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Abstract

The Casimir force arises from boundary-dependent modifications of the zero-point energy due to

fluctuations in the electromagnetic field. This force, calculated between two bodies with known

optical properties, typically manifests as an attractive interaction. However, theoretical predictions

suggest that creating a repulsive Casimir force is possible by modifying boundary conditions. This

thesis explores various approaches to achieving a repulsive Casimir force, particularly in using

three-dimensional topological insulators, a novel class of materials with unique electronic and op-

tical properties.

The research reveals that variations in the thickness of multilayer systems meaningfully impact the

Casimir force, with thinner layers exhibiting more pronounced effects. Introducing surface con-

ductivity alters the topological force contrast (TFC), and larger theta values lead to more substan-

tial changes. Complex interdependencies are observed in systems with multiple layers and vary-

ing thicknesses, with certain configurations enhancing the reduction factor of the Casimir force.

Simplified toy models effectively predict general trends, although real materials reveal additional

complexities that need consideration. These insights guide the design of nanoscale devices by

strategically manipulating material properties and layer thicknesses to control the Casimir force.

In only one case, a significant enhancement of the Casimir force was observed as reported in Fig-

ure 4.3. However, this was due to geometrical configuration rather than the topological response of

the material. Despite numerous theoretical predictions, experimental evidence of repulsive Casimir

forces remains elusive. This thesis emphasizes the need for improved modelling of topological in-

sulators to understand both bulk and surface contributions to the Casimir force. Such advancements

could inspire experimental efforts to measure repulsive Casimir forces, potentially leading to sig-

nificant breakthroughs in nanotechnology applications.
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Outline

This thesis explores the subtle interplay of the Casimir force in multilayer systems through a sys-

tematic analysis of varying parameters.

A two-layer system establishes a baseline for Casimir force calculations. In section 4.1 a third layer

with variable thickness, exploring layer-dependent interactions is introduced. In subsection 2.3.3,

surface conductivity is introduced, adding a material property dimension to the two-layer system.

The same analysis is conducted in a liquid gap as reported in section 3.1. In section 4.2, the anal-

ysis is generalized to N layers, varying the thickness of each layer except the first. In section 4.3,

dual-sided surface conductivity is incorporated into a three-layer system, presenting a nuanced in-

teraction between surface properties and layer thickness variations. Each step offers unique insights

into the Casimir force and reduction factor, laying the groundwork for understanding the impact

of layer variations and surface properties. Comparative analyses highlight trends and unexpected

behaviours, guiding practical applications in nanoscale device design. This systematic exploration

contributes to a comprehensive understanding of Casimir interactions in multilayer structures, with

implications for optimizing nanotechnological devices.
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Chapter 1

A Macroscopic Quantum Phenomenon

The development of quantum mechanics has provided a description of reality that often disobeys

all classical logic and prediction. One of the most important results, still tied to unresolved issues

today, is the existence of vacuum energy. In classical electrodynamics, there is no reason why

there should be electromagnetic radiation in a vacuum. However, as early as 1912, while study-

ing the black body spectrum, Planck discovered the concept of zero-point energy, starting from

the sole hypothesis that radiation consisted of discrete and indistinguishable energy quanta. From

that moment on, in a series of subsequent events, quantum theory took shape, and it was from the

quantization of the electromagnetic field that vacuum energy reemerged [1].

According to quantum field theory, the vacuum is not truly empty despite being devoid of matter

and radiation. It can be described as a quantized electromagnetic (EM) field consisting of oscillators

at all frequencies (𝜔). Consequently, the energy in the ground state of these harmonic oscillators
is not zero but rather ≈𝜔/2, indicating that the vacuum possesses a non-zero energy density. This

forms the foundation of quantum fluctuations [2], and more about this can be found in Appendix A.

While the presence of zero energy seems inconsequential, it gives rise to many macroscopic phe-

nomena. For instance, the attraction between two atoms or molecules arises from the instantaneous

dipole moment created by the motion of electron clouds, a result of quantum fluctuations. These

instantaneous dipole moments generate fluctuating EM fields, inducing similar dipole moments

in nearby atoms or molecules. On average, the dipole moment of an atom or molecule is zero.

However, in the quantum theory developed by Fritz London in 1930, the dispersion of the dipole

moment operator is non-zero, resulting in correlations between the EM field fluctuations generated

by both atoms or molecules [3]. This concept of vacuum energy directly connects to the roots of

the Casimir effect. The Van der Waals attraction occurs between two nearby atoms or molecules,

even nonpolar ones. This type of interaction extends to neutral macroscopic bodies and originates

from the motion of the electric charges within them, generating fluctuating electromagnetic fields

in the space between the objects. These fields induce transient dipole moments in the molecules,

causing their interaction. Therefore, the Van der Waals interaction is purely quantum; London’s

work confirms and completes this assertion by demonstrating that it is a non-relativistic effect, as
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his results depend on Planck’s constant ℎ, but not on the speed of light in a vacuum 𝑐 [4].
A quantum and non-relativistic Van der Waals force manifests in the limit where two atoms,

molecules, or macroscopic bodies are close to each other (a few nanometers apart). This distance

allows a virtual photon emitted by one atom to reach the other within a time equal to or less than

its lifetime, producing instantaneous dipole moments in both atoms; this is referred to as the non-

retarded Van der Waals force [5]. If the distance between the atoms increases, the non-retarded

Van der Waals force does not exist. However, the dispersion of the electromagnetic field is still

non-zero, resulting in the emergence of dipole moments and an attractive force between the atoms.

