is
studied, in parallel with an additional experimental constraint from R(K(∗)) observables,
defined as

R(K(∗)) =
B(B̄ → K̄(∗)µ+µ−)

B(B̄ → K̄(∗)e+e−)
. (4.1)

Through fixing the mass of R2 to 1 TeV, the analysis of the Yukawa couplings of the lep-
toquark is performed, imposing constraints from a variety of decays, including τ → eγ
Z → ττ, and B+ → K+τ+e−, among others. This numerical analysis yields the Wilson
coefficients determining the strength of the couplings responsible for various decays and
hence provides a method of calculating the expected branching fractions of decays. The
calculation allows for the conclusion that the R2 leptoquark is a viable explanation for the
aforementioned flavour anomalies in R(D(∗)) and R(K(∗)) observables.

4.2 SO(10)

Soon after his 1974 paper with Sheldon Glashow, in 1975, Howard Georgi published his
findings on the SO(10) theory2, accentuating the mathematical convenience and aesthetic
value of the SU(5) symmetry while attempting to accommodate it within a larger structure
[38]. Even though the actual symmetry group responsible for the unification is the double
cover of SO(10), the Spin(10) group, it is common within physics literature to refer to it as
the former [8, p. 522].

4.2.1 Spinor representation

Instead of the regular real representations of the special orthogonal groups, in order to ex-
tend the Standard Model, the spinor representation of the group is necessary. These repre-
sentations are complex for even degrees 2n and, therefore, may provide a suitable descrip-
tion for fermions [39]. The key to constructing such a representation are the gamma matrices
γi. Based on the treatment of [21, pp. 421–423], for the case of SO(2n) symmetry groups,
it is possible to define a set of 2n hermitian matrices of size 2n × 2n, satisfying the Clifford
algebra

{γi, γj} ≡ γiγj + γjγi = 2δij. (4.2)

Moreover, using this definition, another n(2n − 1) hermitian matrices may be constructed
via the commutator of γi and γj

σij ≡
i
2
[γi, γj]. (4.3)

Since these matrices are also 2n × 2n, they act on a spinor ψ, a 2n-dimensional object, trans-
forming it in the following unitary fashion

ψ → eiωijσij ψ, ψ† → ψ†e−iωijσij ,

2In private communication with Anthony Zee, Georgi claimed that he, in fact, discovered the SO(10) GUT
before SU(5) [21].
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where ωij represents an infinitesimal, antisymmetric tensor. Consider the object defined as
vk ≡ ψ†γkψ:

ψ†γkψ → ψ†e−iωijσij γkeiωijσij ψ ≈ ψ†(1 − iωijσij)γk(1 + iωijσij)ψ

= ψ†γkψ − ψ†iωijσijγkψ + ψ†γkiωijσijψ +O(ω2
ij)

= ψ†γkψ − iωijψ
†(σijγk − γkσij)ψ

= ψ†γkψ − iωijψ
†[σij, γk]ψ,

where the Taylor series expansion of the exponential and the fact that ωij is an infinitesimal
have been used to omit terms of O(ω2

ij). The commutator may also be evaluated using the
definitions given by equations (4.2) and (4.3)

[σij, γk] =
i
2
[[γi, γj], γk] =

i
2
(
γiγjγk − γjγiγk − γkγiγj + γkγjγi

)
=

i
2
(
γiγjγk − γj(2δik − γkγi)− γkγiγj + (2δjk − γjγk)γi

)
=

i
2
(γiγjγk − 2δikγj +����γjγkγi − γkγiγj + 2δjkγi −����γjγkγi )

=
i
2
(γi(2δjk − γkγj)− 2δikγj − γkγiγj + 2δjkγi)

=
i
2
(4δjkγi − (2δik − γkγi)γj − 2δikγj − γkγiγj)

=
i
2
(4δjkγi − 4δikγj +����γkγiγj −����γkγiγj ) = −2i(δikγj − δjkγi).

