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Abstract

Coarse-grained molecular dynamics simulations offer insight into fundamental biological pro-
cesses which are challenging to investigate via all-atom simulations or complex experiments.
Liquid-liquid phase separation drives formation of compartments, distinct chemical environ-
ments inside the cell, which directly affect cellular function and disease formation. In this
work, a one-bead-per-amino-acid (1BPA) model is used to minimise the discrepancy between
experimental and calculated radius of gyration (or Stokes radius) for a molecular data set
comprising of 189 intrinsically disordered proteins (IDPs). The 1BPA force field is optimised
via a supervised machine learning algorithm; Gaussian Process Regression. The GPR model
predictions did not match molecular dynamics observations due to the small number of train
data points and error metric definition in the target variable. Predictions were encompassed
in the GPR confidence interval, which was relatively large due to under-fitting. Nevertheless,
the newly determined 1BPA V3.0 shows considerable improvement compared to the previous
1BPA variants, with significant emphasis on aromatic amino acid interactions.
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1 Introduction

Cells organise complex biochemical reactions via compartments, distinct chemical environments
formed by membrane-bound or membrane-less organelles [1]–[4]. Compartmentalisation allows
for efficient function without additional energy input, and has been shown to arise as a result
of Liquid-Liquid Phase Separation (LLPS) since 1995 [5]. LLPS is a mechanism during which
biomolecules phase separate and form (nano)droplets. Many research groups are currently
probing this process to better understand its role in cellular function and disease formation
[6], with LLPS being detected in indispensable biological processes including DNA damage
repair, mRNA transcription, protein translation or membrane receptor assembly [6]. More
importantly, LLPS is considered to be linked to the evolution of life due to its ubiquity in fun-
damental biological processes [7]. Biomolecular condensates such as Cajal bodies, the nucleolus
or stress granules [8], act as membrane-less organelles in physiological function as opposed to
isolation by lipid membranes [9]. LLPS is driven via intrinsically disordered regions (IDRs),
which are characterised by lack of well-defined ordered structures [10]. Amino acids cause phase
separation by weak interactions; π-stacking, electrostatic, cation-π and hydrophobic contacts
[6]. As a result, the tendency to phase separate is directly linked to protein sequence and
environmental conditions. Specific macromolecule concentration hallmarks LLPS occurrence.
Notably, this concentration depends on several biophysical parameters, such as the salt con-
centration, temperature, and other ions [11].

Experimental investigation of IDRs and phase separation introduces challenges pertaining to
sample quality, cost and highly complex experimental protocols. Frequently performed analyses
include confocal fluorescence microscopy [12], Raman spectroscopy [13] or small-angle-X-ray-
spectroscopy (SAXS) [14]. An efficient alternative to experiments are molecular dynamics sim-
ulations, whose main limitations consist of available computational resources. All-atom molec-
ular dynamics simulations have shown considerable sucess, fully reproducing the experimental
kinetics and energetics for IDR binding processes [15]. Nevertheless, all-atom simulations are
disadvantageous when studying LLPS due to the large time/length scales. Simultaneous sim-
ulation of multiple proteins (necessary for LLPS investigation) is beyond the scope of all-atom
resolution. This has led to independent development of numerous coarse-grained molecular dy-
namics models, underlined by the stickers-and-spacers framework proposed by Choi et al. [16].
Coarse-grained simulations have shown promising results while being validated against single
molecule experimental data such as the radius of gyration [9]. Recently introduced sequence-
specific LLPS prediction models include Mpipi (Joseph et al. [17]), CALVADOS (Tesei et al.
[18]) or HPS and its variants (Kapcha and Rossky [19], Regy et al. [20], Tesei et al. [18]).
Machine learning based coarse-grained models are also emerging, with Lotthamer et al. devel-
oping a deep-learning model ALBATROSS to estimate IDR conformation properties directly
from the sequence [21].

The coarse-grained molecular dynamics model of interest in this work is the 1BPA (one-bead-
per-amino-acid) model. The model’s initial application was centered around the transport
phenomena at the nuclear pore complex [22]–[24]. Subsequently, the model was adapted for
LLPS prediction via adjusting the characteristic force field parameters by Driver and Onck
[25], [26]. The 1BPA coarse-grained model was developed via a modified 8-6 Lennard-Jones
potential coupled with bonded interactions (Section 2.1). Molecules of interest are simulated
in implicit solvent, which accounts for macromolecule-solvent interactions without introducing
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solvent molecules to the system. While the latest iterations of the 1BPA model have shown 10%
relative error, further improvements are vital for generalised LLPS investigation. Additional
accuracy improvements require a broader exploration of the force field parameter space.

In recent years, machine learning (ML) models have shown considerable progress in tackling
complex computational tasks with large datasets. The renowned neural network based model
AlphaFold predicts protein structures with atomic accuracy even in cases in which no similar
structure is known from experiments [27]. Its applicability demonstrated the potential impact
of ML approaches to biophysics. Gaussian Progress Regression (GPR) is a ML algorithm widely
applied in physical and chemical sciences [28]. Notable examples include force field parametri-
sation [29], Gaussian Approximation Potential (GAP) [30], crystal structure prediction and
dielectric response properties [28]. GPR predictions offer an efficient alternative in exploring
the coarse-grained force field parameter space as opposed to a brute-force approach. This choice
is further supported by works of John et al. [30] and Giuntoli et al. [29].

1.1 Project aim

The aim of this project is to optimise the coarse-grained molecular dynamics 1BPA force field.
GPR will help identify a new force field, which shows the least discrepancy between experimental
and calculated single molecule data.

1.2 Thesis outline

First, the 1BPA framework is explained in section 2. The 1BPA model is followed by a function-
space view introduction of the implemented ML algorithm; Gaussian Progress Regression.
Next, the methods section 3 explains the molecular dynamics dataset and simulation settings
together with the machine learning implementation details and performance. Obtained results
are analysed in the results section 4. Then, the discussion section dissects limitations of the
model design choices and acquired results. Finally, the main findings are summarised in the
conclusion section 5. Supplementary information is provided in the appendix.
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2 Theoretical background

2.1 Coarse-grained Molecular Dynamics: 1BPA model

This section contains the theoretical framework of the 1BPA model, developed by Ghavami et
al. [22] and modified by Jafarinia et al. [31]. The 1BPA model is a coarse-grained implicit
solvent model initially devised for probing the disordered domain of the nuclear pore complex.
It includes both bonded ϕb and non-bonded interactions ϕnb:

ϕ1BPA = ϕb + ϕnb (1)

Bending and torsion potentials classify as bonded interactions, with hydrophobic/hydrophillic,
electrostatic and cation-π interactions belonging to non-bonded interactions. The implicit
solvent is modeled by adjusting individual amino acid hydrophobicities. All amino acid beads
have an average mass of 120 Da. Explicit hydrogen bonding interactions are not included, as
the IDRs are highly flexible and do not form a secondary structure [32]. All numeric values
discussed correspond to 1BPA V2.1 [33].

2.1.1 Bonded interactions

Pseudo-bond and pseudo-dihedral angular distribution between neighboring alpha-carbons in
the polypeptide chain was modeled using bending and torsion potentials. Potentials were ob-
tained from Ramachandran plots, two-dimensional graphs showing the relation between protein
backbone dihedral angle pairs [34]. Assuming that the only degrees of freedom in a protein
chain are two dihedral angles ψ and ϕ, the α carbons are connected via pseudo-bonds, with
pseudo-bending angle θ and pseudo-dihedral agles α shown in Figure 1.