This long-range interaction, known as the Casimir-Polder force, is a relativistic extension of the

Van der Waals force and depends on the polarizability of the atoms [3], [6].

(a) (b)

Figure 1.1: (A) Schematics of the different types of dispersion forces: (a) non-retarded London-van der

Waals, (b) retarded Casimir-Polder and (c) Casimir interaction. (B) The Casimir effect’s principal setup

involves quantizing electromagnetic waves confined between two parallel plates. This quantization gives

rise to an attractive force between the plates, symbolized by brown arrows.

On a macroscopic scale, Casimir predicted the existence of an attractive force between two par-

allel, perfectly conducting neutral plates placed in a vacuum. This interaction, known as the Casimir

effect, is thus an extension of the Casimir-Polder force within material boundaries. The theoretical

demonstration of the existence of the Casimir force is obtained by considering an electromagnetic

field inside a parallelepiped with sides 𝐿𝑥 ≡ 𝐿𝑦 = 𝐿 and 𝐿𝑧, consisting of two perfectly conduct-

ing plates, each with an area 𝐿2, placed at a distance 𝑑 ≡ 𝐿𝑧 as shown in Figure 1.1b [7]. This

technique yields the following expression for the Casimir energy [8]:

Δ𝐸 = − 𝜋2ℏ𝑐
720𝑑3 (1.1)

This result indicates an attractive force between the perfectly conducting parallel plates due to

the vacuum fluctuations of the electromagnetic field. The derivation of this result can be found in

Appendix C. The negative sign indicates the attractive nature of the Casimir force. The Casimir

effect has been experimentally observed, providing remarkable confirmation of the quantum vac-

uum fluctuations predicted by quantum field theory.
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The Casimir force between the plates can be calculated by taking the derivative of the Casimir

energy with respect to the separation distance 𝑑 [4]:

𝐹Casimir = −𝜕(Δ𝐸)
𝜕𝑑

= 𝜋2ℏ𝑐
240𝑑4 (1.2)

This expression shows that the Casimir force is inversely proportional to the fourth power of the

separation distance between the plates. The force becomes stronger as the plates get closer together,

following the theoretical predictions [2].

The Casimir force, though weak, offers a unique window into the connection between the quantum

world and our macroscopic reality. Measuring this force, however, is no easy accomplishment [9].

Early experiments, like Sparnay’s in 1958, were groundbreaking but faced significant challenges

[9]. Achieving the necessary precision in surface separation and minimizing unwanted electro-

static forces proved challenging. Techniques like spring dynamometers and balancing forces with

applied potentials were employed, but limitations in accuracy remained [10]. Later advancements,

such as Lamoreaux’s torsion pendulum and Mohideen’s atomic force microscopy, addressed these

issues. Torsion pendulums offered more significant control over separation distances, while atomic

force microscopy provided exceptional sensitivity in measuring the minute deflections caused by

the Casimir force [11].

While not always achieving perfect agreement with theory, these experiments progressively re-

fined our understanding of the Casimir force. Each iteration highlighted the significance of surface

cleanliness, material properties, and precise distance control. More about the experiments that led

to the discovery of the Casimir effect can be found in Appendix D.

Nowadays, the Casimir effect has transitioned from theoretical curiosity to practical consideration

in the latter years, thanks to recent advancements in nanofabrication techniques [12]. This progres-

sion enables precise control and tuning of the Casimir force, opening up possibilities for innovative

device applications. Within this context, two prominent research approaches have emerged, each

offering unique avenues for exploiting the Casimir effect [13].

The first approach leverages geometric modifications to manipulate the Casimir force, adding new

nanostructure functionalities. Research like the one by A. W. Rodriguez et al. has shown that

employing a new computational approach for Casimir forces in various geometries can yield sub-

stantial insights [14]. Their findings highlight nonadditive and nonmonotonic variations in Casimir

forces influenced by lateral walls. This innovative method is a valuable tool for comprehending

and predicting the behaviour of Casimir forces in intricate micro- and nanostructured systems,

which is crucial for developing NEMS/MEMS technologies like resonators. The second approach

focuses on the material properties, specifically the response functions of various materials, to mod-

ulate the Casimir force. Research by G. Palasantzas et al. has shown that Casimir forces have

significant potential applications in micro- and nanosystems. Their paper [15] discusses how these