Substituting this expression in the aforementioned transformation

ψ†γkψ → ψ†γkψ − iωijψ
†(−2i(δikγj − δjkγi))ψ

= ψ†γkψ − 2ωkjψ
†γjψ + 2ωikψ†γiψ

=⇒ vk → vk − 2(ωkjvj − ωikvi) = vk − 2ωkjvj − 2ωkivi = vk − 4ωkjvj,

where the antisymmetric property ωik = −ωki was used, alongside relabeling i 7→ j in the
second term. This expression shows that the set of 2n objects vk transforms like a vector in
2n-dimensional space, where 4ωkj represents the infinitesimal rotation angle. Given

γ5 ≡ (−i)nγ1γ2 . . . γ2n, (4.4)

it is possible to define a left-handed spinor ψL and right-handed spinor ψR

ψL ≡ 1
2
(1 − γ5)ψ, (4.5)

ψR ≡ 1
2
(1 + γ5)ψ. (4.6)

These constitute two alternative irreducible spinor representations of the SO(2n) group of
dimension 2n−1. Specifically the representation associated with SO(10) is 16-dimensional. It
incorporates all Standard Model fermions and a right-handed neutrino, in left-handed and
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right-handed representations 16L and 16R respectively, following the general decomposition
below [39, p. 37], [34, p. 45]

16 = (3, 2, 1/6)⊕ (1, 2,−1/2)⊕ (3̄, 1, 1/3)⊕ (3̄, 1,−2/3)⊕ (1, 1, 1)⊕ (1, 1, 0),

where the individual components represent the transformation properties under GSM. When
put together, these constitute the full 32-dimensional fermion representation.

4.2.2 Symmetry-breaking

The SO(10) gauge group follows a symmetry-breaking structure which degenerates to the
Standard Model group through a single intermediate subgroup - the Pati-Salam group SU(4)×
SU(2)L × SU(2)R. This subgroup may also contain an additional factor of Z2, correspond-
ing to the statement of left-right symmetry of the theory, sometimes referred to as D-parity
invariance, responsible for the complete equivalence of left and right-handed particle sectors
under the action of SU(2) [40]. The symmetry-breaking diagram for the group is presented
in figure 7 below.

Figure 7: Group diagram of SU(10) including breaking into the Pati-Salam group and, consequently,
the Standard Model.

The reduction to various subgroups of SO(10) proceeds at two distinct energy scales. The
first stage corresponds to the unification scale ΛU ≈ 1016 GeV, below which the Pati-Salam
group is an effective description of the physics. Furthermore, around the energy ΛC ≈ 1011

GeV, the Pati-Salam group degenerates into the Standard Model description [40].

4.2.3 S1 scalar leptoquark

Following the treatment of Aydemir et al. [40], the S1 scalar leptoquark is identified via a
possible representation of the SO(10) grand unification mechanism

S1 ∼
(

3, 1,−1
3

)
.

The principal motivation behind investigating this specific symmetry group as a viable ex-
tension of the current physics is the manifestations of a minimal number of leptoquarks at
low energies. Considering the fact that up to this date, no leptoquark sightings have been
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reported at the LHC, it is likely that if such a discovery is reported, only a few or even a
single particle will be observed.

The SO(10) model allows for the occurrence of S1 in a 10-dimensional representation, de-
composed in terms of the Standard Model representation

10 =

(
1, 2,

1
2

)
︸ ︷︷ ︸

H

⊕
(

1, 2,−1
2

)
︸ ︷︷ ︸

H̄

⊕
(

3, 1,−1
3

)
︸ ︷︷ ︸

S1

⊕
(

3̄, 1,
1
3

)
︸ ︷︷ ︸

S̄1

.

The last two representations correspond to the scalar leptoquark S1 and its antiparticle S̄1,
whereas the rest of the factors represent the Standard Model Higgs boson and its antipar-
ticle. Therefore, through this specific SO(10) representation, it may be concluded that the
leptoquark is the only new physics scalar at low energies. Due to this fact, if a sighting of
the particle is reported without any other being observed, it would constitute solid evidence
for the applicability of SO(10) grand unification.