Figure 1: Mapping from all atom dihedral angle ψ and ϕ to coarse grained pseudo-bending
angle θ and pseudo-dihedral angle α. (a) All atom model of the protein. (b) Coarse-grained
version with pseudo-bonds between α carbons depicted as solid rods. Figure source: [22].

The relationship between (ψ,ϕ) and (θ, α) purely depends on geometry [22]. Unique bending
and torsion angles are extracted from the Ramachandran pseudo-angles ψ and ϕ, defined in
Appendix A.

Equation 2 summarises the 1BPA bonded interactions ϕb.

ϕb = ϕbond + ϕbend + ϕtorsion (2)



8 Chapter 2 THEORETICAL BACKGROUND

The bonding potential is characterised by a simple harmonic potential ϕbond = k(r− b)2, where
the spring constant k = 8030kJ mol−1nm−2 and pseudo-bond length b = 0.38 nm. The main
advantage of the 1BPA bonded interactions lies in their residue and sequence specificity. The
above defined bonded interactions model (Equation 2) successfully predicts the scaling law for
denatured proteins [22].

2.1.2 Non-bonded interactions

1BPA non-bonded interactions account for hydrophobic/hydrophilic, electrostatic and cation-
π interactions between amino acid pairs. Solvent polarity and screening of free ions are also
included. Non-bonded interactions are defined as a sum of the above defined components:

ϕnb = ϕhp + ϕcp + ϕel, (3)

Hydrophobic and hydrophilic interactions are modeled via a modified 8-6 Lennard-Jones po-
tential,

ϕhp =

{
ϵrep

(
σ
r

)8 − ϵij

[
4
3

(
σ
r

)6 − 1
3

]
, r ≤ σ,

(ϵrep − ϵij)
(
σ
r

)8
, σ ≤ r,

(4)

where bead radius σ = 0.6 nm, repulsive energy ϵrep = 5 kJ mol−1, individual amino acid hy-

drophobicities ϵi and ϵj are grouped into ϵij = ϵhp
√

(ϵiϵj)
α, with hydrophobic energy ϵhp = 6.5

kJ mol−1 and scaling factor α = 0.15.

Residue specific hydrophobicities were obtained from partition energy measurements [35], and
scaled into the range [0,1]. ϵij can be interpreted as interaction energy strength between a
pair of amino acids. It is proportional to absolute hydrophobic strength between the most hy-
drophobic amino acids ϵhp with exponent α determined via calibration against FG-nup Stokes
radii [32]. ϵrep defines the repulsive hydrophilic interaction intensity.

The difference between ϵrep and ϵij determines the behaviour of the potential. The poten-
tial is attractive for ϵij > ϵrep, repulsive for ϵij < ϵrep and neutral for ϵij = ϵrep. Excluded
volume effects are modeled in the r ≤ σ region.

The cation-π interactions are defined by

ϕcp(r) = ϵcp,ij[3
(σ
r

)8
− 4

(σ
r

)6
], (5)

where ϵcp,ij is the cation-π interaction energy for an amino acid pair. Cation-pi interactions
were first implemented in the 1BPA model by Jafarinia et al. [31].

Electrostatic interaction between charged amino acids (R,K,D,E) are modeled via a modified
Coulomb’s law with Debye-Huckel screening,

ϕel =
qiqj

4πϵ0ϵr(r)r
e(−κr), (6)

where qi, qj are the amino acid pair charges, κ is the Debye screening coefficient, with ϵr and
ϵ0 representing the permittivity of water and free space, respectively. Explicit expressions for
κ and ϵr are described in Appendix A.
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2.2 Gaussian Process Regression

This subsection contains the definition of Gaussian Process Regression via the function-space
view coupled with application methods for 1BPA force field optimisation. Derivations were
adapted from the following literature sources: Rasmussen and Williams [36], Deringer et al.
[28], with supplementary information from Cheng and Wang [37] and Huang et al. [38].

Gaussian Process Regression (GPR) is a supervised machine learning method used for stochas-
tic regression problems. Simple regression models such as Linear Regression require an explicit
form of the fitted function, whereas Gaussian Progress Regression is non-parametric (not con-
strained to a specific function or number of parameters). This property is advantageous for
processes without apriori known functional form.

“A Gaussian process is a collection of random variables, any finite number of which have a
joint Gaussian distribution.” [36] Univariate Gaussian distributions are characterised by a sin-
gle mean µ and variance σ2 e.g., Z ∼ N (µ, σ2). For a joint distribution of random variables,
the different mean and variance values are expressed as vectors: Z ∼ N (µ, σ2) [39]. Similarly,
a Gaussian Process is defined by its mean and covariance function, where the covariance is
defined between two input vectors x and x′:

m(x) = E[f(x)]
cov(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))],

(7)

with the expected value E and the function value f(x).

Random variables of a Gaussian process are the function values f(x) at a certain location
x:

f(x) ∼ GP(m(x), k(x,x′)), (8)

with kernel function k(x,x′), whose value for identical inputs (x = x′) corresponds to a vari-
ance. Although the functional form f is not known, the data consists of observations which are
mapped via f(x) from a multi-dimensional input to a scalar output [28]:

D = {xn; yn}Nn=1, (9)

with D representing the set of all GPR datapoints, yn representing the target variable value for
an input point xn and total data set size N. The goal of GPR is to predict function values at an
arbitrary point in space, having learnt the observed dataset. Figure 2 depicts a one-dimensional
GPR example. The GPR predictor, which approximates the unknown underlying function f ,
is a sum of H (intentionally undefined) basis functions ϕh with corresponding weights wh:

f(x) =
H∑
h

whϕh(x). (10)

The weights are input point independent, identically distributed random variables drawn from
Gaussian distributions with zero mean and variance σ2

w:

P (wh) ∼ N (0, σ2
w), (11)

leading not to a single estimate of f(x) but to a distribution of estimators, which corresponds
to a Gaussian prior probability distribution and is commonly called a Gaussian process (GP)
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Figure 2: Example application of Gaussian Process Regression in 1D. True function f(x) (black)
is approximated by mean prediction (red), predicted on input x (dark blue) without noise. The
95% confidence interval is depicted as a shaded blue region. The mean prediction matches
the true function at all data points due to noise free input. The confidence interval increases
further away from available observations. Inspired by [40].