quantum fluctuations can be harnessed for actuation in such systems, emphasizing the critical role
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of both van der Waals and Casimir interactions in adhesion processes. The study stresses the im-

portance of carefully selecting material properties and optimizing system designs to effectively

manage these forces, thereby enhancing the performance and stability of nanoscale devices. This

thesis aims to bridge the gap between these two approaches by exploring the combined effects of

geometric structuring and the unique properties of topological insulators. By integrating multilayer

geometries with the distinctive characteristics of topological insulators (TIs), this research seeks to

advance the understanding and practical utilization of the Casimir effect in nanoscale devices. The

potential to harness and control the Casimir force through this combined approach could pave the

way for novel applications in NEMS/MEMS and beyond, contributing significantly to the field of

nanotechnology.

1.1 Proximity Force Approximation

The Proximity Force Approximation (PFA) is a valuable computational tool that simplifies the

calculation of forces by discretizing the interaction surface into infinitesimal plates. This method

systematically summates forces between these small, parallel segments, typically used in plane-

plane geometry (pp). In the sphere-plate geometry (sp), when the separation distance between the

sphere and the plate is much smaller than the radius of the sphere, the curved surface of the sphere

is approximated as a series of infinitesimally small, parallel plates.

𝐹sp ≈ ∑
𝑖,𝑗

𝑓pp (𝑧 (𝑥𝑖, 𝑦𝑗)) Δ𝑥𝑖Δ𝑦𝑗 (1.3)

As the discretization approaches an infinitesimal scale, the summation transforms into a double-

integral

𝐹sp ≈ ∬
𝒮2

𝑓pp(𝑧(𝑥, 𝑦))𝑑𝑥𝑑𝑦 (1.4)

For large radii (𝑅 ≫ 𝑑), the force equation further simplifies to

𝐹sp ≈ 2𝜋𝑅 ∫
∞

𝑑
𝑓pp(𝑧)𝑑𝑧 (1.5)

The total force exerted is contingent upon the radius of the sphere, expressed as

𝐹sp ≈ 2𝜋𝑅𝐸𝐶(𝑑) (1.6)

Here, 𝐸𝐶(𝑑) is the energy. The theoretical upper limit of this force is defined by

𝐹Ideal (𝑑) = 𝜋3ℏ𝑐𝑅
360𝑑3 (1.7)

4



An intrinsic reduction factor (𝜂) is defined as exclusively reliant on material properties and inde-
pendent of the sphere’s radius

𝜂 =
𝐹sp(𝑑)

𝐹Ideal(𝑑)
(1.8)

1.1.1 Limitations of the Model

While the Proximity Force Approximation (PFA) is a powerful method for estimating interactions,

it has several limitations. First, the PFA assumes that the interacting bodies can be approximated

as a series of infinitesimally small, parallel plates, which works best for nearly parallel surfaces and

does not accurately account for more complex or curved geometries [16]. Additionally, the accu-

racy of the PFA diminishes as the separation distance between the interacting surfaces decreases.

At very short distances, the discrete nature of matter and surface roughness can significantly affect

the interaction forces, which the PFA does not account for. The PFA also assumes material ho-

mogeneity, ignoring variations in material properties at the nanoscale, such as inhomogeneities or

surface coatings [17].

Despite its limitations, the Proximity Force Approximation (PFA) remains a highly useful tool

in nanoscale physics and engineering. Its primary advantage lies in its computational simplicity,

allowing for estimating forces between bodies with relatively straightforward mathematical calcu-

lations. The PFA is particularly effective for systems with nearly parallel surfaces and small sepa-

rations, and it is common in many practical applications, such as microelectromechanical systems

(MEMS) and nanotechnology. The PFA enables researchers and engineers to predict interaction

forces quickly and efficiently by converting complex geometries into simpler, parallel plate ap-

proximations. Additionally, the PFA provides valuable insights into the behaviour of quantum and

electromagnetic forces at small scales, contributing to the design and optimization of nanoscale de-

vices. Its ability to handle a variety of materials and conditions, albeit under idealized assumptions,

makes it a widely adopted method in the study of intermolecular and surface forces.

1.2 Casimir Effect in the Presence of Semi-Infinite Surfaces

We first determine the electromagnetic fluctuations to calculate the Casimir force in the presence

of semi-infinite surfaces. These fluctuations allow us to integrate the average value of Maxwell’s

stress tensor normal to the surface, thereby obtaining the Casimir force. For detailed information

on electromagnetic fields and the Maxwell equations that lead to the stress tensor, please refer to

Appendix E. The general problem of calculating Casimir Energy for infinite plates involves an-

alytic functions in the complex plane, as detailed in Appendix C. However, a simpler solution is

possible when the geometry consists of two semi-infinite planes separated by a gap, as illustrated in

Figure 1.2a. Lifshitz first examined this specific configuration in 1954 [10]. In the preceding dis-

cussion, we assumed an infinite dielectric permeability of the media as described in Equation 1.2.
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However, dielectric permeability is frequency-dependent and denoted as 𝜀(𝜔), accounting for dif-
ferent media and their frequency-dependent properties. Lifshitz’s discoveries lay the groundwork

for broadening the scope to encompass configurations with multiple surfaces and diverse materials.