The study of the leptoquarks in this model is similar to the one described in the SU(5)
framework. For a set of benchmark masses of S1, being 1 TeV and 2 TeV, the range of possible
Yukawa couplings was investigated, including constraints from a range of decays, such as
b → sν̄ν and Z → ττ, as well as the pair-production studies at the LHC. The results were
also compared to pp → ττ data from ATLAS. It was shown that a substantial portion of
the parameter space was still available after imposing the constraints, implying that the S1
leptoquark is a viable new physics particle consistent with crucial experimental data. The
relevant Wilson coefficients of the leptoquark were then extracted, allowing for calculations
of predicted ratios R(D) and R(D∗), showing that it alleviates the flavour anomaly.
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5 Flavoured Gauge Model

In juxtaposition with the attempts at resolving the Standard Model inconsistencies through
employing Grand Unified Theories, an alternative approach presents itself when assuming
that the gauge group is not fundamentally universal at the unification scale. Whereas GUTs
provide a unified description for each fermion generation, the Flavoured Gauge Model, pre-
sented by Davighi, Isidori, and Pesut in 2023 [41], states that the full description relies on
splitting the symmetry group into separate structures acting on the first and second, and the
third generations, respectively

G = G12 × G3,

G12 = SU(4)1+2 × Sp(4)L × Sp(4)R, (5.1)

G3 = SU(4)3 × SU(2)L,3 × SU(2)R,3, (5.2)

where Sp(4) is a n = 2 case of the symplectic group Sp(2n), defined for even dimensions
[41, p. 4].

The fermion representations Ψ under G are compactified into 16-dimensional representa-
tions of the group, depending on the generation and handedness of the particles, where the
light fermions transform trivially under G3 and heavy fermions under G12

Ψ1,2
L ∼ (4, 4, 1)⊗ (1, 1, 1), Ψ3

L ∼ (1, 1, 1)⊗ (4, 2, 1),

Ψ1,2
R ∼ (4, 1, 4)⊗ (1, 1, 1), Ψ3

R ∼ (1, 1, 1)⊗ (4, 1, 2).

Even though a separate mechanism is introduced for the light and heavy fermions, each
group allows for the unification of quarks and leptons through a SU(4) factor, in analogy
with the Pati-Salam Model [41, p. 3]. This approach is much in the same spirit as the uni-
fication mechanisms presented before, where larger symmetry groups containing GSM are
employed. However, it does not provide the same mathematical conciseness as the afore-
mentioned theories.

Accommodating a separate gauge group acting on the third generation of quarks and lep-
tons is a natural extension of the current theory, based on the experimental flavour anoma-
lies, considering the little difference in the relative behaviour of the first and second gener-
ations. Consequently, a key characteristic of this theory is the prediction of the existence of
vector leptoquarks at the TeV scale [41, p. 2]. This fact might provide additional evidence for
the physical applicability of the theory, given that the masses of vector leptoquarks present
in various GUTs tend to lie in the neighbourhood of the unification scale, such as in the
SU(5) structure [34, p. 40].

5.1 Symplectic group Sp(2n)

Before investigating the implications of the Flavoured Gauge Model, it is beneficial to un-
derstand the mathematical foundation of the groups constituting the light fermion sector.
As stated in equation (5.1), the first and second generations of fermions are governed by a
SU(4) group and a direct product of two symplectic groups Sp(4).



30 Chapter 5 Flavoured Gauge Model

In general, the symplectic group Sp(2n) is the set of all special unitary matrices M that
preserve the bilinear form B on Cn, defined as

B(u, v) =
n

∑
i=1

uivn+i − un+ivi, (5.3)

for all u, v ∈ Cn, such that B(Mu, Mv) = B(u, v) [9, pp. 12–13].

Proof (Bilinearity of B(u, v))
For two arbitrary vector spaces V, W and a field of scalars F, the function f : V ×W → F

is referred to as a bilinear form if it satisfies the following conditions [42]:

1. For v1, v2 ∈ V, α, β ∈ F, and w ∈ W

f (αv1 + βv2, w) = α f (v1, w) + β f (v2, w).

2. For v ∈ V, α, β ∈ F, and w1, w2 ∈ W

f (v, αw1 + βw2) = α f (v, w1) + β f (v, w2).