[28].
The covariance between two estimator values at input points x and x′ is expressed as a sum of
basis functions ϕh

1:

cov(f(x), f(x′)) = σ2
w

H∑
h

ϕh(x)ϕh(x
′) (12)

The covariance is directly related to the kernel k, which is a similarity measure defining models
of covariance. Specifying the kernel without defining the H basis functions is called the ’kernel
trick’ [28], which allows for computing k in implicit feature space.

k(x,x′) ≡ σ2
w

H∑
h

ϕh(x)ϕh(x
′) (13)

2.2.1 Squared Exponential Kernel

“Kernel is a similarity measure between two data points, commonly denoted k(x,x′)” [28].
k(x,x′) specifies the covariance between f(x) and f(x′), to describe the degree of statistical
correlation between them [28]. In other words, kernel limits the function character to be either
smooth, differentiable, periodic etc. Success of a GPR predictor without a large number of data
points depends on kernel choice to a large extent. Ill-suited kernel type or parameters, denoted
hyper-parameters, will considerably slow down the convergence as a function of data points.
The most widely used kernel for Gaussian Progress Regression is the Squared Exponential, also

1The corresponding weights wh have been integrated over, Deringer et al. [28] contains the full derivation.
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known as the Radial Basis Function[41]:

k(x,x′) = σ2 exp(−d (xi, xj)
2

2l2
). (14)

The above equation defines the covariance between two input points x and x′ as a function of
their Euclidean distance d(x,x′) and the kernel hyper-parameters l2 and σ2, which correspond
to the length scale and variance, respectively. The length scale is informally defined as the
distance you have to move in the input space before the function value significantly changes
[36]. σ2 is a positive scalar, which sets the output variance [30]. Hyper-parameter choice and
optimisation is discussed in Section 2.2.3.

2.2.2 From Observations to Predictions

Physical measurements always have an associated error. Observations can include noise ϵ,
modeled as independent Gaussian noise with variance σ2

n [36].

y = f (x) + ϵ (15)

The covariance between two observation values y and y′ then becomes [28]

cov(y, y′) = k(x,x′) + σ2
nδij, (16)

where the noise variance σ2
n is added via the Kronecker delta δij. As a result, the covariance

between two distinct observations (y ̸= y′) is simply the kernel function value between the
corresponding input points x and x′. All observations y = (y1, ..., yN) follow a multivariate
Gaussian distribution with zero mean and covariance KNN +σ2

nI. The covariance is defined by
a N × N matrix K, which contains kernel results between all input point pairs together with
the identity matrix I scaled by the noise variance i.e. generalised case of Equation 16:

y ∼ N (0, K + σ2
nI). (17)

The predictor is derived from the joint probability distribution of the observations y and the
predicted function values f∗ at new locations X∗ [28].[

y

f∗

]
∼ N

([
µ(X)

µ (X∗)

]
,

[
K(X,X) + σ2

nI K (X∗, X)T

K (X∗, X) K (X∗, X∗)

])
(18)

For M new locations, the covariance matrix K(X∗, X) has dimensions of M ×N . Conditioning
the predicted function values f∗ on the observed data y assuming zero mean leads to the GP
predictive distribution [37]:

P (f∗ | X,y, X∗) = N (µ̂, Σ̂) (19)

Explicit definitions of µ̂ and Σ̂ depend on Equation 18 and can be found in Appendix B.
Appendix C contains a single prediction example for further explanation.
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2.2.3 Hyper-parameter Optimisation

Predictor performance is largely influenced by hyper-parameter choice. Hyper-parameters of
the above defined GPR predictor grouped in a vector θ consist of kernel variance σ2 and kernel
lengths scales l2 (one per feature)[38]:

θ = {σ2, l2, ...} (20)

Optimal hyper-parameter set is determined via maximising the Log Marginal Likelihood (LML),
also known as type II Maximum Likelihood (ML-II).

Marginal likelihood, denoted P (y|X), is the likelihood P (y|f , X) times the prior P (f |X) inte-
grated over the whole parameter space (all possible values of f) [36].

P (y|X,θ) =
∫
P (y|f , X)P (f |X)df (21)

Evaluating the integral after substituting N (0, K) for the prior and N (f , σ2
nI) for the likelihood

yields,

logP (y|X,θ) = −1

2
yT (K + σ2

nI)
−1
y − 1

2
log|K + σ2

nI| −
n

2
log2π (22)

which implicitly depends on θ (included in the kernel values in matrix K). Hyper-parameters
are updated according to the conjugate gradient method [38], which updates the individual
hyper-parameter values such that the log marginal likelihood attains a maximum.

∂

∂θj
logP (y|X,θ) = 1

2
tr
(
(αα−1 − (K + σ2

nI)
−1
)
∂(K + σ2

nI)

∂θj

)
(23)

Equation 23 defines the log marginal likelihood gradient for all hyper-parameters θi, with α
representing the covariance transformation of all observations (K + σ2

nI)
−1
y.

Log marginal likelihood can attain multiple stationary points in higher dimenions. Equation 23
simply converges to a local maximum/minimum closest to the initialisation. This poses a prob-
lem when trying to determine the optimal set of hyper-parameters. The widely adapted solution
is a somewhat heuristic method; simply initialising at different points in the hyper-parameter
space multiple times and choosing the best estimate. As such, maximising the log marginal
likelihood can be likened to cross-validation; both approaches serve to evaluate multiple models
(set of hyper-parameters) with the goal of finding the optimal solution.
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3 Methods

3.1 Molecular Dataset

Dataset choice is crucial when validating any simulations against experimental work. The
dataset comprises 189 intrinsically disordered proteins, selected according to available exper-
imental data of interest: radius of gyration (Rg) or hydrodynamic radius (Rh). Radius of
gyration of a particle is the root-mean-square distance of all particles from their center of grav-
ity [42]. Another indicator of protein volume/compaction is the hydrodynamic radius defined
as the effective radius of a molecule in a solution measured by assuming that it is a body moving
through the solution and resisted by the solution’s viscosity [43]. Gathered experimental data
consists of 155 Rg instances and 34 Rh instances.

Not all literature sources quoted an experimental error. 97% of Rh molecules and 34% of
Rg molecules reported an experimental error. A median value of the available experimental
error σRg/hexp was used for analysing the Rh and Rg molecules: 0.03 nm and 0.09 nm, re-
spectively. Initial 1BPA molecular data set focused on 20 FG-nup molecules [44], however the
molecular data set has been considerably increased (189) resulting in lower bias towards previ-
ous applications. The molecular dataset can be considered fairly diverse, as supported by the
sequence length analysis below. Literature sources for the molecular dataset can be found in
Appendix D.

R K D E F W Y A C Q I L M P V N G S H T
Amino Acid

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Re
la

tiv
e 

Fr
eq

ue
nc

y

Rg
Rh
Merged

Figure 3: Amino acid sequence composition for all 189 molecules. Relative frequency is defined
by summing individual amino acids from the full dataset and dividing by the total number of
residues. Evaluated for three groups: Rg data, Rh data and Merged (full dataset).

Sequence composition can be found in Figure 3. All amino acids are represented, with a ma-
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jority exhibiting relative frequency between 2.5-5%. Relative frequency refers to the fraction
of amino acid in the full molecular dataset. Glycine (G) and Serine (S) are the most frequent,
each representing around 12.5% of all amino acid residues. In contrast, Tryptophan (W) and
Cysteine (C) are underrepresented. The optimised force field will ultimately be biased by this
molecular sequence composition.

The longest chain comprises 625 residues, with the shortest chain of 15 residues. Median
protein sequence length is 137 residues, mean protein sequence length is 185 residues, with a
standard deviation from the mean of 85 residues. Approximately 60% of proteins falls into
100-270 residues range. Such broad sequence length distribution is desirable for increasing the
applicability of the 1BPA force field.

0 100 200 300 400 500 600
Sequence length

1
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5

6
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8

R g
/h

 (n
m

)

Rh
Rg

Figure 4: Experimental radius of gyration/hydrodynamic radius as a function of protein se-
quence length. Evaluated for two groups: Rg data and Rh data.