[2]. In this framework, the reflection coefficients play the main role.

(a) (b)

Figure 1.2: (A) Scheme of a plane-parallel system with a gap (that might be different from the vacuum) [10].

(B) Diagram illustrating the interaction between two semi-infinite materials (𝑙 = 1 and 𝑙 = −1) through the
Casimir-Lifshitz force, mediated by material 𝑙 = 0. Each material 𝑙 is characterized by its dielectric function
𝜀𝑙. The Fresnel coefficient at the interface between materials 𝑙 and 𝑙′ is indicated as 𝑟(𝑙,𝑙′)

𝑗 .

1.3 Casimir force for multi-layers systems

The Casimir force between a sphere with radius 𝑅 and a flat plate, separated by a distance gap, can

be calculated using a sphere-plate geometry (sp) configuration. Assuming the material is isotropic

and applying the proximity force approximation (PFA), the Casimir force is given by:

𝐹𝑠𝑝 = 2𝜋𝑅ℱ (1.9)

where ℱ is the plate-plate free energy per unit area given by

ℱ =
∞

∑
𝑛=−∞

ℱ𝑛 (1.10)

where

ℱ𝑛 = 𝑘𝐵𝑇
2

∫
𝑑𝑘2

‖

(2𝜋)2 ln (det [𝕀 − ℝ1ℝ2𝑒−2𝑘⟂𝑑]) (1.11)

where

𝑘⟂ = √𝑘2
‖ + 𝜖𝑔𝜇𝑔 (ℏ𝜉𝑛

ℏ𝑐
)

2
(1.12)

where the reflectionmatricesℝ = ℝ (|𝜉𝑛| , 𝑘‖)must be analytically continued to the n-thMatsubara

frequency (ℏ𝜉𝑛 = 2𝜋𝑘𝐵𝑇 𝑛). Here, 𝜖𝑔 = 𝜖𝑔 (𝑖 |𝜉𝑛|) (𝜇𝑔 = 𝜇𝑔 (𝑖 |𝜉𝑛|)) represents the permittivity,
permeability, of the gap [18].

As electromagnetic waves can be polarized in different ways when discussing reflection and trans-
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mission at interfaces, two common polarizations are considered:

• s-Polarization (TE - Transverse Electric): The electric field is perpendicular to the plane

of incidence.

• p-Polarization (TM - Transverse Magnetic): The magnetic field is perpendicular to the

plane of incidence.

Figure 1.3: Geometries of incident plane waves with (a) p polarization (or TM) and (b) s polarization (or

TE).

Reflection coefficients describe how much of an incident wave is reflected by a surface. These

coefficients depend on the polarization of the wave:

• 𝑟𝑠𝑠: Reflection coefficient for s-polarized waves.

• 𝑟𝑝𝑝: Reflection coefficient for p-polarized waves.

• 𝑟𝑠𝑝: Cross-polarization reflection coefficient from s to p polarization.

• 𝑟𝑝𝑠: Cross-polarization reflection coefficient from p to s polarization.

It follows that the reflection matrix at an imaginary frequency can be written as:

ℝ = [
𝑟𝑠𝑠 (𝑖𝜉𝑛, 𝑘‖) 𝑟𝑠𝑝 (𝑖𝜉𝑛, 𝑘‖)
𝑟𝑝𝑠 (𝑖𝜉𝑛, 𝑘‖) 𝑟𝑝𝑝 (𝑖𝜉𝑛, 𝑘‖)

] (1.13)

Under the assumption that all materials present in-plane symmetry, we can simplify the contribution

of the 𝑛-th Mastubara frequency as follows

ℱ𝑛 = 𝑘𝐵𝑇
2

1
8𝜋𝑑2 ∫

∞

𝑥𝑛

𝑥 ln (det [𝕀 − ℝ1ℝ2𝑒−𝑥]) 𝑑𝑥 (1.14)

where 𝑥 = 2𝑘⟂𝑑 and 𝑥𝑛 = ℏ𝜉𝑛

( ℏ𝑐
2𝑑√𝜖𝑔𝜇𝑔

)
[18].

