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Abstract

The Standard Model (SM) of particle physics is an experimentally successful theory de-
scribing the strong, weak and electromagnetic forces. These forces are described by distinct
interactions in the SM. Grand Unified Theories (GUTs) attempt to unify these forces into
a single interaction. The hypothesis is that at high energies, the coupling constants as-
sociated with each group in the SM, SU(3)C × SU(2)L × U(1)Y , will unify into a single
coupling constant. The three forces will then be combined into a single gauge group.
In this work we treat a GUT based on SO(10) with three intermediate symmetry scales
between the GUT-scale and the SM. This model accommodates all fermions in a single rep-
resentation, including a right-handed neutrino, which is absent from the SM. The coupling
constants are shown to unify in such a scenario, for a range of intermediate energy scales.
The most relevant of these intermediate symmetries is the Pati-Salam model, based on
SU(4)C ×SU(2)L×SU(2)R. This model unifies leptons and quarks into a single represen-
tation, therefore giving rise to leptoquarks. Leptoquarks are particles that have a coupling
with both a quark and a lepton. The model we discuss contains three leptoquarks below
the GUT scale, a vector leptoquark U1, with SM representation (3, 1, 2/3) and two scalar
leptoquarks R2 and R̃2, with representations (3, 2, 7/6) and (3, 2, 1/6), respectively. The
vector leptoquarks are experimentally restricted to lie at energies greater than 2PeV. We
describe a scenario with TeV-scale scalar leptoquarks. These leptoquarks mainly interact
with the heaviest fermions (the third generation) and could potentially be observed at pp
colliders through final states such as qq + ττ , q + ττ and ττ , with the quark being either a
top or a bottom.
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Chapter 1

Introduction

The Standard Model of Particle Physics (SM) is a highly successful description of particle
physics. In the 1960s, Sheldon Glashow proposed a unified theory of the electromagnetic
and weak interactions in order to explain parity violation [1]. This theory was based on the
SU(2)L × U(1)Y gauge group. Unfortunately, the result was not renormalisable. Steven
Weinberg and Abdus Salam combined the Higgs mechanism and electroweak theory into
the Glashow-Weinberg-Salam theory of electroweak interactions [2, 3]. This theory featured
spontaneous symmetry breaking of the gauge group through the Higgs field, the existence
of which was not proven until the famous discovery at the Large Hadron Collider (LHC)
in 2012 [4]. Gerard ’t Hooft and Martinus Veltman showed that this theory of electroweak
interactions was in fact renormalisable [5].

The 1970s would see the development of Quantum Chromodynamics (QCD) based on
SU(3)C by physicists Harald Fritzsch, Murray Gell-Mann and Heinrich Leutwyler [6], to
explain the strong interaction. Together, QCD and the electroweak theory form the SM,
based on the gauge group SU(3)C × SU(2)L × U(1)Y . Since then this theory has been
hugely experimentally successful, with the discovery of the W± and Z0 bosons, the gluons
and additional quarks. We will further expand upon the SM in chapter 2.

The success of the SM, a theory with its origins in unifying the weak and electromagnetic
interactions, begs the question: can we accomplish any further unification? Specifically, can
we unify all three interactions into a single force at higher energies? The answer to this
question is a resounding, but strictly theoretical, yes. Grand Unified Theories (GUTs) were
quickly theorized in the early days of the SM. Many of the physicists involved in developing
the SM would contribute to the development of GUTs. In the 1970s Glashow would develop
the Georgi-Glashow theory based on SU(5), together with Howard Georgi [7]. Abdus Salam
and Jogesh Pati developed Pati-Salam theory [8], based on SU(4)C × SU(2)L × SU(2)R,
although this is strictly speaking not a GUT, as the couplings are not unified. Furthermore,
Harald Fritzsch and Peter Minkowski formulated a model based on SO(10) [9]. Clearly, the
development of the SM sparked a great interest in creating GUTs.

An appealing quality of GUTs is their ability to resolve some shortcomings of the SM.
The charges of particles in the SM are seemingly arbitrary, yet an electron and a proton
have exactly equal and opposite charge. A GUT could explain this by putting quarks
and leptons in the same representations, causing their charges to be inherently connected.
Furthermore, the strength with which the three interactions couple is not equal in the SM.
There is no clear reason for this hierarchy between the forces. A GUT would feature a single
coupling, which then breaks up into several couplings, one for each group. The running of
these couplings down to the SM could provide an origin for the couplings we observe.

Clearly, it is theoretically possible to formulate GUTs, unlike the SM though, it has
been difficult to test their predictions. GUTs are inherently hard to verify, as their effects
are generally only noticeable at energies far beyond the scale of experiment. The scale
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CHAPTER 1. INTRODUCTION

associated with a GUT is generally on the order of 1016GeV, due to the constraints from
proton decay [10]. However, we do not have to assume that there is a ’particle desert’
between the SM and a potential GUT-scale, in which there is no new physics. In fact, many
GUTs allow for, or even require, intermediate scales with different gauge groups [11, 12].
These GUTs can therefore predict BSM physics at energies much lower than the GUT-scale.
A common class of new particles in GUTs are leptoquarks, which carry both lepton number
and baryon number. This quality allows these particles to couple to leptons and quarks
simultaneously. The fact that these particles are so prevalent in these theories is inherent.
GUTs rely on larger symmetries with larger representations for the fermions. Naturally, this
unification can lead to mixing of leptons and quarks. This new type of mixed lepton-quark
coupling allows for a wide range of new phenomenology. Observing these new processes
would hint at the existence of a GUT, although leptoquarks can exist outside the context
of GUT as well.

Leptoquarks can be found in both the gauge and scalar sectors of several GUTs. A
search for low energy leptoquarks in GUTs was performed in [12]. The conclusions of this
work, along with an introduction to leptoquarks, will be given in chapter 3. This chapter
will lead us to continue examining a model based on SO(10) with three intermediate scales.
The gauge group of one of these intermediate scales is in fact the aforementioned Pati-Salam
theory. This theory contains a vector leptoquark that has the theoretical potential to have
a mass as low as 5TeV, putting it in range of collider experiment. However, this option will
turn out to be ruled out.

The main purpose of this work is to review and expand on the SO(10) GUT with TeV-
scale leptoquarks found in [12]. This means that we will dive deeper into the model, making
sure that it is consistent and realistic. Furthermore, we need to perform a broader review
of the experimental constraints on this model. All of this will be done in order to answer
the question: is there a consistent GUT scenario with TeV-scale leptoquarks that could be
observed at collider experiments?

In chapter 4 we will treat all necessary group theory for building a GUT based on
SO(10). This includes a classification of many scalar representations, which will lead us to
identify additional (with respect to [12]) leptoquarks in SO(10). The mathematical tools
from this chapter will then be used to formulate a model in chapter 5. In that chapter we
will also delve deeper into the more complicated aspects of symmetry breaking in this GUT.
Furthermore, we will show the running and unification of the couplings from the SM up
to the GUT-scale. These two chapters together intend to establish a clear case for a GUT
with leptoquarks at the TeV-scale.

With a scenario for low energy leptoquarks in hand, we move on to the phenomenology
of the vector leptoquarks (U1) in chapter 6 and of the scalar leptoquarks (R2 and R̃2)
in chapter 7. The mediation of rare meson decays due to vector leptoquarks will lead to
their exclusion at the TeV-scale. However, these constraints are not as strong for the scalar
leptoquarks, as their couplings to first and second generation matter can be small. This will
lead us to examine processes of the scalar leptoquarks involving third generation fermions.
We will identify several final states that are relevant for observing these particles at pp
colliders.
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Chapter 2

The Standard Model

Before we engage in building a Grand Unified Theory based on the SO(10) symmetry
group, we should examine the experimentally successful Standard Model (SM). This model
represents the current state of particle physics, so it is instructive to study it before we try
to build something that would contain it. Currently, it is uncertain up to which energy
scale the SM is a valid theory for describing particle interactions. All we know is that, on
the scale of current-day collider experiments (∼ TeV), it is a good theory for describing the
interactions of the strong, weak and electromagnetic forces.

The SM is based on the SU(3)C×SU(2)L×U(1)Y symmetry group, which has 12 gener-
ators. This makes it significantly smaller than SO(10), which has a 45-dimensional adjoint
representation. Regardless, many of the principles in this chapter have a direct analogy to
the GUT we intend to build. In an SO(10) model, particles are still in irreducible repre-
sentations, the Lagrangian is still based on Yang-Mills theory, the adjoint representation
still determines the gauge interactions and scalar particles perform spontaneous symmetry
breaking. Therefore, we will describe these things in the context of the SM first.

2.1 Particles and Representations

All particles in a theory, be it fermions, gauge bosons or scalar bosons, have to be represented
in a certain representation of the gauge group of a theory. As stated before, the SM is based
on SU(3)C×SU(2)L×U(1)Y . Fermions are generally represented in fundamental or trivial
representations of a group, indicating how they transform. Gauge bosons are always in the
adjoint representation. Lastly, scalars can be in any valid irreducible representation. This
section is largely based on [13] and [14].

2.1.1 Representation Theory

In general a group G can be represented by a certain representation D, for which the
following holds:

D(g1) ◦D(g2) = D(g1g2), g1, g2 ∈ G. (2.1)

An infinite amount of such representations can be constructed, the most relevant ones are
the fundamental and the adjoint representation. For a global SU(N) symmetry we generally
have a representation:

U = e−iαaTa
, (2.2)

5



CHAPTER 2. THE STANDARD MODEL

where αa are real parameters quantifying the transformation, and T a are the N2 − 1 gen-
erators of the group. Take a set of N complex numbers arranged in a vector:

ψi =


ψ1

ψ2

...

ψN

 , i = 1, ..., N, (2.3)

this vector transforms under SU(N) as follows:

ψi → ψ′i = U i
jψ

j = 1− iαa(T a)ijψ
j +O(α2), (2.4)

where the expansion is only valid for infinitesimal α. Representations that transform in
this manner are called the fundamental representation. The fundamental representation of
SU(N) always has N dimensions. The generators T a themselves also transform under the
group:

(T a)ij → (T ′a)ij = U i
k(T

a)kl (U
†)lj = 1− i[αaT a, T a] +O(α2), (2.5)

therefore the generators themselves also form an N2 − 1 dimensional representation. The
expansion is again only valid for infinitesimal transformations. This is called the adjoint
representation. Many more representations can be constructed by taking the product of
two representations and decomposing them into irreducible representations. An irreducible
representation is a representation that cannot be further decomposed into smaller represen-
tations.

These representations are essential in writing down a Lagrangian for a theory. The aim
is to formulate a Lagrangian that is invariant under a local SU(N) transformation. A local
transformation is slightly different from a global transformation:

U = e−iαa(x)Ta
, (2.6)

as can be seen we now have a coordinate-dependent αa(x) instead of a constant αa. This
means that the transformation is dependent on position. If we take the fundamental rep-
resentation Ψ = ψi and place fermions in it, we can attempt to write down an invariant
kinetic term in the Lagrangian:

Lkin = Ψ(∂µγ
µ)Ψ, (2.7)

where γµ are defined as in section A.1, and Ψ = Ψ†γ0. This does not work however, as we
have the following transformation property:

∂µΨ → U∂µΨ+ (∂µU)Ψ. (2.8)

There is an extra term in the transformation due to the fact that we have a local symmetry.
With a global symmetry we would have had ∂µU = 0, as the transformation would not
be position dependent. This extra term in this transformation makes the Lagrangian not
invariant under SU(N). Instead, we need a derivative with the following transformation
property:

DµΨ → UDµΨ, (2.9)

this is the so-called covariant derivative. This derivative is defined as:

Dµ = ∂µ − igAa
µT

a, (2.10)

where Aa
µ is the gauge field and g is the coupling constant. Using this derivative instead

gives us the invariant term:
Lkin = Ψ( /D)Ψ, (2.11)
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CHAPTER 2. THE STANDARD MODEL

where we have used Feynman slash notation /D = Dµγ
µ. Since the covariant derivative

contains the gauge field, the kinetic term contains couplings between the fermions and the
gauge bosons. From the transformation of the covariant derivative we can determine the
transformation properties of the gauge field:

Aa
µT

a → Aa
µT

a +
i

g
∂µα

aT a + i[αaT a, Ab
µT

b] +O(α2), (2.12)

which we can recognize as the transformation of the adjoint representation. Simply by
requiring the Lagrangian to be SU(N) invariant, the kinetic term automatically provides
the couplings between fermions and gauge bosons; the group structure entirely determines
the possible interactions.

2.1.2 Fermions

The SM has 15 fermions per generation. These are the three up-type quarks, the three
down-type quarks, their respective antiquarks, the electron, the positron and the left-handed
neutrino. The right-handed neutrino is generally absent from the SM. These 15 fermions
are embedded into SM representations as follows:

QL =

uL
dL

 ∈ (3, 2, 1/6),

uR ∈ (3, 1,−2/3),

dR ∈ (3, 1, 1/3),

eL =

νL
eL

 ∈ (1, 2,−1/2),

eR ∈ (1, 1, 1),

(2.13)

where the first two numbers indicate dimension of the irrep of SU(3)C and SU(2)L respec-
tively. The bar on the 3 means that it is a conjugate representation. The last number
is the eigenvalue under U(1)Y ; the hypercharge. For representations that have more than
1 particle, this number is the average of the electromagnetic charge of all the particles in
the representation. These numbers immediately tell us something important about the
fermions. A representation that is 3-dimensional under SU(3)C contains particles that are
in the fundamental representation of that group. Therefore, they carry colour charge and
can interact with each other through the strong force associated with SU(3)C . Conversely,
particles that are 1-dimensional under SU(3)C do not interact with the strong force, as
they transform trivially. The same applies for SU(2)L. For U(1)Y , a nonzero eigenvalue
indicates that the particle has interactions with the boson associated with U(1)Y .

2.1.3 Gauge Bosons

The adjoint representations of SU(3)C , SU(2)L and U(1)Y contain the gauge bosons. The
adjoint representation of SU(3)C is 8 dimensional, consisting of basis matrices labelled
U1, U2, ..., U8 (the Gell-Mann matrices). With each basis matrix we associate a field, there-
fore we have 8 bosons, the gluons, these are labelled G1

µ through G8
µ in eq. (2.14). SU(2)L

has 3 bosons, one each for L1, L2 and L3, labelled W
1
µ , W

2
µ and W 3

µ . Lastly, U(1)Y has 1
gauge boson: Bµ, associated with the generator Y .

G1
µ, G

2
µ, ..., G

8
µ ∈ (8, 1, 0),

W 1
µ ,W

2
µ ,W

3
µ ∈ (1, 3, 0),

Bµ ∈ (1, 1, 1).

(2.14)
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CHAPTER 2. THE STANDARD MODEL

These 12 particles mediate the interactions in the SM. We can now write down a corre-
sponding covariant derivative:

Dµ = ∂µ − igsG
i
µU

i − igW j
µL

j − ig′BµY/2, (2.15)

which allows us to determine the specific gauge interactions possible. The kinetic term for
the gauge fields themselves is:

Ga
µνG

µν,a +W b
µνW

µν,b +BµνB
µν , a = 1, 2, ..., 8, b = 1, 2, 3. (2.16)

These tensors, called the field strength tensors are defined as follows:

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − igfabcGb

µG
c
ν , (2.17)

where fabc are the group structure constants. The definitions for W b
µν and Bµν are similar.

The last term is absent for Bµν , as it corresponds to an abelian group, which means all
structure constants must be zero.

2.1.4 Scalar Particles

The SM also contains scalar particles. Unlike the fermions these do not transform like
spinors, since they have spin 0. The SM uses the Higgs boson to give masses to the fermions
and to break the SM symmetry. The Higgs boson is placed in the (1, 2, 1/2) representation
of the SM. It is an SU(2)L doublet, hence this representation is often referred to as the
Higgs doublet. We have:

ϕ =

ϕ+
ϕ0

 ∈ (1, 2, 1/2), (2.18)

where ϕ0 and ϕ+ are complex fields, with the superscripts indicating their charge. We can
further parameterize these fields into their real and imaginary components:

ϕ =

ϕ1 + iϕ2

ϕ3 + iϕ4

 , (2.19)

giving us four real fields. In this work we will make extensive use of much larger represen-
tations for the Higgs sector of the SO(10) model we discuss.

2.2 The Higgs Mechanism

When trying to formulate the SM, one quickly runs into a problem. The gauge bosons, W±
µ

and Z0 are known to be massive, yet it is not possible to write a mass term for them without
breaking the symmetry of the SM. A simple mass term (e.g. m2BµB

µ) would immediately
break the symmetry, as the transformation for gauge bosons in eq. (2.12) does not leave
such a term invariant. Furthermore, the W± and Z0 bosons do not have the same mass,
that difference cannot be created with mass terms in an SU(2)L invariant way.

The fermions suffer from a similar problem. Fermions cannot have Majorana masses, as a
term of the formm2e−e− would result in a vertex that does not respect charge conservation,
e.g. a positron could spontaneously turn into an electron. Then we are left with Dirac
mass terms, of the form mΨΨ. This raises another problem, the conjugated field does not
transform in the same way as Ψ. If one is left-handed, the conjugate is right-handed. The
SM is clearly not left-right symmetric, so these do not transform in the same way. Take for
example eL and eR from eq. (2.13), the former is an SU(2)L doublet, the latter is a singlet.
Clearly a term of the form meLeR is not SU(2)L invariant.

8



CHAPTER 2. THE STANDARD MODEL

The solution to both of these problems is the Higgs mechanism. The Higgs mechanism
breaks the Electroweak (EW) SU(2)L × U(1)Y symmetry to U(1)Q, the electromagnetic
gauge group. In this process it gives mass to theW± and Z0 bosons. The mechanism can be
summarized as follows: at high enough energies the Higgs potential is perfectly symmetric,
but at low energies it has a ground state that is not symmetric. In this ground state the
Higgs field acquires a vacuum expectation value (vev), this vev then goes on to provide all
the necessary mass terms. Essentially, the mechanism provides a way to write an invariant
Lagrangian that spontaneously breaks the symmetry at a lower energy.

In this section we discuss the mechanism behind spontaneous symmetry breaking (SSB)
and how it provides gauge bosons and fermions with masses. Parts of this section are based
on [11, 12, 15]

2.2.1 Spontaneous Symmetry Breaking

How does the Higgs mechanism actually perform this spontaneous symmetry breaking? To
see that we need to look at the potential. A general potential for a Higgs field, including a
quartic self-coupling, could be:

VHiggs = −µ2(ϕ†ϕ) + λ(ϕ†ϕ)2, (2.20)

which is clearly SU(2)× U(1) invariant. Note the negative mass term, this is an integral
part of the mechanism. The Higgs fields are massless so far, as the square root of −µ2 is
not a real positive mass. Due to this negative term the potential has a minimum that is not
at ϕ = 0. This means that the ground state is shifted away from the centre of the potential;
the field develops a vacuum expectation value at low energies. The vev can be found by
taking the derivative of the potential with respect to the square of the field:

∂VHiggs

∂(ϕ†ϕ)
= 0, ⟨ϕ†ϕ⟩ = ⟨ϕ21⟩+ ⟨ϕ22⟩+ ⟨ϕ23⟩+ ⟨ϕ24⟩ =

√
µ2

2λ
≡ v2

2
. (2.21)

We are free to assign this value to any of the four real fields in eq. (2.19), or a linear
combination thereof, as long as the condition above is satisfied. The choice of field will
determine the residual symmetry. The SM Higgs doublet decomposes as follows to SU(3)C×
U(1)Q:

(1, 2, 1) → (1, 1) + (1, 0), (2.22)

obviously we want to give the chargeless component a vev, as the other one would also break
the U(1)Q symmetry. When a field obtains a vev, the largest symmetry group (contained
in the original group) under which that field is a singlet, will be the residual symmetry of
the theory. In assigning a vev to ϕ0 we are free to decide on a complex phase. For now, we
assign a vev to ϕ3, we get:

ϕvac =
1√
2

0

v

 . (2.23)

The branching rule in eq. (2.22) already gave away what the remaining symmetry should
be, but we should verify it regardless. A general SU(2)L × U(1)Y transformation can be
parameterized as follows: U = eiα

a(x)La+iβ(x)Y/2. We can apply it to ϕvac and keep terms
up to first order in αa and β [11]:

Uϕvac = ϕvac +
i

2

 α3 + β α1 + iα2

α1 − iα2 α3 − β

ϕvac = ϕvac +
iv

2
√
2

α1 + iα2

α3 − β

 . (2.24)

9



CHAPTER 2. THE STANDARD MODEL

For ϕvac to be invariant we require the second term to be zero, therefore we have α1 =
−iα2 = 0, and α3 = β. So only a transformation associated with the linear combination of
generators:

Q = L3 +
Y

2
, (2.25)

leaves this potential invariant (aside from SU(3)C invariance). Q is precisely the operator
for the electric charge, associated with U(1)Q, the symmetry of quantum electrodynamics.
We have now performed the following SSB of the SM:

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)Q. (2.26)

The Lagrangian no longer being invariant under the SM group symmetry is not the only
consequence. This mechanism has given masses to several gauge bosons, the Higgs boson
and, by adding the right terms, to the fermions.

2.2.2 Scalar Masses

The Higgs mechanism provides a mass to some of the scalar fields contained in the Higgs
representation (1, 2, 1/2). The masses of the scalar sector can be identified easily, we expand
the Higgs potential as a power series around the vev, then the second derivatives with respect
to the fields correspond to the mass terms such that [16]:

∂2V

∂ϕi∂ϕj

∣∣
ϕvac

≡M2
ij . (2.27)

In general this matrix does not have to be diagonal, especially if multiple Higgs represen-
tations are used. When it is not diagonal, the mass eigenstates are combinations of scalar
fields. For the potential of the SM Higgs doublet we get the following mass matrix:

M2
ij =


0

0

2µ2

0

 , (2.28)

which is quite straightforward. The fields ϕ1, ϕ2 and ϕ4 are massless, these are the so-called
Goldstone bosons. In the relativistic case, every broken generator should have one Goldstone
boson associated with it. Since we have broken three generators, this is in agreement. The
ϕ3 field, often called h after symmetry breaking, has acquired a mass of

√
2µ.

There remains a problem however, these massless Goldstone bosons are never actually
seen. There is a solution, by applying the right gauge transformation to the broken gen-
erators we can remove any terms involving the Goldstone bosons. In this manner, the
Goldstone bosons are absorbed by the massive gauge bosons. This gives the massive bosons
a third polarization degree of freedom, whereas massless particles only have two.

2.2.3 Gauge Boson Masses

The Higgs mechanism gives mass to the gauge bosons associated with broken symmetries.
Since the residual symmetry is a linear combination of two symmetries, we can expect the
mass spectrum to not be diagonal in W a

µ and Bµ. Instead, the resulting mass eigenstates
will be linear combinations of these gauge bosons. To see this, examine the kinetic term of
the Higgs field, and keep only the terms containing the vev:

10



CHAPTER 2. THE STANDARD MODEL

Vmass = (Dµϕvac)
†(Dµϕvac) =

∣∣∣
∂µ − ig

2W
3
µ − ig′

2 Bµ − ig
2 (W

1
µ − iW 2

µ)

− ig
2 (W

1
µ + iW 2

µ) − ig
2W

3
µ + ig′

2 Bµ

ϕvac

∣∣∣2
=
v2

8
(g2|W 1

µ − iW 2
µ |2 + |gW 3

µ − g′Bµ|2).

(2.29)

We can clearly identify mass terms, but as expected they are not diagonal in the gauge
fields. The mass matrix is:

M2
ab =

∂2Vmass

∂Ga
µ∂G

b
µ

=


g2

g2

g2 −gg′

−gg′ g′2

 , Ga
µ, G

b
µ =W 1

µ ,W
2
µ ,W

3
µ , Bµ. (2.30)

Diagonalizing gives the following gauge bosons along with their masses:

W±
µ =

1√
2
(W 1

µ ∓W 2
µ), mW =

vg

2
, (2.31)

Z0
µ =

1√
g2 + g′2

(gW 3
µ − g′Bµ), mz =

v

2

√
g2 + g′2, (2.32)

Aµ =
1√

g2 + g′2
(g′W 3

µ + gBµ), mγ = 0, (2.33)

which are just the familiarW± and Z0 bosons, in addition to the photon, which is massless,
as it should be. Seemingly, the Higgs mechanism has correctly generated the masses for the
gauge bosons.

2.2.4 Fermion Masses

The fermions obtain their masses through couplings with the Higgs particle in the Yukawa
sector. This sector has terms following the form of a Yukawa coupling: gΨϕΨ. For the SM
this sector is as follows:

LY = λdQLϕdR + λuϵ
abQLaϕ

†
buR + λeELϕeR + h.c, (2.34)

with ϕ the Higgs field, dR, uR, QL, EL and eR the fermion fields and ϵab a 2×2 antisymmetric
tensor. Inserting the vev in this expression gives mass terms of the form: λ⟨ϕ⟩ψLψR, exactly
what we need to give particles a Dirac mass. Since the SM contains three generations of
particles we should create Yukawa couplings for each generation. It turns out that the
Yukawa sector is actually not diagonal in the three generations. This causes mixing of the
flavour states into mass eigenstates. The Yukawa matrix for three generations of quarks is
as follows [17]:

LY = −Y d
ijQLiϕdRj − Y u

ijQLiϵϕ
†uRj + h.c., (2.35)

where Y u,d are the Yukawa matrices for the up and down quarks, and i, j are the generation
indices. The Yukawa matrices are 3×3 complex matrices determining the couplings between
the Higgs field and the fermions. The fermions in this equation are in the weak flavour
eigenstate basis, not in the mass eigenstate basis. To diagonalize the mass matrix for this
system, we can apply the following basis transformation:

M2 u,d
diag = V u,d

L Y u,dV u,d
R ⟨ϕ⟩, (2.36)

11



CHAPTER 2. THE STANDARD MODEL

where V u,d
L,R are basis transformation matrices for the up-type and down-type quarks, re-

spectively. This gives rise to the Cabibbo-Kobayashi-Maskawa (CKM) matrix [17]:

VCKM = V u
L V

d†
L =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 ,


d′

c′

b′

 = VCKM


d

c

b

 (2.37)

which is a 3× 3 unitary matrix. The second equation shows how the CKM matrix relates
the flavour eigenstate down-type quarks (d′, s′, b′) to their mass eigenstate counterparts
(d, s, b). A similar matrix relating the mass and flavour basis of the neutrinos exists, the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, or VPMNS [17].

