. and engineering
groningen

university of / faculty of science

Capture The Flag -
Developing a Pipeline for
Binary Flag Detection

Bachelor’s Project Computing Science

June 2024

Author: Stefan Malinovski

Student Number: s4790804

First supervisor: dr. George Azzopardi
Second supervisor: Jelle Visser, Msc

Abstract

Flag detection systems can have many useful applications in the world of safety and
security. Recent advances in machine learning enable the development of these systems
using deep learning approaches. However, the effectiveness of such methods heavily
depends on the availability of large amounts of data.

This bachelor’s thesis presents the development of a flag detection system using a
YOLOVY9 object detection model. Annotated flag images from the Open Images V7
dataset serve as the initial training data. To further address the lack of large-scale
annotated datasets, various data enhancement methods are investigated with the goal
of improving the model’s performance and robustness.

Synthetic data is produced by a Stable Diffusion XL image generation model, as well
as by programmaticaly altering stock photos of flags and pasting them onto natural
image backgrounds. Augmented data is created by taking samples from the base
dataset and applying transformations to them to create new images.

The results shown in this paper confirm that these methods are viable answers to
the lack of data and can be used to train a fast and accurate flag detection model.

Contents
1 Introduction 4
2 Methods 5
2.1 YOLOVY . . . ot e 5
2.1.1 Hyper-parameters« v v v vttt e e e)
2.1.2 Training Results 00000 ... 6
2.2 Base Dataset e e e e e e 8
2.3 Data Augmentation00, 9
2.3.1 Pixel-Level Transformations 10
2.3.2 Spatial-Level Transformations 12
2.4 Data Synthesis e 13
2.4.1 Programmatic Data Synthesis 13
2.4.2 Generative AI-Based Data Synthesis 15
2.5 Final Datasets @ i e e e e 17
2.5.1 Transfer Learning 20
3 Results 21
3.1 Experimental Outcomes 21
3.1.1 Individual Prediction Tests 23
3.1.2 Benchmark tests 32
4 Conclusions 33
5 Future Work 35
A Pixel Transformations 37
B Spatial Transformations 37
C Stable Diffusion prompts 37

List of Figures

S U W N

Example YOLOV9 training results 7
Precision Recall curve 000000 8
Examples of Open Images Dataset V7 9
Example Image without any transformations 10
Examples of Albumentations Pixel Transformations 11

Examples of Albumentations Spatial Transformations 12

© 0

—

0

12
13
14
15

16

17

18

19

Examples of how spatial transformations alter bounding boxes. . . 13
Examples of data augmentation pipeline. 14
Examples of images generated by SDXL.. 15
Differences between proper and improper prompt writing. 16
Two images generated with the same prompt, with only a differ-

ence between the phrases ”presidents” and ”country leaders”.. . . 17
Examples of images generated with a biased model. 18
Results from different models on a test image of an astronaut. . . 22
Results from different models on an image that that features a

Ukrainian soldier. e e 25
Results from different models on an image that features a chair

resembling the USA’sflag. 27

Results from different models on the image from Figure 15, but
with a ColorJitter transformation applied to it that makes the

chair look blue. o s e 29
Results from different models on an image featuring people parachut-
ing with a flag behind them. 30
Results from different models on an image featuring people parachut-
ing with a flag behind them. 31
Results from “Base + Stable Diffusion Full Pretrained” on an
image of the January 6th Capitol Riots 34

List of Tables

[\

[S20N"N

Hyper-parameters ittt 6
All the different datasets that YOLOvV9 was trained on.. 20
Results from different models on the train set. Numbers in bold

represent maximum values. L 0000000l 21
All Pixel-Level transformations 37
All Pixel-Level transformations 37

All stable diffusion prompts used to generate the dataset. 39

1 Introduction

The detection of symbols that indicate national, regional, political or ideological affiliation is
essential in early detection of threats and establishing of patterns within these threats. This
information is beneficial for police, national security or military purposes. For broad use
of the tool, an algorithm detecting any flag or similar affiliation symbol allows generalized
detection of even previously unseen indicators.

Deep learning based object detection methods can be used to achieve reliable and accu-
rate results [10]. These methods exhibit complex computer vision capabilities by training
multilayered neural networks to recognize patterns and make predictions. A critical compo-
nent of this is a large dataset from which the network can learn. The performance of the
resulting model is directly influenced by the quality of the data, necessitating a diverse and
comprehensive dataset. If the dataset is biased or incomplete, the model will inherit these
flaws, leading to inaccurate predictions and an ineffective tool.

There is a lack of a open source large-scale annotated dataset for training flag detection
models. Additionally, flags have non-uniform shapes and sizes and they can be mistaken
for other objects such as posters or banners. In [10], the authors address these problems
by creating a comprehensive dataset with synthetic and augmented images. They train a
pipeline based on Mask-RCNN and PointRend to recognize and segment flags from up to
225 countries. Data is synthesized by altering stock photos of flags and pasting them onto
natural image backgrounds, as well as by transforming samples from their dataset.

This project focuses solely on the binary detection of flags in images, separating their
detection from their recognition. The research goal is to investigate the effectiveness of
data enhancement methods on model performance. YOLOvV9 was chosen because it is a
single-shot detector [1 1], resulting in much faster inference times when compared to two-shot
detectors like Mask-RCNN. This makes it more suitable for use-cases which may require real
time detection. The model was trained on datasets with varying distributions of natural,
synthetic, and augmented data, and conclusions will be drawn by comparing the results.

Taking all of this into account, the research questions this paper seeks to answer are “What
is the performance of YOLOv9 when used for binary flag detection in real world images?”
and “Which data enhancement methods best increase the performance of the model?”