To numerically implement these equations, wewill introduce a cutoff for theMatsubara frequencies
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and for the 𝑥 integral. In addition, we will evaluate the integral using the trapezoid method with a

mesh defined by the spacing Δ𝑥. Mathematically, our approximation is given by

𝐹𝑠𝑝 ≈ (2𝜋𝑅) ( 𝑘𝐵𝑇
8𝜋𝑑2 )

𝑛cutoff

∑
𝑛=0′

𝑥max

∑
𝑚=𝑥𝑛

𝐼𝑛(𝑥𝑚−1) − 𝐼𝑛(𝑥𝑚)
2

Δ𝑥 (1.15)

where

𝐼𝑛(𝑥) = 𝑥 ln (det[𝕀] − ℝ1ℝ2𝑒−𝑥) (1.16)

ℝ = ℝ (𝑘⟂ = 𝑥
2𝑑

, 𝑖𝜉𝑛) (1.17)

here, the apostrophe means that term 𝑛 = 0 must be multiplied by a factor of 1/2 [19]. In this

thesis, we will explicitly solve for the reflection matrix at imaginary frequencies using the transfer

matrix formalism that will depend on the perpendicular component of the wave-vector in the gap

(𝑘⟂), and the imaginary frequency 𝜉 as will be seen in section 2.2.
A more comprehensive approach for calculating the Casimir energy considers the effects of non-

ideal mirrors that scatter light in various directions, a phenomenon known as non-specular reflec-

tion. Non-specular reflection accounts for the imperfections and roughness of real surfaces, where

the reflected light is diffused rather than being reflected in a single, predictable direction as in spec-

ular reflection. This results in a more accurate depiction of the physical reality, as perfect specular

reflection is an idealization that rarely occurs in practical situations. Non-specular reflection can

significantly impact the Casimir force calculations, especially at shorter distances and with mate-

rials that have complex surface properties.

Details on this generalized approach, including the mathematical formulations and numerical meth-

ods used to account for non-specular reflections, can be found in Appendix G. This appendix pro-

vides a deeper insight into how non-ideal surface interactions are modeled and incorporated into

the calculation of the Casimir energy, offering a more realistic analysis of the force in multi-layer

systems.

1.3.1 Fresnel Coefficients

Originally, Lifshitz obtained the closest expression for the plane-parallel geometry, known as the

Lifshitz formula, for a system similar to the one illustrated in Figure 1.2b. In this setup, 𝜀𝑙 represents

the dielectric function of the respective 𝑙 material, where 𝑙 = 1 and 𝑙 = −1 correspond to the

interacting plates, and 𝑙 = 0 refers to the medium mediating the interaction. The distance between

the semi-infinite bodies, or equivalently the thickness of the mediating material, is denoted by 𝑑,
and 𝑟(0,1)

𝑗 and 𝑟(0,−1)
𝑗 represent the simple Fresnel reflection coefficients at the top and bottom

interfaces of material 𝑙 = 0 for polarizations 𝑗 = 𝑇 𝐸, 𝑇 𝑀. One common form of the Lifshitz

force expression at 𝑇 = 0 K in such a system is given by:
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In this expression, ℏ is the reduced Planck constant and 𝑘0 is the wavenumber component inside

the mediating material, perpendicular to the interfaces. Additionally, 𝑘0 is the wavenumber in the

plane of the planar surface at the interface, perpendicular to k⟂ = (𝑘𝑥, 𝑘𝑦). The expression for 𝑘𝑙

is written as:

𝑘𝑙 = 𝑘𝑙(𝜔, 𝑘⟂) = [𝑘2
⟂ − 𝜀𝑙(𝜔)𝜔2

𝑐2 ]
1/2

(1.18)

The Fresnel reflection coefficients 𝑟(0,±1)
𝑇 𝑀 and 𝑟(0,±1)

𝑇 𝐸 , are defined as:

𝑟(0,±1)
𝑇 𝑀 (𝜔, 𝑘⟂) =

𝜀±1(𝜔)𝑘0 − 𝜀0(𝜔)𝑘±1
𝜀±1(𝜔)𝑘0 + 𝜀0(𝜔)𝑘±1

(1.19)

𝑟(0,±1)
𝑇 𝐸 (𝜔, 𝑘⟂) =

𝑘0 − 𝑘±1
𝑘0 + 𝑘±1

(1.20)

The formal and derivation can be found in Appendix D for temperatures different than zero.

1.4 Topological Insulator

Figure 1.4: A topological insulator is a quantum state with an energy gap in the bulk but supports robust

conductor surface states at the boundaries.

Materials are generally classified as insulators or metals based on their band structure. In 2007,

however, a material that bend such classification was found: the first topological insulator, in-

sulating in the bulk but conductive on the edges [20]. These unique states emerge from a deli-

cate interplay of spin-orbit interactions and time-reversal symmetry. Within this framework, two-

dimensional (2D) topological insulators manifest as quantum spin Hall insulators, akin to the inte-
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ger quantum Hall state, while three-dimensional (3D) counterparts host intriguing spin-polarized

2D Dirac fermions on their surfaces [21]. Investigations into materials such as Bi1−𝑥Sb𝑥, Bi2Se3,

Bi2Te3, and Sb2Te3 establish them as 3D topological insulators, directly probing the topology of

their surface states [21]. Additionally, the discourse delves into the emergence of exotic surface

states within 3D topological insulators spurred by induced energy gaps. These include a magnetic

gap creating a new quantum Hall state and a superconducting gap supporting Majorana fermions,

offering potential for topological quantum computation.