2.3 Renormalisation

Loop effects in quantum field theories cause infinities when calculating amplitudes. There
is a procedure to get rid of these infinities, called renormalisation. Renormalisation of field
theories is dependent on the energy scale µ. This means that the couplings gi associated
with each symmetry group are also dependent on µ. This is the so-called running of the
couplings. Eventually the couplings of the individual groups are expected to reach the same
value for a certain energy, which is known as the gauge coupling unification. The running
of each gi can be calculated using the β-function. The running of the coupling can easily
be computed, up to one-loop, using the following relation [14]:

dgi
d lnµ

= β(gi) = bi
g3i
4π2

⇒ 4π

g2i (µ2)
=

4π

g2i (µ1)
− bi

2π
ln
µ2
µ1
, (2.38)

where bi are the β-coefficients. Note that we have expanded the β-function and have only
kept the term that is the lowest order in gi. This corresponds to taking the one-loop
β-function, neglecting any corrections from diagrams with more loops. Substituting the

coupling for the fine structure constant α =
g2i
4π , we obtain:

α−1
i (µ2) = α−1

i (µ1)−
bi
2π

ln
µ2
µ1
. (2.39)

To fully specify how coupling constants evolve, all we have to do, is determine the β-
coefficients bi and find out how the coupling constants relate to each other at a symmetry
breaking step. Once we can calculate the evolution of the gauge couplings, we will be able
to establish whether a theory allows for unification. Therefore, this will show whether a
scenario is a valid GUT to begin with.

2.3.1 β-coefficients

Calculating the β-coefficients is a straightforward procedure. In essence, we need to examine
the particle content of a theory and the associated representations. At each energy scale,
all particles which are massless contribute to the β-coefficient. To a decent approximation,
when a particle gains a mass through the Higgs mechanism at a certain scale, it does not
contribute to the running below that scale. In section 6.3, we explain how the effects of
massive particles are approximated below their mass scale by an effective field theory. The
basic conclusion is that their effects are suppressed by at least 1/M2, and more for higher
dimension interactions. For this reason they do not contribute significantly to the running.

The influence of the Yukawa couplings on the β-coefficients can be ignored, as they
contribute to the β-functions at the two-loop level [18].

12



CHAPTER 2. THE STANDARD MODEL

Multiple equivalent ways to compute the β-coefficients exist, we use the one employed
in [19]:

bi = −11

3
C2(G) +

2

3

∑
Rf

T (RF )
∏
j ̸=i

dj(Rf ) +
1

3

∑
Rs

T (Rs)
∏
j ̸=i

dj(Rs), (2.40)

where C2(G) is the quadratic Casimir operator for the group to which gi corresponds:

C2(G) ≡

{
N if SU(N),

0 if U(1).
(2.41)

For SO(N), this is 2(N −2), so C2 = 16 for SO(10) [20]. Moving on, Rf,s are specific repre-
sentations of fermions (f) and scalars (s) under the total group of a model. For example, in
the SM group SU(3)C ×SU(2)L×U(1)Y , the quarks are represented in (3, 2, 1/6). T (Rf,s)
are the Dynkin indices associated with these representations. The formal definition is as
follows:

T (R)δab = [T a, T b], (2.42)

where T a,b are the generators of R.
However, we do not need to engage with this definition, as generally the Dynkin indices

are as follows for SU(N):

T (Rf,s) =


N if rep = adjoint,

1/2 if rep = fundamental,

0 if rep = singlet.

(2.43)

To expand on our example of the quarks in the SM group, the Dynkin index corresponding
to (3, 2, 1/6) for SU(3) would be 1/2, since it is a fundamental representation of SU(3).
The product eq. (2.40) tell us to multiply each Dynkin index with the dimensionality of
the representation in the remaining groups. For our example this means multiplying by
2, as that is its dimension under SU(2). The U(1)Y eigenvalue of the representation is
irrelevant, as every irreducible representation is 1-dimensional under U(1)Y . The three
generations of quarks and leptons should also be taken into account, therefore any Dynkin
index corresponding to fermions must be multiplied by 3. This only applies when µ≫ mtop,
since we do not take into account particles heavier than µ.

A full example of the β-coefficient b1, corresponding to SU(3)C under the SM is given:

b1 = −3(
11

3
) + 3(

2

3
)

(
2(
1

2
) +

1

2
+

1

2

)
= −7, (2.44)

where we have used the representations (3, 2, 1/6), (3̄, 1, 1/3) and (3, 1,−2/3). The other
representations of the SM, (1, 2,−1/2), (1, 1, 1) and (1, 2, 1/2) are irrelevant, as they are
SU(3)C singlets.

Special attention must be given to U(1), as its Dynkin indices are computed slightly
differently:

T (Rr,s) = λ2N , (2.45)

where λN is simply the eigenvalue of the normalized operator associated with U(1). It is very
important to take into account the normalization of this operator when computing Dynkin
indices. The normalization of U(1) operators is in principle arbitrary, so the associated
eigenvalues can be arbitrarily scaled. This would directly impact the magnitude of the β-
coefficient. To prevent this, we normalize the U(1) operators in the same way as any other
operator in a model. For the case of U(1)Y in an SO(10) theory, it should be normalized

like Y ′ =
√

3
5Y . This ensures that Tr

(
Y 2

)
= 4, which is how the other operators in SO(10)

are normalized. Applying this normalization means multiplying the β-coefficient by 3
5 , as

we use λ′2 = 3
5λ

2.
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2.3.2 Matching Conditions

In order to establish how the fine-structure constants of theories relate to each other at
a symmetry breaking scale, we need to establish certain matching conditions. In general
these conditions are fairly simple. For example, if any group, below the symmetry breaking
scale µ, is embedded into a single group above that energy scale, then at µ we have:
αbelow(µ) = αabove(µ) [16]. This is exactly what happens to the strong force fine-structure
constant αs at the electroweak symmetry breaking scale MW :

αs(MW ) = α3C(MW ) (2.46)

For the fine-structure constant of quantum electrodynamics (QED) we need a slightly
more complicated condition. The gauge group of QED, U(1)Q, is embedded into SU(2)×
U(1)Y at MW . We can use the operator Q of QED to figure this out, we have:

Q = L3 + Y/2, (2.47)

however, this still requires normalization. Recall that the proper normalization of Y is

Y ′ =
√

3
5Y , the normalization of the U(1)Q operator is: Q′ =

√
3
8Q Plugging this into the

above equation yields:

Q′ =

√
3

8
L3 +

√
5

8
Y ′/2. (2.48)

From this relation of operators we can obtain a relation between couplings. In general, we
have the following rule: if an operator can be expressed as a linear combination of operators,
then we have [16]:

T (µ) =
∑
i

piTi(µ) ⇒ 1

g2(µ)
=

∑
i

pi
g2i (µ)

, (2.49)

where pi are the coefficients of the linear combination. We can substitute the inverse fine-
structure constants right into this equation. For U(1)Q we can now easily find the relation:

α−1
Q =

3

8
α−1
2L +

5

8
α−1
Y . (2.50)

Clearly, whenever a group is embedded into a product of multiple groups at higher
energies, the matching condition is no longer trivial. The procedure above can be applied
to any such case.

It should be noted that the matching conditions in this section rely on the approximation
that symmetry breaking scales are discrete boundaries below which no effects are felt from
particles that obtain a mass above it. A more accurate approach, would be to include
threshold corrections, which take into account the effects of massive particles close to the
symmetry breaking scale.

2.3.3 The Standard Model Running

Applying the concepts in this section to the SM allows us to show the running of the
couplings before and after symmetry breaking. The β-coefficients below EW symmetry
breaking are [12]:

bs = −22

3
, bQ =

10

3
(2.51)

and above this scale:

b3C = −7, b2L = −19

6
, bY =

41

10
. (2.52)
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Figure 2.1: The running of the SM above and below the EW symmetry breaking scale
MEW = 174GeV

Together with the matching condition in eq. (2.50) and the Weinberg angle, we can com-
pletely specify the running. A computation of the fine structure constants αY and α2L is
performed in section 5.4.1. Combining these things we can obtain the running shown in
Figure 2.1

The fine structure constant associated with SU(3) clearly just continues past MEW , as
it is not affected by the symmetry breaking. The associated β-coefficient does change, due
to the top quark becoming massless above MEW . The matching condition in eq. (2.50) is
clearly visible in the graph.
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Chapter 3

Leptoquarks in Grand Unified
Theories

Many extensions of the Standard Model contain particles that carry both baryon number
and lepton number, called leptoquarks, which form the main interest of this thesis. These
particles can mediate interactions between leptons and quarks in one vertex. Generally,
leptoquarks can arise from two sectors: the gauge sector or the scalar sector. In the former
case, extending the gauge group of the SM to a larger group will put leptons and quarks
into the same representations. The adjoint of this enlarged gauge group will then contain
new gauge bosons that couple to leptons and quarks at the same time. The latter case,
scalar leptoquarks, arise from Yukawa couplings between new scalar particles, leptons and
quarks. Grand unified theories (GUTs) often contain many new scalar particles in order to
achieve the desired symmetry breaking down to the SM. The new interaction vertices such
particles could possess, dependent on the model they arise from, are shown in Figure 3.1.

q

ℓ

LQ
ℓ

q

LQ
q

q

LQ

Figure 3.1: Possible couplings of leptoquarks. From l. to r. a coupling between a quark and
an anti-lepton, a quark and a lepton, and lastly a diquark coupling that some leptoquarks
possess.

We can distinguish between ”pure” leptoquarks, which only possess lepton-quark cou-
plings, like the first diagram in Figure 3.1, and B-violating leptoquarks. The B-violating
leptoquarks possess diquark couplings along with leptoquark couplings. This allows them
to violate baryon number, which could lead to proton decay [21]. For example, the process
in Figure 3.2 could mediate proton decay by having a diquark coupling on one side and a
leptoquark coupling on the other. The proton lifetime has been measured up to very high
precision, so particles that cause proton decay are constrained to exist at extremely high
energies (> 1016GeV). These proton decay measurements provide one of the main bounds
on GUTs, see e.g. [10] for proton decay constraints on many models including GUTs with
leptoquarks.

In this chapter we will examine several non-supersymmetric GUT scenarios and their
leptoquark content. This is largely a summary of the conclusions found in [12], which was
based on the GUT scenarios classified in [11].

16



CHAPTER 3. LEPTOQUARKS IN GRAND UNIFIED THEORIES

d

u e+

LQ
u

Figure 3.2: Possible diagram leading to proton decay mediated by a leptoquark as shown
in [12]

3.1 GUT Scenarios

Multiple GUT scenarios lead to the existence of leptoquarks, however most of these do not
provide any leptoquarks on an energy scale low enough to be near current experimental
reach (e.g. ∼ TeV-scale). The main reasons why, are the bound from proton decay, as
mentioned above, and the lack of larger symmetry groups at low energy in many scenarios.
Some models simply do not have new physics at low energy scales at all, because solving the
β-functions would not allow for coupling unification with low energy intermediate scales,
see section 2.3.

In [12], GUTs based on SU(5), SO(10) and trinification (SU(3)3) were considered. These
three scenarios will be briefly reviewed in this section. These three gauge groups are all
subgroups of E6, as shown in [11]. All GUTs embedded in E6 are mapped out in Figure 3.3.

A GUT based on E6 was first presented in [22]. It was of interest as it contains SU(3)C×
SU(3)L×SU(3)R, the trinification group, which the authors considered a promising model.
Furthermore, E6 is naturally anomaly free, has many options for symmetry breaking down
to the SM and can contain all fermions of one generation in its fundamental representation
[23]. This fundamental representation can be complex, which is essential for a valid GUT,
in order to maintain the chiral nature of the weak interaction [24].

Figure 3.3: Overview of GUTs embedded in E6, taken from [11]. The Dynkin diagram for
each group is shown. The arrows connect a group with the groups it can break to.

The importance of a chiral theory to be anomaly free was identified in [25]. They defined
the anomaly of a gauge group as:

Aabc = Tr[ta{tb, tc}], (3.1)

where ta are the generators of the group. Essentially, the argument is that certain loop
diagrams lead to the non-conservation of axial currents, unless Aabc = 0. These anomalies
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could be cancelled by introducing extra fermions, but this is not desirable if a minimal
model is sought after.

E6 contains more paths down to the SM than just those described in this section. In
Figure 3.3 there are paths through SU(6)×SU(2) or directly to SU(6). These gauge groups
could also be models for a GUT themselves. However, looking at the figure, SU(6)×SU(2)
does not provide very different paths down to the SM, compared to the models discussed
in this chapter. A potential path is through SU(5) × SU(2), in section 3.1.1, we will see
that SU(5) is restricted to lie at very high energies, therefore SU(5) × SU(2) is as well.
Then there is the option of going through SU(4)C × SU(2)L × SU(2)R, which SO(10)
can break to as well, or breaking to SU(3)× SU(3)× SU(2), which can be reached from
trinification. Similarly, starting from SU(6), there are only paths identical to those from
the models discussed in this chapter. Given that the unification scale is high, it is mainly
the intermediate symmetries between the GUT and the SM that are interesting to study in
the context of leptoquarks. Therefore, we will not discuss SU(6) based models any further.

3.1.1 The Georgi-Glashow Model: SU(5)

A grand unification model based on the SU(5) gauge group was first proposed by Georgi
and Glashow [7]. It is one of the simplest models capable of unifying the gauge interactions,
as it is the smallest simple Lie group containing the SM. It is rank 4, only one higher than
the SM. The fact that it is so minimal was initially seen as one of the major advantages of
SU(5). The flip side is that, being such a small group, there are no intermediate symmetries
to assist in unifying the couplings.

Figure 3.4: Running of the inverse fine-structure constants of the SM as obtained in [12].
Clearly the gauge couplings do not unify.

In fact, SU(5) relies on the couplings of the SM gauge group to unify into a single
point, but this does not happen, as can be seen in Figure 3.4. This can be remedied by
tweaking the parameters in the SM. Essentially, unification is assumed, and the running is
computed, taking the well-known fine-structure constants of the electromagnetic and strong
interactions as input. This leaves the precise values of the couplings of SU(2)L and U(1)Y
as free parameters, constrained by αEM and unification. Therefore, the Weinberg angle is
considered an output of this model. The value obtained is [26]:

sin2 θW (MW ) =
g′2

g2 + g′2
= 0.208, (3.2)
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with g′ the coupling of U(1)Y and g the coupling of SU(2)L. This value is quite different
from the current accepted value of sin2θW (MW ) = 0.23121(4) [17]. Clearly, minimal SU(5)
unification is incompatible with this value, as the measured value has a very small margin
of error.

If the running of the SM is significantly altered close to the GUT-scale due to some
additional fields, unification is perhaps possible. This in turn would not be minimal SU(5).
Minimal SU(5), as the name suggests, relies on using the smallest and fewest representations
necessary to be phenomenologically consistent.

The lack of gauge coupling unification is problematic enough by itself, but even assuming
the couplings do unify, SU(5) runs into experimental constraints. It is precisely the particles
we are interested in, leptoquarks, that further exclude SU(5). All 12 new gauge bosons in
SU(5) are leptoquarks, they are referred to as X and Y bosons (though commonly called
V2 in model-independent literature). Their SM representations are:X1 X2 X3

Y1 Y2 Y3

 ∈ (3, 2, 5/6),

X1 X2 X3

Y 1 Y 2 Y 3

 ∈ (3, 2,−5/6). (3.3)

These leptoquarks possess both diquark and leptoquark couplings, meaning they are of the
B-violating type. As stated before, this puts large constraints on these particles. Naturally,
because they are gauge bosons of SU(5), their mass is around the unification scale. The
unification scale for SU(5), assuming unification will actually happen, is on the order of
1015GeV. This is too low to be compatible with current limits on proton decay [12], which
require a unification scale on the order of at least 1016GeV.

In conclusion, while it initially seemed like a simple and minimal model for unification,
minimal SU(5) is excluded on one side by precise measurements of the Weinberg angle,
preventing unification, and on the other side by proton decay, ruling it out entirely. Fur-
thermore, putting these problems aside, minimal SU(5) does not contain any new physics
at the TeV-scale, making it not interesting to study with current collider experiments.

3.1.2 Trinification

Another model described in [12] is trinification. This model is based on the gauge group:

SU(3)C × SU(3)L × SU(3)R × Z3, (3.4)

or SU(3)3 for short. The additional Z3 symmetry ensures that all three groups have the
same gauge coupling, thereby imposing unification. This model does not unify quarks and
leptons into a single representation, as opposed to SU(5) and SO(10). Therefore, there are
no gauge interactions mixing these particles. In other words, there are no vector leptoquarks
in trinification. The benefit of this, is the lack of proton decay due to gauge interactions.

However, the scalar sector of the trinification model does contain leptoquarks, including
those mediating proton decay. Bounds due to proton decay on scalar leptoquarks are more
relaxed than those on vector leptoquarks. This is due to the fact that the Yukawa couplings
Yu and Yd, which determine the interaction strength between the quarks and the scalar
particles, are generally smaller than the gauge couplings. These smaller couplings suppress
the B-violating processes. The bound is estimated to be on the order of 1011GeV [10].

As opposed to SU(5), trinification allows for unification of the gauge couplings, with-
out changing the Weinberg angle. The symmetry breaking pattern that allows for this
unification is:

SU(3)3 × Z3
MU−−→ SU(3)C × SU(2)L × SU(2)R × U(1)L+R

MI−−→ SM (3.5)
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withMU = 1.3×1016GeV andMI = 1.0×1011GeV. This means that, aside from additional
Higgs doublets, there is no new physics in this model below 1011GeV, as both the larger
gauge group and the scalar leptoquarks are restricted to lie at or above this scale.

In conclusion, while this model is much more promising than SU(5), it does not provide
us with TeV-scale leptoquarks. The scale of new physics in this model is so far beyond
current experimental reach, that we do not consider it further in this work.

3.1.3 SO(10)

The final model considered in [12] is SO(10). A GUT based on this gauge group was first
developed in [9]. It is an attractive model, as it is only one rank higher than the clearly
excluded SU(5), making it one of the most minimal options left.

SO(10) grand unification allows for many paths down to the SM, as seen in Figure 3.3.
The Pati-Salam model, based on SU(4)C × SU(2)L × SU(2)R is in some of these paths.
This model, originally described in [8], treats leptons as the ”fourth colour”, thereby al-
lowing gauge interactions that mix leptons and quarks. Therefore, SO(10) includes vector
leptoquarks, which might be on the TeV-scale, provided the Pati-Salam model is broken at
such energies.

The unified theory itself contains leptoquarks that also possess diquark couplings. These
mediate proton decay and push the unification scale up to similar energies as found for
SU(5), around 1016GeV. However, the leptoquarks found in the Pati-Salam group are pure
leptoquarks. These specific leptoquarks are commonly called U1 in literature, or are referred
to by their SM representation (3, 1, 2/3). In [12] it was found that a specific symmetry-
breaking chain could allow for these pure vector leptoquarks at the TeV-scale. This is due
to the fact that solving the running of the couplings leaves two free parameters, resulting
in a freedom to choose the scale at which the Pati-Salam group breaks. This motivates us
to further examine this model in chapter 4.

In short, SO(10) could offer a scenario for TeV-scale pure leptoquarks, which does not
immediately run into bounds on proton decay or unification.

3.2 Concluding Remarks

We have shortly reviewed the GUT scenarios established in [11, 12], and the leptoquarks
contained in them. These leptoquarks are summarized in Table 3.1. For completeness, we
have included the scalar leptoquarks present in SO(10), which we identify in chapter 4.
Clearly, reasoning from an interest in low-energy leptoquarks, SO(10) is the model that
we need to examine further. Minimal SU(5) is solidly ruled out due to proton decay, and
trinification does not give any light leptoquarks. Therefore, we will review and expand upon
the work done in [12] to establish a clear scenario for TeV-scale leptoquarks in chapter 4.
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Name SM reps Q GUT(s) Type Energy Scale Proton decay

V2 (3, 2, 5/6) 4/3, 1/3 SU(5), SO(10) Vector GUT-scale Yes

Ṽ2 (3, 2,−1/6) 1/3,−2/3 SO(10) Vector GUT-scale Yes

U1 (3, 1, 2/3) 2/3 SO(10) Vector ≥ 5TeV No

S1 (3, 1, 1/3) 1/3 SU(5) Scalar ≥ 1011GeV Yes

S3 (3, 3, 1/3) 4/3, 1/3,−2/3 Trinification Scalar ≥ 1011GeV Yes

R2 (3, 2, 7/6) 5/3, 2/3 SO(10) Scalar ≥ TeV No

R̃2 (3, 2, 1/6) 2/3,−1/3 SO(10) Scalar ≥ TeV No

Table 3.1: Leptoquarks in three GUTs, some found in [12], others in chapter 4. The particles
are listed along with their names, as commonly found in literature.
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Chapter 4

SO(10) Representations

In chapter 3 we established that an SO(10) GUT is the only model (aside from the very
similar SU(6) × SU(2)) from E6 that could have leptoquarks at the TeV-scale. In this
unifying theory all fermions of one generation fit into a 16-dimensional spinor representation,
including a right-handed neutrino [27]. SO(10) contains both SU(5) and SU(4)c×SU(2)L×
SU(2)R (Pati-Salam) as subgroups. This makes it an attractive GUT as we can break the
symmetry down to the SM group in a variety of ways. One of these paths, involving
three intermediate energy scales and the Pati-Salam (PS) group [19], is what allows for the
existence of leptoquarks at the TeV-scale [12, 28].

The goal of this chapter is to examine all representations we need to build a consistent
GUT. In these representations, both scalar and adjoint, we will identify any leptoquarks we
come across.

Firstly, we introduce the necessary mathematics to construct representations for SO(10).
This will allow us to examine how SO(10) accommodates all fermions and gives rise to new
gauge bosons. This first section will follow and elaborate on a lot of the work done in
[12, 27].

Secondly, we will discuss the breaking of the symmetry down to the SM. Several Higgs
representations of SO(10) will be examined. We will determine which fields need to be
given a vacuum expectation value (vev) in order to obtain the symmetry breaking pattern
we need. In this section we will also identify any scalar leptoquarks, if they exist. The
second section is partially based on [27].

The conclusions in the rest of this work on vector leptoquarks can be applied to SU(6)×
SU(2), but scalar leptoquarks would require their own study, since they are specific to the
representations of the GUT group.

4.1 Group Theory and Representations

SO(10) is a Lie group defined by all 10× 10 dimensional real matrices that are orthogonal
and have determinant 1. This is equivalently stated as:

SO(10) = {O ∈ GL(10,R)|OTO = 1,det(O) = 1}, (4.1)

where GL(10,R) is the general linear group of degree 10 over the reals, in other words, the
group of 10× 10 real invertible matrices. Essentially SO(10) is the group of all rotations of
real 10 dimensional vectors. The generators Σab of SO(10) satisfy the following Lie algebra:

[Σab,Σcd] = δadΣbc + δbcΣad − δacΣbd − δbdΣac. (4.2)

In order to examine the particle content of an SO(10) GUT, we need to develop a
representation for this theory. We can classify the gauge bosons by looking at the adjoint
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representation. Furthermore, we need to place all fermions into a spinor representation of
SO(10). In actuality, we will construct a representation of Spin(10), which forms a double
cover of SO(10). The basic idea is to first represent a general SO(2N) group in a spinor
basis. We will construct such a basis following the steps in [27, 29].

4.1.1 SO(2N) Represented in a Spinor Basis

It is well known that SO(3) is locally isomorphic to SU(2), and therefore it can be repre-
sented in terms of SU(2) generators. This concept can be applied to SO(2N) for any N ,
by relating it to Spin(2N). The SO(2N) group rotates vectors in 2N -dimensional space,
leaving their lengths unchanged due to the orthogonality condition of the group. In prin-
ciple, to define a basis for SO(2N) we need a set of m = 2N objects Γ1,Γ2, ...,Γm, which
leaves the length of an m-component vector invariant:

x21 + x21 + ...+ x2m = (x1Γ1 + x2Γ2 + ...+ xmΓm)2. (4.3)

Examining this expression, it is clear what the conditions on the Γ’s are. Γ2
a = 1, (a =

1, 2, ...,m) and ΓaΓb = −ΓbΓa, to ensure cancellation of all cross terms, preserving only
terms of the form x2a. This condition is equivalently written as:

ΓaΓb + ΓbΓa = 2δab1, (4.4)

which defines a Clifford algebra. The Clifford algebra forms the fundamental representation
of SO(2N). We can now use this to create generators of SO(2N) as follows:

Σab =
i

4
[Γa,Γb], (4.5)

[Σab,Σcd] = i(δadΣbc + δbcΣad − δacΣbd − δbdΣac), (4.6)

with the second equation showing that the Σ’s satisfy the Lie algebra of SO(2N). The factor
i with respect to eq. (4.2) is down to the fact that this representation is complex instead
of real. The generators Σab also have the property Σab = −Σba. It is important to note
that each Σab labels a separate (2N × 2N ) matrix, due to the fact that the representations
of the Clifford Algebra are as well. By constructing generators that satisfy the Lie algebra
of SO(2N) we can represent SO(2N) itself by exponentiating the generators. The spinor
representation of SO(2N) is then

Rm = e−iΣabωab , (4.7)

with ωab the numbers quantifying the transformations. We have now constructed a 2N

dimensional spinor representation of SO(2N). Clearly, the condition for SO(2N) is satisfied:

RmR
†
m = e−iΣabωabe+iΣabωab = 1, (4.8)

as Σ†
ab = Σab, with Σab always being real and symmetric or imaginary and antisymmetric

[27].

4.1.2 SO(10) Spinor Representation

We have established a general spinor representation for SO(2N). For SO(10) specifically,
this procedure gives us the following representation:

U = e−iΣabωab , (4.9)

where Σab is a 10×10 object with each element being a 32×32 matrix. Therefore, the inner
product Σabωab is also 32× 32. An infinitesimal transformation of a spinor is as follows:

Ψ → Ψ′ = UΨ = (I32 − iΣabωab + ...)Ψ, (4.10)
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where have neglected higher order terms. A tensor with two upper indices (32 × 32) will
generally transform (under a global transformation) as:

T → T ′ = UTU † = (I32− iΣabωab+ ...)T (I32+ iΣabωab+ ...) = T − i[Σabωab, T ]+ ..., (4.11)

where we have once again neglected any higher order terms. This transformation corre-
sponds to the adjoint representation, meaning that the generators Σab will also transform
like this. We will encounter many 32 × 32 tensors in this work, which transform exactly
like above.

Establishing these transformation rules will allow us to formulate a Lagrangian for the
model we treat, which should be invariant under these transformations. However instead of
ωab we will use gWab, where g is a coupling constant arbitrarily extracted for convenience
[14].