3.2 Molecular Dynamics Simulations and Analysis

Single molecule molecular dynamics (MD) simulations were executed in GROMACS 2019.6
[45]. Simulation settings were kept consistent for all force field parameter sets. Each MD sim-
ulation consisted of two main steps: Energy Minimisation (EM) and Production (MD). The
molecule is initially relaxed to energetically favorable conformation (EM) and then simulated
for an extended period of time to obtain statistically significant information (MD).

All simulations were performed at 300K and ion concentration of 150 mM. Langevin dynamics
was used to propagate the system in time via steepest descent minimisation. The time step
was set to 0.02 ps. Energy Minimisation consisted of 500000 steps or until the maximum force
decreased below 1 kJ mol−1nm−1. The Production was carried out for 2.501 µs, with the initial
1 ns used for system equilibration. The simulation trajectory was recorded for 2.5 µs by as-
suming the canonical (NVT) ensemble, corresponding to constant number of particles, volume
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and temperature.

Trajectory analysis was implemented via MDAnalysis for Rg and Rh calculation [46]. Both
properties were calculated per frame, with the corresponding mean Rg/h and standard devia-
tion σRg/hcalc

(for all MD frames) compared to the experimental value. The radius of gyration
is defined as,

Rg =

√∑n
i=1mi (ri − rCM)

2∑n
i=1mi

(24)

where ri is the position vector of individual amino acid residue with mass mi and rCM is the
position vector of the protein center of mass. The 1BPA model approximates all amino acids
to have identical mass, so the mi factor cancels out from Equation 24. The number of amino
acid beads is protein-specific and denoted by n.

The translational hydrodynamic radius Rh was calculated via the Hullrad method [47]. The
protein volume is calculated with a convex hull, from which the hydrodynamic radius can be
determined. A convex hull is a boundary of the smallest convex set enclosing all the points in
a set [48]. The Hullrad method estimates the protein surface area from individual amino acid
bead coordinates, which allows for computing the protein volume. Having obtained the volume
VTH , the translational hydrodynamic radius is defined as

Rh = FT × 3

√
3VTH

4π
, (25)

with the translational shape factor FT . Further details regarding the Hullrad method can be
found in the work of Fleming and Fleming [47].

3.3 Adapting Gaussian Progress Regression to Coarse-Grained Force
Field Optimisation

This section contains details of adapting the Gaussian Process Regression model to 1BPA
force field optimisation within the scikit-learn library [41]. The coarse-grained force field is
characterised by a set of equations and constants explained in Section 2.1. A parameter set
x refers to a unique vector of force field constants, which were varied in a physically feasible
range.

x =
[
α, ϵi, ϵaromatic, ∆catpi

]
(26)

α is a scaling factor for individual amino acid hydrophobicities ϵi, ϵaromatic is the aromatic-
aromatic amino acid interaction energy and ∆catpi represents the shift in cation-π interaction
energies wrt. 1BPA V1. The force field optimisation goal is to find a parameter set that results
in the lowest discrepancy between experimental and calculated Rg (or Rh) for all 189 molecules
in the dataset. Gaussian Process Regression was implemented to probe the relation between
the parameter set values and error over all molecules.

Each parameter set was validated against Rg (or Rh), denoted by Rg/h in the subsequent
sections, with the following average relative error definition:

δRg/h =
1

M

M∑
i=1

|
(
Rg/hcalc

−Rg/hexp

)
|

Rg/hcalc

, (27)
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with the total number of molecules M=189. The calculated and experimental Rg/h are denoted
Rg/hcalc

and Rg/hexp , respectively. However, this metric does not account for experimental error,
σRg/hexp , or the calculated error σRg/hcalc

. Mean absolute error (in the average relative error)
was introduced to account for this dependency.

∆δRg/h =

√(σRg/hcalc

Rg/hcalc

)2
+
(σRg/hexp

Rg/hexp

)2
× 1

M

M∑
i=1

|
(
Rg/hcalc

−Rg/hexp

)
| (28)

Due to the lack of data points prior to feature selection (essentially only 1BPA 2.1), the varied
parameters were chosen according to physical intuition. Feature selection refers to the process
of identifying force field parameters of interest, which were subsequently used to train the GPR
model. Selected parameters define the input matrix X(Equation 29) which has dimensions of
nsamples × nfeatures : (N × 26). See Table 2 for a list of all 26 force field parameters.

X =


x1

x2

...

xN

 (29)

The number of parameter sets N increased throughout the implementation. Appendix E con-
tains information regarding continuous data acquisition for the GPR model. Individual target
variable y has 2 dimensions; including both average relative error and mean absolute error.

y =
[
δRg/h, ∆δRg/h

]
(30)

All observations are grouped into a matrix Y with (N × 2) dimensions.

Y =


y1

y2

...

yN

 (31)

Figure 5: Acquisition of 1 GPR data point. A force field parameter set x is used to simulate
189 IDPs via GROMACS. Calculated Rg/h are compared with the experimental values. The
average relative error and mean absolute error are computed and stored in the target variable
y.
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One GPR data point consists of a force field parameter set x and the corresponding average
relative error with mean absolute error grouped into y, (see Figure 5).

Both X and Y underwent pre-processing. Input features X were scaled to account for no-
table differences in magnitude, while the target variable Y was standardised in accordance
with the assumption in Equation 17. The scaler of choice was Standard from the scikit-learn
library [41], which scaled the input matrix X feature-wise to have zero mean and unit variance.

The kernel was defined by Squared Exponential, (scikit-learn.gaussian process.kernels.RBF()),
with an anisotropic length scale providing a distinct length scale l2 per feature and a scaling
factor σ2. Noise in individual observations (mean absolute error) was passed as an addition to
the diagonal elements in the kernel matrix. Hyper-parameters (see Equation 20) were optimised
via maximising the Log Marginal Likelihood with 100 random initialisations.

The available observations, X and Y , were split into a train and test set in a 80:20 ratio.
The GPR model was trained on the train set and evaluated on the test set. The following
equation assessed model performance on the test set i.e. quantifying how much the GPR model
predictions ypredict differ from the observation values y (corresponding to δRg/h).

R2 = 1− Σ(y − ypredict)
2

Σ(y − y)2
(32)

The summation is over the test set. Having defined and trained the GPR model, the Latin
HyperCube Sampling (LHS) method [49] was used to define a set of prediction input points
X∗ without a corresponding target value y. The GPR model then predicted the target value
for all elements of X∗. Predictions with the lowest target values were selected as GROMACS
candidates and added to the total number of samples N . The candidates were simulated in
GROMACS to assess whether the predictions matched the observed values (or not). The Root-
Mean-Square-Error (RMSE) was computed to quantify the agreement between observations yi
and predictions ŷi for m batch samples.