S.C. Zhang et al. proposed an alternative framework for understanding 3D topological insulators.

In their model, the surface conductance is replaced by a quantized bulk linear magnetoelectric

effect, referred to as topological magnetoelectric polarizability (TMEP) [22]. This concept is anal-

ogous to the hypothetical axion field suggested by particle physicists R. Peccei and H. Quinn [23],

leading to the term axion insulators for 3D topological insulators; more about this can be found in

Appendix H. The presence of the magnetoelectric effect significantly impacts vacuum fluctuations

by altering the conventional Maxwell’s boundary conditions, potentially affecting the Casimir in-

teraction. In 2011, A. Gurshin et al. conducted a theoretical study on the impact of TMEP on

the Casimir effect [24]. One of their most surprising predictions was the possibility of repulsive

Casimir forces between two plates of topological insulators with opposite signs of the TMEP.

1.4.1 Parallel and Antiparallel Case

The magnetization direction can vary within the magnetic coatings applied to the layers of the

Casimir system’s topological insulator (TI) material. In this work, we will study two geometries,

referred as parallel and anti-parallel. In the first one, the magnetization directions within the mag-

netic coatings on the TI layers are aligned in the same direction. This means that the magnetisation

direction in each layer is consistent and points in the same direction. In contrast, in the antiparallel

configuration, the magnetization directions within the magnetic coatings on the TI layers are oppo-

site. This means that if you were to observe the direction of magnetization in each layer, you would

find that they point in opposite directions [25]. These configurations are significant because they

influence the overall magnetic properties of the system and, consequently, affect how the Casimir

interaction behaves between the TI and normal insulator layers [25].

(a) (b)

Figure 1.5: (A) Antiparallel configuration: magnetizations in the magnetic coatings on the TI layers are

opposite. (B) Parallel configuration: magnetizations in the magnetic coatings on the TI layers are aligned.
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Chapter 2

Methods

2.1 Analytic Continuation

To determine the Casimir energy using Equation 1.11, it is necessary to have the reflection matrices

at imaginary frequencies (refer to section 2.2). These reflection matrices can be obtained by solving

Maxwell’s equations and performing an analytic continuation to the imaginary axis in the complex

frequency plane, where 𝜔 = 𝑖𝜉 [26].

𝜖(𝑖ℏ𝜉) = 1 + 2
𝜋

∫
∞

0

ℏ𝜔𝜖′′

(ℏ𝜔)2 + (ℏ𝜉)2 𝑑(ℏ𝜔) (2.1)

Here, 𝜖″ denotes the imaginary part of the permittivity at a frequency characterized by ℏ𝜉. Due to
experimental limitations, 𝜖″ can only be determined within a finite energy range, [ℏ𝜔1, ℏ𝜔2].
To accommodate this limitation, the integral is divided into three parts

𝜖(𝑖ℏ𝜉) = 1 + ΔLow (ℏ𝜉) + ΔMid(ℏ𝜉) + ΔHigh(ℏ𝜉) (2.2)

whereΔLow (ℏ𝜉) represents the contribution from frequencies below ℏ𝜔1, ΔMid(ℏ𝜉) represents the
contribution from frequencies within the range [ℏ𝜔1, ℏ𝜔2] and ΔHigh(ℏ𝜉) represents the contribu-
tion from frequencies above ℏ𝜔2. Mathematically, these components are expressed as [27]:

ΔLow (ℏ𝜉) = 1 + 2
𝜋

∫
𝜔1

0

ℏ𝜔𝜖′′

(ℏ𝜔)2 + (ℏ𝜉)2 𝑑(ℏ𝜔)

ΔMid (ℏ𝜉) = 1 + 2
𝜋

∫
𝜔2

𝜔1

ℏ𝜔𝜖′′

(ℏ𝜔)2 + (ℏ𝜉)2 𝑑(ℏ𝜔)

ΔHigh(ℏ𝜉) = 1 + 2
𝜋

∫
∞

𝜔2

ℏ𝜔𝜖′′

(ℏ𝜔)2 + (ℏ𝜉)2 𝑑(ℏ𝜔)

(2.3)

Given that our study focuses on insulators, we can state that the extrapolation for both low and high

frequencies has been set to zero [28].
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2.2 Transfer Matrix Method for Heterostructures in Electro-

magnetic Theory

Lifshitz’s formula provides a framework applicable to heterostructures, although the challenge of

computing the total reflection matrix, a task that involves solving for each reflection and transmis-

sion, often entailing complications [29].

The transfer-matrix method is widely used to analyze electromagnetic waves through stratified

media, such as stacks of thin films [17]. In structures with multiple interfaces, as presented in Fig-

ure 2.1, reflections are partially transmitted and partially reflected multiple times.