4.1.3 Constructing an Explicit Basis for SO(10)

Now that we have described a general way to represent SO(10) in a spinor basis we need
to explicitly define this basis. As stated before, the basis will involve 32 × 32 matrices
labelled by Σab with a, b = 1, 2, ..., 10. First we need to find a way to define the Γ’s. A
straightforward procedure is described in [27]. First consider the usual γ-matrices:

γ0 = σ3 × I2, γi = iσ2 × σi, i = 1, 2, 3, (4.12)

with σi the Pauli spin matrices. These 4 × 4 matrices form a Clifford algebra. We can
construct the Γm’s, (m=1, 2, ..., 10) in a similar manner:

Γ1 = σ1 × σ1 × σ1 × σ1 × σ1,

Γ2 = σ1 × σ1 × σ1 × σ1 × σ2,

Γ3 = σ1 × σ1 × σ1 × σ1 × σ3,

Γ4 = σ1 × σ1 × σ1 × σ2 × I2,

Γ5 = σ1 × σ1 × σ1 × σ3 × I2,

Γ6 = σ1 × σ1 × σ2 × I2 × I2,

Γ7 = σ1 × σ1 × σ3 × I2 × I2,

Γ8 = σ1 × σ2 × I2 × I2 × I2,

Γ9 = σ1 × σ3 × I2 × I2 × I2,

Γ10 = σ2 × I2 × I2 × I2 × I2.

(4.13)

This basis is essentially derived iteratively, for every step in N in SO(2N) we add two Γ’s,
defined as a tensor product of σ2 or σ3 with an appropriately sized identity matrix and
multiply the existing Γm by σ1. This procedure requires that one starts with just the three
Pauli spin matrices. More compactly:

Γn+1
i = σ1 × Γn

i , i = 1, 2, ..., 2n

Γn+1
2n+1 = σ2 × I2n ,

Γn+1
2n+2 = σ3 × I2n .

(4.14)

Γn+1
2n+2 is only included if we want to represent SO(2N+1). This procedure ensures that the

Clifford algebra is satisfied at every increment. The two new matrices satisfy the Clifford
algebra, as the Pauli spin matrices anticommute. The tensor product of the existing matrices
with σ1 should not affect their anticommutation as σ2i = 1. This basis is by no means the
only one, an equivalent basis can be used by taking the γ matrices as a starting point and
expanding these in a similar fashion.

This basis allows for a convenient splitting of the fermion representation into chiral
components, as shown in [27]. In order to work towards a representation for the fermions,
we should look more closely at the 32-dimensional representation we have discussed. The
first step is to notice that we can create a matrix similar to γ5 for this case:

ΓF = −iΓ1Γ2...Γ10 =

I16 0

0 −I16

 (4.15)
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note that ΓF anticommutes with every Γa:

{Γa,ΓF } = −iΓaΓF − iΓ1Γ2...Γ10Γa = −iΓaΓF − i(−1)9ΓaΓF = 0. (4.16)

Just like γ5, ΓF is used to split the representation into a chiral basis. In our choice of basis
this is easily visible as ΓF is a block diagonal matrix. Using this fact we can define the
operators and fields:

P± = (1± ΓF )/2, ΨL = P+Ψ, ΨR = P−Ψ, Ψ =

ΨL

ΨR

 , (4.17)

where Ψ will contain the fermion fields. Using ΓF we have split up the 32-dimensional
basis into two chiral components. It can be shown that these two components are in fact
conjugates of each other.

We would like to construct bilinears of two spinors. A simple bilinear of the form ΨTΨ
is not invariant as it transforms to ΨT e−iΣTωe−iΣωΨ. Therefore, we need some matrix B
such that ΨTBΨ is invariant. This bilinear transforms as [13]:

ΨTBΨ → ΨT e−iΣTωBe−iΣωΨ ≃ ΨTBΨ+ iωΨT (ΣTB +BΣ)Ψ, (4.18)

for this to be invariant we require:

ΣTB = −BΣ −→ B−1ΣTB = −Σ. (4.19)

Since Σ is hermitian we obtain the relation:

B−1Σ∗B = −Σ, (4.20)

so B can transform the generators into their negative conjugates. Essentially, by construct-
ing a conjugation matrix B, we have found a way to transform from a space to its conjugate.
We should also determine whether B commutes or anticommutes with P±. This is equiv-
alent to asking whether it commutes with ΓF . In section 4.1.4 we will explicitly define B,
from this explicit form one can show:

ΓFB = −BΓF . (4.21)

We can now define a conjugate spinor as follows:

Ψc ≡ B−1Ψ∗ → B−1eiΣωP ∗
±Ψ

∗ = e−iΣωP∓B
−1Ψ∗, (4.22)

which transforms just like Ψ. The P± switched to P∓ this indicates that the conjugate
spinor Ψc is in fact the right-handed spinor. We have:

(ΨL)c = B−1P−Ψ
∗ = (Ψc)R. (4.23)

We can take this further and show how left- and right-handed spinor spaces transform:

B−1Σ∗P±B = −ΣP∓, (4.24)

indicating that the charge conjugation matrix B relates the right and left-handed spaces.
Therefore, the right- and left-handed spinors are each other’s conjugates and the 32-dimensional
spinor splits as follows:

32 = 16 + 16. (4.25)

This fact will be very useful when placing the fermions in the representation.
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4.1.4 A More Convenient Basis for SO(10)

The basis presented in section 4.1.3 is easy to derive and has good properties for our
purposes. However, there exists a basis for SO(10) shown in [30], that yields a more
convenient form for the representation of the fermions and gauge bosons. This basis cannot
be generated in the same way as the one in eq. (4.13), and is as follows:

Γ1 = σ1 × σ1 × I2 × I2 × σ2,

Γ2 = σ1 × σ2 × I2 × σ3 × σ2,

Γ3 = σ1 × σ1 × I2 × σ2 × σ3,

Γ4 = σ1 × σ2 × I2 × σ2 × I2,

Γ5 = σ1 × σ1 × I2 × σ2 × σ1,

Γ6 = σ1 × σ2 × I2 × σ1 × σ2,

Γ7 = σ1 × σ3 × σ1 × I2 × I2,

Γ8 = σ1 × σ3 × σ2 × I2 × I2,

Γ9 = σ1 × σ3 × σ3 × I2 × I2,

Γ10 = σ2 × I2 × I2 × I2 × I2.

(4.26)

Essentially, this basis is tailor-made for SO(10) to be convenient, but does not readily
extend to larger groups. In this basis we have to compute ΓF again, we obtain:

ΓF = σ3 × I2 × I2 × I2 × I2 =

I16 0

0 −I16

 , (4.27)

exactly as in eq. (4.15). Once again we have a block diagonal ΓF , so we can still conveniently
represent the fermions as in eq. (4.17).

We will now also explicitly define the conjugation matrix B, in this particular basis we
have [27]:

B = −iΓ1Γ3Γ5Γ8Γ10, (4.28)

which clearly anticommutes with P±, as it consists of an odd number of Γi. This is the basis
we will utilize in the rest of this work, due its convenient representation of all particles.

4.1.5 Explicit Fermion Representation

We have established that we can represent SO(10) with two 16-dimensional spinors. Now
we need to place the 12 quarks and 3 leptons in it. However, we have another spot left for
a right-handed neutrino, which is absent from the SM. Following [27, 30], we can place all
fermions into a left-handed and a right-handed spinor. The procedure is as follows: we can
define several operators such as Q and UB−L explicitly in terms of Σab. The diagonal of the
operator will then tell us the eigenvalues associated with each entry in the spinor, thereby
revealing how the fermions are placed in the 16-dimensional spinors for our particular choice
of basis. For Q we have:

Q =
1

6
(Σ12 +Σ34 +Σ56)−

1

2
Σ78, (4.29)

which amounts to

Q11 = diag(
2

3
,
2

3
,
2

3
, 0,−1

3
,−1

3
,−1

3
,−1,

1

3
,
1

3
,
1

3
, 1,−2

3
,−2

3
,−2

3
, 0), (4.30)

for the first 16× 16 block in Q. UB−L will distinguish between the two neutrinos, allowing
us to completely construct the representation, using the alternative basis given in eq. (4.26):
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ΨL =



u1

u2

u3

νe

d1

d2

d3

e−

dc1

dc2

dc3

ec

−uc1
−uc2
−uc3
−νce


L

, ΨR =



u1

u2

u3

νe

d1

d2

d3

e−

dc1

dc2

dc3

ec

−uc1
−uc2
−uc3
−νce


R

, Ψ =

ΨL

ΨR

 . (4.31)

The subscripts L and R are to indicate that the fields inside the spinors are left-handed and
right-handed respectively. Given that ΨR is the conjugate of ΨL, the fields in ΨR represent
antiparticles of those in ΨL. Furthermore, the superscript c indicates a conjugated particle,
which is simply an antiparticle. Clearly the basis we have chosen gives a very convenient
spinor representation. The triplets of quarks are grouped with a lepton. A vector leptoquark
(calledX or U1), which will be discussed in section 4.1.6, provides interactions between these
quarks and the accompanying lepton.

Decomposing this representation to the SM gives:

16 = (3, 1, 1/6) + (3̄, 1, 1/3) + (3̄, 1,−2/3) + (1, 2,−1/2) + (1, 1, 1) + (1, 1, 0) (4.32)

As we stated, the 16 dimensions allow us to include a right-handed neutrino, which is not
present in the SM. Therefore, we obtain the (1, 1, 0) representation when decomposing.

4.1.6 Gauge Fields

In the context of leptoquarks, one of the most important parts of an SO(10) GUT is the
gauge sector. Among the gauge fields are both pure and B-violating vector leptoquarks
[12]. In this section we aim to identify these, along with the other gauge bosons present in
the theory.

Using the definition of SO(10) in eq. (4.1), we can determine that there are N(N −
1)/2 = 45 generators in the adjoint, corresponding to the amount of independent orthogonal
10× 10 matrices with determinant 1. A maximal subgroup of SO(10) is SO(6)× SO(4),
SO(6) is isomorphic to SU(4) and SO(4) is isomorphic to SU(2) × SU(2). This shows
that the Pati-Salam group is a subgroup of SO(10), with its 21 generators being those
from SO(6)×SO(4). The other 24 generators fall outside this group, and are consequently
not present in Pati-Salam theory. These must remain at the GUT-scale. We will use the

27



CHAPTER 4. SO(10) REPRESENTATIONS

following convention: in the generators Σab, the indices a, b = 1, 2, ..., 6 refer to elements
belonging to SO(6), and indices a, b = 7, 8, 9, 10 to SO(4). Those generators that have one
SO(6) index and one SO(4) index fall outside the maximal subgroup.

The Pati-Salam group must contain the 12 generators of the SM. Therefore, we have
three categories of gauge boson in this section, the SM, the Pati-Salam and the SO(10)
gauge bosons.

The branching rule of the 45 of SO(10) to SU(4)C × SU(2)L × SU(2)R is [31]:

45 = (15, 1, 1) + (1, 3, 1) + (1, 1, 3) + (6, 2, 2), (4.33)

with the first three terms clearly being the adjoint representations of SU(4)C , SU(2)L and
SU(2)R, respectively. The last term corresponds to the bosons only found in SO(10).

We start with the adjoint representation of SU(4)C , the (15, 1, 1), to further examine
the bosons contained in this theory. This representation can be further decomposed to gain
an idea of what is contained inside. The branching rule to SU(3)C ×U(1)B−L is as follows
[31]:

15 = (8, 0) + (3,−4/3) + (3̄, 4/3) + (1, 0), (4.34)

where we can clearly recognize the SM gluons in the first term. The second and third term
correspond to particles that couple to quarks and have a B−L number of ±4/3, indicating
they also couple to leptons. The last term is a certain B − L conserving boson. To further
illustrate this branching consider the decomposition to the SM group:

15 = (8, 1, 0) + (3, 1, 2/3) + (3̄, 1,−2/3) + (1, 1, 0), (4.35)

this also reveals the charges of each particle. Using this branching rule we can clearly see
that we have 8 gluons:

G1, G2, ..., G8, with generators: UG1 , UG2 , ..., UG8 . (4.36)

The remaining 7 bosons are the X vector bosons:

X1 = X̄4, X2 = X̄5, X3 = X̄6, XB−L, (4.37)

where the latter is the boson corresponding to B−L symmetry. B−L symmetry is inherent
to SO(10) [27]. These X bosons, excluding XB−L, are leptoquarks and are commonly
referred to as U1 in literature (not to be confused with the SU(4)C generator U1). These
leptoquarks were already mentioned in Table 3.1, based on the work done in [12]. The X/U1

vector leptoquarks are one of the focal points of our research. Therefore, we will define their
generators explicitly in terms of the generators of SO(10):

UX1 = (U9 − iU10)/2 = (Σ23 +Σ14 − iΣ31 + iΣ42)/4, (4.38)

UX2 = (U11 − iU12)/2 = (Σ25 +Σ61 − iΣ51 − iΣ62)/4, (4.39)

UX3 = (U13 − iU14)/2 = (Σ45 +Σ63 − iΣ53 − iΣ64)/4, (4.40)

where Ui are the generators of SU(4). In general, the generators in this section are linear
combinations of multiple SO(10) generators.

Moving on to the other terms in eq. (4.33), we have the (1, 3, 1) and (1, 1, 3), simply
corresponding to the left-handed and right-handed gauge bosons:

W 1
L,W

2
L,W

3
L, with generators: L1, L2, L3, (4.41)

and:
W 1

R,W
2
R,W

3
R, with generators: R1, R2, R3. (4.42)
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These bosons are usually classified into combinations based on their charge:

W±
L = (W 1

L ± iW 2
L)/2,

Z0
L =W 3

L,

L± = (L1 ∓ iL2)/
√
2,

L0 = L3

, (4.43)

and equivalently for the SU(2)R fields.
We have now classified all bosons from SO(10) that also exist in PS theory. We are

left with the (6, 2, 2) multiplet. This term corresponds to bosons not found at energies
below MU , the GUT-scale, as these only exist in SO(10) and not in its maximal subgroup
SO(6)× SO(4). Further decomposing the (6, 2, 2) to the SM group gives [27]:

(6, 2, 2) = (3, 2,−5/6) + (3̄, 2, 5/6) + (3, 2, 1/3) + (3̄, 2,−1/3), (4.44)

where we can clearly identify the first two and last two terms each as conjugate pairs. The
first two are the Y and Y ′ bosons:

Y1, Y2, Y3, Ȳ1, Ȳ2, Ȳ3 with generators: DY1 , DY2 , DY3 , DȲ1
, DȲ2

, DȲ3
, (4.45)

with a Y ′ existing for each Y . The A and A′ are similarly:

A1, A2, A3, Ā1, Ā2, Ā3 with generators: DA1 , DA2 , DA3 , DĀ1
, DĀ2

, DĀ3
, (4.46)

corresponding to the last two terms in eq. (4.44). We have now fully classified the gauge
content of SO(10) by using the branching rules of the adjoint representation. This section
is summarized in Table 4.1. It should be noted that two of the PS gauge bosons, XB−L and
ZR will still be present below the PS-scale in this model, due to the elaborate symmetry
breaking pattern, see section 4.2. An explicit definition of the generators for all Pati-Salam

Gauge Boson SM representation Category Note

Gluons (8,1,0) SM

X or U1 (3, 1, 2/3) PS Pure vector leptoquark

XB−L (1, 1, 0) PS Forms U(1)Y boson together with ZR

WL (1, 3, 0) SM

W±
R (1, 1, 1) PS

ZR (1, 1, 0) PS Forms U(1)Y boson together with UB−L

Y or V2 (3̄, 2, 5/6) SO(10) B-violating leptoquark

A or Ṽ2 (3, 2, 1/6) SO(10) B-violating leptoquark

Table 4.1: Gauge fields in SO(10), listed with their SM representation. Conjugate repre-
sentations are left out.

gauge fields can be found in section A.2

4.2 Symmetry Breaking and Higgs Representations

In this work we will discuss a model with multiple intermediate symmetries between the
GUT-scale and the SM, as shown in eq. (4.47). Such a model will need many scalar particles
to achieve symmetry breaking and reproduce fermion masses. In this section we will examine
these scalar representations, their role in symmetry breaking and their leptoquark content.
Further discussion about the symmetry breaking scheme in eq. (4.47) is given in section 5.2
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SO(10)
54H−−→
MU

SU(4)C × SU(2)L × SU(2)R ×D

210H−−−→
MD

SU(4)C × SU(2)L × SU(2)R

210H−−−→
MWR

SU(3)C × SU(2)L × U(1)R × U(1)B−L

16H−−−→
MZR

SU(3)C × SU(2)L × U(1)Y

10H−−−→
MEW

SU(3)C × U(1)Q.

(4.47)

In this section we will first engage in a general discussion of scalar representations in
SO(10). We will establish which of these can couple directly to fermions and which cannot.
This is relevant for two reasons. Scalar representations that couple to fermions can contain
both leptoquarks and SM Higgs doublets. The former are the focus of our research, and
the latter are necessary for providing the fermions with mass.

Reproducing the correct fermion mass relations in SO(10) is complicated by the fact
that the doublet from the 10 representation is unable to give different masses to quarks and
leptons. For this reason we need additional Higgs doublets from the 120, the 126 or even
both. This is elaborated on in section 5.1.1. The model we initially chose, used one doublet
from the 10 and two from the 120. In section 7.3 we will find that this is inconsistent with
measurements. Therefore, we will eventually include a doublet from the 126 as well. For
this reason, all three of these representations will be discussed.

Secondly, we will discuss several of these representations in more detail. We will explic-
itly define the representations and identify the fields necessary for symmetry breaking. Any
leptoquarks in these representations will be identified as well.

4.2.1 Higgs Multiplets

As described above, several Higgs multiplets from SO(10) are needed to break the inter-
mediate symmetry groups down to the SM. In this section we will examine these Higgs
multiplets. The way they are constructed is simply from products of representations [32]:

10× 10 = 1 + 45 + 54

16× 16 = 10 + 120 + 126

16× 16 = 1 + 45 + 210,

(4.48)

where the 10 is the fundamental representation of SO(10) and the 16 is the spinor repre-
sentation. The product of two 10’s simply splits into a trace, an antisymmetric part and a
traceless symmetric part.

To see how the products of the 16 form, we can follow the reasoning in [13]. Take a
bilinear form of two 16’s and n number of Γ basis matrices:

ΨTPLBΓi...ΓnPLΨ = ΨTΓκPLPLΨ = ΨTΓκPLΨ, for n odd

ΨTPLBΓi...ΓnPLΨ = ΨTΓκPRPLΨ = 0 for n even.
(4.49)

The commutation relations of the chiral projectors with the conjugation matrix B and the Γ
matrices will cause the bilinear to disappear for an even amount of Γ matrices. Therefore,
16 × 16 gives those representations that are built from an odd number of Γ matrices.
Conversely, 16 × 16 gives those representations which are built from an odd number of Γ
matrices. This can easily be shown by doing the same procedure as in eq. (4.49), but with
ΨT

LBΓ1...ΓnΨR instead.
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The 16 representation of fermions contains both particles and antiparticles, and there-
fore both right-handed and left-handed particles. Counterintuitively, terms of the form
ΨT

LBΦΨL, with Φ any scalar field, can give Dirac mass terms, whereas ΨT
LBΦΨR would

give Majorana masses. This means that the Yukawa interactions, the interactions between
two fermions and a scalar field, will be of the form 16×16. Looking at how these multiplets
are constructed, we can then categorize them into those multiplets that couple to fermions
and can give them mass: the 10, 120 and 126, and those that can not: the 45, 54 and 210.

The branching rules of the multiplets constructed in eq. (4.48) to SU(4)C × SU(2)L ×
SU(2)R are [31]:

10 = (1, 2, 2) + (6, 1, 1),

16 = (4, 1, 2) + (4, 2, 1),

54 = (1, 1, 1) + (1, 3, 3) + (20, 1, 1) + (6, 2, 2),

120 = (1, 2, 2) + (10, 1, 1) + (10, 1, 1) + (6, 1, 3) + (6, 3, 1) + (15, 2, 2),

126 = (6, 1, 1) + (10, 3, 1) + (10, 1, 3) + (15, 2, 2),

210 = (1, 1, 1) + (15, 1, 1) + (6, 2, 2) + (15, 3, 1) + (15, 1, 3) + (10, 2, 2) + (10, 2, 2).

(4.50)

For each symmetry breaking step, one field from one multiplet will be chosen to break the
symmetry. Which field this is, will depend on which symmetries we want to break and the
resulting structure. After breaking, the resulting symmetry is the largest subgroup under
which the chosen field is a singlet. Furthermore, any multiplet that is not necessary to
break the symmetry will be assumed to be superheavy (m ∼MU ), this is elaborated on in
section 5.4.

Classifying the fields in these Higgs representations is generally an arduous task. The
basis in which the representations are convenient to define, is usually not the basis in which
fields are conveniently grouped according to SM representations (e.g. an SM Higgs doublet
might be a linear combination of many fields in the default basis). The classification of
many of these fields was performed in [27]. In the rest of this section we will use this work
to identify the fields we need the model we consider.

4.2.2 The 10 Higgs Representation

The 10 Higgs representation serves the role of the SM Higgs doublet in SO(10). It breaks
the SM down to SU(3)C × U(1)Q. Furthermore, it is essential to providing the fermions
with mass. Using the basis in eq. (4.26), the 10 is constructed as follows [27]:

Φ10 =
1√
32
ϕiΓi =

1

4
(Φi · Γ′

i +Φ†
i · Γ

′†
i ),

1

32
Tr

[
(ϕiΓi)

2
]
=

∑
ϕ2i , i = 1, 2, ..., 10, (4.51)

where we have written down an alternative basis in terms of 10 independent Γ′
i. This basis

is convenient as it allows us to separate the 10 easily into its multiplets under the PS group.
We have the following branching rule for the PS group and the SM group, respectively:

10 = (2, 2, 1) + (1, 1, 6) = (1, 2,−1/2) + (1, 2, 1, 1/2) + (3, 1,−1/3) + (3̄, 1, 1/3), (4.52)

where, clearly, we are interested in the SM doublet, originating from the (2, 2, 1). The Φi

and Γ′
i corresponding to the (2, 2, 1) are:

Φ4 = (ϕ7 + iϕ8)/2, Γ′
4 = (Γ7 − iΓ8)/2, (4.53)

Φ5 = (ϕ9 + iϕ10)/2, Γ′
5 = (Γ9 − iΓ10)/2. (4.54)

In our convention the indices 7, .., 10 correspond to the SU(2) × SU(2) part of SO(10),
therefore these matrices correspond to the SU(4) singlets. The symmetry breaking we
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want to achieve is SU(2)L × U(1)Y → U(1)Q. Φ4 carries electric charge [27], therefore we
can not use it to break to U(1)Q, since it would give the photon a mass. That leaves Φ5,
which is a colour singlet and carries zero charge. Giving some vev to Φ5 will then break the
electroweak symmetry, just like in the SM. Setting ⟨Φ5⟩ = v, we get:

ϕvac =
1

4
(v · Γ′

5 + v† · Γ′†
5 ). (4.55)

Now to see which generators we have broken, we simply need to check with which generators
ϕvac commutes. Since ϕvac transforms as:

ϕvac → ϕ′vac = (I32 − i[W · Σ, ϕvac] + ...)ϕvac, (4.56)

any combination of generators that commutes with the vev will be left unbroken. Any gen-
erator that does not commute will transform ϕvac and is therefore broken. It can straight-
forwardly (computationally) be checked that:

[UG1 , ϕvac] = ... = [UG8 , ϕvac] = 0,

[L1, ϕvac] = [L2, ϕvac] = [L3, ϕvac] ̸= 0,

[Y/2, ϕvac] ̸= 0,

(4.57)

clearly, both SU(2)L and U(1)Y have been broken. However, there is one linear combination
that leaves the vev unaltered:

[L3 + Y/2, ϕvac] = 0, Q = L3 + Y/2, (4.58)

this is precisely the charge operator associated with U(1)Q. This symmetry breaking is
equivalent to EW breaking in the SM, shown in section 2.2.1. Just like the SM Higgs
doublet, this doublet will also enter the Yukawa potential and give the fermions a mass
with its vev.

In eq. (4.52) we can identify the (3, 1, 1/3) representation and its conjugate. This is
the S1 leptoquark, which can mediate proton decay and is therefore restricted to lie at very
high energies (≥ 1011GeV). These are also present in SU(5), as we stated in Table 3.1. In
the model we discuss these leptoquarks are kept at the GUT-scale.

4.2.3 The 16 Higgs Representation

To break to the SM, we utilize a Higgs field from the 16 of SO(10). In this process the
U(1)R×U(1)B−L symmetry is broken to U(1)Y . Therefore, we can use this Higgs multiplet
to find out how the operator Y is written in terms of SO(10) generators. In terms of
quantum numbers, the 16 is just like the spinor representation for the fermions (except for
spin of course). Since we have chargeless and colourless states in the spinor, we should be
able to identify fields that are SM singlets. We can write the following Higgs field [27]:

ϕ± = (1± ΓF )ϕ, ϕ =

ϕ+

ϕ−,

 (4.59)

where we have used the basis described in eq. (4.26). Recall from section 4.1.5 that the
spinor representation has neutrinos as the 4th and 16th elements in ΨL/R, these are exactly
the chargeless and colourless states we could use for a Higgs field. Therefore, we can give
an expectation value to one pair of these values in the Higgs multiplet, for example the 16th
element of ϕ+ and the 4th element of ϕ−. In the fermion representation, these correspond
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to νe. This is the (1, 1, 1/2,−1) multiplet of the 16. Equivalently we can pick the positions
of νe instead. Choosing the first option, we get the following vev for ϕ:

ϕ+vac =



0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

−⟨φ0⟩



, ϕ−vac =



0

0

0

⟨φ0⟩∗

0

0

0

0

0

0

0

0

0

0

0

0



, ϕvac =

ϕ+vac
ϕ−vac

 , (4.60)

where we have labelled the field φ0. Now we can examine which generators (or linear
combinations of generators) leave the vev unaltered. To check this we want to see which
infinitesimal generators of symmetry groups do not change the vev, up to first order:(

I32 − iaiT i

)
ϕvac = ϕvac, (4.61)

where T i are the generators. So more practically, we demand:

aiT iϕvac = 0. (4.62)

Since we are breaking from SU(3)C × SU(2)L × U(1)R × U(1)B−L to the SM group, we
have the following generators to consider:

UG1ϕvac = ... = UG8ϕvac = 0, (4.63)

L1ϕvac = L2ϕvac = L3ϕvac = 0, (4.64)

UB−Lϕvac ̸= 0, (4.65)

R3ϕvac ̸= 0, (4.66)

Y/2ϕvac = (UB−L/2 +R3)ϕvac = 0. (4.67)

Clearly, the generators for SU(3)C and SU(2)L are unbroken, this is good as we want to
break to the SM group. Furthermore, R3 and UB−L are individually broken, as desired,
but a linear combination of them does not affect the vev. Therefore, we are left with one
U(1)Y symmetry. These results can be obtained by explicitly writing the basis for SO(10)
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and then constructing all individual generators. We have now obtained an important result
for the rest of our work:

Y/2 = UB−L/2 +R3. (4.68)

This means that for Q we have, following the well known relation to L3 and Y/2 [14]:

Q = Y/2 + L3 = UB−L/2 +R3 + L3, (4.69)

this result can be used to derive the placement of fermions in section 4.1.5.