Two directions for data enhancement were explored, those being data augmentation and
data synthesis. With data augmentation, samples are taken from a preexisting dataset
and transformed in some way to generate new samples. Depending on their effect on the
bounding boxes, the data augmentations can be split into pixel transformations and spatial
transformations. The latter changes the bounding boxes, while the former keeps them the
same. With data synthesis new samples are generated using some method. Two approaches
were explored for this, programmatic data synthesis and generative Al data synthesis. For
programmatic data synthesis, stock images of flags were altered to look more lifelike and then
pasted onto natural image background. For generative Al data synthesis, a Stable Diffusion
XL text-to-image model was used to synthesize images of flags.

Chapter 2 gives further background information about the methods used and the rea-
soning behind them. Chapter 3 delves into the setup of the experiments and analyzes their
results, with the paper concluding in chapter 4.

2 Methods

2.1 YOLOV9
At the core of the project is the YOLOvV9 object detection model. As previously stated, the
YOLO series of models are all single-shot detectors [1]. Instead of detecting possible regions

of interest using a region proposal network and then performing recognition on those regions
separately, YOLO performs all of its predictions with the help of a single fully connected
layer.

YOLOvVY introduced 2 new features that improved it’s performance when compared
to previous iterations, those being programmable gradient information (PGI) and a new
lightweight network architecture - Generalized Efficient Layer Aggregation Network (GELAN).
The features were added to address the challenges posed by information loss in deep neural
networks. PGI helps to combat the information bottleneck problem, ensuring the preser-
vation of essential data across deep network layers, while GELAN is a architectural ad-
vancement, enabling YOLOvV9 to achieve superior parameter utilization and computational
efficiency.

Since the goal of the project is to test performance of the model, the YOLOv9e version
was chosen. It is the largest of all of the YOLOvV9 versions, with the “e” standing for
extended. This choice was made with the performance metrics in mind, since the aim of the
project is to optimize for model accuracy and not inference time.

2.1.1 HYPER-PARAMETERS

Hyper-parameters are external values in machine learning models that are set before the
training process begins. They are not learned from the data but are crucial for guiding the
training process and determining the performance of the model. All the hyper-parameters
that are relevant for the conducted experiments can be seen in Table 1

epochs represents the number of training iterations that the model undergoes, while the
value of patience controls the early stopping for the model. If the model doesn’t improve
in a set amount of epoch, training stops early. The batch hyper-parameter dictates the
number of training examples processed in a single forward and backward pass through the
network during one iteration of training. Iry and Ir; are the starting and final learning rate
for the model. The learning rate is the amount by which the model updates itself on every
iteration. Most commonly Ir0 and Irf have the same value. momentum controls how much
the previous update influences the current one. weight_decay is a penalty added to the loss
function to avoid having large weights.

The warmup_epochs, warmup_momentum and warmup_bias_lr all have to do with the
warmup period of the training. The warmup period is a sort of initialization phase that
ramps up the model at the beginning of the training. warmup_epochs controls the number
of epochs, that the warmup lasts for, while warmup_momentum and warmup_bias_lr are the
momentum and learning rate respectively during warmup.

The last 3 weights, boz, cls and dfi all represent loss function gains, for the box, cls and
dfl loss functions respectively. These values control the weight assigned to each loss function.
Loss functions will be further explored in 2.1.2

’ Name ‘ Value ‘
epochs 200
patience 30
batch 16
Ir0 0.01
Irf 0.01
momentum 0.937
weight_decay 0.0005
warmup_epochs 3.0
warmup-momentum 0.8
warmup_bias_Ir 0.1
box 7.5
cls 0.5
dfl 1.5

Table 1: Hyper-parameters

The values for epochs and patience were chose by running experiments with the YOLOv9
model. 200 epochs provided enough time for the model to converge, while a patience of 30
prevented it from over-fitting. For the rest of the hyper-parameters, the out of the box values
were used, as the model performed well and had good results.

2.1.2 TRAINING RESULTS

An understanding of the outputted results is needed to reason on and analyze the effect of
the different datasets on the model. Figure 1 shows an example of this. It depicts the change
in the loss values and metrics as they change after each epoch throughout the course of the
training. This is useful for understanding how the training is going and reasoning about
when the model reaches convergence.

Loss Functions On the left side of the figure the training and validation loss are shown.
The loss function is the value that the Al model is aiming to optimize while training or vali-
dation. The box_loss value represents the loss associated with the bounding box predictions.
It measures how accurately the model can predict the location and size of the bounding boxes
for detected objects. cls_loss represents the classification loss, which measures the accuracy
with which the model can classify the objects within the bounding boxes as belonging to a
particular class. In single-class classification, the cls loss directly measures how accurately
the model is able to distinguish between the presence and absence of the class of interest.
dfi_loss, which stands for Distribution Focal Loss, is used to handle class imbalance in the
object detection process.

Through comparing the training loss with the validation loss, it can be inferred whether
the model is over-fitting on the data or not. If the validation loss starts to increase, while
the training loss continues to decrease, this typically indicates that the model is over-fitting.
This means it is learning the data too well, capturing noise and details that are specific to

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
41 0.30
4 —e— results
- smooth 47 0.08
0.25
3 3]
3 0.20 0.06
2 2 0.15
_ 0.04
2 0.10 :
14 E 11 t E._
0.05 _
1 0.02
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
val/box_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B)
4.8
_ 6.5 0.05 4
3.8 4.6 0.08
6.0 1 o] 0.04 4
3.6 5.5 . 0-067
: : 4.2 1 0.03 1
5.0 1 041
40 004 0.02
3.4 4.5
384§ 0.02 0.01 1
4.0
. . : : . , 361 . : : . —1 0.004;
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

Figure 1: Example YOLOV9 training results

the training dataset and will not generalize well on novel unseen data.