RMSE =

√∑m
i=1(yi − ŷi)2

m
(33)

This procedure was repeated numerous times, in order to improve the GPR model and in-
vestigate as much of the force field parameter space as possible. The input matrix X was
subsequently augmented with the new candidates and the GPR model was retrained. This it-
eration of identifying parameter sets of interest, simulating them in GROMACS and retraining
the GPR model with increased input was repeated eight times.
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Figure 6: Force field optimisation process flow. New observations are obtained via GROMACS
Molecular Dynamics simulations. They are combined with previously simulated force fields,
scaled with a Standard scaler and split into train (80%) and test (20%) sets. The GPR model is
defined with the Squared Exponential kernel and trained on the train set. Hyper-parameters are
optimised via maximising the Log Marginal Likelihood. The GPR model is used for predicting
expected values of the test set and Latin HyperCube Sample (LHS). Model performance on the
test set is evaluated via the Score metric (Equation 32). A subset of LHS predictions is selected
to be GROMACS simulation candidates. The observed target value is compared to 1BPA V2.1
and selected as a coarse-grained force field candidate.* (The iteration loop was stopped after
acquiring 68 force fields with δRg/h lower than 1BPA V2.1 due to project timescale.)

The process flow above resulted in N=265 coarse-grained force field parameter sets. The force
field corresponding to the minimum observed target value was selected as the best candidate.
The newly determined hydrophobicity scale was compared to 87 experimental hydrophobcity
scales collected by Simm et al. [50] combined with previous 1BPA versions. Agglomerative
clustering analysis was adapted from Tesei et al. [18]. This method was conducted to validate
the physical feasibility of the optimised force field.

Sensitivity analysis was implemented to investigate the relative ’importance’ of individual force
field parameters. Three approaches were evaluated; Linear Regression, GPR length scales and
Sobol indices.
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3.4 Gaussian Process Regression Performance

GPR data points were simulated in batches (Appendix E), with each new batch addition in-
creasing the total number of data points presented to the model. The GPR model improvement
is analysed via the Log Marginal Likelihood and measure of agreement between observations
and model predictions.
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Figure 7: Maximum Log Marginal Likelihood (LML) as a function of GPR data points (N).
Each dark blue mark corresponds to the maximised LML (with 100 random initialisations) for
a total number of GPR data points (train and test).

The Log Marginal Likelihood increased together with the number of GPR data points as ex-
pected. More observations sample the force field parameter space with higher frequency, which
allows for identifying better local minima. Each LML value is the result of 100 random initiali-
sations. The largest obtained LML value does not seem to converge, although early indications
are present around N=200. GPR hyper-parameters were optimised via maximising the Log
Marginal Likelihood. Their values can be found in Appendix F. Most of the hyper-parameter
varied drastically, with multiple reaching the upper bound of 100000. Consequently, the latest
set of hyper-parameters might change with the addition of more GPR data points. Neverthe-
less, the Log Marginal Likelihood shows continuous improvement.

The GPR model performance was assessed throughout data acquisition. Initial batches were
defined similarly to 1BPA V2.1, with later batches defined via Latin HyperCube Sampling
(LHS). Consult Appendix E for detailed batch overview. Later batches, namely Batch 5(20
samples), Batch 6(10 samples) and Batch 7(50 samples) were selected based on GPR predic-
tions. The figures below show a direct comparison between GPR predictions and GROMACS
observations. Figure 8 shows many observations outside of the GPR confidence interval. The
confidence interval increases as the value of the target variable δRg/h increases because of less
dense sampling in that region. Many more data points were evaluated for δRg/h <0.2, since
the ultimate goal is to find the lowest possible δRg/h.
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Figure 8: Batch 5: GPR predictions (dark blue) vs Observations (red). GPR confidence interval
is shown in light blue. Predictions were trained on 167 data points.

Predictions of Batch 6 (Figure 9) are more accurate, with all observations included in the GPR
confidence interval. Nevertheless, the GPR predictions are still slightly larger. It is important
to note the difference between Batch 6 and other batches. A GPR model trained on solely 60
LHS defined data points was used for predicting Batch 6. Yet, Batch 6 predictions are more
accurate (less discrepancy between predictions and observations) compared to Batch 5, which
were trained on 167 GPR data points. This difference in performance and number of GPR data
points shows that Latin HyperCube Sampling is a much more efficient method for investigating
highly dimensional spaces.
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Figure 9: Batch 6: GPR predictions (dark blue) vs Observations (red). GPR confidence interval
is shown in light blue. Predictions were trained on 60 LHS defined data points.

Similarly to Batch 6, Batch 7 observations (Figure 10) fall within the GPR confidence interval.
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Yet, the GPR predictions are still not as accurate as desired. The confidence interval stays
relatively large, even after introducing 215 observations. The GPR model underfitted due to
small number of data points in a highly dimensional space and large error (∆δRg/h) included
in the kernel diagonal.
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Figure 10: Batch 7: GPR predictions (dark blue) vs Observations (red). GPR confidence
interval is shown in light blue. Predictions were trained on 215 data points.

Prediction accuracy between the later batches is quantified in Table 1. The Root-Mean-Square-
Error (RMSE) decreased for later batches. Its rather small absolute value originates from δRg/h

magnitude. It is important to note that RMSE is calculated without including the error in ob-
servations or predictions (Equation 33). This metric is batch size independent.

Predictions RMSE

Batch5 0.181

Batch6 0.075

Batch7 0.047

Table 1: Root-Mean-Square-Error (RMSE) quantifying the discrepancy between GPR predic-
tions and observations per batch.
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4 Results

4.1 Optimised Coarse-Grained Force Field: 1BPA V3.0

The GPR model was used to investigate 265 coarse-grained force fields, out of which 68 had
a lower average relative error δRg/h than V2.1. The lowest observed δRg/h was selected as the
optimised coarse-grained force field. Figure 13 compares the chosen force field 1BPA V3.0 with
the previous versions.
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Figure 11: Comparison of the optimised
force field; 1BPA V3.0 with previous ver-
sions. The plotted metric is the average
relative error δRg/h.
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Figure 12: Comparison of the optimised
force field; 1BPA V3.0 with previous ver-
sions. The plotted metric is the chi-
squared value χ2.

Figure 13: 1BPA force fields comparison

1BPA V3.0 has an average relative error δRg/h = 0.11±0.02, as opposed to δRg/h = 0.14±0.03
for 1BPA V2.1. The discrepancy between calculated and experimental Rg/h has decreased by
approximately 3%. The chi-squared metric shows even larger improvement: 17.60(V3.0) com-
pared to 31.89(V2.1). This difference stems from δRg/h and χ2 definitions. While δRg/h is
defined by taking the average of single molecule errors, χ2 is the sum of their squares. Conse-
quently, χ2 is prone to outliers and its magnitude will change based on the number of molecules
in the data set. The average relative error is more robust and preferred for further investigation.

Although 1BPA V3.0 results in the lowest δRg/h, it must be physically feasible before its appli-
cation to more complex molecular dynamics investigation. Table 2 serves as direct comparison
between V3.0 and V2.1.
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Parameter 1BPA 2.1 1BPA 3.0 ∆

α 0.15 0.17 0.02

A 0.7 0.67 -0.03

C 0.68 0.77 0.09

D 0.005 0.03 0.025

E 0.005 0.01 0.005

F 0.8 0.58 -0.22

G 0.45 0.5 0.05

H 0.56 0.68 0.12

I 0.98 0.67 -0.31

K 0.01 0.13 0.12

L 1 0.78 -0.22

M 0.78 0.91 0.13

N 0.28 0.58 0.3

P 0.67 0.62 -0.05

Q 0.4 0.44 0.04

R 0.01 0.06 0.05

S 0.42 0.46 0.04

T 0.43 0.35 -0.08

V 0.94 0.8 -0.14

W 0.8 0.65 -0.15

Y 0.55 0.85 0.3

F-F 7.5 7.46 -0.04

Y-Y 8 6.38 -1.62

W-W 8.5 7.44 -1.06

H-H 6.5 7.1 0.6

∆catpi 0 -1.9 -1.9

Table 2: Force field parameter comparison between 1BPA V2.1 and V3.0. ∆ quantifies absolute
change in all force field parameters between V2.1 and V3.0.