In essence, bilinearity implies the map being linear in each of its arguments.

To check whether the defining form given in equation (5.3) is indeed bilinear, it suffices
to show that it fulfils these requirements. Let u1, u2 ∈ Cn, α, β ∈ C, and v ∈ Cn:

B(αu1 + βu2, v) =
n

∑
i=1

(αu1,i + βu2,i)vn+i − (αu1,n+i + βu2,n+i)vi

=
n

∑
i=1

αu1,ivn+i + βu2,ivn+i − αu1,n+ivi − βu2,n+ivi

= α

(
n

∑
i=1

u1,ivn+i − u1,n+ivi

)
+ β

(
n

∑
i=1

u2,ivn+i − u2,n+ivi

)
= αB(u1, v) + βB(u2, v).

Moreover, if u ∈ Cn, α, β ∈ C, and v1, v2 ∈ Cn:

B(u, αv1 + βv2) =
n

∑
i=1

ui(αv1,n+i + βv2,n+i)− un+i(αv1,i + βv2,i)

=
n

∑
i=1

αuiv1,n+i + βuiv2,n+i − αun+iv1,i − βun+iv2,i

= α

(
n

∑
i=1

uiv1,n+i − un+iv1,i

)
+ β

(
n

∑
i=1

uiv2,n+i − un+iv2,i

)
= αB(u, v1) + βB(u, v2).

□
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Moreover, given a matrix

Ω =

(
0 In×n

−In×n 0

)
,

the matrices M satisfy the following identity [41, p. 4]

MTΩM = Ω.

This relation introduces an additional requirement for the determinant of the matrices

det(MT JM) = det J

det J · det(M)2 = det J

=⇒ det M = ±1,

where the multiplicative property of the determinant map was used. Specifically, det M = 1
for all M ∈ Sp(2n) [9, p. 13].

The introduction of the two symplectic groups Sp(4)L and Sp(4)R in equation (5.1) serves as
a means of unifying flavour and electroweak symmetry for the light fermion families. The
two individual gauge groups are also responsible for the left-right symmetry of the theory,
acting on left- and right-handed particles, respectively. The choice of the symplectic group
for the model is also motivated by the lack of various gauge anomalies associated with the
group representations [43].

5.2 Symmetry-breaking

The model follows an extensive sequence of symmetry-breaking mechanisms at various en-
ergy scales, illustrated in figure 8.

Figure 8: Group diagram of the Flavoured Gauge Model, including the symmetry-breaking structure.
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The relevant symmetry-breaking energies are approximately separated by a single order of
magnitude, such that [41, p. 22]

Λ12 ≈ 1000 TeV, ϵΛ12 ≈ 100 TeV, ΛΣ ≈ 10 TeV, Λ4321 ≈ 1 TeV.

These energies have been estimated by imposing a series of constraints, such as from the
experimental bounds on the gauge bosons W ′ and Z′ generated by the transition

SU(2)L,1+2 × SU(2)L,3 → SU(2)L,

especially based on the most strict requirements from the Z′ → ℓℓ̄ decay. Moreover, these
constraints have also been combined with limits from flavour-changing processes in the first
and second generations of quarks [41, p. 22].

5.3 U1 vector leptoquark

The last symmetry breakdown at the scale Λ4321 represents the degeneration of the so-called
4321-model

SU(4)3 × SU(3)1+2 × SU(2)L × U(1)′R
into the Standard Model group GSM. This proceeds through a scalar particle ω, transforming
under the specific representation of G12 × G3

ω ∼ (4, 1, 4)⊗ (4̄, 1, 2).

Due to this symmetry-breaking step, the vector leptoquark U1 is generated with a mass of
the order of 1 TeV with the following transformation properties under GSM

U1 ∼
(

3, 1,
5
3

)
.