Metrics The model also provides the following training metrics: precision, recall, mAP50,
mAP50-95. Precision is the ratio of true positives to all positives, which for detecting flags
would mean the ratio of flags correctly detected out of all of the predictions.

TruePositives

Precision =
TruePositives + FalsePositives
Recall is the measure of how often the model identifies true positive instances out of all
of the positive samples in the set. Following the flag detection example, recall would be the
number of flags correctly detected divided by the the total number of flags in the image.

TruePositives

Recall =

TruePositives + FalseN egatives

These metrics mustn’t be taken individually as they can be misleading. It’s possible to
have very high recall by just simply detecting every single object or to have great precision
by only labeling a small selection of object with high likelihood of belonging to the correct
class. Because of this it is useful to look at how both variable interact with each other. This
is given by the model in the form of an Precision-Recall curve, as can be seen in Figure 2.

Average Precision (AP) summarizes the PR curve into a single value. It is calculated
by integrating the precision over all recall levels, essentially computing the area under the
PR curve. mAP extends the concept of AP to multiple classes and multiple Intersection
over Union (IoU) thresholds. IoU measures the overlap between the predicted bounding box
and the ground truth bounding box. An IoU threshold determines what is considered a
true positive detection. mAP50 uses a IoU threshold of 50, while mAP50-95 uses multiple

1o Precision-Recall Curve

—— flag 0.847
= all classes 0.847 MAP@0.5

0.8 -

0.6 -

Precision

0.4

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 2: Precision Recall curve

thresholds ranging from 50-95. Since the goal of this project is binary detection, which
applied means there is only one class, the mean average precision equals the average precision.

An additional metric which shows the interaction between Precision and Recall is F1-
Score. The F1 score is the harmonic mean of precision and recall, providing a single metric
that balances the two. It is especially useful for dealing with both false positives and false
negatives in datasets with imbalanced classes.

Precision x Recall

Recall =2
cea * Precision + Recall

After training them, all the different models will be tested on the same “ground truth”
base set. The resulting metrics will be used to reason about the effectiveness of the data
enhancement methods that were used to construct the datasets that were used for training.
The main metric that will be given the most weight is mAP50-95.

2.2 BASE DATASET

One of the main challenges with this project, is the lack of large scale annotated training
data. As a starting point, the Open Images V7 Dataset [3] was chosen (OIV7D). After
filtering for images with flags, 8691 samples were left in the dataset.

Figure 3 is an example of the images in the OIV7D dataset. In Figure 3a not all flags
are labeled individually, but instead are put together under one annotation. This is not
ideal as it can reduce accuracy of the model, since we want to train it to detect all flags
separately. Figure 3b on the other hand is an example of precise labeling, as not only the
flag of the United States of America (USA) is annotated, but all of the individual flags on

(a) Example of imprecise labeling. (b) Example of precise labeling.

Figure 3: Examples of Open Images Dataset V7

the arm-patch on the left arm. Additionally, we have to be aware of biases in the data. One
of the more prominent ones is the over-representation of the USA’s flag, which can lead to
the model being less accurate on non USA flags.

To account for the lack of annotated data, Data Augmentation (2.3) and Data Syntheses
(2.4) were used as methods for enriching the dataset.

2.3 DATA AUGMENTATION

All the images available in the base dataset were run through a data augmentation pipeline
to create new samples that can be used for training the model. As stated in Section 1, the
Python library Albumentations [2] was used to accomplish this. It supports fast and flexible
image transformations and is widely used in the Computer Vision community. YOLOvV9 has
image augmentation capabilities built in, automatically applying a number of transforma-
tions to the dataset before training the model, however these will be disabled. For these
experiments, all augmentations will be manually applied by a Python script before feeding
the dataset to the model.

The transformations can be divided based on whether they change the bounding boxes
in the image. Those that do not alter the bounding box fall into the Pixel-Level transforms
category, while the ones that do are a part of the Spatial-Level transforms.

10

2.3.1 PIXEL-LEVEL TRANSFORMATIONS

The complete 40 pixel level transformations can be found in appendix A. The augmentations
that were picked, were chosen with the goal of broadening data diversity and creating a more
encompassing dataset.

Figure 4: Example Image without any transformations

Figure 4 shows an unaltered image. It depicts an older fire truck driving as a part of
some parade with people waving numerous flags around. After sending this image through
the pipeline, 40 new images are produced. Figure 5 depicts the image as transformed by 6
different augmentations.

All the transformations applied depict common scenarios that might occur when taking
photographs of flags. Figure 5a has the Defocus transformation applied and similarly Figure
5f has the ZoomBlur transformation applied. Both of these transformations are relevant,
since when taking photos in real life it is very easy to lose focus on your camera or blur the
photography by zooming. Likewise, Figures 5¢ and 5d show the image under 30% and 50%
compression. Even though at a first glance their effect may seem minimal, since many popular
image sharing platforms implement some form of image compression, these transformations
are critical in training the model to effectively run on real world data. The RandomRain
transformation, shown in Figure 5e, could help train the model for what otherwise might be
an underrepresented condition, as any training dataset might be lacking in images depicting
flags in the rain. Finally, the RGBShift transformation, adds more variety to the dataset
and lowers the models bias towards real world flags, by switching the colour channels of the
image and creating new flags with different colors.

Following this, there are more transformations, such as Sharpen, Blur, RandomFog or
HueSaturation Value that are added to account for real world situations and boost dataset
diversity.

11

(b) RandomRain Transformation

S A\

: o o s ‘Zw»,;,

(e) ChannelShuffle Transformation (f) ZoomBlur Transformation

Figure 5: Examples of Albumentations Pixel Transformations

12

2.3.2 SPATIAL-LEVEL TRANSFORMATIONS

Due to some of the transformations not working with bounding boxes or being functional
copies of each other, the number of spatial transformations applied is smaller than pixel,
with there being only 12 transformations. The full list of transformations can be found in
appendix B.