The scaling factor α has increased to 0.17. This effectively shifts the boundary between hy-
drophillic and hydrophobic amino acids. The hydrophobicity scale includes numerous changes.
Charged amino acids are still on the lower end, but the most hydrophillic amino acid is now
Glutamic acid (E). All charged AA hydrophobicities have increased and their values differ more
compared to V2.1. Other notable change occurred in the aromatic group. The relative order-
ing of aromatic-aromatic interactions has now become (Y-Y,H-H,W-W,F-F). Phenylalanine (F)
has shifted down drastically, it now falls within the polar hydrophobicity range. On the other
hand, Tyrosene (Y) has increased. As a result, Y-Y interaction is now comparable with Y-X
interaction, where X represents any aliphatic amino acid. The aromatic interaction energies
differ based on the amino acid pairing. While F,H,W and Y follow the ϵij relation in Section
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2.1.2 with aliphatic amino acids, aromatic-aromatic interactions such as F-F,H-H,W-W and
Y-Y have a predetermined interaction energy defined in Table 2. Polar residues are also mod-
ified, with Asparagine (N) being the most hydrophobic (within the polar group). The higher
end of the hydrophobicity scale now ends with Methionine (M). Finally, the cation-π shift is
almost back to the value in 1BPA V1 (corresponding to ∆catpi = −2), reducing the strength of
cation-π interactions.

The optimised force field parameters hint at dynamics mostly driven by the aromatic amino
acid group. The V3.0 hydrophobicity scale was compared to 90 other HP scales, both exper-
imental (87) and previous 1BPA iterations (3). Results of the Agglomerative Clustering can
be found in Appendix H. The 1BPA variants are quite similar, with V3.0 being the most distinct.

Lastly, sensitivity analysis consisting of three different methods; Linear Regression, GPR
Length scales and Sobol indices was implemented. Sensitivity indices can be found in Ap-
pendix I. The outcome was inconclusive as discussed in the next section.
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4.2 Discussion

The process of identifying an optimal force field parameter set had several limitations includ-
ing the 1BPA model, available molecular data, Gaussian Process Regression performance and
project timescale. This section dissects individual contributions of the above mentioned factors.
Impact on result accuracy is emphasised, along with suggestions for concrete future improve-
ments.

The 1BPA model is a coarse-grained molecular dynamics model. Its computational efficiency
comes at a cost of numerous approximations. Molecules are simulated in an implicit solvent,
which does not account for individual solvent interactions and dynamics. The residue-residue
interactions are hence modified to include solvent effects. Interpretation of the determined
amino acid hydrophobicity scale should be adjusted accordingly. Furthermore, the 1BPA model
assigns an identical mass and bead radius to all amino acids, which differs from experimental
masses and radii.

Additionally, the 1BPA model does not account for partial charges. Histidine, (which is pro-
tonated 50% of the time under simulation conditions), has no net charge in the current 1BPA
model. This discrepancy was briefly investigated with the previous force field version, with
little apparent effect(data in Appendix G). This is to be expected given the abundance of
histidine in the molecular data set. The amino acid composition of the molecular data set
influences optimised force field parameters. Small variations in hydrophobicity of an overly
represented amino acid (e.g. S) can significantly affect the average relative error (δRg/h). This
dependence will further propagate into the sensitivity analysis, which is discussed further below.

Finally, the 1BPA model and molecular dataset are biased by the initial exploration of the
nuclear pore complex. The model was developed in order to investigate nuclear transport
phenomena. Although it has since been adapted for LLPS investigation, previous versions
were validated against single molecule experimental data, largely consisting of FGNups. The
1BPA hydrophobicity scale was compared with another coarse-grained computational HP scale,
namely HPS [19] and HPS-Urry [20]. These scales were validated on a more general set of in-
trinsically disordered proteins. Even though the HP scales differ due to the potential form and
validation dataset, an agglomerative analysis showed that the 1BPA V3.0 HP scale is not too
dissimilar from the HPS-Urry scale (Appendix H).

Molecular dynamics simulations were executed in GROMACS. Each force field parameter set
comprised of 189 individual IDP simulations. As a consequence of the sampling during the MD
stage, replicas are assumed to have the same target variable value. That is to say, simulating
the same force field parameter set multiple times would result in the same target value. This
assumption was validated with two randomly selected force fields, whose target variable repli-
cas differed at the third decimal; 0.709± 0.1 vs 0.708± 0.1. As a result, random measurement
error was not obtained by repeat measurements and the mean absolute error (in the average
relative error) was used as an alternative. Still, its definition propagates 189 single molecule
errors (experimental and calculated) into a single force field error. Translating errors from the
molecule level to the force field level is not straightforward and further validation is necessary.
To summarise, the assigned force field error is two orders of magnitude larger than the GRO-
MACS replication error, with its effect on the GPR model described further below.
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Gaussian Process Regression was implemented to probe the relation between coarse-grained
molecular dynamics force field and the discrepancy between experimental and calculated single
molecule data. Model features (varied force field parameters) were selected according to the
desired model selectivity, rather than conventional dimensionality reduction methods such as
Principal Component Analysis (PCA). The number of investigated force field parameter sets
at the model development stage equaled one (1BPA V2.1). It follows that dimensionality re-
duction was not feasible. Data generation was the focus during the model development stage.

Initial force fields were defined by small deviations from 1BPA V2.1, rather than sophisti-
cated sampling methods. Although this region is known to show promising behavior, exploring
broader region of the force field parameter space is desirable when identifying an optimal force
field. Latin HyperCube Sampling (LHS) was chosen as an efficient high-dimensional sampling
method for further explorations. While applying LHS sampling from the start would result in
equally dense observation regions (in the force field parameter space), this approach does not
inherently bias the GPR model. The only consequence is the fact that the GPR model showed
more constrained confidence regions near the 1BPA V2.1 force field, due to higher sampling
frequency. Having said that, a comparison of Batch 6 with Batch 5 shows that using a LHS
defined train set improves GPR prediction. The Score metric (Equation 32) was not included in
the GPR performance analysis. The test score was largely influenced by the different sampling
methods, resulting in unreliable model evaluation.

The Squared Exponential Kernel with anisotropic length scales (one per feature) was imple-
mented due to its smooth nature. Individual length scales allow for further understanding of
individual force field parameters and their effect on the target variable. Kernel-hyper param-
eters varied drastically as more data points were used for training the model. Many length
scales reached the default upper bound of 100000 within the scikit-learn library. The latest
iteration did not show a clear convergence. As a result, the latest length scale values cannot
be a reliable indicator of parameter sensitivity.