The transfer-matrix method leverages Maxwell’s equations, which dictate simple continuity con-

ditions for the electric field across boundaries between different media. This principle allows for a

straightforward computation: starting with the electric field known at the beginning of a layer, the

field at the end of the layer can be derived using matrix operations [30]. By representing each layer

with a transfer matrix and sequentially applying these matrices through the stack, the entire layered

structure can be encapsulated within a system matrix [30] from which we can compute reflection

and transmission coefficients straightforwardly.

[EA] = [𝑇𝐴𝐵][EB
𝑖 ]

[EB
𝑖 ] = [𝑃𝐵][EB

𝑓 ]

[EB
𝑓 ] = [𝑇𝐵𝐶][EC

𝑖 ]

[EC
𝑖 ] = [𝑃𝐶][EC

𝑓 ]

[EC
𝑓 ] = [𝑇𝐶𝐷][E𝐷]

(2.4)

Figure 2.1: Multilayer configuration transmitted and

reflected waves representation

The sequential equations governing this approach are described in Equation 2.4. It can be seen

that the equations can be substituted into each other, leading to the following:

[EA] = [𝑇𝐴𝐵][EB
𝑖 ]

[EB
𝑖 ] = [𝑃𝐵][𝑇𝐵𝐶][𝑃𝐶][𝑇𝐶𝐷][E𝐷]

(2.5)

The latter can be further combined into a single matrix in the form:

[EA] = [𝑇𝐴𝐵][𝑃𝐵][𝑇𝐵𝐶][𝑃𝐶][𝑇𝐶𝐷][E𝐷] (2.6)

or better written as:

[𝐸A] = [𝑋𝐴𝐷] [𝐸𝐷] (2.7)
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Here, 𝐸D denotes the electromagnetic field in the reference medium and 𝑋𝐴𝐷 represents a sim-

plified transfer matrix that relates the electromagnetic field (𝐸A) in the target medium (𝐴) to the
electromagnetic field (𝐸𝐷) in the reference medium (𝐷). This simplified matrix offers a more

manageable representation than the comprehensive transfer matrix for heterostructures. Utilizing

this decomposition, the transfer matrix for the electromagnetic field components, considering both

s- and p-polarizations, can be depicted as

⎡
⎢
⎢
⎢
⎣

𝐸𝐴+
𝑠

𝐸𝐴−
𝑠

𝐸𝐴+
𝑝

𝐸𝐴−
𝑝

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑋11 ⋯ ⋯ 𝑋14

⋮ ⋱ ⋮
⋮ ⋱ ⋮

𝑋41 ⋯ ⋯ 𝑋44

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝐸D+
𝑠

𝐸𝐷−
𝑠

𝐸D+
𝑝

𝐸𝐷−
𝑝

⎤
⎥
⎥
⎥
⎦

(2.8)

Thismatrix representation proves highly efficient in computing the heterostructure’s total reflection

matrix [25].

2.2.1 Medium Matrix

The medium matrix, denoted as A, provides an efficient method for computing the transfer matrix.

It relates the amplitudes of modes to the tangential components of the electric and magnetic fields

(𝐸𝑥, 𝐸𝑦, 𝐻𝑥, 𝐻𝑦), which are crucial in defining boundary conditions [31]. The medium matrix

simplifies and streamlines the analysis by expressing these conditions in terms of modes rather

than direct field components and describes how incoming and outgoing field components trans-

form. This transformation is fundamental for understanding how electromagnetic waves propagate

through different heterostructure layers [32].

In electromagnetic theory, the electric field inside a medium can propagate in two distinct modes:

𝑠 (transverse electric) and 𝑝 (transverse magnetic). To construct the mediummatrixA, we consider

incoming (+) and outgoing (−) fields within the medium. The amplitudes of these modes and the

corresponding field components are encapsulated in vectors 𝛾A and fA, respectively.

In the absence of surface sources (𝜎𝑠
𝑓 = 0 and 𝑗𝑠

𝑓 = 0), it follows that

(𝐸A − 𝐸B) × ̂𝑧 = 0

(𝐻A − 𝐻B) × ̂𝑧 = 0
⟺

⎧
{{
⎨
{{
⎩

𝐸A
𝑦 = 𝐸B

𝑦

𝐻A
𝑥 = 𝐻B

𝑥

𝐸A
𝑥 = 𝐸B

𝑥

𝐻A
𝑦 = 𝐻B

𝑦

(2.9)

Furthermore, it follows that

[𝐴] [𝛾A] 𝑒𝑖(𝑘‖⋅𝑟‖−𝜔𝑡) = [𝑓A] = [𝑓B] = [𝐵] [𝛾B] 𝑒𝑖(𝑘‖⋅𝑟‖−𝜔𝑡)

⟺ [𝐴] [𝛾A] = [𝐵] [𝛾B]
(2.10)
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where [𝐴] is the medium matrix, [𝛾A] are the coefficients associated with each mode, and [𝑓A]
are the field components in bodyA (with a similar definition for bodyB). Notice that the argument
in the exponent is the same for both media and thus cancels out.