4.2.4 The 120 Higgs Representation

The 120-dimensional Higgs representation is constructed from three Γ matrices. Given that
this is an odd number, it is one of the representations that can be used to provide the
fermions with masses, along with the 10 and 126, following the reasoning in section 4.2.1.
The representation can be constructed in the following way:

Φ120 =
1√
32
ϕijkΓiΓjΓk,

1

32
Tr

[
(ϕijkΓiΓjΓk)

2
]
=

∑
ϕ2ijk. (4.70)

This representation is real and antisymmetric. Therefore, any couplings between it and two
fermions of the same generation must disappear. To see this, note that an antisymmetric
bilinear form of two identical vectors is always zero:

(Ψa
L)

TΦ120Ψ
b
L = −(Ψb

L)
TΦ120Ψ

a
L → (Ψa

L)
TΦ120Ψ

a
L = 0, (4.71)

where a, b are generation indices. This condition means we can set Y120, the Yukawa matrix,
to be antisymmetric, without loss of generality. Therefore, all terms with fermions of the
same generation disappear.

This representation is not classified in [27], meaning we need to use commutation rela-
tions with generators to manually identify the fields. In section 5.3.3 we use this approach
to identify two SM Higgs doublets from this representation:

Σ1 =
1√
2
(ϕ7810 + iϕ789), (4.72)

Σ2 = ϕ1210 + ϕ3410 + ϕ5610 + i(ϕ129 + ϕ349 + ϕ569), (4.73)

with the first originating from the (1, 2, 2) and the second from the (15, 2, 2) representation
under the PS group. When these acquire vev’s they will contribute to the fermion masses
through the Yukawa sector. We need these doublets, along with the doublet from the 10,
to obtain different masses for the leptons and quarks.

The (15, 2, 2) representation branches to the standard model as follows:

(15, 2, 2) = (8, 2,−1/2) + (8, 2, 1/2) + (3, 2, 1/6) + (3, 2, 7/6)

+ (3, 2,−7/6) + (3, 2,−1/6) + (1, 2,−1/2) + (1, 2, 1/2)
(4.74)

Note the (3, 2, 1/6) and (3, 2, 7/6) representations along with their conjugates. These parti-
cles are known as the R̃2 and R2 scalar leptoquarks [21], respectively. These do not mediate
proton decay, as they are pure leptoquarks. Depending on the symmetry breaking and the
mechanism by which these particles obtain mass, it is possible that this model has TeV-scale
scalar leptoquarks, as well as the vector leptoquarks described in section 4.1.6. In chapter 7
we will establish that TeV-scale scalar leptoquarks can in fact exist in this model. In this
respect, our findings differ from [12].

34



CHAPTER 4. SO(10) REPRESENTATIONS

4.2.5 The 126 Higgs Representation

Another representation often used to provide the fermions with mass is the 126. It is defined
as follows [27]:

Φ126 =
1√
32
ϕijklmΓiΓjΓkΓlΓm,

1

32
Tr

[
(ϕijklmΓiΓjΓkΓlΓm)2

]
=

∑
ϕ2ijklm. (4.75)

This representation is complex and symmetric, as opposed to the 120 which is real and
antisymmetric. The branching of the (15, 2, 2), which contains an SM doublet that could be
used for fermion masses, is identical to the same multiplet from the 120, shown in eq. (4.74).
Therefore, this representation contains the same leptoquarks. Since this representation is
symmetric, it is a bit easier to see the leptoquark couplings, as the couplings within a
generation do not disappear in this case.

The R2 and R̃2 leptoquarks correspond to the (3, 2, 7/6) and (3, 2, 1/6) representations,
respectively. Therefore, they are colour triplets, as any leptoquark should be [21], and SU(2)
doublets, as opposed to the vector leptoquarks found in section 4.1.6, which were singlets.
Logically, each representation totals 6 particles. The fact that they are doublets means
that each leptoquark representation admits two sets of particles with different charges. For
R2 we have particles with Q = Y/2 + L3 = 7/6 ± 1/2 = 5/3, 2/3, and for R̃2 we have
Q = 1/6± 1/2 = 2/3, −1/3. In vector form:

R2 =

R5/3
2

R
2/3
2

 , R̃2 =

 R̃
2/3
2

R̃
−1/3
2

 , (4.76)

where colour indices are left implicit. We can use this to derive the leptoquark couplings
with fermions. Since the 126 is found in the product of the 16 with itself, we can write
down the Yukawa Lagrangian:

L = Y126Ψ
T
LΦ126ΨL. (4.77)

To see that this describes leptoquarks we must expand this Lagrangian [21]:

L =Y126(uνeR
2/3
2 + ue−R

5/3
2 + dνeR

2/3∗
2 + e+uR

5/3∗
2

+ de−R̃
2/3
2 + dνeR̃

−1/3
2 + uνeR̃

2/3
2 + dνeR̃

−1/3
2 ) + h.c,

(4.78)

where we have dropped all other scalar particles in the (15, 2, 2). Clearly, R2 and R̃2 have
vertices with both leptons and quarks.

This representation contains an SM doublet, which can be used to provide the fermions
with mass. At first, we do not include this representation in the model we discuss, as we did
not deem it necessary. In section 7.3, we find that models without the 126 do not reproduce
fermion masses consistent with measurement, and therefore we will eventually include this
representation in chapter 7. The inclusion of the 126 also means we include the R2 and R̃2

with symmetric couplings in the model, as opposed to the antisymmetric couplings that the
120 has.

4.2.6 The 210 Higgs Representation

Two symmetry breaking steps are accomplished by giving a vev to specific fields from the
210. Specifically, breakingD-parity and breaking the PS group down to SU(3)C×SU(2)L×
U(1)R × U(1)B−L. The 210 is constructed as follows [27]:

Φ210 =
1√
32
ϕijklΓiΓjΓkΓl =

1

16
(Γ′·Φ+Γ′†·Φ†),

1

32
Tr

[
(ϕijklΓiΓjΓkΓl)

2
]
=

∑
ϕ2ijkl, (4.79)
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where i ̸= j ̸= k ̸= l and i, j, k, l = 1, 2, ..., 10 The second part of the equation tells us how
to normalize the representation. To see that this is indeed 210-dimensional, note that the
Clifford algebra anticommutes. This means that any sequence of 4 Γ’s is equal to an even
permutation of itself, and differs by a minus sign from an odd permutation, e.g:

Γ1Γ2Γ3Γ4 = −Γ1Γ2Γ4Γ3 = Γ2Γ1Γ4Γ3. (4.80)

Clearly permutations are not independent elements of the representation. Therefore, we
have 10!

6!4! = 210 linearly independent combinations of ϕijkl. This type of calculation applies
to the other representations in this chapter as well. The 210 independent combinations are
labelled Φ, with corresponding matrices Γ′. As stated before, the 210 decomposes under
the PS group as follows:

210 = (1, 1, 1) + (1, 1, 15) + (2, 2, 6) + (3, 1, 15) + (1, 3, 15) + (2, 2, 10) + (2, 2, 10). (4.81)

To break D-parity we use the singlet (1,1,1), which has the desired parity-oddness, without
affecting the resulting PS symmetry group. Then, to break the PS group we will utilize a
field from the (15,1,3), which decomposes as [33]:

(15, 1, 3) = (8, 1, 1, 0) + (8, 1, 0, 0) + (8, 1,−1, 0)

+ (3, 1, 1, 4/3) + (3, 1, 0, 4/3) + (3, 1,−1, 4/3)

+ (3̄, 1, 1,−4/3) + (3̄, 1, 0,−4/3) + (3̄, 1,−1,−4/3)

+ (1, 1, 1, 0) + (1, 1, 0, 0) + (1, 1,−1, 0),

(4.82)

clearly we want to endow the field corresponding to the (1, 1, 0, 0) representation with a
vev, as it branches to a singlet. This field will break SU(4)C to SU(3)C × U(1)B−L and
SU(2)R to U(1)R. SU(2)L is unaffected as the field is a singlet under this group.

We can call this specific field Φ15
00̂
, using the conventions from [27], where the hat on the

right index indicates that this is the singlet of the SU(2)R triplet. A full classification of
fields from the 210, and their placement in the resulting explicit 32×32 matrix, can be found
in [27]. By explicitly constructing the 210 and comparing the entries to the aforementioned
source, we can identify the Φ15

00̂
field as:

Φ15
00̂

= (ϕ1278 − ϕ12910 + ϕ3478 − ϕ34910 − ϕ5678 + ϕ56910)/
√
6, (4.83)

this is consistent with what is stated in [34], where they have verified the transformation
properties of this field. If we give this field a vev (e.g. ⟨Φ15

00̂
⟩ = u), then the term from the

210 we are interested in is:

ϕvac ≡
1

16
(Φ15

00̂
Γ15
00̂

+Φ15†
00̂

Γ15†
00̂

) =
u+ u†

16
Γ15
00̂
, (4.84)

where we have:

Γ15
00̂

=
√
2(Γ1Γ2Γ7Γ8−Γ1Γ2Γ9Γ10+Γ3Γ4Γ7Γ8−Γ3Γ4Γ9Γ10−Γ5Γ6Γ7Γ8+Γ5Γ6Γ9Γ10). (4.85)

The combinations of Γ’s are simply those that correspond to the fields that make up Φ15
00̂
.

The factor in front is to ensure that we have the following normalization:

1

16
Tr

[
((u+ u†)Γ15

00̂
)2
]
= u2. (4.86)
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Now that we have explicitly constructed the Higgs representation, we can easily verify the
following:

[UG1 , ϕvac] = ... = [UG8 , ϕvac] = 0, (4.87)

[Li, ϕvac] = 0, (4.88)

[R3, ϕvac] = 0, (4.89)

[UB−L, ϕvac] = 0, (4.90)

[R1, ϕvac] = [R2, ϕvac] ̸= 0, (4.91)

[UXi , ϕvac] ̸= 0, (4.92)

meaning that exactly those generators are broken that we expected to break.

4.3 Conclusions

In this chapter, we have developed the basic mathematical formalism needed to represent
fermions, gauge bosons and scalar particles in a GUT based on SO(10). We have explicitly
defined a spinor basis and placed all fermions in it. We have also shown how to construct
specific higher dimensional representations needed to represent the Higgs sector of this
model.

Furthermore, we have briefly laid out a symmetry breaking pattern, with three inter-
mediate scales between the GUT-scale and the SM. To this end, we have identified the
scalar fields in the Higgs representations, which are needed to perform the many symmetry
breaking steps.

We have identified three types of pure leptoquarks in this chapter. The vector leptoquark
X, known in literature as U1, with SM representation (3, 1, 2/3), and the scalar leptoquarks
R2 and R̃2, corresponding to the (3, 2, 7/6) and (3, 2, 1/6) representations, respectively. All
of these leptoquarks obtain masses at the Pati-Salam scale, and could therefore be relatively
light, similarly to the WR boson. In chapter 6 we will see that the PS-scale is pushed up
to 2PeV. This affects the mass of the vector leptoquarks, but not necessarily of the scalar
leptoquarks, as discussed in chapter 7.

Name SM representation Type Energy Scale Proton decay

V2 (3, 2, 5/6) Vector GUT-scale Yes

Ṽ2 (3, 2,−1/6) Vector GUT-scale Yes

U1 (3, 1, 2/3) Vector > 2PeV No

S1 (3, 1, 1/3) Scalar GUT-scale Yes

R2 (3, 2, 7/6) Scalar ≥ TeV No

R̃2 (3, 2, 1/6) Scalar ≥ TeV No

Table 4.2: Leptoquarks in SO(10), along with their minimal mass-scale

This GUT also contains the B-violating A and Y vector leptoquarks and the S1 scalar
leptoquark, but these have masses on the order of the GUT-scale in the model we treat,
thereby avoiding proton decay constraints. These results are summarized in Table 4.2.

In short, we have developed much of the group theoretical formalism needed to build a
model for a GUT with several TeV-scale leptoquarks.
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Chapter 5

The SO(10) Model

We have gathered the group theoretical tools needed to build a coherent model for grand
unification in chapter 4. In this chapter we focus on building that model and resolving any
clashes or inconsistencies that may occur.

In the first section, we discuss the field theoretical aspects of SO(10). A Lagrangian
will be constructed based on Yang-Mills theory. We also take a brief look at the Yukawa
sector. This section is partially based on the work done in [27].

In the second section we will elaborate on the symmetry breaking pattern and interme-
diate scales.

In the third section we will write down the Higgs sector of the model, including the po-
tentials that mix the different scalar representations. Furthermore, we will give an example
of how the masses of scalar fields in a certain representation can split due to symmetry
breaking, akin to the doublet-triplet splitting problem [15]. Another point that we will
resolve are the vev’s and masses of the additional Higgs doublets needed for the correct
fermion masses.

Finally, in the fourth section, we will compute the running of the couplings and show
that with three intermediate scales, we can obtain a theory with the TeV-scale leptoquarks
from Table 4.2. This is largely based on the work of [12, 19].

5.1 An SO(10) Lagrangian

In order to make predictions with an SO(10) GUT we need to move beyond just group
theory and actually construct a Lagrangian. By doing this, we can determine Feynman
rules and eventually amplitudes for interactions. We will use the definitions established
in chapter 4 to construct a model. We will largely follow the steps as shown in [27]. In
section 4.1.2 we developed a spinor basis for SO(10). Specifically, we showed that spinors
can be transformed as follows:

ψi =
(
e−igΣabW

ab)
ij
ψj = Uijψj , (5.1)

where Uij is a unitary matrix. The unitarity of this matrix was established in eq. (4.8). This
fact means that we can use Yang-Mills theory to write down a Lagrangian, using SO(10)
as the non-abelian gauge group.

Firstly, we must define a derivative that is covariant under SO(10):

Dµ = ∂µ + igW ab
µ Σab, (5.2)

where W ab
µ are the gauge fields associated with the generators Σab and g is the coupling

constant of associated with the gauge group. DµΨ transforms as follows:

DµΨ → UDµΨ, (5.3)

38
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exactly like we need it to. Now we can define a field strength tensor:

Fµν ab =
i

g
[Dµ, Dν ] = ∂µW

ab
ν − ∂νW

ab
µ − g(W ac

µ W cb
ν −W ac

ν W cb
µ ). (5.4)

Combining Fµν with the Dirac Lagrangian we obtain:

L = Ψ̄iγµDµΨ− 1

4
Fµν abF ab

µν . (5.5)

The Lagrangian can be further split into kinetic and interaction terms as follows:

L = Ψ̄iγµ∂µΨ+ gΨ̄γµ(Wµ · Σ)Ψ− 1

4
Fµν · Fµν , (5.6)

where the first term is the fermion kinetic term, the second is the interaction term and the
third is the gauge field kinetic term. Examining the interaction term further we can identify
the interactions with all the different gauge bosons:

+i
g√
2
W abΣab =+ ig

√
2
(
G · UG + (Xα · UXα + h.c) +

√
3

4
XB−L · UB−L

+W±
L L± +

W 0
L√
2
L0 +W±

RR± +
W 0

R√
2
R0+

(DAα ·Aα +DA′
α
·A′

α +DYα · Yα +DY ′
α
· Y ′

α + h.c.)
)
,

(5.7)

with the terms describing interactions, respectively, with gluons, X/U1 leptoquarks, the
XB−L boson, the left-handed and right-handed W bosons, A bosons and Y bosons.

Now that we have a basic Lagrangian for an SO(10) GUT, we can move on to the Yukawa
sector, after which we will discuss the symmetry breaking path further, and eventually
discuss the whole scalar potential.

5.1.1 Yukawa Sector and Fermion Masses

The masses of the fermions are obtained through a vev of a scalar field. The relevant Higgs
representations are the 10, the 120, and the 126, as they are the only ones that can couple to
a 16×16 term in the potential, as discussed in section 4.2.1. Since we break the electroweak
symmetry with the 10, we would expect this multiplet to generate the masses through a
simple Yukawa interaction Lagrangian. However, it turns out that this is not enough, and
we should also use the 120 [35]. The reason for this is that the (1, 2, 1/2)10 Higgs doublet
comes from the (1, 2, 2)10 representation under the PS group; it is an SU(4)C singlet, and
cannot differentiate between leptons and quarks. Obviously, we want different masses for
leptons and quarks, so we need an additional Higgs multiplet. The minimal extension of
our Yukawa sector is done by adding a multiplet from the 120. Specifically, the (15, 2, 2)
and (1, 2, 2) PS representations of the 120 are used, as they both contain SM doublets. We
will obtain 9 real Yukawa couplings in this case [35]. The form of the Yukawa Lagrangian
is as follows:

LY = ΨTB(Y10Φ10 + Y10′Φ10′ + Y120Φ120)Ψ, (5.8)

where Y10, Y10′ and Y120 are 3 × 3 matrices spanning the generations of fermions. The
10′ is there to make the real 10 complex. The vev’s that the doublets from these Higgs
representations acquire, will provide the fermions with mass terms.

This Yukawa Lagrangian also provides the direct interaction between scalar particles
and fermions. Only the scalar representations in this Lagrangian, the 10 and 120 can
directly interact with fermions. For this reason scalar leptoquarks can only come from these
representations. In section 4.2 we described these representations and some of their particle
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content. Both the 120 and 126 contain the R2 and R̃2 scalar leptoquarks. The masses
of these particles, and therefore their viability as light leptoquarks, will be determined in
section 7.2. To keep things minimal, we do not include the 126 for now, exactly like the
first model described in [19]. However, in section 7.3, we will find that it is not possible to
get a correct fermion mass spectrum without the 126, and will therefore eventually include
it.

5.2 Intermediate Symmetry Groups

In order to obtain the SM from this SO(10) GUT, we need to spontaneously break the
symmetry. We will use the Higgs mechanism to achieve this, as discussed in section 2.2.
Furthermore, we want to have additional intermediate symmetry breaking scales between
the GUT-scale and the SM, as shown in [12, 19, 28]. There is an amount of freedom in
choosing intermediate energy scales, as can be seen in Figure 3.3. Possible other paths
not discussed in this work are shown in [27, 28]. The specific intermediate energy scales
we choose, will allow us to have new physics at the TeV-scale. The specific scalar fields
associated with the symmetry breaking steps are discussed in section 4.2. A schematic
overview of the procedure:

SO(10)
54H−−→
MU

SU(4)C × SU(2)L × SU(2)R ×D

210H−−−→
MD

SU(4)C × SU(2)L × SU(2)R

210H−−−→
MWR

SU(3)C × SU(2)L × U(1)R × U(1)B−L

16H−−−→
MZR

SU(3)C × SU(2)L × U(1)Y

10H−−−→
MEW

SU(3)C × U(1)Q.

(5.9)

At the Grand Unification scale MU , the SO(10) symmetry will be broken by a PS singlet
from the 54 of SO(10), the resulting group is a product of the PS group with D-parity.
This D-parity ensures symmetry between the left-handed and right-handed fields. Then at
MD this D-parity is broken by a parity-odd PS singlet from the 210. Breaking D-parity
separately from SU(2)R was first proposed in [36], in order to obtain lower energy scales
for the subsequent intermediate theories. This separation also allows for consistency with
cosmological findings [28], without requiring the PS group to break close to MU .

From MD onward to MWR
we have the PS group, in which the U1 leptoquarks are still

present. The symmetry breaking scale MWR
will therefore determine the energy at which

we can expect to see new physics involving these leptoquarks. The breaking atMWR
is done

with another field from the 210, the result is a product of the SM group with U(1)B−L.
This group corresponds to the B−L (baryon number minus lepton number) symmetry and
was split of from SU(4)C in the breaking of the symmetry. The B −L symmetry, together
with B + L conservation, which always holds, preserves B and L separately. Therefore,
there can be no proton decay at this level.

To obtain the SM once again, we break the symmetry with a Higgs from the 16 at
MZR

. This is the lowest energy scale of new physics in this theory. Lastly, the electroweak
symmetry is broken, using an SM Higgs doublet from the 10.

In the next we will discuss what the Higgs sector needs to look like to achieve this
symmetry breaking pattern.
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5.3 The Higgs Sector

This model for an SO(10) GUT makes extensive use of spontaneous symmetry breaking
through the Higgs mechanism. No fewer than 5 Higgs representations are used to achieve
the desired symmetry breaking and fermion mass relations. We should now explicitly define
what the Higgs sector of the Lagrangian looks like. This section is partially based on [27].
We start by writing down a kinetic term:

Lkin = Tr
[
(DµΦ)

†(DµΦ)
]
, (5.10)

for every Higgs representation. The covariant derivative is not the same as the one for the
fermions, except for Φ16, as it transforms like a vector. The other Higgs representations
transform like a rank 2 tensor, therefore we have:

DµΦ = ∂µΦ+
ig√
2
[W ab

µ Σab,Φ]. (5.11)

The kinetic term is responsible for giving the gauge bosons mass, after the Higgs potential
breaks the symmetry and gives a vev to a Higgs field. This will be explicitly shown in
section 5.3.1.

In section 2.2.1 we defined a potential for a Higgs doublet that breaks the electroweak
symmetry. In principle, we can construct a similar potential for every Higgs representation
we have used. Every term in such a potential has to be invariant. To see which terms are
invariant we simply have to look at representation theory. A simple procedure is described
in [37]. If the product of the representations contains a singlet, then the corresponding term
is invariant:

D1 ⊗D2 = 1⊕ ..., (5.12)

where Di are arbitrary representations (not necessarily different from each other). For more
complicated terms we might have a tensor product of the form:

D1 ⊗D2 = D3 ⊕ ..., (5.13)

then:
(D1 ⊗D2)⊗D3 = (D3 ⊗D3)⊕ ... = 1⊕ ..., (5.14)

where D3 is the conjugate of D3. The product between a representation and its conjugate
always contains a singlet. This procedure is easily applied to products of four representa-
tions. So if we have a table of the tensor products of all the relevant SO(10) representations
(see Table 42 in [31]), we can easily identify all the invariant terms. The 10, 54, 120 and
210 are self conjugate. Therefore, terms of the form Φ2, Φ2Φ2 and Φ4 are invariant. The 16
is not self-conjugate, terms need to be of the form 16× 16. The potentials without mixing
between the representations are as follows:

V54 = −1

2
m2

54Tr
[
Φ†
54Φ54

]
+ λ54Tr

[
(Φ†

54Φ54)
2
]
+ ν54Tr

[
Φ†
54Φ54

]2
, (5.15)

V210 = −1

2
m2

210Tr
[
Φ†
210Φ210

]
+ λ210Tr

[
(Φ†

210Φ210)
2
]
+ ν210Tr

[
Φ†
210Φ210

]2
, (5.16)

V120 = −1

2
m2

120Tr
[
Φ†
120Φ120

]
+ λ120Tr

[
(Φ†

120Φ120)
2
]
+ ν120Tr

[
Φ†
120Φ120

]2
, (5.17)

V16 = −1

2
m2

16Φ
†
16+Φ16+ + λ16(Φ

†
16+Φ16+)

2 + ν16(Φ16−ΓiΦ16+)(Φ16+ΓiΦ16−), (5.18)

V10 = −1

2
m2

10Tr
[
Φ†
10Φ10

]
+ λ10Tr

[
(Φ†

10Φ10)
2
]
+ ν10Tr

[
Φ†
10Φ10

]2
, (5.19)
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these are principally responsible for the fields obtaining a vev (except for the 120). The
Higgs representations used are defined in section 4.2. The term containing Γi for the 16 is
needed to create a non-zero invariant term connecting the + and − parts of the 16. The
invariant potential terms that contain multiple representations are as follows:

V 210
16 = α1Φ

†
16+Φ16+Tr

[
Φ†
210Φ210

]
+ β1Φ

†
16+Φ

†
210Φ210Φ16+ + γ1Φ

†
16+Φ210Φ16+, (5.20)

V 210
54 = α2Tr

[
Φ†
54Φ54

]
Tr

[
Φ†
210Φ210

]
+ β2Tr

[
Φ†
54Φ

†
210Φ210Φ54

]
, (5.21)

V 210
10 = α3Tr

[
Φ†
10Φ10

]
Tr

[
Φ†
210Φ210

]
+ β3Tr

[
Φ†
10Φ

†
210Φ210Φ10

]
, (5.22)

V 54
10 = α4Tr

[
Φ†
54Φ54

]
Tr

[
Φ†
10Φ10

]
+ β4Tr

[
Φ†
54Φ

†
10Φ10Φ54

]
, (5.23)

V 54
16 = α5Φ

†
16+Φ16+Tr

[
Φ†
54Φ54

]
+ β5Φ

†
16+Φ

†
54Φ54Φ16+, (5.24)

V 16
10 = α6Φ

†
16+Φ16+Tr

[
Φ†
10Φ10

]
+ β6Φ

†
16+Φ

†
10Φ10Φ16+ + γ6Φ

†
16−Φ10Φ16+, (5.25)

V 120
210 = α7Tr

[
Φ†
120Φ120

]
Tr

[
Φ†
210Φ210

]
+ β7Tr

[
Φ†
120Φ

†
210Φ210Φ120

]
. (5.26)

These potentials should, in theory, be responsible for giving the fields their appropriate
masses. However, these mixing potentials will also make calculating the vev much more
complicated. We will now examine the masses of the gauge bosons, before moving on to an
example of the scalar fields obtaining masses through these mixing potentials.

5.3.1 Gauge Boson Masses

In this section we discuss how several new gauge bosons achieve their masses through
spontaneous symmetry breaking. We have the new ZR, WR, XB−L and U1 vector bosons
between the SM and the GUT-scale. ZR and UB−L achieve their masses through the
breaking of the SU(3)C × SU(2)L × U(1)R × U(1)B−L symmetry by the (1, 1, 0) (SM
representation) field of the 16. We will show this first. Then we will show how the breaking
of the Pati-Salam group by the (1, 1, 0, 0) (3211 representation) field from the 210 gives WR

and the U1 leptoquarks a mass. The relevant Higgs fields are discussed in section 4.2.3 for
the 16 and in section 4.2.6 for the 210. As we stated above, the gauge bosons gain their
mass through the kinetic term of the scalar fields in the Lagrangian.

Starting with the symmetry breaking due to the 16 at MZR
:

SU(3)C × SU(2)L × U(1)R × U(1)B−L
16−→ SU(3)C × SU(2)L × U(1)Y , (5.27)

where, as mentioned in section 4.2.3, a linear combination of generators is broken. This
slightly complicates the calculation of the masses. The specific bosons are XB−L, associated
with the generator UB−L, and Z0

R, associated with R3. The mass term resulting from
symmetry breaking is:

Tr[(Dµϕ
16
vac)

†(Dµϕ16vac)] →
1

2
v2(g1RZ

0
R−

√
3

2
gB−LXB−L)

†(g1RZ
0
R−

√
3

2
gB−LXB−L), (5.28)

where ϕ16vac is the 16 representation after obtaining a vev, as defined as in section 4.2.3. v
is the value of the vev. For ease of reading, we started by using the covariant derivative at
the GUT-scale, even though by this point it has split up into distinct parts. The mixing

means we have a mass for some boson Zmix = 1√
g21R+ 3

2
g2B−L

(g1RZ
0
R −

√
3
2gB−LXB−L), with

mass:

MZmix =
v√
2

√
g21R +

3

2
g2B−L, (5.29)

42



CHAPTER 5. THE SO(10) MODEL

where g1R and gB−L are the coupling constants associated with U(1)R and UB−L, respec-
tively.