(a) ElasticTransform Transformation (b) Rotate Transformation

(¢) Transpose Transformation (d) Flip Transformation

Figure 6: Examples of Albumentations Spatial Transformations

Taking Figure 4 as an example again, the images in Figure 6 showcase some of the trans-
formations that are applied to the image. An important part of the spatial transformations
is preserving or altering the bounding boxes in the images. By rotating the image like in

13

Figure 6b the leftmost flag in the image is lost and the pipeline needs to properly account
for this and change the annotation. Exactly this can be noticed in Figure 7, with image 7a
showcasing the bounding boxes before the rotation and image 7b showing them afterwards.

(a) Base image with bounding boxes. (b) Rotated image with bounding boxes.

Figure 7: Examples of how spatial transformations alter bounding boxes.

2.4 DATA SYNTHESIS

Another answer to the lack of data is to generate the data needed for the model. Doing this
allows for greater control over the images that are fed to the model, which can be used to fix
certain biases the are present in the model from the base dataset. 2 methods for synthesizing
data were explored, programmatically creating the data by transforming stock images and
pasting them onto real world backgrounds and using a generative AI model to synthesize
the images.

2.4.1 PROGRAMMATIC DATA SYNTHESIS

Stock images of flags were obtained from [9] after which they were put through a image aug-
mentation pipeline that transforms them into data usable for the model. The first step of the
pipeline is to make the flags more “wavy” and lifelike by applying several transformations
to the stock images. This is done in 2 steps by firstly applying transformations like Ran-
domBrightnessContrast, HueSaturationValue and Rotate, followed by putting a translucent
mask around the flag and applying OpticalDistortion and FElastic Transform to the image.
Afterwards, the transformed image is copied onto a background image. The background
images were obtained from the BG-20K dataset [0, 7, 5]. An example of the entire pipeline
can be seen in Figure 8.

The benefit to this approach is that control over where the flag is pasted in the back-
ground image is maintained, making labeling the samples part of the generative process and
trivializing it. This way, thousands of samples can easily be generated.

14

—

(a) Stock image of the Dutch flag. b) Step 1 in synthesizing the sample.

(c) Step 2 in synthesizing the sample. (d) Final sample.

L g

(e) Final sample with bounding box.

Figure 8: Examples of data augmentation pipeline.

15

2.4.2 GENERATIVE AI-BASED DATA SYNTHESIS

With the recent growth and improvement of generative Al, using a text-to-image model to
create a synthetic dataset is a valid option. Stable Diffusion XL (SDXL), which is an open
source model that can be run locally, was utilized to generate the images. The prompts used
can be found in Appendix C.

Figure 9: Examples of images generated by SDXL.

Prompt Engineering To effectively utilize the capabilities of SDXL, experiments were
conducted to gain insight into proper prompt writing. Small differences in prompts can cause
big differences in the output of the model. Since the goal is photo-realism, adding words

16

and phrases like “photo, CANON EOS R3, 80mm, 1/125 Sec shutter speed” associates
the model towards photography instead of art and paintings and results in more realistic
images. Another way to avoid generating cartoon-ish images is using negative prompts.
Negative prompts are very important since they explicitly tell the model what things to
avoid. For example, keeping with the goal of more realistic imagery, we can add “art,
painting, drawing, anime, cartoon, low poly, fantasy art” in the negative prompt. Likewise if
the model is generating humans with distorted bodies, adding “disfigured, ugly, bad” helps
to mitigate that. All of this helps with avoiding photos like like Figure 10a and have the
generated data resemble Figure 10b.

‘

(a) Image generated with improper prompt. (b) Image generated with proper prompt.

Figure 10: Differences between proper and improper prompt writing.

It is crucial to carefully consider the choice of words when constructing prompts, as
specific terms can have significant implications. Using the prompt “Two presidents shaking
hands with their nations flags behind them, photography, camera, CANON EOS R3, 80mm,
1/125 Sec shutter speed” with the negative prompt “art, painting, drawing, anime, cartoon,
low poly, fantasy art, watercolor” results in figures such as 11a, where both of the people
in the image resemble former US president Donald Trump. By simply changing the word
president to “country leaders” with no other changes, the model produces images like Figure
11b, where the people depicted have a wider variety appearances.

Stable Diffusion could be used as a tool to “patch up” holes that are left by the base
model. If a user has a specific use case for the model, that features flags in a situation that
is under-represented in the base dataset, targeted prompts can be written to specifically
depict that scenario which would improve the performance of the model when applied to
that use case. The prompts that were written for the experiments are meant to test this
proposal as well as depict common images where flags can appear. An example of this is the
prompt “A photograph of soldiers on a base saluting a flag...” which is a specific scenario
that is unrepresented in the base dataset. Additionally the prompt “A photograph of a

17

(a) Generated image with “presidents” in (b) Generated image with “country leaders”
the prompts. in the prompts.

Figure 11: Two images generated with the same prompt, with only a difference between
the phrases ”presidents” and ”country leaders”.

2

country’s national flag waving in the wind on a blue sky...” is a very common image of a flag
that appears in the base dataset and should be included the generated images to test if the
generated data lowers the performance of the model.

Model Biases When making use of Al models, it is important to be mindful about po-
tential biases inherent in the models. One of the prompts that was utilized focused on
generating protesters with flags. The prompt contained the sentence “A protester carrying
his country’s flag...”. After preliminary testing the model seemed to generate images de-
picting solely people with darker skin tones. This resulted in different phrases and words
being added to the prompt to increase the diversity of the subjects depicted. However after
generating 100 images for the dataset, the results still were still heavily biased and skewed
towards people of darker skin color. Aside from diluting the predictive capability of the
model, as researchers we should always strive for equality and fairness in the field and be
mindful about biases in our work.