Similarly to the study of the SU(5) and SO(10) models, the Flavoured Gauge Model is also
able to provide a prediction concerning the R(D(∗)) observables when including leptoquark
effects. To obtain numerical values for the predicted branching fractions, the Wilson coef-
ficients must be extracted from the Lagrangian governing b → cℓνℓ transitions. The two
relevant variables are

CLL =
1
2

(
1 + βsτ

L
Vcs

Vcb

)(
ΛSM

ΛU1

)2

, CLR = β∗
RCLL, (5.4)

where ΛSM, ΛU1 represent the energy scales associated with the Standard Model and the
U1 leptoquark, respectively, β are the effective couplings between quarks and leptons, and
Vcs, Vcb are the individual Cabibbo-Kobayashi-Maskawa (CKM) matrix elements [41, p. 23].
Using these quantities allows for the calculation of the metrics introduced in equations (3.7)
and (3.8)

∆R(D) ≡ R(D)

R(D)SM
− 1 = Re(2CLL − 3.00C∗

LR), (5.5)

∆R(D∗) ≡ R(D∗)

R(D∗)SM
− 1 = Re(2CLL − 0.24C∗

LR). (5.6)
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Following the data analysis from R(D(∗)) measurements, an adequate depiction of the ex-
perimental results is obtained for βR = −1. Setting ΛSM = 0.1 TeV, ΛU1 = 1.6 TeV, and
βsτ

L = 0, the numerical values of the ratios may be calculated [41, p. 24]

∆R(D) ≈ 0.06, (5.7)

∆R(D∗) ≈ 0.027. (5.8)

Comparing equations (5.7), (5.8) to the current state of the R(D(∗)) observables given by
equations (3.9), (3.10), it may be concluded that employing this leptoquark model consti-
tutes an improvement over the current Standard Model predictions. Even though the val-
ues do not precisely match the established values of the observables, the model alleviates
the significant tension between theory and measurement [41, p. 28].
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6 Conclusions

Throughout this thesis, the correspondence between leptoquarks manifested in theories be-
yond the Standard Model and lepton flavour anomalies was investigated. For that purpose,
the necessary background and the current experimental status of lepton flavour anomalies
were outlined. The analysis focused on the specific case of R(D) and R(D∗) observables,
showing a significant 3.3σ deviation from the Standard Model prediction. This and many
other anomalies indicate that the current theory, even though widely successful in many
aspects, is still an incomplete description of the underlying physics. In the context of the
aforementioned observables, three leptoquark models have been investigated as a means
of rectifying the complications in the current models by conjecturing the applicability of
larger symmetry groups, forming Grand Unified Theories. These contain three multiplets
from three distinct models, including R2 and S1 scalars and a U1 vector leptoquarks, each
constituting a possible explanation for the R(D(∗)) anomalies.

Even though the Georgi-Glashow SU(5) model was shown to be physically not realisable
due to countless factors, such as the limits on proton lifetime, its modification as the UV-
complete model is still relevant in literature. It remains the minimal realistic extension of the
Standard Model, undergoing the symmetry breaking in a single step. Within its 45 and 50-
dimensional representations, it contains states of R2 and S3 leptoquarks with a mass of the
order of 1 TeV. Incorporating these new physics particles allows for alleviating the R(D(∗))
anomalies.

The extension of the SU(5) theory is the model based on the SO(10) symmetry group, which
resolves many problematic aspects of the previously described theory by introducing an
intermediate Pati-Salam subgroup. It utilises two 16-dimensional spinor representations
accommodating fermions. The 10-dimensional representation contains the S1 scalar lepto-
quark alongside the Standard Model Higgs boson, making the SO(10) a theory with a single
manifestation of a scalar particle at the TeV scale.

Lastly, an alternative extension of the current physics is obtained by assuming that the gauge
group of the model is fundamentally non-universal at considerable energies. An example
of such an approach is the Flavoured Gauge Model, assigning a separate symmetry group
acting on the first and second, as well as the third generation of fermions. This is a natural
generalisation of the Standard Model, considering the experimental data in flavour physics,
suggesting that the third generation of fermions displays a range of phenomena diverging
from the theoretical expectations. Incorporating such a structure yields an instance of a
U1 vector leptoquark with a mass of approximately 1.6 TeV, allowing for alleviating the
observable tensions in question.
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leptoquarks from grand unified theories to accomodate the B-physics anomalies,”
Phys. Rev. D, vol. 98, Sep. 2018. DOI: 10.1103/PhysRevD.98.055003.