Moving on to the breaking of the PS group due to a field from the 210 at MWR
:

SU(4)C × SU(2)L × SU(2)R
210−−→ SU(3)C × SU(2)L × U(1)R × U(1)B−L (5.30)

Computing the masses of the X/U1 and W±
R bosons is straightforward, we use the kinetic

term of the Higgs field Lagrangian (see section 5.3):

Tr[(Dµϕ
210
vac)

†(Dµϕ210vac)] = Tr[(∂µϕ
210
vac −

ig√
2
[W · Σ, ϕ210vac])

†(∂µϕ210vac +
ig√
2
[W · Σ, ϕ210vac])]

→ 1

2
g2Tr

(
[W · Σ, ϕ210vac]

†[W · Σ, ϕ210vac]
)
=

4

3
g24Cu

2(X2
r +X2

g +X2
b ) + g22Ru

2(W±
R )2,

(5.31)

where u is the vev, g4C is the coupling of SU(4)C , as that is the group the X/U1 leptoquarks
belong to and g2R is the coupling of SU(2)R. ϕ

210
vac defined as in section 4.2.6. We obtain a

mass term for the X/U1 and W±
R bosons, with masses of:

MU1 =
2√
3
g4Cu, MW±

R
= g2Ru (5.32)

The value for g and g′ can be obtained by running the couplings of SU(4)C and SU(2)R,
which will be done in section 5.4. Furthermore, if a numerical value for the masses is desired,
the vev u would have to be determined based on the effective potential of the 210 Higgs at
the Pati-Salam scale.

5.3.2 Higgs Mass Splitting

At every symmetry breaking scale µ, certain Higgs fields are left behind in accordance
with the extended survival hypothesis, see section 5.4. At the GUT-scale this is simply
assumed. However, at subsequent symmetry breaking steps, the unnecessary Higgs fields
need to acquire a mass through some mechanism. This is accomplished by having the
different Higgs representations coupled to each other in the potential. When one Higgs field
from a representation acquires a vev at a scale µ, then all the desired Higgs fields from a
different representation can acquire a mass on the order of µ. The remaining fields in that
representation are needed to break the symmetry at a lower energy scale and thus need to
remain massless. This puts certain bounds on the parameters in the Higgs sector.

In this section we will treat one example: the breaking of the PS group by a field from
the (15, 1, 3) of the 210 will give mass to all fields in the (4, 1, 2) of the 16, except for the
(1, 1, 1/2, 1) field, which breaks the SU(3)C × SU(2)L × U(1)R × U(1)B−L group to the
SM. Much of the work in this section draws on the procedures described in [38–40], where
a potential including the 16 and 45 of SO(10) is considered. Furthermore, the work done
in [15] on the doublet-triplet splitting problem in SU(5) GUTs, has heavily inspired the
procedure we use in this section.

To start off, we will combine the potentials for the 210, the 16 and their mixing terms
in one potential function. Furthermore, we ignore any effects from mixing with other
representations than the 16 or the 210, or from symmetry breaking at higher energy scales.
All fields not in the (15, 1, 3) or the (4, 1, 2) are simply ignored entirely. We deem this
assumption acceptable, because any interactions with fields at higher energy scales will be
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heavily suppressed due to their high mass. The potential reads:

V = −1

2
m2

210Tr
[
Φ†
210Φ210

]
+ λ210Tr

[
(Φ†

210Φ210)
2
]
+ ν210Tr

[
Φ†
210Φ210

]2
− 1

2
m2

16Φ
†
16+Φ16+ + λ16(Φ

†
16+Φ16+)

2 + ν16(Φ16−ΓiΦ16+)(Φ16+Γ
iΦ16−)

+ α1Φ
†
16+Φ16+Tr

[
Φ†
210Φ210

]
+ β1Φ

†
16+Φ

†
210Φ210Φ16+ + γ1Φ

†
16+Φ210Φ16+,

(5.33)

where Γi are the usual basis matrices of SO(10). To find the vacuum expectation value of
Φ15
00̂

field from the (15, 1, 3), we take the derivative of its potential with respect to that field:

∂V

∂(Φ15
00̂
)2

=− 1

2
m2

210Tr

[
1

64
Γ′15†
00̂

Γ′15
00̂

]
+ 2λ210Tr

[
1

64
Φ†
210Φ210Γ

′15†
00̂

Γ′15
00̂

]
+ 2ν210Tr

[
Φ†
210Φ210

]
Tr

[
1

64
Γ′15†
00̂

Γ′15
00̂

]
= −1

2
m2

210 +
7

24
λ210(Φ

15
00̂
)2 + 2ν210(Φ

15
00̂
)2 = 0,

(5.34)

where we have ignored the interactions with the 16, as it has not developed a vev yet. The
Γ′15
00̂

’s arise from taking the derivative of Φ210 = 1
8Φ

iΓ′i, with respect to Φ15
00̂
. Due to our

choice of normalization we have: Tr
[

1
64Γ

′15†
00̂

Γ′15
00̂

]
= 1. This leads to the following vev:

⟨(Φ15
00̂
)2⟩ = m2

210
7
48λ210 + ν210

≡ u2, (5.35)

which we have labelled u2 for convenience. Now that we have obtained this vev we can
calculate the Higgs mass spectrum as follows [14]:

m2
AB =

∂2V

∂ϕA∂ϕB

∣∣∣∣
⟨Φ15

00̂
⟩
, A,B = 1, 2, ..., 16, (5.36)

which basically means that the terms quadratic in the field ϕA correspond to the mass
terms, as long as m2

AB is diagonal. If there are off-diagonal terms, we need to compute the
eigenvalues to find the masses. For the fields 8 fields ϕA. A = 9, 10, ...16 in Φ16+, which
were still present at this PS-scale, we obtain the following masses:

M2(3, 1,−1/2,−1/3) = −m2
16 + 2α1u

2 +
β1u

2

24
+
γ1u

2
√
3
, (5.37)

M2(3, 1, 1/2,−1/3) = −m2
16 + 2α1u

2 +
β1u

2

24
− γ1u

2
√
3
, (5.38)

M2(1, 1, 1/2, 1) = −m2
16 + 2α1u

2 +
3β1u

2

8
− 1

2

√
3γ1u, (5.39)

M2(1, 1,−1/2, 1) = −m2
16 + 2α1u

2 +
3β1u

2

8
+

1

2

√
3γ1u, (5.40)

where the fields are labelled according to their representation under SU(3)C × SU(2)L ×
U(1)R×U(1)B−L. As indicated before, we want the fields in the first three representations
above to have mass, and the last one to be massless. This puts certain constraints on the
potential. Clearly, we need M2(1, 1, 1/2, 1) < 0, so that we can still have it acquire a vev
at a lower scale. The rest of the masses should be greater than zero. Combining these
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conditions allows us to determine the following set of constraints:

γ1 < 0,

β1 < −
√
3

u
γ1,

α1 >
m2

16

2u2
− β1

48
− γ1

4
√
3u
,

−1

2

√
3γ1u > −m2

16 + 2α1u
2 +

3β1u
2

8
> +

1

2

√
3γ1u.

(5.41)

These conditions are required in order to get the symmetry breaking pattern we need. We
can also state the effective potential after symmetry breaking:

Veff(φ0) =
(
−m2

16 +2α1u
2 +

3β1u
2

8
+

1

2

√
3γ1u

)
(φ†

0φ0)+λ16(φ
†
0φ0)

2 + interactions, (5.42)

where φ0 is the remaining massless field. By taking the derivative of Veff with respect to
φ0, we can find the following vev:

⟨(φ†
0φ0)⟩ =

1

2λ16

(
m2

16 − 2α1u
2 − 3β1u

2

8
− 1

2

√
3γ1u

)
≡ v2. (5.43)

We need to ensure that there exists a hierarchy between v and u. Inspecting the expression
for v it would seem that v is on the order of u, unless the terms involving u cancel each
other. Since we intend to have the two symmetry breaking steps occur at two very close
energies, we do not require a precise cancellation. However, v < u is still very much a
requirement, otherwise the symmetry breaking would happen in reverse, meaning that the
PS group would be broken immediately to the SM, without any intermediate symmetry.

When the field φ0 from the 16 acquires a vev, the symmetry breaks to the SM. This
will impact the scalar mass spectrum, for the fields in the 16 we get:

M2(3, 1, 1/3) = −β1u
2

3
− γ1u√

3
, (5.44)

M2(3, 1,−2/3) = −β1u
2

3
− 2γ1u√

3
, (5.45)

M2(1, 1, 1) = −
√
3γ1u, (5.46)

M2(1, 1, 0) = 8λ16v
2, (5.47)

where we have now labelled the fields in terms of their SM representations. These masses
are obtained based on the assumption that the scalar fields from the 210 and 16 do not mix.
For every field the mass of the real and imaginary component fields are the same, except
for the (1, 1, 0). The field belonging to the complex phase remains massless. This field is a
Goldstone boson and any term involving it can be transformed away using a U(1)Y gauge
transformation. The existence of one Goldstone boson is expected as we break one linear
combination of generators.

We have now shown that the mass splitting of the Higgs multiplets can work for the
scenario treated above. It is expected that this procedure extends to other Higgs represen-
tations as well, so that the scalar spectrum described in Table 5.1 is accurate.

5.3.3 The Vev of the 120 Doublets

The 120 representation is special in the sense that we want its two doublets to acquire a vev
at the electroweak scale, while having a mass at the PS-scale. In [41], it was argued that in a
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model using one doublet from the 126 representation for fermion mass and another multiplet
for breaking the PS group to the SM, a potential term of the form Φ3

126Φ10 could endow the
doublet with a vev at around ∼ 100MeV, while still having a mass at the PS-scale. This
potential term would contain ∆R∆RΣΦ, with ∆R the multiplet responsible for breaking the
PS symmetry, and Σ and Φ the Higgs doublets from the 126 and 10, respectively. When
∆R and Φ obtain a vev, so does Σ:

∂

∂Σ

(1
2
m2Σ2 + λ⟨∆R⟩⟨∆R⟩Σ⟨Φ⟩+O(Σ3)

)
= 0 → ⟨Σ⟩ ≃ λ

⟨∆R⟩2

m2
⟨Φ⟩. (5.48)

Since ⟨∆R⟩ and m are of the same order, this vev will be on the order of ⟨Φ⟩, exactly what
we want. We can take inspiration from this to construct a similar mechanism for the 120
Higgs doublets. We break the PS group with the 210, a natural first try would be a term of
the form Φ2

210Φ
†
120Φ10, another option is a similar term that is linear in Φ210. This would

give us the potential:

V mix
120 = αTr

[
Φ†
210Φ210Φ

†
120Φ10

]
+ β Tr

[
Φ210Φ

†
120Φ10

]
. (5.49)

There are two doublets that we would like to give a vev, one from the (1, 2, 2), called Σ1

and one from the (15, 2, 2), called Σ2. Plugging in the vev’s of the 10 and 210 in fact gives:

V mix
120 = α⟨Φ210⟩2Σ1⟨Φ10⟩+ β⟨Φ210⟩Σ2⟨Φ10⟩ (5.50)

We need to prove that this is actually the case. Doing the calculation explicitly allows us
to identify the fields that gain a vev. Assuming these are Σ1 and Σ2, we get:

Σ1 =
1√
2
(ϕ7810 + iϕ789), (5.51)

Σ2 = ϕ1210 + ϕ3410 + ϕ5610 + i(ϕ129 + ϕ349 + ϕ569). (5.52)

To check that these are the SM Higgs doublets, we can examine their Y and L3 eigenvalues,
and see if they commute with the SU(3)C generators:

[Σi, Y/2] =
1

2
Σi, [Σi, L3] =

1

2
Σi, [Σi, Uj ] = 0, (5.53)

with i = 1, 2 and j = 1, 2, ..., 8. Clearly these fields are (1, 2, 1/2) representations of the SM
group. Furthermore, we can check that both commute with UB−L and that:

[Uk,Σ1] = 0, [Uk,Σ2] ̸= 0, k = 9, 10, ..., 14, (5.54)

indicating that Σ1 is an SU(4) singlet, and Σ2 is not. Therefore, we conclude that Σ2

belongs to the (15, 2, 2).
There is a point of concern with this method. Namely, having terms linear in Σ1,2

seemingly does not respect the residual U(1)Q symmetry after EW breaking. In the EW
breaking in the SM, a term linear in the Higgs field would break the residual symmetry.
We need to examine the effective potentials at several stages to confirm that no symmetry
is unintentionally broken. At the SM scale we have the following effective potential for the
doublets from the 120, up to second order:

V SM
eff =

1

2
M2

120Σ
†
1,2Σ1,2 + αu2(Σ†

1Φ10 +Φ†
10Σ1)

+ βu(Σ†
2Φ10 +Φ†

10Σ2),
(5.55)
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where M120 is the mass obtained due to a vev from the 210. Clearly this potential is
SU(2)L ×U(1)Y invariant, as all terms are products of a doublet and a conjugate doublet.
After EW breaking, Φ10 obtains a vev. We parameterize the fields as follows:

Σ1,2 =

Σ+
1,2

Σ0
1,2

 , Φ10 =
1√
2

Φ+
10

Φ0
10

 → 1√
2

 0

(v + h)eiθ/v

 , (5.56)

where v is the vev, h the resulting Higgs boson and θ represents the arbitrary phase. Having
this freedom to choose a phase is essential for keeping U(1)Q symmetry. Plugging this in,
the resulting effective potential is as follows:

V EW
eff =

1

2
M2

120Σ
†
1,2Σ1,2 + α7u

2(Σ0†
1 (v + h)eiθ/v + (v + h)e−iθ/vΣ0

1)

+ β7u(Σ
0†
2 (v + h)eiθ/v + (v + h)e−iθ/vΣ0

2),
(5.57)

which should still respect the U(1)Q symmetry. If we transform θ, Σ0†
1,2 transforms oppositely

to compensate. For the last step Σ1,2 obtain vev’s:

Σ1,2 → (v1,2 + h1,2)e
iθ1,2/v1,2 , (5.58)

plugging this in we obtain the effective potential after all doublets have gained vev’s:

V final
eff =+ αu2((v1 + h1)e

−iθ1/v1(v + h)eiθ/v + (v + h)e−iθ/v(v1 + h1)e
iθ1/v1)

+ βu((v2 + h2)e
−iθ2/v2(v + h)eiθ/v + (v + h)e−iθ/v(v2 + h2)e

iθ2/v2),
(5.59)

where we have omitted the mass terms. Inspecting this potential, we see that we can change
θ, but must then change θ1,2 to compensate. In principle, we still have a residual U(1)Q
symmetry. The combination of the two fields allows for the symmetry to be unbroken. Note
that only one phase can be rotated away at a time. If we set θ to zero, then the other two
doublets will have a physical phase.

We have established that the mechanism does not have unintended consequences for the
residual symmetry. Now we can conclude that the neutral components of the two doublets
from the 120 obtain the following vev’s after EW symmetry breaking:

⟨Σ0
1⟩ ∼ α

⟨Φ210⟩2

M2
120

⟨Φ10⟩, ⟨Σ0
2⟩ ∼ β

⟨Φ210⟩
M2

120

⟨Φ10⟩. (5.60)

Since ⟨Φ210⟩ and m120 are of the same order, we get exactly what we want for ⟨Σ1⟩: a vev
on the same order as ⟨Φ10⟩. However, for ⟨Σ2⟩ we seem to have a suppression of ∼ 1

M120
,

which would lower the vev. This could in principle be tuned away with the dimensionful
coupling β. This coupling would have to be on the order of M120.

5.4 Running and Unification of the Couplings

In section 2.3 we described how the particle content of a theory can be used to calculate
the β-coefficients. These β-coefficients specify the running of the couplings of the gauge
group. Combined with the procedure for finding matching conditions, provided in the same
section, we are now equipped with most of the knowledge needed to compute the running
and unification of the couplings for an SO(10) GUT with three intermediate scales.

The only missing piece of the puzzle is the particle content at each intermediate scale. In
Table 5.1 we display the fermion and scalar content of each relevant symmetry group. The
last column corresponds to the β-coefficients in the same order as the groups are written in
the first column. Each representation in the second and third column will contribute to the
β-coefficients through eq. (2.40). To reproduce the β-coefficients, one can follow the steps
in section 2.3.1 using the representations listed in Table 5.1.
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Group Fermions Scalars bi

SU(3)C × SU(2)L × U(1)Y

(3, 1, 1/6),
(3̄, 1, 1/3),
(3̄, 1,−2/3),
(1, 2,−1/2),
(1, 1, 1)

Φ(1, 2, 1/2)10


−7

−19/6

41/10



SU(3)C ×SU(2)L ×U(1)R ×U(1)B−L

(3, 2, 0, 1/3),
(3̄, 1, 1/2, 1/3),
(3̄, 1,−1/2, 1/3),
(1, 2, 0,−1),
(1, 1,−1/2,−1),
(1, 1, 1/2,−1)

Φ1(1, 2, 1/2, 0)10,
Φ2(1, 2,−1/2, 0)10′ ,
HR(1, 1, 1/2,−1)16


−7

−3

53/12

33/8



SU(4)C × SU(2)L × SU(2)R (4, 2, 1), (4̄, 1, 2)

Φ1(1, 2, 2)10,
Φ2(1, 2, 2)10′ ,
HR(4̄, 1, 2)16,
ΣR(15, 1, 3)210


−19/3

−8/3

8



SU(4)C × SU(2)L × SU(2)R ×D (4, 2, 1), (4̄, 1, 2)

Φ1(1, 2, 2)10,
Φ2(1, 2, 2)10′ ,
HR(4̄, 1, 2)16,
HL(4, 2, 1)16,
ΣR(15, 1, 3)210,
ΣL(15, 3, 1)210,
σ(1, 1, 1)210


−2

8

8



Table 5.1: β-coefficients along with fermion and scalar content of each symmetry group
[12, 19]

.

Extended Survival Hypothesis

It is important to note that we only take into account those Higgs representations, which
are needed in order to break the symmetry at each step. Every other multiplet is assumed
to have a very large mass MU . This is the extended survival hypothesis as discussed in
[42]. An argument for this hypothesis can be made based on the principle of minimal fine-
tuning [43]. The core of the argument is that, if one wants to fine-tune the least amount of
parameters, it is required that all irrelevant Higgs multiplets are superheavy. In section 5.3.2
we discussed an example of how certain multiplets can be kept heavy at intermediate scales.

Matching Conditions for Three Intermediate Scales

Now that we have the β-coefficients we need to figure out the matching conditions for the
specific model we treat. Following the prescription in section 2.3.2 we can see that for the
most part these conditions are simple. At the unification scale all groups are embedded into
one group: SO(10). Therefore, the fine-structure constants have to be equal at MU :

α−1
4C(MU ) = α−1

2LR(MU ) = α−1
U (MU ), (5.61)

where αU is the fine-structure constant corresponding to SO(10). One should keep in mind
that above the D-parity scale MD we have α2L = α2R = α2LR, since D-parity enforces
left-right symmetry.

AtMD nothing happens to SU(4)C , but as stated left-right symmetry is enforced above
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it, therefore the matching conditions are:

α−1
4C′(MD) = α−1

4C(MD), (5.62)

α−1
2L (MD) = α−1

2R(MD) = α−1
2LR(MD), (5.63)

where the prime corresponds to the coupling constant below the symmetry breaking scale.
Moving on to the next symmetry breaking scale MWR

, we can see that SU(4)C breaks
to SU(3)C × U(1)B−L. Therefore, the couplings of the latter should be equal to that of
SU(4)C . Furthermore, we have SU(2)L unaffected by the symmetry breaking, yielding a
trivial matching condition. SU(2)R breaks to U(1)R, forcing their couplings to be equal at
MWR

:

α−1
3C(MWR

) = α−1
B−L(MWR

) = α−1
4C′(MWR

), (5.64)

α−1
2L′(MWR

) = α−1
2L (MWR

), (5.65)

α−1
1R(MWR

) = α−1
2R(MWR

). (5.66)

For the last symmetry breaking, we break to the SM at MZR
. We have two trivial

matching conditions for SU(3)C and SU(2)L. The last matching condition, corresponding
to U(1)R×U(1)B−L breaking to U(1)Y is the only more complicated matching condition in
this section. We have a product of two groups breaking to a single group. In section 4.2.3
we have established that the operator for U(1)Y is expressed in terms of the other operators
as follows:

Y/2 = UB−L/2 +R3 (5.67)

Enforcing Tr
(
Y 2/4

)
= Tr

(
U2
B−L

)
= 4, we get the normalized operators Y ′ =

√
3
5Y and

U ′
B−L =

√
3
8UB−L. Therefore, the normalized relation is Y ′/2 =

√
2
5U

′
B−L +

√
3
5R

′
3. We

then obtain:

α−1
Y (MZR

) =
2

5
α−1
B−L(MZR

) +
3

5
α−1
1R(MZR

), (5.68)

α−1
3C′(MZR

) = α−1
3C(MZR

), (5.69)

α−1
2L′′(MZR

) = α−1
2L′(MZR

). (5.70)

The left-hand side of all these three equations correspond to the SM fine-structure constants.
These will be used as input in our running. This means that the theory uses input from
lower energy measurements to make predictions about higher-energies, as opposed to the
SU(5) case we discussed in section 3.1.1, where the SM parameters are an output of the
running.

Aside from initial conditions, we have now established everything we need to compute
the running of the couplings from the SM up to the gauge coupling unification.

5.4.1 Results

In total, we have 11 independent conditions, one corresponding to each equation in the
matching conditions (except for the condition on α−1

U , as it is only a result). However, we
have 13 parameters to fix:

MZR
, MWR

, MD, MU ,

α4C , α4C′ , α3C , α2LR, α2L, α2L′ , α2R, α1R, αB−L,
(5.71)

one parameter corresponding to each symmetry breaking scale, and one for each fine-
structure constant not fixed by experiment. We have 13 − 11 = 2 free parameters, this
means we can pick any two parameters and vary them, thereby creating a vast parameter
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space of valid solutions. Since we want to state a theory with leptoquarks at the TeV-scale,
we will pick MZR

and MWR
as the input parameters. This means we can fix these energy

scales in order to lower the mass of the U1 leptoquark as much as possible, hopefully in
range of collider experiment.

We can now proceed by doing either one of two things: algebraically work out the
matching conditions and running of the couplings to obtain values for MU and αU as in
[19], or we numerically compute the running as done in [12]. We will choose the second
option for now, fixing MZR

= 5TeV and MWR
= 108.3 GeV. These values are the same as

in [12, 19]. We choose to keep these values, as MZR
= 5TeV is approximately as low as it

can be, taking into account experimental constraints. Choosing MWR
= 108.3 GeV allows

for a clear graph of the running. Furthermore, we have non-normalized input values [17]:

α−1
s = 8.4817, α−1

em = 127.951, sin2 θW = 0.23121 (5.72)

at µ =MWZ
, the Z0 boson mass. From these inputs the fine-structure constants of the SM

can be straightforwardly computed:

αem =
e2

4π
, e =

gg′√
g′2 + g2

, sin θW =
g′√

g′2 + g2
, cos θW =

g√
g′2 + g2

, (5.73)

where g is the coupling for SU(2)L and g′ the coupling for U(1)Y . After some algebra and
using the fact that SU(3)C is unchanged at the electroweak scale, we obtain the normalized
SM fine-structure constants:

α−1
3C = 8.4817, α−1

2L′′ = 29.5836, α−1
Y = 59.0205, (5.74)

where we have used Y ′ =
√

3
5Y to obtain the normalized result.

Using our input values, matching conditions and β-coefficients, we obtain the following
results:

MU = 1.6× 1016GeV, MD = 4.3× 1015GeV, α−1
U = 42.2. (5.75)

The result of this procedure is also summarized graphically in Figure 5.1. This figure agrees
with the one obtained before in [12].

Figure 5.1: Running of the couplings from MW to MU , obtained using code from [12].
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The running of the couplings and the matching conditions are clearly visible in Fig-
ure 5.1. This procedure has shown that we can obtain an SO(10) GUT with three inter-
mediate symmetry scales. Now we can arbitrarily change MWR

to obtain a lower mass
for the U1 leptoquarks. MZR

is kept fixed at 5TeV, while MWR
is varied. The resulting

MU is plotted in Figure 5.2. Clearly, we can make MWR
very low, while still attaining an

acceptable value for MU .

Figure 5.2: MU and MD as a function of MWR
, the scale at which U1 leptoquarks can exist.

For this graph we have set: MZR
= 5TeV.

Some approximations should be noted. The running of couplings below a certain symme-
try breaking scale will be influenced by massive particles above that scale. As we discussed
in section 2.3.1, this effect is suppressed by a factor ∼ 1

M2 . For this reason we have entirely
ignored it. Furthermore, the running we computed was valid up to one-loop level, as we
did not take two-loop corrections into account. Two-loop contributions are much smaller
than one-loop contributions, since they are proportional to a higher order of the coupling
constant. For all curves in Figure 5.1 we have α/4π < 1, therefore higher orders in the
coupling are suppressed.

Another approximation is the fact that the running starts at MZ . Technically, EW
symmetry breaking has occurred at this scale, therefore we would not have three coupling
constants. Furthermore, this is below the mass of the top quark, so its effects should not
be taken into account. Overall we do not deem these effects to be significant enough to
warrant changing the procedure with respect to [12].

We have now established a clear case: it is possible to have vector leptoquarks at the
scale of 5TeV by fixing MWR

at that energy scale. Furthermore, scalar leptoquarks could
occur at a similar scale, provided there is a mechanism providing them with mass, which in
section 7.2 we argued there is.