2.5 FINAL DATASETS

To answer the research questions posed in Section 1, several different datasets were made
using the methods described in Section 2.3 and 2.4. These datasets were be used to train
different YOLOvV9 models, that were then be tested on the same set of “test” images. The
performance metrics of each of these models was then be compared with the goal of drawing
meaningful conclusions.

The list of all datasets and their descriptions can be found in can be found in Table 2.

18

Figure 12: Examples of images generated with a biased model.

19

Dataset

Description

Number
of Sam-
ples

Base

The base dataset containing images from the Open Im-
ages v7 Dataset, as described in section 2.2.

8476

Base + Stable
Diffusion

As the title eludes to, this dataset would be the “Base”
set with 1258 images generated using Stable Diffusion
added onto the train split of the dataset. This would
test if the images generated with the targeted prompts
improved the performance of the model on a specific use
case as well as the test set.

9734

Synthetic

This dataset would be constructed using programmatic
data synthesis. It would have the same number of images
in the test and validation splits as the “Base” dataset,
with both splits being entirely composed of generated
images. The aim of it is to test the viability of program-
matic synthesis as the only source of data.

8476

Base Syn-
thetic 50/50

This dataset takes 50% of the train split from the “Base”
dataset and mixes it with 50% of the train split from
the “Synthetic” dataset, while keeping the validation set
from the “Base” dataset.

8476

Base + Syn-
thetic

This dataset combines the samples in train split from the
“Base” and “Synthetic” datasets. The total number of
training samples is 13562. The aim is to test if adding
the images generated with programmatic synthesis would
improve the performance of the model.

15257

Spatial

This dataset would be the samples from the “Base”
dataset, with only spatial transformations (see B) ap-
plied to the images. It’s purpose is to test the effect
of the spatial transformations on the performance of the
model.

83067

Pixel

This dataset would be constructed by applying pixel
transformations (see A) to the “Base” dataset. It’ pur-
pose is to test whether the pixel transformations has a
positive effect on the performance of the model.

272935

Full

This dataset combines the “Spatial” and “Pixel” datasets
and represents applying all possible transformations to
the “Base” dataset. This would test if applying all of the
transformations would improve the performance of the
model.

354307

20

Base + Stable | After some exploratory testing it was shown that train- | 419723
Diffusion Full | ing on the “Base + StableDiffusion” dataset was success-
ful in improving the model’s performance on specific use
cases, which prompted further testing and building this
dataset by applying all the transformations to the “Base
+ StableDiffusion” dataset, since the “Full” dataset also
showed positive results.

Table 2: All the different datasets that YOLOv9 was trained on.

The train/validation split for the ”Base”, ” Synthetic” and ” Base Synthetic 50/50” dataset
is 80%/20% respectively. For all of the datasets that have augmented data, the augmenta-
tions are applied only to the samples in the train split. The validation split only has real,
unaltered data which ensures that the model’s performance metrics reflect its ability to gen-
eralize to real world data, not just the augmented variations it was trained on. All of the
models trained on these datasets will be tested on the same set of 265 test images obtained
from the Open Images v7 dataset.

2.5.1 TRANSFER LEARNING

Another important point of consideration is whether to use pretrained weights or to start
from scratch. The developers of YOLOvV9 released a series of YOLOvV9 weights trained on
the MS COCO [3] dataset ranging from YOLOv9-t (tiny) to YOLOv9-e (extended). While
MS COCO does not contain annotations for flags, starting from these weights can leave
the model with some basic ideas of patterns and features which can be helpful for further
training. Computer Vision models work by first learning more basic shapes like lines in
the first layers of the neural network, before learning more abstract ideas like flags in the
deeper layers. Starting training from pretrained weights means that the model already comes
with the lower layers pretrained. This technique is called Transfer Learning. To add more
diversity to the experiments, the model was trained on each dataset twice, once starting
from scratch and once starting from pretrained weights, specifically the YOLOv9-e weights.

21

3 Results

3.1 EXPERIMENTAL OUTCOMES

The outcomes of all the test runs can be seen in Table 3. The most important metric
for analyzing the results is mAP50-95, since it takes into account both the Precision and
Accuracy of the model and the overlap between the predicted bounding box and the ground
truth bounding box. It is also more strict than mAP50, by evaluating the mean average
precision on multiple IoU thresholds.

] Model ‘ Precision ‘ Recall ‘ F1-Score ‘ mAP50 ‘ mAP50-95 ‘
Base Scratch 0.7948 0.7500 0.7718 0.7970 0.6351
Base Pretrained 0.7563 0.7846 0.7702 0.7824 0.6214
Base + StableDiffusion Scratch 0.7583 0.8025 0.7798 0.7957 0.6395
Base + StableDiffusion Pretrained 0.7618 0.7718 0.7668 0.7814 0.6391
Synthetic Scratch 0.1111 0.0144 0.0255 0.0604 0.0411
Synthetic Pretrained 0.0969 0.3247 | 0.1493 0.1140 0.0737
Base Synthetic 50/50 Scratch 0.7597 0.7730 0.7663 0.7507 0.5619
Base Synthetic 50/50 Pretrained 0.7608 0.7769 0.7688 0.7560 0.5819
Base + Synthetic Scratch 0.7877 | 0.7845 | 0.7861 0.7773 0.6077
Base + Synthetic Pretrained 0.7635 0.7792 | 0.7713 0.7745 0.6251
Spatial Scratch 0.7784 0.7960 | 0.7871 0.7800 0.5972
Spatial Pretrained 0.7256 0.8436 0.7802 0.7927 0.6279
Pixel Scratch 0.7268 0.7413 0.7340 0.7230 0.5235
Pixel Pretrained 0.7601 0.8013 0.7802 0.8053 0.6475
Full Scratch 0.8103 | 0.7443 0.7759 0.7857 0.6006
Full Pretrained 0.7937 0.8075 | 0.8005 | 0.8207 0.6537
Base + Stable Diffusion Full Scratch 0.7797 0.7931 0.7863 0.8048 0.6328
Base + Stable Diffusion Full Pretrained | 0.7222 | 0.8514 | 0.7815 0.7998 0.6761

Table 3: Results from different models on the train set.
Numbers in bold represent maximum values.