Three methods were investigated in order to quantify model sensitivity to individual force
field parameters; Linear Regression, GPR length scales and Sobol indices. All three methods
are inconclusive and serve as a qualitative indication, rather than a reliable metric. Linear
coefficients from Linear Regression are not reliable because there is no indication that the rela-
tionship between force field parameters and Rg/h is linear. GPR length scales did not converge,
hence they cannot truthfully encompass the sensitivity behaviour. Finally, the Sobol method
involves more than one million GPR predictions, which do not to match the observations, see
Figures 8, 9 and 10.

Most GPR models estimate observation noise when presented with input replicas with dif-
fering target values. This was not possible with the above described GROMACS simulated
data points because of the project timescale. As an alternative, an observation specific error
(mean absolute error in the average relative error) was added to the diagonal of the kernel ma-
trix. It is probable that this design choice resulted in underfitting due to the error magnitude.
The GPR confidence interval remains quite broad, which is an indicator of low sampling or
underfitting. Varying the noise metric is recommended for investigating this behaviour further.
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GPR hyper-parameters were optimised via maximising the Log Marginal Likelihood. The
number of random initialisations was set to 100, as 1000 increased run time but did not signif-
icantly improve Log Marginal Likelihood. Log Marginal Likelihood is a point estimate, rather
than a fully Bayesian estimator approach. The hyper-parameters themselves follow a proba-
bility distribution, which is not encompassed by point estimate methods such as maximising
the Log Marginal Likelihood (ML-II). The result of ML-II is a single hyper-parameter value
without a confidence interval. Fully Bayesian estimators have better performance (lower MSE)
on parameter estimation compared to Maximum Likelihood Estimation as demonstrated in [51].

Due to the number of input dimensions (26), a substantial number of GROMACS simulated
force field parameter sets was required for meaningful GPR predictions. The latest iteration of
the GPR model was trained on 212 unique force fields. Although this number of observations
allowed the model to differentiate between inputs, at least 1000 or 2000 would be desirable
for accurate GPR predictions [52]. This limitation is further supported by Figure 10, which
shows the discrepancy between observed and GPR predicted target variable values. Further
acquisition of GPR data points (force fields) would substantially increase GPR model accuracy,
which is directly linked to force field optimisation efficiency. Current coverage of the force field
parameter space (265 force fields) does not exclude the possibility of another region of interest.

The GPR model was implemented via the scikit-learn package [41]. While straightforward
to use, it led to specific design choice constraints. Numerous Python open source packages
targeted to Gaussian Processes are freely available. GP-Plus [53], Gpy [54], GPflow [55] and
GPytorch [56] were developed solely for Gaussian Process applications. Other Bayesian mod-
elling packages that offer Gaussian Process implementation include PyStan [57], PyMC [58] or
pyGPgo [59]. Exploring the functionalities of the above mentioned packages will allow for more
informed design choices and further customising of the GPR predictor for coarse-grained force
field optimisation.

The optimal coarse-grained force field resulted in a significant improvement between exper-
imental and calculated Rg/h: δRg/h = 0.11± 0.02, as opposed to δRg/h = 0.14± 0.03 for V2.1.
The GPR model identified 68 candidates, V3.0 corresponding to the lowest observed δRg/h.
Although the individual force field parameter changes seem reasonable, further validation is
crucial. The 1BPA V3.0 force field was optimised solely via a machine learning approach based
on Rg and Rh. Application to collective biological processes such as liquid-liquid phase sepa-
ration is required to establish its status as an improved coarse-grained force field.
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5 Conclusion

Gaussian Process Regression (GPR) is a powerful machine learning algorithm that can predict
a target variable value from multi-dimensional input without the need for an explicit func-
tional form. 265 force field parameter sets were investigated, with Latin HyperCube Sampling
(LHS) allowing for efficient investigation of a 26-dimensional parameter space. Molecular data
set comprising of 189 intrinsically disordered proteins was used for force field optimisation by
minimising the discrepancy between experimental and calculated radius of gyration or Stokes’
radius. The number of investigated force fields seemed not enough to determine a global opti-
mum, although the hyper-parameters were on their way to converge even as the Log Marginal
Likelihood increased with the number of training data points. We found that the sensitivity
analysis was inconclusive. The GPR model performance showed signs of underfitting, which
could be mitigated by another error metric or use of a different GPR targeted software pack-
age. Despite the above mentioned limitations, 68 force fields performed better than the previous
1BPA V2.1 version. The selected 1BPA V3.0 had an average relative error δRg/h = 0.11±0.02,
which is a 21% reduction in error compared to V2.1 error (δRg/h = 0.14 ± 0.03). The newly
determined force field is physically feasible according to agglomerative clustering with 87 ex-
perimental hydrophobicity scales. Liquid-liquid phase separation simulations are the essential
next step in establishing 1BPA V3.0 as an optimised coarse-grained force field.
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Appendices

A 1BPA model details

Bending type ϕbend Torsion type ϕtorsion

ZGX ZGGX

ZPX ZGPX

ZXX ZGXX

ZGP ZPGX

ZPP ZPPX

ZXP ZPXX

ZXGX

ZXPX

ZXXX

Table 3: Unique bending types and torsion types derived from pseudo-angles. Naming conven-
tion is as follows: Glycine (G), Proline (P), 18 amino acids (excluding G and P)(X) and any
amino acid (Z). Order is defined from the N-terminus (left) to the C-terminus (right) [22].

The Debye screening coefficient is defined as

κ =

(
ϵ0ϵrkbT

2NAe2I

)−0.5

where ϵ0 and ϵr represent the permittivity of free space and water respectively, kb is the Boltz-
mann’s constant and T is temperature set to 300K. NA is Avogadro’s number, e is the elemen-
tary charge and experimental ion concentration I equals 150 mM (unless specified otherwise).
Permittivity of water follows the sigmoid function,

ϵr(r) = Ss

[
1− r2

z2
er/z

(er/z − 1)
2

]
where Ss = 80, and z = 0.25nm.

B GPR: Estimators

µ̂ = K (X∗, X)T
(
K(X,X) + σ2

nI
)−1

y

Σ̂ = K (X∗, X∗)−K (X∗, X)T
(
K(X,X) + σ2

nI
)−1

K (X∗, X)

C GPR: Single Prediction Example

The posterior predictor is assembled from the prior distribution conditioned on N observations
via Bayes rule. In other words, we are interested in the probability of a new observation yN+1

given previous observations y [28].

P (yN+1|y) =
P (y1, y2, ...yN , yN+1)

P (y)
(34)
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Given that both y and the joined distribution of y together with the new observation yN+1

follow a (distinct) Gaussian distribution, the probability distribution P (yN+1) is also Gaussian.

P (yN+1) ∼ N (ȳN+1, var(yN+1)) (35)

Definitions of the mean and variance for the probability distribution of the new observation
yN+1 are given below. Note that the variance does not depend on previous observations y, only
on the input points x.

ȳN+1 = kT (K + σ2
nI)

−1y

var(yN+1) = k(xN+1,xN+1) + σ2
n − kT (K + σ2

nI)
−1k

(36)

Vector k defines the kernel values evaluated between the new input xN+1 and the previous
input points X, which is a N ×N matrix [28].