Algebraic Computation of the Unification Scale

As opposed to the numerical solution offered in the previous section, it is possible to obtain
MU ,MD and α−1

U algebraically. Basically, we have to use the running of the couplings in
eq. (2.39) and the matching conditions to express each desired variable in terms of our
input. We still have two free variables, MWR

and MZR
. Like in [19] we obtain the following
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equations for the running from SM to MU :

α−1
3C′(MW ) = α−1

U (MU ) +
b3C′

2π
ln

(
MZR

MW

)
+
b3C
2π

ln

(
MWR

MZR

)
+
b4C′

2π
ln

(
MD

MWR

)
+
b4C
2π

ln

(
MU

MD

)
,

(5.76)

α−1
2L′′(MW ) = α−1

U (MU ) +
b2L′′

2π
ln

(
MZR

MW

)
+
b2L′

2π
ln

(
MWR

MZR

)
+
b2L
2π

ln

(
MD

MWR

)
+
b2LR
2π

ln

(
MU

MD

)
,

(5.77)

α−1
Y (MW ) = α−1

U (MU ) +
bY
2π

ln

(
MZR

MW

)
+

1

2π

(2
5
bB−L +

3

5
b1R

)
ln

(
MWR

MZR

)
+

1

2π

(2
5
b4C′ +

3

5
b2R

)
ln

(
MD

MWR

)
+

1

2π

(2
5
b4C +

3

5
b2LR

)
ln

(
MU

MD

)
,

(5.78)

now we have three equations and three unknowns.
Through the linear combinations α−1

2L′′(MW )−α−1
Y (MW ) and α−1

2L′′(MW )−α−1
3C′(MW ) one

can cancel α−1
U and find a system of equations with only MU and MD. With some algebra

one can then find ln
(
MD
MW

)
in terms of initial conditions. From this follows ln

(
MU
MW

)
. Having

obtained these values, α−1
U (MU ) can be computed from any of the three equations in eq.

(5.76). We obtain:

ln

(
MD

MW

)
=

(
(C3 − C4)−

C4

D4
(D3 −D4)

)−1

(
2π(α−1

2L′′ − α−1
Y )− (C1 − C2) ln

(
MZR

MW

)
− (C2 − C3) ln

(
MWR

MW

)
− C4

D4

(
2π(α−1

2L′′ − α−1
3C′)− (D1 −D2) ln

(
MZR

MW

)
− (D2 −D3) ln

(
MWR

MW

)))
,

(5.79)

ln

(
MU

MW

)
=

1

D4

(
2π(α−1

2L′′ − α−1
3C′)− (D1 −D2) ln

(
MZR

MW

)
− (D2 −D3) ln

(
MWR

MW

)
− (D3 −D4) ln

(
MD

MW

))
,

(5.80)

where Ci and Di are linear combinations of β-coefficients. These coefficients can be found in
section A.3. Using these relations we, reassuringly, obtain the exact same results as before:

MU = 1.6× 1016GeV, MD = 4.3× 1015GeV, α−1
U = 42.2. (5.81)

In principle, it should not be a surprise we obtained the same results. We used the ex-
act same matching conditions, running formulas and input values. The only thing that
changed w.r.t. the previous method is that we solved the equations analytically instead of
numerically.

5.4.2 Inclusion of the 120

In previous literature describing this specific path from SO(10) down to the SM [12, 19], the
influence of the 120 Higgs representation on the running was not considered. The (15, 2, 2)
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and the (1, 2, 2) multiplets are used in the Yukawa sector to generate masses. Both these
multiplets contain SM doublets. These fields should have a significant influence. Indeed, as
stated in [32], the (15, 2, 2) and (1, 2, 2) give rise to a sizeable change in the β-coefficients
at the PS-scale, as seen in Table 5.2. Below the Pati-Salam scale we do not have to take
into account the running of the Higgs doublets from the (15, 2, 2) and (1, 2, 2), as these
multiplets obtain a mass at the PS-scale, as discussed in section 5.3.3

∆bi SU(4)C SU(2)L SU(2)R

(15, 2, 2) 16
3 5 5

(1, 2, 2) 0 1
3

1
3

Table 5.2: Influence of 120 Higgs multiplets on β-coefficients, as found in [32]

We have to include these representations in the running fromMU tillMWR
. The running

is plotted in Figure 5.3. It is clearly visible that α−1
U has been shifted downward with

Figure 5.3: Running of the Couplings from MW to MU , including the effect of the 120.

respect to the previous scenario in Figure 5.1. This is due to the fact that the β-coefficient
of every coupling has been increased, making the trends more downward. The results for
this scenario are, using MWR

= 108.3 GeV and MZR
= 5TeV:

MU = 1.6× 1016GeV, MD = 4.6× 1015GeV, α−1
U = 26.8. (5.82)

Clearly the effect onMU is minimal, while there is some change inMD. The most dramatic
change is in α−1

U , which is much lower than the previous found value of 42.2. The values
of MU and MD as a function of MWR

, keeping MZ fixed at 5TeV, have been plotted in
Figure 5.4. This graph is fairly similar to Figure 5.2, reflecting the fact that these values
were not significantly altered by the inclusion of the 120. From the graph it can be seen
that the scenario is valid for energies as low as 5TeV, as MD < MU still holds.

This scenario, with three intermediate energy scales, including the Higgs multiplets
from the 120, is what we will base our work on for now. In chapter 7 we will add the 126
representation for fermion as well. We will choose MWR

to be as low as possible, according
to current experimental bounds. For completeness, an updated table with the particle
content and β-coefficients is provided in Table 5.3.
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Figure 5.4: Values for MU and MD as a function of MWR
, including the effects of the 120.

For this graph we have set: MZR
= 5TeV.

Group Fermions Scalars bi

SU(3)C × SU(2)L × U(1)Y

(3, 1, 1/6),
(3̄, 1, 1/3),
(3̄, 1,−2/3),
(1, 2,−1/2),
(1, 1, 1)

Φ(1, 2, 1/2)10


−7

−19/6

41/10



SU(3)C ×SU(2)L ×U(1)R ×U(1)B−L

(3, 2, 0, 1/3),
(3̄, 1, 1/2, 1/3),
(3̄, 1,−1/2, 1/3),
(1, 2, 0,−1),
(1, 1,−1/2,−1),
(1, 1, 1/2,−1)

Φ1(1, 2, 1/2, 0)10,
Φ2(1, 2,−1/2, 0)10′ ,
HR(1, 1, 1/2,−1)16


−7

−3

53/12

33/8



SU(4)C × SU(2)L × SU(2)R (4, 2, 1), (4̄, 1, 2)

Φ1(1, 2, 2)10,
Φ2(1, 2, 2)10′ ,
HR(4̄, 1, 2)16,
ΣR(15, 1, 3)210,
Φ1

120(1, 2, 2)120,
Φ2

120(15, 2, 2)120


−1

8/3

40/3



SU(4)C × SU(2)L × SU(2)R ×D (4, 2, 1), (4̄, 1, 2)

Φ1(1, 2, 2)10,
Φ2(1, 2, 2)10′ ,
HR(4̄, 1, 2)16,
HL(4, 2, 1)16,
ΣR(15, 1, 3)210,
ΣL(15, 3, 1)210,
σ(1, 1, 1)210,
Φ1

120(1, 2, 2)120,
Φ2

120(15, 2, 2)120


10/3

40/3

40/3



Table 5.3: β-coefficients along with Fermion and Scalar content of each symmetry group,
including the multiplets of the 120.
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5.4.3 Experimental Constraints

In order to further examine the validity of the scenario we discuss, we need to compare it
to current experimental bounds. An important experimental bound for any GUT is the
proton lifetime. GUTs generally predict a mechanism of proton decay due to the existence
of particles with both leptoquark and diquark couplings, which mediate such decays, see
chapter 3. The current estimate of the proton lifetime is τp > 1.6× 1034 s for the p→ e+π0

decay, as measured in the Super-Kamiokande [44]. A power law relating the unification
scale MU and the proton lifetime can be found [45]:

τp = 6.9× 1035 s×
(

MU

1016GeV

)4

, (5.83)

using this relation one finds thatMU ≳ 4×1016GeV. This in turn gives us an upper bound
on MWR

: examining Figure 5.3, we can see that MWR
≲ 107GeV. If MWR

is any higher,
MU becomes too low. A lower bound on MWR

can also be found from collider searches
that constrain the right-handed W boson. The most recent value is 5TeV [46]. Aside from
collider experiments, the cosmic microwave background puts a lower bound of 4TeV on the
mass of the right-handed WR boson [47]. Taking these constraints into account, we decide
to set MWR

≥ 5TeV for the rest of this work.

5.5 Conclusions

In this chapter we have discussed a specific SO(10) model and showed that it is able to
achieve unification of the gauge couplings at a scale consistent with experimental bounds.
Furthermore, we have established a scenario for new physics at energies as low as 5TeV.
Specifically, the existence of leptoquarks at this scale is of interest. The associated phe-
nomenology will be the topic of further chapters.

By using the representations defined in chapter 4, we have formulated a Lagrangian for
an SO(10) model, including an elaborate scalar potential. The main difference between
this model and the one in [12, 19], is that we take into account the (15, 2, 2) and (1, 2, 2)
multiplets from the 120 of SO(10) in the running of the couplings.

We have taken the symmetry breaking pattern from section 4.2 and performed the
running of the couplings for this scenario. Through the computation of the β-coefficients
and the determination of the matching conditions, we have managed to show this running
from the SM to the GUT-scale. This successfully showed that the scenario is a valid GUT,
even with the PS-scale at relatively low energies. This was precisely possible due to the
existence of three intermediate scales.

However, this scenario also brings challenges with it, which we have attempted to ad-
dress. The Higgs representations we use in this theory are very large. Many of the fields
are irrelevant, therefore only the smallest possible multiplets of representations are kept
massless at each scale. All the other fields are assumed to be superheavy (a mass on the
order of the GUT-scale). There are fields that do need to be lighter than that, because
they are in the same representations as necessary fields, but serve no other purpose. These
need to obtain a mass due to symmetry breaking. We have shown that such a mechanism
is possible, by explicitly treating an example. In this example, the breaking of the PS sym-
metry with a field from the 210 made the desired fields of the 16 massive, while keeping one
massless.

Essentially, the doublet-triplet splitting problem and the hierarchy problem have been
turned into features rather than issues of the theory. Some scalar particles becoming heavy
due to interactions with other scalars is actually desirable in the model we discuss. These
mechanisms are possible due to the freedom we have in assigning couplings strength for the
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interactions between scalar fields. The explicit splitting of masses in the scalar sector in
this way is an important, yet oft neglected, part of making GUTs consistent.

Another problem has to do with the Yukawa sector of the theory. Using a single Higgs
doublet from the 10 does not provide the right mass relations. Therefore, two doublets
from the 120 were added. This immediately brings a new problem with it: we only see
one doublet at the SM scale. Ideally, the doublets from the 120 should be heavier, while
its vev’s remains low. This was solved through a similar mechanism to the mass splitting,
involving couplings of the 120 to both the 210 and the 10.

In short, we have developed a reasonably convincing scenario for a GUT, that could
have low-energy consequences, which may be within reach of current collider experiments.
This scenario contains both vector leptoquarks (X/U1) and scalar leptoquarks (R2, R̃2) at
5TeV, giving us reason to continue with examining the associated phenomenology. In the
next chapter we will discuss the U1 vector leptoquarks, and find that they are ruled out at
the TeV-scale.
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Chapter 6

Vector Leptoquarks

We have established a model for SO(10) Grand Unification with vector and scalar lepto-
quarks at the TeV-scale that is consistent from a theoretical perspective. In this chapter
we move on to the phenomenological aspects of vector leptoquarks. The relevant vector
leptoquark in this model is U1 (sometimes called X), with SM representation (3, 1, 2/3).
The other vector leptoquarks live at the GUT-scale and are therefore not studied in this
chapter.

Firstly, we will identify a process involving U1 that could possibly be observed at the
Large Hadron Collider (LHC). Then we will look at effective field theory to examine current
bounds on the new interactions associated with vector leptoquarks. This will point us
towards rare meson decays, which will lead to the exclusion of U1 vector leptoquarks at
the TeV-scale. This renders the aforementioned observable impossible to measure at LHC.
Several attempts to circumvent the bounds due to these decays will then be discussed.

6.1 Interaction Lagrangian

To examine the phenomenology of the vector leptoquark, we start with the interaction
Lagrangian. We can easily extract the possible interactions of the U1 leptoquark, from eq.
(5.7). Expanding the relevant term we obtain [27]:

Lint
X = +ig

√
2
(
−Xα · UXα

)
= +i

g√
2
{−Xµ

α(d̄
c
α Lγµe

c
L + ūcα Lγµν

c
L) + X̄µ

α(d̄α LγµeL + ūα LνL) + h.c.},
(6.1)

where α are the colour indices and Xα is the leptoquark field. The second and third
generations have an equivalent interaction Lagrangian.

In essence, we have three U1 leptoquarks and their conjugates, each coupling to a current
with their respective colour: JX

α, µ. This interaction Lagrangian confirms that U1 is a pure
leptoquark: there are no couplings to two quarks or two leptons. Therefore, the U1 boson
cannot mediate proton decay. Furthermore, it is B−L conserving, carrying a B−L charge
of 4/3. The Feynman diagram vertices we can obtain are shown in Figure 6.1

These diagrams form the main building blocks of any process that the leptoquark can
be involved in.

6.2 Phenomenology

The U1 leptoquark, could provide interesting phenomenology for collider experiments, pro-
vided the bounds established later in this chapter would not be an issue. Due to the fact
that U1 is a pure leptoquark, s-channel production is not possible. A B-violating leptoquark
could be produced by the fusion of two quarks, but this is clearly not possible for a pure
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uα

νc

Xµ
α dα

ec

Xµ
α

ν

ucα

X̄µ
α

e

dcα

X̄µ
α

Figure 6.1: Vertices of the U1 leptoquark, corresponding to the interaction Lagrangian in
eq. (6.1)

leptoquark. The only (first generation) possibility for s-channel production would be the
fusion of a down quark and a positron, however the positron would have to be produced
first, for example from a photon, similarly to the process described in [48]. The process in
[48], which uses a τ instead of a positron, is sensitive to leptoquarks with masses of about
2TeV, at a coupling strength of 1.5. This is clearly too low for 5TeV leptoquarks.

A more promising process is a t-channel exchange of a leptoquark in dd → ee, an
example of a Drell-Yan process. In Figure 6.2 the diagram for this process is shown on the
left-hand side. Since U1 is a pure leptoquark, a dd t-channel process is not possible, as it
would violate baryon number.

d

e+d

U1

e−

d

e+d Z0

e−

Figure 6.2: t-channel dd̄→ e−e+ process mediated by U1 leptoquarks, along with a source
of background due to s-channel Z0 exchange.

A major source of background would be an s-channel process mediated by a Z boson as
shown on the right-hand side of Figure 6.2. Due to the fact that the leptoquark process is
a t-channel, it might be possible to distinguish it from the background based on the spatial
distribution of the resulting electron pair.

The amplitude of the leptoquark process shown in Figure 6.2 is:

iM = −g
2
4

2
[us;j(p)γ

µTα
ijus′;j(p

′)]
−i(gµν − kµkν/M

2
U1
)

k2 −M2
U1

δαβ[ur;k(q)γ
νT β

klur′;l(q
′)], (6.2)

where r, s are spin states, p, q, k are momenta, with k = p−p′, and Tα
ij are SU(4) generators

with α corresponding to the colour.
A very rough estimate on the suppression of such a process at LHC can be obtained

by estimating that the input momentum is about 2TeV, mostly from the d quark. This
quark should have about 1/3 of the proton momentum, which has half the 14TeV collision
energy of the LHC. If half the input momentum goes to the leptoquark, this would give a
suppression of 12/52 = 1/25.

We can make a slightly more informed estimate, using parton distribution functions. A
parton distribution function (pdf) determines the fraction of the proton momentum that
a part (e.g. a quark or a gluon) of the proton gets. A calculation of these pdf’s can be
found in [49]. These pdf’s determine the probability to find a parton (a specific particle
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in the proton) with a certain fraction x of the proton’s momentum. Essentially, there is a
trade-off between energy and probability. We want the momentum of the incoming d and
d quarks to be as high as possible, without the associated probability being too low.

Using the pdf’s, the momentum associated with a quark is:

Eq =

√
s

2
x, (6.3)

where s is the centre of mass energy. Roughly, the ratio of the signal, from the diagram
on the left hand of Figure 6.2 and the background, due to the diagram on the right hand,
would be:

S/B ∼ 1

2

E2
q

M2
U1

=
s

8

xdxd
M2

U1

∼ xdxd ≪ 1. (6.4)

It so happens that the other factors approximately cancel out in this case. The estimate
for the ratio would be on the order of 10−2. This makes such a process difficult to detect.

Another source of suppression is the size of the pdf’s at xd and xd. Their product would
be:

fdfd ∼ 10−2 (6.5)

Together these suppressions make detection rather difficult.
We will not do any further calculations related to this process, as they would be rendered

irrelevant due to the bounds in the rest of this chapter greatly increasing this suppression.

6.3 Effective Field Theory

Effective field theory (EFT) is an approach to particle physics that is often employed to
approximate more complicated theories. The basics of effective field theory are straight-
forward: at some energy scale µ ≪ Λ, where Λ is a cut-off energy associated with a UV
completion, we expand or integrate out any contributions from the theory above the cut-off.
What is left after this procedure are EFT operators. These ignore the underlying processes
at high energy, and only consider the effects we see at low energy. This significantly sim-
plifies calculations.

A prime example of an EFT is the Fermi theory of β-decay, where the decay is mediated
by a contact interaction between four fermions. Of course, we now know the weak interaction
explains β-decay using a W -boson. In hindsight, Fermi theory is an EFT approximation to
the weak interaction. A basic interaction Lagrangian for Fermi theory is as follows:

LF =
GF√
2
(pγµn)(eγ

µνe) + h.c., (6.6)

where we haveGF , the Fermi constant. Fermi theory predates the quark model and therefore
contains neutrons and protons instead. This theory can be derived from the weak interaction
in the limit that the gauge boson mass goes to infinity. That is exactly what you would
expect when looking at interactions far below the scale Λ associated with the theory that
describes those interactions.

To see that this is indeed the EFT associated with the weak interaction, look at the
Feynman diagram in Figure 6.3. This diagram is the leading-order contribution to beta-
decay of a neutron into a proton. Following the steps in [50], the amplitude associated with
such a diagram is:

iM =
( gw
2
√
2

)2
[us(p)γ

µ(1− γ5) cos θcus′(p
′)]

−i(gµν − kµkν/M
2
W )

k2 −M2
W

[ur(q)γ
ν(1− γ5)ur′(q

′)],

(6.7)
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d

νe

u

W−

e−

Figure 6.3: β-decay in the Standard Model.

where gw is the weak coupling constant, θc is the Cabibbo angle, us(p) is a fermion spinor
with spin s and momentum p, and MW is the mass of the W boson. Furthermore, as the

W boson is an internal line in the diagram, we have its propagator:
−i(gµν−kµkν/M2

W )

k2−M2
W

, with

k = p − p′. Note that this momentum will generally be on the order of 1MeV (see Figure
10.2 in [50]), much lower than MW , which is approximately 80.4GeV [17]. Using this fact
we can approximate the propagator:

−i(gµν − kµkν/M
2
W )

k2 −M2
W

→ igµν
M2

W

k2 ≪M2
W , (6.8)

combining this with the Feynman rules for each vertex we get:

i

(
gw

2
√
2MW

)2

= i
GF√
2
, (6.9)

which contains the familiar Fermi constant, just like in eq. (6.6). Reinserting this back into
our amplitude yields:

iM = i
GF√
2
[us(p)γ

µ(1− γ5) cos θcus′(p
′)][ur(q)γµ(1− γ5)ur′(q

′)], (6.10)

which is a 4-point interaction corresponding to the diagram in Figure 6.4, and corresponds
to the interactions in eq. (6.6).

d

u

e+

νe

Figure 6.4: β-decay in the EFT approximation of weak interactions. The W boson has
been replaced by a 4-point interaction vertex.

By simply making the assumption that the energy of the W boson is much greater
than the energy scale of the interaction, we have obtained an EFT approximation, which is
similar to the Fermi theory. The EFT ignores the underlying structure of the high energy
theory, only keeping the results visible at lower energies. This is a powerful tool, as it allows
us to constrain new physics without having to specify an actual theory. Conversely, one can
take a UV completion, integrate out (when there are loops) or expand the contributions
from high energy particles, and be left with just EFT operators. The operators can then be
constrained by experiment. These two approaches are known as bottom-up and top-down,
respectively.

6.3.1 Standard Model Effective Field Theory

A popular EFT framework in the context of new physics is the Standard Model Effective
Field Theory (SMEFT). SMEFT is an EFT at the level of the SM, consisting of the SM
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Lagrangian with any contribution from new physics captured in higher dimension EFT
operators. SMEFT only contains the particles of the SM, but the new, higher dimensional
operators introduce additional interactions between them. Therefore, the effects of new
particles are only felt through these effective operators of known particles. The SMEFT
Lagrangian can be defined as [51]:

LSMEFT = L(d=4)
SM +

∑
i

ci

Λd−4
i

O(d≥5)
i , (6.11)

where, ci are the Wilson coefficients associated with each operator Oi, Λi is the associated
energy scale and d is the dimension of the operators. Usually, SMEFT is truncated beyond
dimension-six. Higher order operators are further suppressed, therefore they contribute less
and can be ignored in most cases [52]. Furthermore, dimension-five operators are not useful
to us, as they only consist of couplings between the Higgs field and leptons. These operators
are mainly relevant for neutrino mass generation [52]. That leaves us with the following
model:

L = L(d=4)
SM +

∑
i

CiO(d=6)
i , (6.12)

with the constant defined as:
Ci =

ci
Λ2
i

(6.13)

Operators in SMEFT are essentially the same as in any QFT, except they treat com-
plicated processes as contact interactions between SM particles. Just like how Fermi the-
ory treats the weak interaction as a contact interaction between four fermions. Broadly,
dimension-six SMEFT operators can be classified into several categories: four fermion op-
erators, bosonic operators, scalar operators and mixed operators. In Table 6.1 we have
summarized all four fermion operators, classified according to their chirality.

All the operators in this table can be split into separate operators linking particles of
specific generations. There are 2778 operators in SMEFT up to dimension-six [53], 81 if
you restrict them to 1 generation. Most of these operators are irrelevant for our purposes.
Thankfully, by integrating out contributions from new particles, dictionaries linking BSM
physics to SMEFT operators exist, such as [51]. In Table 6.2 we have extracted the relevant
parts of such a dictionary, by displaying the operators associated with the new gauge bosons.
For future reference, we also list the operators associated with the scalar leptoquarks.

Now that we have the relevant operators, we can start compiling bounds on these. This
is a rather elaborate task, as bounds come from many experiments, scattered across many
publications. Some bounds come from best fits of SMEFT operators to a multitude of
experimental data, others come from single experiments. Among the experimental data,
are results from ATLAS, CMS and electroweak precision observables.

An important thing to note is that bounds are in principle set on a Wilson coefficient
Ci =

ci
Λ2
i
. To find bounds on Λ, the scale of new physics, a choice for ci has to be made.

There is no consistent standard for this in literature. For example, ATLAS publications

employ coefficients of the form g2

Λ2 with g2/4π = 1, see [54]. This results in a rather large
value for g2, thereby inflating the value of Λ as a result. The value of g2/4π at 5TeV in
our case is approximately 1/(11.6), which leads to a bound on Λ that is only a 0.29 of the
published figure. Clearly there are some very high bounds on the operators constraining
the U1 leptoquark, seemingly excluding the scenario at the TeV-scale. These high bounds,
far beyond the reach of collider experiment, primarily come from rare meson decays. We
will discuss these in section 6.4.

The bounds on R2 and R̃2 are much more relaxed in comparison and are not excluded
up to the same energy scale. Our attention will turn to these particles in chapter 7.
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Chirality Symbol Operator Symbol Operator

(LL)(LL) Oll (lLγµlL)(lLγ
µlL)

O(1)
qq (qLγµqL)(qLγ

µqL) O(3)
qq (qLγµσiqL)(qLσiγ

µqL)

O(1)
lq (lLγµlL)(qLγ

µqL) O(3)
lq (lLγµσilL)(qLσiγ

µqL)

(RR)(RR) Oee (eRγµeR)(eRγ
µeR)

Ouu (uRγµuR)(uRγ
µuR) Odd (dRγµdR)(dRγ

µdR)

O(1)
ud (uRγµuR)(dRγ

µdR) O(8)
ud (uRγµTAuR)(dRγ

µTAdR)

Oeu (eRγµeR)(uRγ
µuR) Oed (eRγµeR)(dRγ

µdR)

(LL)(RR) Ole (lLγµlL)(eRγ
µeR) Oqe (qLγµqL)(eRγ

µeR)

Olu (lLγµlL)(uRγ
µuR) Old (lLγµlL)(dRγ

µdR)

O(1)
qu (qLγµqL)(uRγ

µuR) O(8)
qu (qLγµTAqL)(uRγ

µTAuR)

O(1)
qd (qLγµqL)(dRγ

µdR) O(8)
qd (qLγµTAqL)(dRγ

µTAdR)

(LR)(RL) Oledq (lLeR)(dRqL)

(LR)(LR) O(1)
quqd (qLuR)iσ2(qLdR)

T O(8)
quqd (qLTAuR)iσ2(qLTAdR)

T

O(1)
lequ (lLeR)iσ2(qRuL)

T O(3)
lequ (lLσµνeR)iσ2(qRσ

µνuL)
T

Table 6.1: Overview of relevant dimension-six four fermion operators as found in [51]. TA
are the Gell-Mann matrices, and σµν = − i

4 [γ
µ, γν ] is the spin representation of the Lorentz

Lie algebra.

Boson Operators

ZR Oll,O
(1)
qq ,O(1)

lq ,Oee,Odd,Ouu,Oed,Oeu,O(1)
ud ,Ole,Old,Olu,O

(1)
qu ,O(1)

qd ,

OϕD,Oϕ□,Oeϕ,Odϕ,Ouϕ,O
(1)
ϕl ,O

(1)
ϕq ,Oϕe,Oϕd,Oϕu

WR Oϕ4,O
(1)
ud ,O

(8)
ud ,Oϕ,OϕD,Oϕ□,Oeϕ,Odϕ,Ouϕ,Oϕud,

U1 O(3)
lq ,O

(1)
lq ,Oed,Oledq

R2 Olu, Oqe, O(1)
lequ, O

(3)
lequ

R̃2 Old

Table 6.2: Operators generated by new gauge bosons and scalar leptoquarks present in
Pati-Salam theory [51].

6.4 Rare Meson Decays

Mesons such as the B-meson, kaon and pion have decays mediated by U1 leptoquarks. These
decays have long been known to put significant constraints on the Pati-Salam model, see
for example [59, 60]. The rare decays shown in Figure 6.5, K0

L → e±µ∓, π+ → e−νe and
Bs → e±µ∓, provide some of the more stringent bounds, depending on the flavour structure
of the leptoquark. The kaon and B-meson decays are examples of lepton flavour violation
and do not occur in the SM. These decays can generally be measured to high precision [61].