From the Table 3, it is recognizable that the “Base + Stable Diffusion Full Pretrained”
model performed the best, scoring the highest mAP50-95 and Recall with a consistently high
score in Precision and mAP50. Many of the other models scored high in either Precision
or Recall leading to their mAP50-95 score not being as high. “Full Pretrained” and “Pixel
Pretrained” both resulted in higher mAP50-95 than the “Base Pretrained” showing that
adding transformations to the pretrained model can improve the performance. After them
are ranked the “Base + StableDiffusion Scratch” and “Base + StableDiffusion Pretrained”
models, showing that the the artificial data had a positive effect on the models predictive
capability.

22

(a) Result from “Base (b) Result from “Base + Stable
Pretrained” Diffusion Pretrained”

(c) Result from “Full (d) Result from “Base + Stable
Pretrained” Diffusion Full Pretrained”

Figure 13: Results from different models on a test image of an astronaut.

23

3.1.1 INDIVIDUAL PREDICTION TESTS

Figure 13 depicts how some of the models performed on one of the images in the test set. The
“Base Pretrained” and “Base + Stable Diffusion Pretrained” models both mislabeled part of
the astronaut’s helmet as a flag, while the model “Full Pretrained” didn’t, which is a good
example of it’s higher Recall and mAP50. However, the only model that correctly labeled
the astronauts arm-patch as a flag was “Base + Stable Diffusion Full Pretrained”. Some
of the images generated with Stable Diffusion depicted soldiers with flags as arm-patches
on their shoulders, which is why the model correctly labeled this image. Additionally, the
transformations applied to the dataset increased the number of those images, which could
be why it performed better than “Base + Stable Diffusion Pretrained”. To further test this
particular case, the models were tested again on a similar image depicted in Figure 14.

The image features a Ukrainian soldier and the only flag present is the one on his shoulder
patch. In this example the models “Base Pretrained” and “Full Pretrained” failed to detect
the flag on the soldier’s shoulder, while the 2 models trained with the additional Stable
Diffusion data, “Base + Stable Diffusion Pretrained” and “Base + Stable Diffusion Full
Pretrained”, correctly labeled the sample. While anecdotal this example and similar other
tests did show promising results that Stable Diffusion and generative Al can be used to
create large amounts of training data while having positive results.

Another interesting example can be seen in Figure 15. The image depicts a balcony with
a red and white stripped chair that has a pillow on it. The chair can easily be mistaken as the
flag of the United States of America, which is exactly what all of the models did. The chair
was labeled as a flag in every test. One of the reasons for this may be the over-representation
of the USA’s flag in the dataset, with it being depicted in the largest amount of images.

To test this idea, the models were tested again on Figure 16. It features an image similar
to Figure 15, however the colors have been shifted so the chair appears to be blue with white
stripes. The “Base Pretrained” and ”Base + Stable Diffusion Pretrained” models didn’t
label the chair as a flag, however the former did label part of the railing on the balcony. On
the other side, the models “Full Pretrained” and “Base + Stable Diffusion Full Pretrained”
did label the chair as a flag. This behaviour makes sense, since these models were trained on
color shifted instances of the USA’s flag, so they would still detect it in this situation. The
models that were trained on a dataset without the image transformations weren’t exposed
to flags that looked similar to the chair, so those models performed better in this instance.

Figure 17 features 2 people parachuting through the air with a flag being carried behind
them. This is another example where the model might have problems with false positives,
as it could detect the parachutes as a flag. The model that performed the best for this test
is “Base Pretrained”, since the other models labeled either one or both of the parachutes.
This can be attributed to how colorful the parachutes are, which increases their similarity
to flags. When tested on a similar image with a gray parachute all the models performed
positively and only labeled the flag. This can be seen in Figure 18.

24

(b) Result from “Base + Stable Diffusion Pretrained”

25

Figure 14:

(d) Result from “Base + Stable Diffusion Full Pretrained”

Results from different models on an image that that features a Ukrainian soldier.

26

(a) Result from “Base
Pretrained”

(b) Result from “Base + Stable Diffusion
Pretrained”

27

(c) Result from “Full (d) Result from “Base + Stable Diffusion
Pretrained” Full Pretrained”

Figure 15: Results from different models on an image that features a chair resembling the
USA’s flag.

28

(a) Result from “Base
Pretrained”

(b) Result from “Base + Stable Diffusion
Pretrained”

29

flag,0.61 =" J\s flag 0,81

/

/N VIR

(c) Result from “Full (d) Result from “Base + Stable Diffusion
Pretrained” Full Pretrained”

Figure 16: Results from different models on the image from Figure 15, but with a
ColorJitter transformation applied to it that makes the chair look blue.

30

flag 0.83
flag 0.85 flag 0.32

N
A

A E
‘;"
y y. s’
g |
!
-
/

(a) Result from “Base (b) Result from “Base + Stable Diffusion
Pretrained” Pretrained”

flag 0.83 flag 0.90
flag 0.81

-

~ N\
5 N
,.;;x!"- flag 0.26 : :! flag 0.88

(c) Result from “Full (d) Result from “Base + Stable Diffusion Full
Pretrained” Pretrained”

Figure 17: Results from different models on an image featuring people parachuting with a
flag behind them.