[37] O. Popov, M. A. Schmidt, and G. White, “R2 as a single leptoquark solution to RD(∗)

and RK(∗) ,” Phys. Rev. D, vol. 100, no. 3, Aug. 2019. DOI: 10.1103/PhysRevD.100.
035028.

[38] H. Georgi, “The State of the Art - Gauge Theories,” AIP Conf. Proc., vol. 23, pp. 575–
582, 1 Nov. 1975. DOI: 10.1063/1.2947450.

[39] M. Pernow, “Models of SO(10) Grand Unified Theories,” Ph.D. dissertation, KTH
Royal Institute of Technology, 2021, pp. 37–38, ISBN: 978-91-8040-028-2.

[40] U. Aydemir, T. Mandal, and S. Mitra, “Addressing the RD(∗) anomalies with an S1
leptoquark from SO(10) grand unification,” Phys. Rev. D, vol. 101, Jan. 2020. DOI: 10.
1103/PhysRevD.101.015011.

https://www.damtp.cam.ac.uk/user/tong/qft.html
https://www.damtp.cam.ac.uk/user/tong/qft.html
https://doi.org/10.48550/arXiv.hep-ph/9901280
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevD.92.034506
https://doi.org/10.1103/PhysRevD.92.034506
https://doi.org/10.1103/physrevd.85.094025
https://hflav-eos.web.cern.ch/hflav-eos/semi/moriond24/html/RDsDsstar/RDRDs.html
https://hflav-eos.web.cern.ch/hflav-eos/semi/moriond24/html/RDsDsstar/RDRDs.html
https://doi.org/10.1016/0370-2693(87)90637-X
https://doi.org/10.1103/PhysRevD.10.275
https://doi.org/10.1016/S0370-1573(99)00063-0
https://doi.org/10.1103/PhysRevLett.32.438
https://doi.org/10.1016/j.physletb.2022.137653
https://doi.org/10.1016/j.nuclphysb.2005.06.016
https://doi.org/10.1103/PhysRevD.98.055003
https://doi.org/10.1103/PhysRevD.100.035028
https://doi.org/10.1103/PhysRevD.100.035028
https://doi.org/10.1063/1.2947450
https://doi.org/10.1103/PhysRevD.101.015011
https://doi.org/10.1103/PhysRevD.101.015011


37

[41] J. Davighi, G. Isidori, and M. Pesut, “Electroweak-flavour and quark-lepton unifica-
tion: A family non-universal path,” J. High Energy Phys., vol. 2023, no. 4, Apr. 2023.
DOI: 10.1007/jhep04(2023)030.

[42] B. N. Cooperstein, “Ch 8: Bilinear Forms,” in Advanced Linear Algebra, 2nd ed. CRC
Press, 2015, p. 272, ISBN: 978-1-4822-4885-2.

[43] J. Davighi and J. Tooby-Smith, “Electroweak flavour unification,” vol. 2022, no. 9, p. 3,
Sep. 2022. DOI: 10.1007/jhep09(2022)193.

https://doi.org/10.1007/jhep04(2023)030
https://doi.org/10.1007/jhep09(2022)193

	Abstract
	Introduction
	The Standard Model
	Particle representations
	Standard Model symmetries
	Hypercharge U(1)
	Isospin SU(2)
	Colour SU(3)

	Labelling particles
	Spontaneous symmetry-breaking
	Electroweak symmetry-breaking


	Lepton Flavour Universality
	R(D) and R(D*) observables
	Leptoquark hypothesis

	Grand Unified Theories
	UV-complete SU(5)
	Georgi-Glashow Model
	R2 scalar leptoquark

	SO(10)
	Spinor representation
	Symmetry-breaking
	S1 scalar leptoquark


	Flavoured Gauge Model
	Symplectic group Sp(2n)
	Symmetry-breaking
	U1 vector leptoquark

	Conclusions