D Molecular Dataset Literature Sources

Rh Rg

Source Molecules Source Molecules

Yamada et al. [44] 20 Lotthamer et al. [21] 137

Kapinos et al. [60] 4 Dignon et al. [9] 9

Ryan et al. [61] 1 Tesei et al. (2021) [18] 5

Bianchi et al. [62] 9 Tesei et al. (2023) [63] 3

Jowitt et al. [64] 1

Subtotal 34 Subtotal 155

Total 189

Table 4: Literature sources overview for molecule data set. Dataset by Lotthamer et al. includes
molecules from Bremer et al. [65], Joseph et al. [17] and Tesei et al. [18] .

E Batches

GPR data points were continuously acquired in batches. The section below defines each batch
and its dimensions: (nsamples × nfeatures).

• Batch 1 (36,26): Force field parameter sets defined by combining the parameter values
below. All other parameters, including the hydrophobicity scale are based on 1BPA V2.1.

α ∈ [0.12, 0.15, 0.20, 0.25]

[F-F,Y-Y,W-W,H-H] ∈ [[7.5, 8.0, 8.5, 6.5], [7.5, 8.0, 8.5, 6.0], [7.0, 7.5, 8.0, 6.0]]

∆catpi ∈ [0,−1,−2]

• Batch 2A (44,26) and Batch 2B (48,26): Force field parameter sets defined by small
perturbation from the 1BPA V2.1 hydrophobicity scale. All amino acids are divided into
four groups with both intra(2A) and inter(2B) group effects accounted for.
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1. Charged (Hydrophillic) : [R,K,D,E]

2. Polar : [S,T,N,Q,G]

3. Aliphatic (Hydrophobic): [A,V,I,L,P,C,M]

4. Aromatic: [F,Y,W,H]

• Batch 3 (39,26): Force field parameter sets sampled via Latin HyperCube Sampling.
Samples were scaled in the following bounds.

[α, ϵi, ϵaromatic,∆catpi] :
2

[0.10, 0.6, 0.6, 0, 0, 0.5, 0.25, 0.5, 0.6, 0, 0.6, 0.6, 0.25, 0.6, 0.25, 0, 0.25, 0.25, 0.6, 0.5, 0.5, 6, 6, 6, 6,−2],

[0.25, 1, 1, 0.25, 0.25, 1, 0.6, 1, 1, 0.25, 1, 1, 0.6, 1, 0.7, 0.25, 0.6, 0.6, 1, 1, 1, 8, 8, 8, 8, 0],

• Batch 4 (20,26): Force field parameter sets defined with GPR predictor trained on batches
1, 2A, and 2B. Latin HyperCube Sample of 1000 force field parameter sets (bounded by
limits from Batch 3 definition) are predicted via trained GPR. 10 largest and 10 lowest
target variable predictions were selected, defining Batch 4.

• Batch 5 (20,26): Force field parameter sets defined with GPR predictor trained on batches
1, 2A,2B and 3. Latin HyperCube Sample of 1000 force field parameter sets (bounded by
limits from Batch 3 definition) are predicted via trained GPR. 10 largest and 10 lowest
target variable predictions were selected, defining Batch 5.

• Batch 6 (10,26): Force field parameter sets defined with GPR predictor trained on batches
3 and 4. Latin HyperCube Sample of 1000 force field parameter sets (bounded by lim-
its from Batch 3 definition) are predicted via trained GPR. 10 lowest target variable
predictions were selected, defining Batch 6.

• Batch 7 (50,26): Batch 7 was defined by zooming into the previously identified regions
of interest. Optimised force field candidates (< 1BPA V2.1) were grouped into 2 clusters
via Agglomerative Clustering:

– Cluster1: Force fields similar to 1BPA V2.1

– Cluster2: Other

Two sets of lower and upper LHS limits were defined accordingly, effectively zooming
in the force field parameter space. Each above defined cluster provided a distinct LHS
sample with 100 samples. All 200 samples were then presented to the GPR model,
(trained on batches 1,2A,2B,3,4, and 5). Lowest predicted target values were selected
for Batch7 definition. Selection was purposefully uneven, with 40 parameter sets drawn
from Cluster 2 LHS sample and 10 from Cluster 1 LHS sample. As a result, Batch 7
contained unevenly distributed parameter sets, with more focus on previously unexplored
local minima.

2ϵi refer to individual AA hydrophobicites (sorted in alphabetical order) and ϵaromatics refers to
ϵF−F , ϵY−Y , ϵW−W , ϵH−H .
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F GPR Hyper-parameters
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Figure 14: Hyper-parameters as a function of GPR data points.
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G Histidine charge dependence

Figure 15: Comparison of all 189 IDR
Rg/h calculations wiht experiment for
a coarse grained force field with no his-
tidine charge.

Figure 16: Comparison of all 189 IDR
Rg/h calculations with experiment for
a coarse grained force field with 0.5
histidine charge.

Figure 17: Average relative error com-
parison for two cases; no net histi-
dine charge (q his0) and 0.5 histidine
charge (q his0.5)

Figures 15 and 16 show minor differences in single molecule Rg/h calculations. Averaging over
all 189 IDRs (Figure 17) shows no visible distinction between a coarse-grained force field with
no net histidine charge and 0.5 histidine charge.
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H Hydrophobicity scales analysis
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Figure 18: Agglomerative clustering of 91 hydrophobicity scales. 1BPA V3.0 is highlited in
red, with HPS and HPS-Urry highlighted in black. Numbers in brackets indicate the number
of HP scales belonging to that node. Previous 1BPA versions are not shown.
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Figure 19: Agglomerative clustering analysis, zoomed in to show previous 1BPA hydrophobicity
scales (in red). All fall into the same grey cluster, as expected.
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I Sensitivity analysis

Sensitivity analysis was implemented to identify force field parameters with largest impact on
δRg/h. Three methods were evaluated: Linear Regression, GPR length scales and Sobol inde-
ces. All methods provide qualitative rather than quantitative results. Further exploration is
necessary.

The magnitude of Linear Regression coefficient represents the change in δRg/h upon a unit
change in the corresponding parameter. However, Linear Regression has numerous prior as-
sumptions (such as homoscedasticity), which have not been validated. Additionally, Linear
Regression assumes a linear relation between the force field parameters and the target value
δRg/h. The exact functional form is not yet known, further undermining this sensitivity analysis
method.

GPR length scales quantify the change in δRg/h upon a small change in a given parameter.
Accordingly, the inverse can be interpreted as a measure of sensitivity. Optimised length scales
varied rapidly as new GPR data points were introduced to the model. The Log Marginal
Likelihood plot (Figure 7) shows a continuous increase, which indicates that the latest hyper-
parameter values might not be fully optimised. Due to the lack of hyper-parameter convergence,
corresponding sensitivity analysis is not indicative of actual model behaviour.

Total order Sobol indices quantify the effect of a single parameter (including its interaction
with other parameter). The Sobol method consists of at least 105 model evaluations. In our
case, the GPR model predicted more than 1 million δRg/h values. The latest iteration of the
GPR model predictions do not fully match GROMACS observations, which is why the Sobol
indices are also not a valid sensitivity metric.
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Figure 20: Comparison of 3 sensitivity analyses; Linear Regression(red), GPR length scales
(green) and Sobol indices (blue). Higher sensitivity index has more effect on output variable.
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Figure 21: Comparison of 3 sensitivity analyses: Zoomed in below 5%

Investigated methods do not show a reliable trend and should only be taken as a qualitative
measure.
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