31

flag 0.84 flag 0.86

}“, \‘-‘ e

s N

(a) Result from “Base (b) Result from “Base + Stable Diffusion
Pretrained” Pretrained”

flag 0.80 flag 0.86
== ==

s o s

(c) Result from “Full (d) Result from “Base + Stable Diffusion Full
Pretrained” Pretrained”

Figure 18: Results from different models on an image featuring people parachuting with a
flag behind them.

32

3.1.2 BENCHMARK TESTS

To test whether the resulting model was suitable for commercial use, the “Base + Stable
Diffusion Full Pretrained” model was benchmark tested on a 1000 random images from its
train set. The goal of this was to calculate the average inference time, to see how quickly
the model could process requests. The resulting average inference time was 1.705 seconds
with a standard deviation of 0.208 seconds.

This inference time leaves room for improvement. A possible cause of the slower per-
formance could be the use of YOLOv9e. Switching to a smaller version like YOLOv9c
(compact) or YOLOvIm (medium) could possibly improve this.

The benchmark tests were run on a system with the following specifications:

e CPU Model name: AMD Ryzen 7 6800HS Creator Edition
e Max CPU clock speed: 4785,0000

RAM: 13976696 kB

Type of hard-drive: HDD
e OS: Ubuntu 22.04.4 LTS

33

4 Conclusions

Going back to the research questions ,“What is the performance of YOLOv9 when used
for binary flag detection in real world images?” and “Which data enhancement methods best
increase the performance of the model?” , we can now provide answers based on the conducted
experiments.

YOLOvV9’s performance can be seen in table 3, where the models trained on datasets
constructed with the different data aggregation methods, worked on par with and sometimes
improved on the performance of the models trained on just the base dataset. The data
augmentation methods showed the best results, with the “Full Pretrained” model scoring
the best mA P50 of 0.8207 and the “Pixel Pretrained” model scoring second best with 0.8053.
The generative Al data synthesis showed promising results, scoring on par with the “Base”
models, while also performing positively on individual prediction tests as shown in 3.1.1,
indicating that Generative Al may be used as an additional source of data for flag detection.
The programmatic data synthesis under-performed, scoring lower in all tests than the “Base”
models indicating that it isn’t as suitable for large scale data generation, like the generative
Al at least in it’s current state.

The end product of this project is a model that is capable of producing outputs like the
one in figure 19.

34

Figure 19: Results from “Base + Stable Diffusion Full Pretrained” on an image of the
January 6th Capitol Riots

35

5 Future Work

The quality of the programmatic synthetic data can be improved by using more complex
methods involving 3D computer graphics to make the flags more lifelike. Additionally, color
matching/blending, by analyzing the colors in the background and adjusting the colors of
the pasted flag, can be used so the flags fit in better with the background image. This would
also increase the quality of the data, which should in turn result in better performance of
the models trained on that data.

Further research into using generative Al along with targeted prompts to generate train-
ing data for specific use cases, since initial testing showed positive results. This could be
used to generate large scale data or address class imbalances in datasets. Additionally at
the time of writing there hasn’t been a wide release of Stable Diffusion 3, however the model
seems promising and should perform better than Stable Diffusion XL.

As work on this project was concluding, YOLOv10 was released which has better perfor-
mance metrics and faster inference times when compared to YOLOvV9, which should make
it more suitable for commercial use. Repeating some of the most promising experiments for
YOLOvV10 should result in even better values.

The “Full Pretrained” model, when bench-marked on 1000 images, had an average in-
ference time of 1.659 seconds per image. While adequate, this can certainly be improved,
especially if the model is to be intended in a commercial setting. Switching to one of the
smaller YOLOvV9 models, like YOLOVIC or YOLOvVIM should improve this.

36

REFERENCES

1]
2]

Albumentations. Albumentations full api reference, 2024.

Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail
Druzhinin, and Alexandr A. Kalinin. Albumentations: Fast and flexible image augmen-
tations. Information, 11(2), 2020.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-
Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, Tom
Duerig, and Vittorio Ferrari. The open images dataset v4: Unified image classifica-
tion, object detection, and visual relationship detection at scale. IJCV, 2020.

Chuyi Li, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang Li, Zaidan Ke,
Qingyuan Li, Meng Cheng, Weiqiang Nie, Yiduo Li, Bo Zhang, Yufei Liang, Linyuan
Zhou, Xiaoming Xu, Xiangxiang Chu, Xiaoming Wei, and Xiaolin Wei. Yolov6: A
single-stage object detection framework for industrial applications, 2022.

Jizhizi Li, Sthan Ma, Jing Zhang, and Dacheng Tao. Privacy-preserving portrait mat-
ting, 2021.

Jizhizi Li, Jing Zhang, Stephen J. Maybank, and Dacheng Tao. Bridging composite and
real: Towards end-to-end deep image matting, 2021.

Jizhizi Li, Jing Zhang, and Dacheng Tao. Deep automatic natural image matting, 2021.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James
Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollar. Microsoft
coco: Common objects in context, 2015.

Dynamo Spanish. Dynamo spanish, 2024.

Shou-Fang Wu, Ming-Ching Chang, Siwei Lyu, Cheng-Shih Wong, Abhineet Kumar
Pandey, and Po-Chi Su. Flagdetseg: Multi-nation flag detection and segmentation in
the wild. In 2021 17th IEEFE International Conference on Advanced Video and Signal
Based Surveillance (AVSS), pages 1-8, 2021.

Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection
in 20 years: A survey. Proceedings of the IEEFE, 111(3):257-276, 2023.

37

A PIXEL TRANSFORMATIONS

All pixel-level transformations applied to the base dataset. Further explanation for each

transformation can be found at [1].