Note that, of the three decays in Figure 6.5, the first two do not mix generations in
their vertices, whereas the last one does. In the most simple case, where the leptoquark
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Operator Precision Experiment [TeV] Collider [TeV] Reference

O(1)
lq 4.2 7.6(26.0) [54, 55]

O(3)
lq 9.2 [55]

O(3)[1111]
lq 5.5 [56]

Oed 3.6 7.8(26.5) [54, 55]

O[1111]
ed 1.2 [56]

O[1212]
ed 319 [56]

Oqe 4.6 6 [57, 58]

O[3333]
qe 0.3 [56]

Olu 7.6 5.2 [57, 58]

Old 8.1 5.0 [57, 57]

O[1111]
ledq 220 [56]

O[1112]
ledq 1205 [56]

O[1113]
ledq 31 [56]

O[1123]
ledq 7.4 [56]

O[2112]
ledq 1840 [56]

O[1313]
ledq 5.2 [56]

O[2212]
ledq 227 [56]

O[2112]
lequ 7.0 [56]

O[3333]
lequ 2.1 [58]

O[3333]
lu 1.4 [58]

Table 6.3: Bounds on Λ for several operators related to U1, R2 and R̃2 leptoquarks, assuming
ci = 1,

is forbidden from mixing generations at tree level, the last one will not occur. Therefore,
these decays constrain different parts of the parameter space of the theory. The current
experimental observations and SM predictions are listed in Table 6.4. The ratio between
pion decay to a muon and decay to an electron is measured to high accuracy (10−7), and is
about 1σ from the SM prediction. The kaon and B-meson decays are also measured up to
high precision.

To relate these observables to our case, look at the interaction Lagrangian, taking into
account the three generations of fermions:

Lint =
g4√
2
(qLiγµVLl

i
L + qRjγµVRl

j
R)X

µ + h.c., (6.14)

where qL, qR, lL, lR are the left- and right-handed quarks and leptons, i = 1, 2 is an SU(2)L
index and j = 1, 2 is and SU(2)R index. This expression contains all generations, as
qL1 = (u, c, t), and similarly for the other fermions. The matrices VL,R ∈ U(3) determine
which generations the leptoquarks will couple to. This structure, together with the mass of
the leptoquarks, forms a parameter space. In [61] they constrain this parameter space for
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π+

u

e+

νe

d

U1 K0

d

µ+

e−

s

U1 B0
s

s

µ+

e−

b

U1

Figure 6.5: Rare meson decays mediated by U1 leptoquarks. From l. to r.: π+ → e−νe,
K0 → e−µ+ and B0

s → e−µ+.

Observable Measurement SM prediction

Re/µ(π
+ → ℓ+νl) 1.2327(23)× 10−4 1.2352(1)× 10−4

BR(K0
L → e±µ∓) < 4.7× 10−12 0

BR(B0
s → e±µ∓) < 5.4× 10−9 0

Table 6.4: Branching ratios for several rare meson decays as reported in [61]

a very similar model based on SU(4)C × SU(2)L × U(1)R. This model contains the exact
same leptoquark, but the right-handed fermions are in slightly different representations, as
there is no SU(2)R symmetry. In their case, one has the following interaction Lagrangian:

Lint =
g4√
2
(qLiγµVLl

i
L + dRγµVReR + uRγµV

′
RνR)X

µ + h.c., (6.15)

where VL, VR and V ′
R are 3 × 3 matrices linking the different generations. This can be

restated by using chiral projectors PL,R and expanding the i index [61]:

Lint =
g4√
2
(dγµ[PLVL + PRVR]e+ uLγµVCKMVLν̃L)X

µ + h.c., (6.16)

where only SM fermions are kept, leaving out the right-handed neutrinos. They then match
these interactions to SMEFT operators and find predictions for rare meson decays due to
leptoquarks. In this way they find bounds on the leptoquark mass for different choices
of parameters. Depending on these choices, the decay that delivers the most stringent
constraint also changes. The highest mass constraint is obtained when setting VL = VR = I3.
In this case a 90% C.L. upper bound on K0

L → e±µ∓ gives a lower bound of 2074TeV for
the mass of U1. The overall lowest mass bound is for the following set of parameters:

VL =


0 −0.04− 0.06i −0.09− 0.99i

0 0.20− 0.98i −0.05 + 0.06i

1 0 0

 , VR =


0 −0.06 + 0.04i −0.23− 0.97i

0 0.12− 0.99i −0.06− 0.04i

1 0 0

 ,

in which case the mass is constrained by the Bs → e±µ∓ decay, giving a lower bound
of 90TeV. Clearly, these constraints apply to our case as well, since we have the exact
same leptoquarks. A similar lower bound was earlier obtained in [62]. Therefore, we must
conclude that experimental constraints rule out the 5TeV vector leptoquark scenario, unless
these leptoquarks couple in ways that evade these constraints.

Along with the leptoquarks, these constraints push the Pati-Salam theory up to energies
as high as 2PeV. Since the scalar leptoquarks obtain their mass at this scale, it would be
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expected that these are ruled out along with the vector leptoquarks. However, these scalar
leptoquarks can evade the bounds from rare meson decays, while being relatively light, due
to fact that their couplings to first and second generation fermions are small. Therefore, if
we can find a way to make them lighter than the Pati-Salam scale, there is still a scenario for
light leptoquarks. We will establish a mechanism for light scalar leptoquarks in section 7.2.

6.5 Nonunitary Models

In the previous section the parameter space for the U1 leptoquarks was constrained under
the assumption that the generation structure is determined by unitary matrices:

VL, VR ∈ U(3),

in similar fashion to the CKM and PMNS matrix for flavour-changing weak interactions,
see section 2.2.4. If there are only three generations, this assumption seems reasonable, as
these matrices relate mass eigenstates to flavour eigenstates. A change of basis from one
orthonormal basis to another should be unitary, unless there are additional dimensions, like
a fourth generation of fermions. Furthermore, when a W boson changes a down quark into
either an up, charm or top, the total probability to end up in either of these states should
theoretically be 1:

|Vud|2 + |Vcd|2 + |Vtd|2 = 1, (6.17)

experimentally this has been verified to be 0.9985(7), a 2.2σ deviation from the SM [17].
As we stated, if there are 4 generations, the subspace of three generations does not need
to be unitary. This could be one possibility for creating a nonunitary model for the vector
leptoquarks.

A unitary VL,R is clearly not viable for a model with TeV-scale vector leptoquarks, as
shown in section 6.4. Therefore, we could simply try the following matrix at tree level:

VL,R =


0 0 0

0 1 0

0 0 1

 , (6.18)

however, this leads to a problem. The leptoquarks are in the adjoint of SU(4), as are
the gluons. Therefore, at the PS-scale, the gluons and leptoquarks should couple to all
matter in the exact same way. Gluons couple identically to each generation, logically the
vector leptoquarks should too. This means we need some mechanism to create differences
in couplings below the PS-scale, explicitly breaking the symmetry, as well as spontaneously.

Another potential issue with a nonunitary model, is whether it actually evades the
bounds. After all, due to flavour-changing interactions, there could still be effective interac-
tions with first generation leptons, due to higher order diagrams. For example the penguin
diagram in Figure 6.6 shows how forbidden decays could still occur even with the generation
structure in eq. (6.18). These higher order corrections are much smaller than 1, however.

To show that higher order corrections to VL,R are not significant, we need to make an
estimate of the effective first generation coupling of the leptoquark due to a diagram like in
Figure 6.6. A simple estimate would be:

M =
1

16π2
GF√
2
m2

K0V
CKM
cd UPMNS

e2 ≈ 2× 10−9 (6.19)

where we have taken into account the 1/16π2 factor from a loop integral, the Fermi constant
for weak interactions, and the mixing matrices for quarks and leptons. This number is so
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s

d c

W−

µ+

νµ

U1

e+

Figure 6.6: Penguin diagram of K0 → e−µ+ decay, mediated by a U1 leptoquark

small that contributions from flavour-changing processes like this should not lead to conflicts
with bounds on these decays. This is under the assumption that an effective coupling of 1
to first generation matter leads to a bound of 2PeV, therefore a coupling on the order 10−9

leads to a bound of ∼ 20MeV, approximately.
Nevertheless, obtaining a nonunitary model from a GUT, or at all, is rather complicated.

Some attempts are made in [63–66]. These models often involve separate gauge groups for
each generation [64] or a separate group for the third generation [65]. This prevents the
whole theory from being embedded in a single copy of SO(10). Others introduce groups
like Sp(4) to include a flavour symmetry in their model [63]. These theories often reduce
to the 4321 model at a certain scale, corresponding to the gauge group:

SU(4)3C × SU(3)2+1
C × SU(2)L × U(1)Y , (6.20)

where the superscripts indicate to which generations SU(3) and SU(4) couple. These models
essentially only let the third generation couple to the U1 leptoquarks at lower energies. This
allows them to evade the stringent bounds. Some theories that do not rely on this mechanism
introduce extra particles, for example vector-like fermions [66]. These vector-like fermions
mix with the ordinary fermions, resulting in nonunitary couplings.

The added complexity of these models, and their inability to be embedded in a minimal
GUT makes them unattractive candidates. Therefore, we will not explore these theories
any further in this work.

6.6 Conclusions

In this chapter we have examined some phenomenology associated with the U1 leptoquark.
The observable shown in section 6.2 is ruled out at low energies due to rare meson decays,
as shown in section 6.4. Therefore, we are left with either of the following cases:

• The specific Pati-Salam model we have discussed is valid at energies of 2PeV or larger,

• The U1 Leptoquark is light, but does not couple (strongly) to first generation fermions.

• The model is not an accurate description of physics at high energies.

In the first case it would be impossible to measure effects of the leptoquark with current
colliders, as LHC operates at ECM = 14TeV, or even at future colliders such as the Future
Circular Collider with ECM = 100TeV.

In the second case we need to either establish a mechanism to create these different cou-
plings in the model we treat, or let go of the model entirely, in order to examine observables
with second and third generation fermions.

The option that the Pati-Salam model simply does not describe physics at higher energies
has of course always been an option, but one that is impossible to verify currently.
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Further examination of the collider phenomenology associated with U1 leptoquarks does
not seem like a useful exercise. Constraining the flavour structure of U1 leptoquark through
experiments such as meson decay measurements is still viable, however.

The conclusions in this chapter lead us to shift our focus to the scalar leptoquarks
contained in the GUT.

67



Chapter 7

Scalar Leptoquarks

In section 4.2 we identified several scalar leptoquarks, coming from the 10, 120, and 126
representations. The latter two contain pure leptoquarks that do not mediate proton decay,
these are R2 and R̃2, with SM representations (3, 2, 7/6) and (3, 2, 1/6), respectively. Both
leptoquarks exist in the 120 and the 126, the key difference being that those in the 120 have
antisymmetric couplings whereas those in the 126 have symmetric couplings.

The bounds on the Pati-Salam scale, established in section 6.3.1, exclude the existence of
vector leptoquarks up to 2PeV in the model we discuss. In principle, the scalar leptoquarks,
R2 and R̃2, obtain their mass at this scale too, if the extended survival hypothesis is followed.
In this chapter, we will examine whether it is possible to make these leptoquarks light (TeV-
scale). Firstly, we will attempt to do this by adjusting the parameters in the scalar potential.
Secondly, we will attempt to do so by relaxing the extended survival hypothesis. Before
discussing the mass of the scalar leptoquarks, we spend some time on fine-tuning.

After establishing a mechanism to obtain TeV-scale scalar leptoquarks, we will discuss
the couplings of these leptoquarks to fermions. In this section we will determine that the
Yukawa couplings of the scalar leptoquarks are similar to the Yukawa couplings in the SM.
The findings in this section lead us to add the 126 representation to the model.

As stated, several changes will be made to the model in this chapter. The resulting
model is given in an overview in section 7.4. In this section we compute the running of the
couplings once more to show that the model can still achieve unification.

Lastly, we will move on to studying the phenomenology of these scalar leptoquarks. We
will collect important bounds on the model and identify interesting collider observables for
our scenario. The hierarchy in the couplings of the leptoquarks allows them to evade the
bounds set due to rare meson decays. As a result of this hierarchy, we focus on observables
with third generation fermions.

7.1 Fine-Tuning

Due to the high Pati-Salam scale (2PeV), we will need very small couplings to achieve
small masses for scalar leptoquarks. Usually, we want couplings to be of order 1, and could
consider the coupling we will compute in eq. (7.5) to be fine-tuning.

The main argument against fine-tuning comes from the principle of ”naturalness”, that
any coupling defined in terms of some cut-off scale Λ must be of order 1 [67]. This is
a heuristic argument and not an established law. It functions as a guiding principle in
formulating theories, stemming from an appeal to ”beauty”. Whether this is a good guiding
principle remains a topic of debate.

Another definition of naturalness is that in order to be considered natural, a theory
must be stable with respect to small changes in its fundamental parameters. That is to say,
if we change a parameter by a small amount, the theory should not be incredibly different.
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Very small parameters are clearly more susceptible to such changes.
Theories of BSM physics are often compared to each other by the amount of fine-tuning

necessary. Several benchmarks exist that attempt to quantify fine-tuning. Following these
measures, a theory with less fine-tuning is considered more natural and therefore a better
candidate for a BSM theory. The flip side however, is that theories with less fine-tuning are
often more complex [67].

The question is: do the couplings we establish in eq. (7.5), or in any part of our Higgs
sector, constitute unnatural fine-tuning. Furthermore, if it is unnatural fine-tuning, is that
a problem? We could make the argument that Yukawa couplings can be very small and
differ by orders of magnitude from each other. Therefore, it would be fine for scalar masses
as well.

This argument does not take away the fact that this mass fine-tuning seems very arti-
ficial. Most importantly, it does not pass the test of being stable under small changes in
the parameters. Therefore, we eventually choose to find a different mass mechanism, which
does not require as much fine-tuning.

7.2 Scalar Leptoquark Masses

In principle, the scalar leptoquarks identified in section 4.2.4 will obtain a mass at the Pati-
Salam scale, as assumed in section 5.3.3. This in accordance with the extended survival
hypothesis (section 5.4): since the leptoquarks are not necessary below the PS-scale, they
obtain a mass at that scale. In this section we show how the scalar leptoquarks achieve
mass, and explore whether it is possible to obtain a mass for the scalar leptoquarks that
is lower than the PS-scale. In principle, the mass of the scalars is not as strictly related
to the symmetry-breaking scale as the gauge boson mass. The gauge boson mass is deter-
mined only by the vacuum expectation value and the coupling constant of the associated
broken symmetry. This coupling constant is determined by the running of the couplings,
see section 5.4. The parameters in the Higgs sector, however, are not restricted in this way,
and can therefore be tuned to achieve different masses. Excessively restricting parameters
in order to get a desired outcome can be considered unnatural fine-tuning. We have briefly
discussed this in section 7.1. For several reasons, including fine-tuning, we choose to provide
the leptoquarks with mass at a different scale in section 7.2.1.

The scalar leptoquarks embedded in the (15, 2, 2) are R2 and R̃2. We intend to calculate
the masses of these particles in this section. In principle the other fields, including an SM
doublet, in the (15, 2, 2) should get similar masses, but this is not relevant for our purposes.

The potentials involving the 120 Higgs representation are given in section 5.3. Assuming
the fields obtain a mass due to the vev of the 210, the relevant terms are:

V = αTr
[
Φ†
120Φ120

]
Tr

[
Φ†
210Φ210

]
+ β Tr

[
Φ†
120Φ

†
210Φ210Φ120

]
, (7.1)

where only the (15,2,2) of the 120 is relevant. When the relevant field in the 210 obtains a
vev u, this expression becomes:

V = 4αu2[(R̃2)
2 + (R2)

2] +
5

24
βu2[(R̃2)

2 + (R2)
2], (7.2)

where we have only kept leptoquark fields. Now it would seem that these leptoquarks obtain
a mass on the order of u, assuming the couplings are of order 1. However, if we allow the
couplings to be much smaller, or make them cancel out each other almost entirely, we could
obtain a much lower mass than u. The mass of these particles will be as follows:

m2
R2

=
∂2V

∂(R2)2
= 8αu2 +

5

12
βu2 → mR2 = u

√
8α+

5

24
β (7.3)
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and equivalently for R̃2. Since the PS-scale was constrained to lie at much higher energies
in section 6.3.1, we investigate what values α and β should take in the case u ∼ 2PeV, in
order to obtain a leptoquark mass is 5TeV. The result is:

m2
R2

u2
= 8α+

5

24
β =

1

160000
. (7.4)

For simplicity, assume the couplings are equal, we then obtain:

α = β = 7.6× 10−7 ∼ O(10−7), (7.5)

which means we have to tune the parameters to 7th decimal to obtain the right mass in
this case. Purely mathematically, it seems to be possible to get light scalar leptoquarks at
tree level. However, we deem this not desirable, based on section 7.1.

Another thing to consider are loop-level corrections. The mass we calculated is at tree
level. Diagrams at the loop level may create a higher mass. Considering how small our
parameters have to be to ensure a light mass, these corrections may alter it significantly.
This is akin to the hierarchy problem for the Higgs boson. The mass of the Higgs particle
is pulled up to the scale of new physics by loop corrections [15, 67]. This is an unsolved
issue of GUTs.

A problem of the approach in this section is that it interferes with the vev’s of the
doublets from the 120 established in eq. (5.60). Instead of the vev’s and PS scale having
a ratio of approximately 1, there is now a large hierarchy. This would cause the vev’s to
be much larger than desired, which will give fermions incorrect masses. To compensate for
this, we would have to tune the parameters in eq. (5.60).

In conclusion, due to level of fine-tuning and the issue with the vev’s, we decide to
choose a different mechanism for the scalar leptoquark masses.

7.2.1 Alternative Mass Mechanism

We can attempt to give the scalar leptoquarks a mass using the vev of the 16 representation,
which breaks SU(3)C × SU(2)L × U(1)R × U(1)B−L to the SM. This symmetry breaking
has so far not been constrained to lie at much higher energies, so we are free to keep it at
5TeV. This means that we are relaxing the extended survival hypothesis slightly, though
this is not a problem, as it is merely a guiding principle. Usually, we only keep the strictly
necessary Higgs multiplets at each energy scale. In this case, the leptoquarks come from
the (15, 2, 2) at the PS-scale. When the PS-group breaks, only the Higgs doublet contained
in this representation needs to be kept massless in order to explain the fermion masses, the
rest of the fields can be massive. In this section we assume that the scalar leptoquarks also
stay massless along with the Higgs doublet.

The part of the potential responsible for giving the leptoquarks mass is:

V = αΦ†
16+Φ

†
120Φ120Φ16+, (7.6)

when the field φ0 in the 16 acquires a vev, this term gives the following mass:

m2
R2

=
∂2V

∂(R2)2
= 2αv2, (7.7)

and similarly for R̃2. This is calculated based on the assumption that m120 is set to 0 in
the potential at the GUT-scale. Setting v = 5TeV and α = 1/

√
2, we obtain the desired

result:
mLQ = 5TeV. (7.8)
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In fact there is no reason why we cannot make the mass even lower, as low as experimental
bounds would allow for. By changing α we can feasibly get a mass of 1.5TeV, which is
about the lower limit from collider experiment, see section 7.5.2

It seems that this approach is more promising than the one in section 7.2, as we did not
rely on fine-tuning. The relations determining the vev’s of the doublets from the 120 in eq.
(5.60) are no longer valid when using this mechanism for the mass, since the vev of the 210
and the mass of the fields in the 120 are no longer of the same order. This can be fairly
easily remedied, however, as a coupling between two 16’s, a 10 and a 120 can replace the
terms in eq. (5.49):

αΦ†
16+Φ

†
10Φ120Φ

†
16+ + h.c. (7.9)

When the relevant fields in the 10 and 16 acquire a vev, we get the following vev’s for the
doublets in the 120:

⟨Σ1,2⟩ ∼ α
⟨Φ16+⟩2

M2
120

⟨Φ10⟩, (7.10)

which is in fact less complicated than the mechanism presented in section 5.4.2, since we
do not need cubic terms.

The running of the couplings has changed as a result of this new mass mechanism. We
will address this in section 7.4, after making some further modifications to our scalar sector
in section 7.3. In conclusion, giving the scalar leptoquarks a mass through a coupling with
the 16 is the approach we choose to obtain TeV-scale leptoquarks.

The findings in this section differ from [12]. In that work it was argued that all scalar
leptoquarks were at the GUT-scale. Here we have shown that this is not necessarily the
case.

7.3 Yukawa Couplings

In order to examine the phenomenology and assess the bounds associated with the scalar
leptoquarks we need to determine their couplings with fermions. These Yukawa couplings
are also responsible for making the model consistent with fermion masses. This connection
allows us to create a picture of the couplings of the scalar leptoquarks. However, determining
precise numerical values will prove difficult. The findings in this section will also lead us to
include the 126 representation and its leptoquarks.

Several publications have attempted to reproduce fermion masses using various combi-
nations of Higgs doublets from the 10, 120 and 126 representations [68–71]. The procedure
is as follows: identify the free parameters and fit them to reproduce the fermion mass spec-
trum. These fits are obtained at µ = MGUT , so they are not valid at lower energy scales.
In order to properly assess whether the couplings of the leptoquarks violate any bounds we
would need to run these couplings down the SM. We will not attempt this. Furthermore,
when fitting parameters to the Yukawa sector, there is a freedom to pick one Yukawa ma-
trix to be diagonal. This freedom in determining the couplings makes this method not very
suited to determining bounds on scalar leptoquarks.

At energies above the Pati-Salam scale (≥ 2PeV), the scalar leptoquarks couple to
fermions in the same way as the SM doublets from the 120 and 126. Below this scale they
break apart into separate representations and their couplings can deviate only a limited
amount through running. For this reason we can assume that the hierarchy and order of
magnitude of the couplings of the leptoquarks is similar to that of the SM Yukawa couplings,
which are shown in Table 7.1.

Examining some fits to fermions masses, a problem immediately arises, as mentioned
in section 5.1.1: in [71], it is clearly shown that using Higgs doublets from a complex 10
and a real 120 is not consistent with experimental data, as it leads to a 7.3σ disagreement
with the τ mass. These are the same representations we are using. Therefore, we have
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Yukawa coupling yt yc yu

Value 0.98 7.3× 10−3 1.4× 10−5

Yukawa coupling yb ys yd

Value 2.4× 10−2 6.0× 10−4 2.8× 10−5

Yukawa coupling yτ yµ ye

Value 0.1× 10−2 6.1× 10−4 2.9× 10−6

Table 7.1: Yukawa couplings of fermions, as calculated from their masses [17], according to
the relation yf =

√
2
mf

v , with v = 246.22GeV, the Higgs vev.

to conclude that the model is not viable, unless we add extra representations. In [68, 69],
it is found that a Yukawa sector containing a real 10, a real 120 and a complex 126 can
explain the fermion masses with minimal error. The fit performed in [70] for this setup
found a significant deviation (3.5σ) for the top quark mass, however. Given that the other
two publications do not have this problem, we choose to adopt the model with a real 10, a
real 120 and a complex 126. Adding the 126 means the model will contain the R2 and R̃2

with symmetric couplings.
The Yukawa sector now takes the form:

L = ΨT
L(Y10Φ10 + Y120Φ120 + Y126Φ126)ΨL, (7.11)

where we have added Y126 and Φ126 to include the 126 representation. This Lagrangian will
be the source of all scalar leptoquark interactions with fermions. Unfortunately, determining
the Yukawa matrices (at the SM scale) in this Lagrangian is a very involved task and would
rely on many assumptions. Therefore, we do not attempt to do this.

7.4 The Revised SO(10) Model

In this chapter we have made several revisions to the model we treat. Firstly, in section 7.2.1
we decided to include the (15, 2, 2)120 all the way down toMZR

, where it obtains mass. Sec-
ondly, in section 7.3 we opted to include the (15, 2, 2)126, which like the same representation
from the 120 obtains a mass atMZR

. Furthermore, we make the 10 real instead of complex.
An overview of the model, listing the representations at each scale is given in Table 7.3.
Another overview, showing at which scale each particle obtains mass is shown in section A.4.
The revisions to the scalar sector require us to compute the running once again.

Gauge group β-coefficients

SU(4)C × SU(2)L × SU(2)R ×D
(
6 31

2
31
2

)
SU(4)C × SU(2)L × SU(2)R

(
5
3

29
6

31
2

)
SU(3)C × SU(2)L × U(1)R × U(1)B−L

(
9
2

101
12

97
8 1

)
SU(3)C × SU(2)L × U(1)Y

(
−7 − 19

6
41
10

)
Table 7.2: β-coefficients for every gauge group in the revised model, listed in the same order
as the groups they correspond to.

The change with respect to the running presented in section 5.4.2 is that the β-coefficients
should be computed with the added representations, all the way down to MZR

. The new
β-coefficients are listed in Table 7.2. Especially below the PS-scale there is a considerable
change in these coefficients.
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The result of the new running is shown in Figure 7.1. The associated coupling constant
and unification energy are:

α−1
U = 3.65, MU = 1.1× 1018GeV. (7.12)

The running has been significantly altered, the unification energy is higher and the fine
structure constant of the GUT is larger. The model still achieves unification below the
Planck scale, as required.

Figure 7.1: Running of the couplings including the 126 representation and scalar leptoquarks
down to MZR

.

Figure 7.1 shows that for SU(2)L and SU(3)C , the running is significantly altered past
5TeV, as opposed to the running in Figure 5.3. This is an important prediction of the
model and measuring these coupling constants provides another way to determine whether
this model is valid.

In Figure 7.2 MU and MD are shown as a function of MWR
and MZR

. In the graph
on the left, the side on the right of the dashed lines marks the values not excluded in
section 6.4. The condition that MU > MD is clearly satisfied for the plotted regions.
Therefore, both MWR

and MZR
can be further increased, if experimental results demand

it, without excluding the model.

Figure 7.2: MU and MD as functions of MWR
on the left and MZR

on the right, for
the revised model. The dashed line marks the minimal value for MWR

, as established in
section 6.4. For the graph on the left we set MZR

= 5TeV.
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Symmetry Group Energy Scale Gauge Bosons Fermions
per generation

Scalars

SO(10) ≥MU

≥ 1018GeV
45 16 10, 16, 54, 120, 126, 210

SU(4)C × SU(2)L × SU(2)R ×D MU −MD

1018GeV − 2× 1017GeV
(15, 1, 1),
(1, 3, 1),
(1, 1, 3)

(4, 2, 1),
(4, 1, 2)

(1, 2, 2)10, (1, 2, 2)120,
(4̄, 1, 2)16, (4, 2, 1)16,
(15, 2, 2)120, (15, 2, 2)126,
(15, 1, 3)210, (15, 3, 1)210,
(1, 1, 1)210

SU(4)C × SU(2)L × SU(2)R MD −MWR

2× 1017GeV − 2× 106GeV
(15, 1, 1),
(1, 3, 1),
(1, 1, 3)

(4, 2, 1),
(4, 1, 2)

(1, 2, 2)10, (1, 2, 2)120,
(4̄, 1, 2)16,
(15, 2, 2)120, (15, 2, 2)126,
(15, 1, 3)210

SU(3)C × SU(2)L × U(1)R × U(1)B−L MWR
−MZR

2× 106GeV − 5× 103GeV
(8, 1, 0, 0),
(1, 3, 0, 0),
(1, 1, 0, 0),
(1, 1, 0, 0)

(3, 2, 0, 1/3),
(3̄, 1, 1/2, 1/3),
(3̄, 1,−1/2, 1/3),
(1, 2, 0,−1),
(1, 1,−1/2,−1),
(1, 1, 1/2,−1)

(1, 2, 1/2, 0)10, (1, 2, 1/2, 0)120,
(1, 1, 1/2,−1)16,
(8, 2,−1/2, 0)120, (8, 2,−1/2, 0)126,
(3, 2,−1/2, 4/3)120, (3, 2,−1/2, 4/3)126,
(3, 2, 1/2, 4/3)120, (3, 2, 1/2, 4/3)126,
(1, 2,−1/2, 0)120, (1, 2,−1/2, 0)126

SU(3)C × SU(2)L × U(1)Y MZR
−MEW

5× 103GeV − 2× 102GeV
(8, 1, 0),
(1, 3, 0),
(1, 1, 0)

(3, 2, 1/6),
(3, 1,−2/3),
(3, 1, 1/3),
(1, 2,−1/2),
(1, 1, 1)

(1, 2, 1/2)10

SU(3)C × U(1)Q ≤MEW

≤ 2× 102GeV
(8, 1, 0),
(1, 1, 0)

Table 7.3: Overview of the representations of gauge bosons, fermions and scalars, belonging
to particles that are massless at the corresponding scale. For brevity the conjugate partners
of the fields from the 120 and 126 are left out for MWR

−MZR
.

Another aspect that should be checked in our revised model, is whether the 126 can
achieve a vev in the same manner as the 120. In fact, using a term like the one in eq. (7.9),
but replacing the 120 with the 126, provides the SM doublet from the (15, 2, 2)126 with
an appropriate vev. This should be no surprise, as the fields from the 120 and 126 are in
similar representations at the associated energy scale.

In short, the adjusted model still achieves unification at an acceptable scale. The rela-
tively low energy predictions of the model are now: an extra Z boson at or above 5TeV,
scalar leptoquarks on the TeV-scale, and a significantly adjusted running past 5TeV.

7.5 Phenomenology

We have established that we can give the scalar leptoquarks a mass at the TeV-scale,
therefore it is interesting to examine the associated phenomenology. In section 6.3.1 we
touched upon the SMEFT operators associated with the new particles in the model we
discuss, including those of the scalar leptoquarks. We reiterate the operators stated in
Table 6.2:

Boson Operators

R2 Olu, Oqe, O(1)
lequ, O

(3)
lequ

R̃2 Old

Table 7.4: Operators generated by R2 and R̃2 scalar leptoquarks. [51]

The bounds associated with these operators can be found in Table 6.3. The largest
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lower bound is 8.1TeV, however these constraints are listed assuming couplings of order
1. In section 7.3, we established that the couplings of the scalar leptoquarks are similar in
hierarchy and order of magnitude to the SM Yukawa couplings. Therefore, using SMEFT
bounds is not nearly as useful in this case. Other literature [72, 73] takes a different
approach, and states constraints on products of the Yukawa couplings instead, assuming a
mass of 1TeV.

As established in section 7.3, the Yukawa couplings are principally responsible for re-
producing the correct fermion masses, meaning there is an automatic hierarchy between the
generations. The third generation will couple the most strongly to the scalar leptoquarks,
the first generation will couple the least strongly. In this regard, scalar leptoquarks dif-
fer from vector leptoquarks, which couple identically to each generation, unless additional
mechanisms are introduced. This has an important consequence for our case, as most strin-
gent bounds from rare meson decays (see section 6.4) involve first and second generation
fermions. On the one hand, the small Yukawa couplings needed to explain the masses of
these generations help evade these bounds. On the other hand, these small couplings will
suppress many interesting observables significantly, making detection difficult.

The small couplings have the risk of turning the leptoquarks into the GUT equivalent
of WIMPs (weakly interacting massive particles, a candidate for dark matter). They could
exist at relatively low energies, but interact so weakly that they are impossible to prove
or disprove. However, detection through interactions with third generation fermions and
gluons could remain a viable option. The fact that we are left with leptoquarks coupling to
the third generation is not by accident. Constraints on interactions with third generations
are much lower, therefore BSM theories often focus on predicting new physics in this sector.
It could be the case that once experimental sensitivity catches up for third generation
interactions, the room for new physics disappears.

In this section we will first look at some bounds on the couplings of the scalar leptoquarks
and ultimately identify several collider observables for the R2 and R̃2 scalar leptoquarks.

7.5.1 Experimental Bounds

In section 7.3, we have established that the Yukawa couplings of the scalar leptoquarks are
similar in hierarchy to the SM Yukawa couplings. However, we do not have precise values
for the couplings. Therefore, constraints on these couplings will not provide a clear lower
bound on the mass of the scalar leptoquarks. Nevertheless, it is important to examine some
of these constraints on our parameter space. Several observables, such as atomic parity
violation (APV), the electron electric dipole moment (de), and rare meson decays provide
bounds for the couplings of scalar leptoquarks.

Bounds for scalar leptoquarks are generally set on the Yukawa couplings of a model
independent Lagrangian. For the R2 leptoquark we have the general Lagrangian [74]:

LY =zije
i
Rd

j
LR

2/3∗
2 + (zV †

CKM )ije
i
Ru

j
LR

5/3∗
2

+ (yVPMNS)iju
i
Rν

j
LR

2/3
2 − yiju

i
Re

j
LR

5/3
2 + h.c.,

(7.13)

with zij and yij Yukawa matrices. For R̃2 we have:

LY = −yijd
i
Re

j
LR̃

2/3∗
2 + (yVPMNS)ijd

i
Rν

j
LR̃

−1/3
2 + h.c. (7.14)

In Table 7.5 we have listed several bounds on scalar leptoquarks. The table list elements
from the Yukawa matrices in the above Lagrangians under the leptoquark it belongs to. We
use the notation y′ij = (Y V †

CKM ).
Clearly, many of the tighter constraints are on processes involving off-diagonal couplings,

or couplings with first and second generation matter.
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Observable R2 R̃2 Bound Ref.

de |Im(y′12z31)| < 6.2× 10−10 [73]

µ→ eγ |y′23z31|
2, |y′13z32|

2 < 1.2× 10−15 [73]

τ → eγ |y′33z31|
2, |y′13z33|

2 < 1.4× 10−7 [73]

τ → µγ |y′33z32|
2, |y′23z33|

2 < 1.9× 10−7 [73]

K0
L → e±µ∓ |y21y∗12 + y∗11y22| |y21y∗12 + y∗11y22| < 1.9× 10−5 [73]

µ− e conversion
∣∣∣y′†12z∗11∣∣∣2 |y12y∗11|

2 < 6.7× 10−11, < 2.1× 10−11 [73]

b→ sµ−τ+ |z23z∗32| |y22y∗33| < 1.28× 10−1 [72]

b→ sµ+τ− |z33z∗22| |y23y∗32| < 1.62× 10−1 [72]

APV |y′11|, |y11| |y′11|, |y11| ≤ 0.34,≤ 0.36 [74]

Table 7.5: Some bounds on combination of Yukawa couplings for scalar leptoquarks, with
MLQ = 1TeV. Every bound should be multiplied by (MLQ/1TeV)n, with n corresponding

to the order in the couplings: |y′23z31|
2 → (MLQ/1TeV)4.

Kaon decay (specificallyK0
L → e±µ∓), which constrained the vector leptoquark scenario

to high energies, see section 6.4, puts a fairly strong upper bound on the product of |y∗11y22|.
We can use our estimate that y11 ∼ yu and y22 ∼ yc, where yu,c are the up and charm quark
Yukawa couplings. The Yukawa couplings of fermions in the SM are shown in Table 7.1.
We find that the product of these couplings would be around 10−7, which is well below the
upper bound, though it remains a rough estimate.

Measurements of lepton flavour violating B-meson decays do not provide strong bounds
on scalar leptoquarks [75], in contrast to kaon decays.

Table 7.5 constrains the parameter space for the scalar leptoquarks, but as mentioned,
cannot exclude them at certain masses. At this moment there seems to be no reason to
believe that the scalar leptoquarks are excluded at the TeV-scale, provided their couplings
are roughly similar to the SM Yukawa couplings, for which we have given an argument.

7.5.2 Collider Processes

Considering that we have found no bounds directly excluding the existence of scalar lep-
toquarks with SM Higgs-like Yukawa couplings at the TeV-scale, we can examine some
potential collider observables. This section focuses on processes in pp colliders such as the
LHC, though some diagrams may be applicable to other colliders as well. The main rea-
son we focus on pp colliders is their high centre of mass energy (e.g. 14TeV for LHC, or
preferably 100TeV for FCC-hh), which is necessary for producing particles with masses on
the order of several TeV. Some interesting leptoquark observables not listed here, relating
to B anomalies, are discussed in [76]

One thing to note, is that the small couplings make detection of processes involving first
and second generation matter highly unlikely. Assuming the couplings are similar to the SM
Yukawa couplings, a process involving two vertices with strange quarks would be suppressed
by 10−7 due to the couplings alone. Therefore, the most promising phenomenology involves
third generation matter. Third generation matter would largely have to be created in
processes initiated by gluons, since the associated pdf’s are small, as can be seen in Figure
18.4 from [17]. Producing leptoquarks directly from gluons is also possible, though limited
to pair production, due to charge conservation.

76



CHAPTER 7. SCALAR LEPTOQUARKS

LQ

LQ

g

g
qi

LQ

qi LQ

li

Figure 7.3: Two diagrams contributing to the potential pair production of scalar leptoquarks
at LHC [77].

In Figure 7.3, two examples of scalar leptoquark pair production are shown. Generally,
pair production is unfavourable, as the suppression is naturally higher when producing two
heavy particles instead of one. The diagram showing gg → LQLQ, has the advantage of
involving the coupling of the strong force, which is much larger than the Yukawa couplings
involved in the diagram for qq → LQLQ, for first or second generation fermions. The
downside is, that the gluons in the proton generally have lower momenta than the quarks,
as is apparent from the pdf’s of the proton [49]. A search for pairs of scalar leptoquarks
decaying into muons or electrons was performed at ATLAS [78]. They found that scalar
leptoquarks were excluded for masses up to 1.7TeV and 1.8TeV in the muon and electron
channels, respectively. All limits in this section are 95% C.L. (Confidence Level). Clearly,
pair production observables are fairly limited in their reach. These specific results are not
very relevant for us, as the scenario we discuss features small couplings to first and second
generation matter. A similar search focusing on leptoquarks decaying to a bottom quark
and a τ found a mass limit of 1.46TeV [79]. Another study, focusing on tτ final states
instead, excluded scalar leptoquark masses up to 1.43TeV [80]. Both of these are relevant,
as R2 contains both leptoquarks decaying to bτ and tτ . Clearly, experiments focusing on
third generation final states are less sensitive than those focusing on the first and second
generations.

t

t

LQt

LQ

τ

g

g t

t

Ht

H

t

g

g

Figure 7.4: A loop diagram for leptoquark pair production, alongside the similar top quark
loop diagram of Higgs pair production.

The pair production diagram from two quarks shown in Figure 7.3 suffers from the fact
that there is little third generation matter in the proton. Instead, the necessary quarks
could be produced from two gluons first. This is shown on the left in Figure 7.4, where it
is contrasted with the pair production of the Higgs boson. Unlike single Higgs production
from a top quark loop, pair production of the Higgs boson has never been observed [81].
This box diagram for leptoquark pair production should have an amplitude proportional to
g2s
∣∣y2uτ ∣∣/|MLQ|4, which is a fairly heavy suppression. Considering the ratio |MH |4/|MLQ|4 ≃

10−5, it seems practically impossible for LHC to produce a leptoquark pair in this manner,
given that Higgs pair production itself has not been observed either. However, the τ instead
of a top quark in one part of the loop, will approximately cause the amplitude to be bigger

77



CHAPTER 7. SCALAR LEPTOQUARKS

by a factor (mt/mτ )
2 ∼ 104. Therefore, these two factors could almost cancel each other,

and the amplitude of the diagrams two could differ by a small amount for a unit coupling.
Pair produced leptoquarks would mostly decay to a bottom and a τ , when the leptoquark

has a charge of 2/3 or a top and a τ when the charge is 5/3. Other decays involve neutrinos,
but those are difficult to detect, since neutrinos are neutral. To examine pair production at
collider experiments, the focus should therefore be on observing signals from pp→ bb+ ττ
and pp→ tt+ ττ on top of an SM background.

g

qi li

LQ

LQ g

qi

qi

li

LQ

Figure 7.5: Diagrams contributing to the potential production of single scalar leptoquarks
at LHC [74].

Single production of leptoquarks would require less energy, and is therefore usually
favourable. However, in contrast to pair production, single production always needs inter-
actions between leptoquarks and fermions, since gluons carry no electric charge. Figure 7.5
shows two examples of single production of scalar leptoquarks. Both of these diagrams
contain one vertex with fermions and a leptoquark, and one strong interaction vertex. This
means these processes suffer from heavy suppression for first and second generation interac-
tions. Interactions with third generation matter are suppressed as well, since they require
a bottom or top quark in the initial state. As stated above, these bottom and top quarks
would mostly have to be produced from other particles first, causing them to have much
less momentum than quarks already present in the proton. Searches for single production
of leptoquarks were performed at CMS [82]. From Figure 7.6, we can see that this search
obtained bounds of 800GeV for a coupling of 1. This bound is lower than the one obtained
from pair production, due to the reasons mentioned above.

An interesting process for the production of a single scalar leptoquark was presented in
[48]. This process is shown in Figure 7.7. The diagram features a τ pair produced from a
photon, which is present in the proton. Photon distributions generally scale with Z2 [83],
meaning it is larger in heavier nuclei such as Pb ions. Therefore, this process could be
significant in colliders using Pb ions. The quark would have to be a bottom or a top to
produce the leptoquarks we study. Exclusion limits from this process are relatively weak,
in [48] they exclude leptoquarks coupling to bτ with a relatively large coupling constant
(∼ 1.9) at 600GeV or up to 1.25TeV with an even greater coupling constant of ∼ 3.

Single production of these leptoquarks will lead to a final state of a τ pair together
with either a bottom or a top quark. Therefore, collider searches would have to focus on
observing pp → b + ττ and pp → t + ττ on top of an SM background in order to exclude,
find or constrain these leptoquarks.

Another avenue for leptoquark detection are nonresonant processes such the Drell-Yan
production of a τ pair as shown in Figure 7.8. Since this diagram only has a t-channel
leptoquark, the momentum of the outgoing particles is not closely related to the mass of
the leptoquark. Therefore, there would be no clear peak in the momentum distribution of
the resulting pair of leptons, making this a nonresonant process. In comparison to SM Drell-
Yan production of ττ , this t-channel could perhaps create a different angular distribution
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Figure 7.6: Exclusion plot for a scalar leptoquark exclusively coupling to bτ , as obtained in
[82]. Dotted lines represent expected 95% C.L. upper limits on the coupling strength λ of the
scalar leptoquark, as a function of leptoquark mass. Solid lines represent observed limits.
The lines attached to the black line, representing observed exclusion from all processes,
point to the excluded region.

Figure 7.7: Single leptoquark production from a quark and a lepton, taken from [48].

in the resulting particles. This could provide a way to distinguish the signal from the
background.

In contrast to the single and pair production processes, the Drell-Yan process corre-
sponds directly to a dimension-6 SMEFT operator. The current lower bound on the lepto-

quark mass from the associated operator, O[3333]
qe , is 0.3TeV, as stated in Table 6.3. Fur-

thermore, in [82] no significant bounds on scalar leptoquarks were obtained from Drell-Yan
ττ production.

b

τ

LQ

τ

b

Figure 7.8: Drell-Yan production of ττ mediated by a leptoquark.
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In Figure 7.6 an exclusion plot for scalar leptoquarks coupling exclusively to bτ is shown,
as obtained by CMS. This figure shows that the overall lower bound on a scalar leptoquark
like the ones we discuss are not high at all. For leptoquarks with a mass above 1.4GeV, the
coupling does not need to be small. These bounds from CMS are somewhat smaller than
those obtained by ATLAS in [79, 80].

All cited ATLAS and CMS publications in this section ([48, 78–80, 82]) establish exclu-
sion limits on leptoquarks for certain coupling strengths. None of them find any signal that
would indicate the existence of scalar leptoquarks. At current energy and integrated lumi-
nosity, it simply has not been possible to find leptoquarks. However, the exclusion limits
are relatively low, leaving room for relatively light leptoquarks to exist. Collider searches
focusing on ττ + bb, ττ + tt, b+ ττ and ττ final states have the potential to discover or set
improved bounds on the scalar leptoquarks discussed in this chapter.

7.6 Conclusions

In this chapter we have examined whether the model described in chapter 4 and chapter 5
can provide scalar leptoquarks that are potentially in range of collider experiment. To this
end, we have had to make several adjustments to the model we treat. Firstly, the scale at
which the scalar leptoquarks achieve mass was changed. Originally, they obtained mass at
the Pati-Salam scale (MWR

), in this chapter we have let them obtain a mass at MZR
, in

order to make the scalar leptoquarks TeV-scale. Secondly, we have added a scalar multiplet
from the 126 representation to the model, in order for the model to correctly predict fermion
masses. A schematic overview of this model is given in Table 7.3.

We have established a clear model for the TeV-scale scalar leptoquarks R2 and R̃2,
known by their SM representations (3, 2, 7/6) and (3, 2, 1/6), respectively. This model
lacks precise values for the Yukawa couplings, which must be constrained by experiment.
Due to the mass hierarchy of fermions and the fact that the leptoquarks are in the same
representation as the SM doublets above the PS-scale, we argued that the Yukawa couplings
are greatest for the third generation. Based on this, we examined collider phenomenology
with third generation matter. Both pair production from two gluons, as pair production
from two fermions was discussed. These pair production processes lead to ττ + bb or ττ + tt
final states. Single production of leptoquarks can be caused by interactions between gluons
and a bottom or top quark. The final state of such a process would be b + ττ or t + ττ .
Lastly, there is Drell-Yan production of a ττ pair from a bb pair. Of these three categories
of processes, the highest sensitivity has come from pair production, due to gluon fusion
processes.

Based on current experimental bounds, scalar leptoquarks with M ≥ 1.5TeV are a pos-
sibility in the SO(10) GUT we have treated. Hopefully, this motivates further experimental
searches for third generation leptoquarks at LHC and potentially at the proposed FCC-hh.
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Conclusion

In this thesis we have discussed a model for Grand Unification based on SO(10), similar
to what was discussed in [12, 19], with the intent of finding TeV-scale leptoquarks and
their possible collider observables. This model features three intermediate symmetry scales,
including the Pati-Salam model, between the GUT-scale and the SM. An overview of the
final iteration of this model can be found in section 7.4.

Firstly we discussed several GUTs originating from E6. Based on this discussion we chose
to further investigate an SO(10) GUT. We identified the representations present in this
model, largely based on the work of [27]. These representations contain several leptoquarks
that are interesting to us. These are the vector leptoquark U1 with SM representation
(3, 1, 2/3) and the scalar leptoquarks R2 and R̃2 with SM representations (3, 2, 7/6) and
(3, 2, 1/6), respectively.

While treating this model we have had to carefully work through some challenging
aspects of the theory. Among these aspects were: the splitting of the masses in the scalar
representations, the correct reproduction of fermion masses and the multiple Higgs doublets
which needed to obtain masses and vev’s at separate scales. Furthermore, we showed that
this scenario achieves unification at a scale consistent with limits from proton decay.

The Pati-Salam model contains the vector leptoquark U1, which initially seemed like a
good candidate for a TeV-scale leptoquark, as the running and unification of the couplings
allowed the Pati-Salam model to be valid at energies as low as 5TeV. However, U1 was
constrained to have a mass of around 2PeV due to bounds from kaon decay. Flavour
mixing could lower these bounds, though implementing this in a model is difficult. The U1

leptoquark is in the same representation as the gluons, therefore it must couple diagonally
to the generations, making flavour mixing impossible in the specific model we treat. Some
workarounds for this problem exist in the form of nonunitary models, which often rely on
different gauge groups for each generation, thereby being able to suppress leptoquark effects
on the first and second generations. We did not give these more complicated models any
further consideration.

The scalar leptoquarks R2 and R̃2 do not suffer from the same constraints as the vector
leptoquarks. This is due to the fact that their couplings to the first and second generations
can be kept small. In fact, a hierarchy between the couplings comes naturally, as these
leptoquarks are in the same representations as some of the SM Higgs doublets that provide
the fermions with mass. Therefore, they will couple more strongly to heavier fermions.
We have identified pair production, single production and nonresonant processes that could
produce leptoquarks in pp collider experiments. The relevant final states for these processes
are qq + ττ , q + ττ and ττ , with q either being a top or a bottom quark. Current lower
limits on the leptoquark mass from processes like these are fairly low: 1.46TeV at 95% C.L.

From these findings, we can conclude that SO(10) grand unification is one of the few
GUTs from E6 that can viably give rise to leptoquarks at the TeV-scale. Experimental
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research focusing on leptoquark interactions with third generation matter will have the
chance to determine whether these leptoquarks exist. Discovery of these particles would
be a clear hint at the existence of a GUT. Further signatures of this GUT include the ZR

boson, with a mass ≥ 5TeV and the adjusted running of the SM couplings past 5TeV.
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Appendix A

Supplementary Material

A.1 Gamma Matrices

The gamma matrices are defined as follows in the Dirac representation:

γ0 =

I2 0

0 I2

 , γk =

 0 σk

−σk 0

 , (A.1)

with σk the Pauli matrices:

σ1 =

0 1

1 0

 , σ2 =

 0 −i

−i 0

 , σ3 =

1 0

0 −1

 . (A.2)

A.2 Pati-Salam Generators in SO(10) Basis

The generators corresponding to the bosons found in section 4.1.6 are listed here. We
exclude the bosons that fall outside the Pati-Salam group. This appendix is entirely based
on [27], where the generators of the A and Y bosons can be found as well.

The gluon generators are as follows:

UG1 = U †
G4

= (Σ45 +Σ36 − iΣ53 − iΣ46)/4,

UG2 = U †
G5

= (Σ52 +Σ61 − iΣ15 − iΣ62)/4,

UG3 = U †
G6

= (Σ23 +Σ41 − iΣ31 − iΣ42)/4,

UG7 = (2Σ65 +Σ43 + 2Σ21 +Σ34)/(
√

2/3),

UG8 = (Σ43 + 2Σ21 +Σ34)/(
√

2/3).

(A.3)

The U1 leptoquark generators:

UX1 = U †
X4

= (Σ23 +Σ14 − iΣ31 + iΣ42)/4,

UX2 = U †
X5

= (Σ25 +Σ61 − iΣ51 − iΣ62)/4,

UX3 = U †
X6

= (Σ45 +Σ63 − iΣ53 − iΣ64)/4.

(A.4)

The generator for the XB−L boson is:

UB−L = 2/3(Σ21 +Σ43 − Σ65). (A.5)
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Lastly the generators for the bosons associated with SU(2)L,R:

L1 = (Σ79 +Σ108)/2,

L2 = (Σ98 +Σ107)/2,

L3 = (Σ87 +Σ109)/2,

R1 = (Σ79 +Σ810)/2,

R2 = (Σ98 +Σ710)/2,

R3 = (Σ87 +Σ910)/2.

(A.6)

A.3 Coefficients for Algebraic Running

The coefficients in eq. (5.79) are as follows:

C1 = b2L′′ − bY ,

C2 = b′2L − 3

5
b1R − 2

5
bB−L,

C3 = b2L − 3

5
b2R − 2

5
b′4c,

C4 =
2

5
b2LR − 2

5
b4C ,

D1 = b2L′′ − b3C′ ,

D2 = b2L′ − b3C ,

D3 = b2L − b4C ,

D4 = b2LR − b4C .

(A.7)
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A.4 Overview of Mass Acquisition

Symmetry Group Energy SSB Gauge Bosons Fermions Scalars Broken By

SO(10) MU ≃ 1018 GeV A, Y All irrelevant scalars (1, 1, 1)54, parity-even

SU(4)C × SU(2)L × SU(2)R ×D MD ≃ 2× 1017 GeV (4, 2, 1)16,
(15, 3, 1)210

(1, 1, 1)210, parity-odd

SU(4)C × SU(2)L × SU(2)R MWR
≃ 2× 106 GeV U1,WR (15, 1, 3)210,

(3, 1,−1/2,−1/3)16,
(3, 1, 1/2,−1/3)16,
(1, 1, 1/2, 1)16,
(1, 2, 1/2, 0)10,
(1, 2, 1/2, 0)120

(1, 1, 0, 0) ∈ (15, 1, 3)210

SU(3)C × SU(2)L × U(1)R × U(1)B−L MZR
≃ 5× 103 GeV XB−L/ZR (1, 1, 1/2,−1)16,

(1, 2,−1/2, 0)120,
(8, 2,−1/2, 0)120/126,
(3, 2,−1/2, 4/3)120/126,
(3, 2, 1/2, 4/3)120/126,
(1, 2,−1/2, 0)120/126

(1, 1, 0)16 ∼ (1, 1, 1/2,−1)16

SU(3)C × SU(2)L × U(1)Y MEW ≃ 2× 102 GeV W±, Z0 (3, 2, 1/6),
(3, 1,−2/3),
(3, 1, 1/3),
(1, 2,−1/2),
(1, 1, 1)

Doublets from 10, 120
and 126 obtain vev
(1, 2, 1/2)10

(1, 0)10 ∼ (1, 2, 1/2)10

SU(3)C × U(1)Q

Table A.1: Overview of the model after the modifications made in chapter 7. At each scale we show which gauge bosons, fermions and scalars obtain
mass when the symmetry is broken. The field that breaks the symmetry is also shown, indicated by both their representation after and before
symmetry breaking, respectively. For an overview of the fields at each scale see Table 7.3. For brevity the conjugate partners of the fields from the
120 and 126 are left out for MWR

−MZR
. Representations that require mass splitting are shown as representation of the group below symmetry

breaking.
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[32] F. Del Aguila and L.E. Ibáñez. Higgs bosons in so(10) and partial unification. Nuclear
Physics B, 177(1):60–86, 1981.

[33] Marcus Pernow. Phenomenology of SO(10) Grand Unified Theories. PhD thesis, Royal
Inst. Tech., Stockholm, 2019.

[34] J. Maalampi and J. Pulido. Prospects for supersymmetric so(10) models with an
intermediate mass scale. Nuclear Physics B, 228(2):242–258, 1983.
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