Blur CLAHE ChannelDropout
ChannelShuffle ChromaticAberration ColorJitter
Defocus Downscale Equalize
Downscale Equalize GaussNoise
GaussianBlur GlassBlur FancyPCA
HueSaturationValue ISONoise ImageCompression30
ImageCompression50 InvertImg MedianBlur
MotionBlur Posterize RGBShift
RandomBrightnessContrast RandomFog RandomGamma
RandomGravel RandomRain RandomShadow
RandomSnow RandomToneCurve RingingOvershoot
Sharpen Solarize Spatter
ToSepia ToGray UnsharpMask
ZoomBlur

Table 4: All Pixel-Level transformations

B SPATIAL TRANSFORMATIONS

All spatial-level transformations applied to the base dataset. Further explanation for each

transformation can be found at [1].

ElasticTransform | BBoxSafeRandomCrop | GridDistortion
Flip HorizontalFlip LongestMaxSize
OpticalDistortion Perspective RandomRotate90
Transpose VerticalFlip Rotate

Table 5: All Pixel-Level transformations

C STABLE DIFFUSION PROMPTS

Amount Prompt

of Images
Generated

Negative Prompt

38

100 A Photogarph of a goverment individual | art, painting, drawing,
with a flag behind them, photography for | anime, cartoon, low poly,
an identification card, medium shot, por- | fantasy art, watercolor
trait, photo, CANON EOS R3, 80mm,

1/125 Sec shutter speed

120 A Photograph of a country’s national flag | art, painting, drawing,
waving in the wind on a blue sky, high an- | anime, cartoon, low poly,
gle, photo, CANON EOS R3, 80mm, 1/125 | fantasy art, watercolor
Sec shutter speed

90 A photograph of a goverment building with | art, painting, drawing,
the national flag infront of it, wide shot, | anime, cartoon, low poly,
photography, camera, CANON EOS R3, | fantasy art, watercolor
80mm, 1/125 Sec shutter speed

80 A photography of a city with the flag of | art, painting, drawing,
the coutry the city is in, wide shot, pho- | anime, cartoon, low poly,
tography, flag, camera, CANON EOS R3, | fantasy art, watercolor
80mm, 1/125 Sec shutter speed

80 A photography of a landscape of a country | art, painting, drawing,
with the countrys flag, photography, flag, | anime, cartoon, low poly,
camera, CANON EOS R3, 80mm, 1/125 | fantasy art, watercolor
Sec shutter speed

120 A conference room with national flags set | art, painting, drawing,
on the wall, two country leaders shaking | anime, cartoon, low poly,
hands over the table, photography, cam- | fantasy art, watercolor,
era, CANON EOS R3, 80mm, 1/125 Sec | disfigured, ugly, bad, b&w,
shutter speed, high detailed skin hands

120 A person giving a speech with their coun- | art, painting, drawing,
try’s flag behind them, photography, cam- | anime, cartoon, low poly,
era, CANON EOS R3, 80mm, 1/125 Sec | fantasy art, watercolor,
shutter speed, high detailed skin disfigured, ugly, bad, b&w

120 A photography of soldiers on a base salut- | art, painting, drawing,
ing a flag, photography, camera, CANON | anime, cartoon, low poly,
EOS R3, 80mm, 1/125 Sec shutter speed, | fantasy art, watercolor,
high detailed skin disfigured, ugly, bad, b&w

80 A ship on the sea with it’s country’s flag | art, painting, drawing,
on it, photography, camera, CANON EOS | anime, cartoon, low poly,
R3, 80mm, 1/125 Sec shutter speed fantasy art, watercolor,

disfigured, ugly, bad, b&w

110 A photo of a politician giving a talk with | art, painting, drawing,

his country’s flag behind him, camera,
CANON EOS R3, 80mm, 1/125 Sec shut-
ter speed, high detailed skin

anime, cartoon, low poly,
fantasy art, watercolor,
disfigured, ugly

39

80

A busy city street with a flag on a building,

camera, CANON EOS R3, 80mm, 1/125
Sec shutter speed, high detailed skin

art, painting, drawing,
anime, cartoon, low poly,
fantasy art, watercolor

100

A protester carrying his country’s flag,
camera, CANON EOS R3, 80mm, 1/125
Sec shutter speed, diverse people

art, painting, drawing,
anime, cartoon, low poly,

fantasy art, watercolor,
b&w

100

A soldier having his picture taken with
his country’s flag behind him, camera,

CANON EOS R3, 80mm, 1/125 Sec shut-
ter speed, high detailed skin

art, painting, drawing,
anime, cartoon, low poly,

fantasy art, watercolor,
b&w

100

An id photograph of a military peronnel
wih a flag behind them, photography, cam-
era, CANON EOS R3, 80mm, 1/125 Sec
shutter speed, high detailed skin

art, painting, drawing,
anime, cartoon, low poly,
fantasy art, watercolor,
disfigured, ugly, bad, b&w,
hands

70

A flag hoisted bove a town square, the
flag is colorfully waving in the wind, full
shot, high angle, the anthosphere is relaxed
imitation a cozy saturday sunset, pho-
tography, photo, camera image, CANON
EOS R3, 80mm, DSLR, 1/125 Sec shutter
speed, golden hour

art, painting, drawing,
anime, cartoon, low poly,
fantasy art, watercolor

Table 6: All stable diffusion prompts used to generate the dataset.

	Introduction
	Methods
	YOLOv9
	Hyper-parameters
	Training Results

	Base Dataset
	Data Augmentation
	Pixel-Level Transformations
	Spatial-Level Transformations

	Data Synthesis
	Programmatic Data Synthesis
	Generative AI-Based Data Synthesis

	Final Datasets
	Transfer Learning

	Results
	Experimental Outcomes
	Individual Prediction Tests
	Benchmark tests

	Conclusions
	Future Work
	Pixel Transformations
	Spatial Transformations
	Stable Diffusion prompts