In summary, the mode coefficients of both media are related via their medium matrix. One can

solve for the coefficients on one side by inverting the corresponding medium matrix

[𝛾A] = [𝐴]−1[𝐵] [𝛾B] = [𝑇𝐴𝐵] [𝛾B] . (2.11)

The matrix [𝑇𝐴𝐵] receives the name of the transfer matrix and will play an important role in calcu-
lating the reflection coefficients.

Because we solved for the medium matrix for arbitrary complex 𝜔 and 𝑘 = (𝑘𝑥, 0, 𝑘𝑧), the analytic
continuation of the medium matrix [𝑀] at the imaginary axis is given by 𝜔 = 𝑖𝜉, where 𝜉 is a
positive real number. This implies [29] that:

𝑘𝑧 = √−𝜉2 ̄𝜖 ̄𝜇
𝑐2 − 𝑘2

𝑥 = 𝑖√𝜉2 ̄𝜖 ̄𝜇
𝑐2 + 𝑘2

𝑥 = 𝑖�̃�𝑧. (2.12)

Notice that �̃�𝑧 is purely real and non-negative. It follows the medium matrix at the imaginary axis

as follows

[𝑀] =
⎡
⎢
⎢
⎢
⎣

1 1 1 0 0
�̃�𝑧 (𝜇0𝜉 ̄𝜇)−1 1 −1 0 0

−�̃�𝑧𝑐(𝜉
√

𝜖 ̄𝜇)−1 0 0 1 −1
√

̄𝜖 (𝜇0𝑐√𝜇)−1 0 0 1 1

⎤
⎥
⎥
⎥
⎦

. (2.13)

2.3 Surface conductivity

Figure 2.2: Interface condition between two media, described by the difference in surface conductivities,

denoted by 𝜎A
𝑠 and 𝜎B

𝑠 respectively. The surface conductivity matrix 𝜎𝑆(𝜔) is depicted as a 2x2 matrix,
representing the conductivity components in the transverse direction.

The interface between two distinct materials introduces a set of conditions that govern the behaviour

of electromagnetic fields, especially in topological insulators [21]. This is described by the interface

condition

(𝐻B − 𝐻A) × �̂�AB = 𝑗𝑓
𝑠

= 𝑗A
𝑠 (𝜔) + 𝑗B

𝑠 (𝜔)
(2.14)
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Here, the total current at the interface is the sum of contributions from both sides, denoted as 𝑗A
𝑠 (𝜔)

and 𝑗B
𝑠 (𝜔). The generalized Ohm’s law provides further insight into the surface conductivity [6]

(𝐻B − 𝐻A) × �̂�AB = 𝑗𝑓
𝑠

= 𝜎A
𝑠 (𝜔) ⋅ 𝐸A

𝑘 + 𝜎B
𝑠 (𝜔) ⋅ 𝐸B

𝑘

(2.15)

This equation introduces the surface conductivities 𝜎A
𝑠 (𝜔) and 𝜎B

𝑠 (𝜔), characterizing the material-
specific response at the interface. The surface conductivity is represented as a matrix

𝜎𝑆(𝜔) = [
𝜎𝑥𝑥(𝜔) 𝜎𝑥𝑦(𝜔)
𝜎𝑦𝑥(𝜔) 𝜎𝑦𝑦(𝜔)

] (2.16)

where 𝜎𝑥𝑥(𝜔) and 𝜎𝑦𝑦(𝜔) represent the longitudinal conductivity, while 𝜎𝑥𝑦(𝜔) and 𝜎𝑦𝑥(𝜔) are
the Transverse Hall conductivity. For in-plane isotropic samples, the conditions 𝜎𝑥𝑥 = 𝜎𝑦𝑦 and

𝜎𝑥𝑦 = −𝜎𝑦𝑥 hold true.

Surface conductivity modifies the medium’s matrix by adding a dependence on the parameter 𝜃 =
(2𝑛 + 1)𝜋. This modification leads to the quantized topological magnetoelectric polarizability

(TMEP) adopted in this study. An important consideration is that 𝜃 depends on the frequency,

which limits the model described above. Nonetheless, this frequency dependence remains an active

area of research [33]. Another way to recover the TMEP is using Quantized bulk linear magneto-

electric as explained in section H.1.

2.3.1 Toy Model: Lorentz Oscillators

A. Gurshin et al.’s analysis of the Casimir force between topological insulators (TIs) relies on

several simplifications [24]. Firstly, they overlook the attractive Casimir force between magnetic

layers, suggesting an insulating ferromagnetic layer to mitigate this effect. However, this approach

complicates force measurements due to electrostatic corrections. Secondly, they model the dielec-

tric response of TIs using Lorentz oscillators, which fail to capture the non-zero bulk conductivity

present in many TI samples due to dislocations, impurities, and thermal excitation [34]. Conse-

quently, the impact of more realistic models on repulsive forces remains unknown. Initially, Gur-

shin et al. assumed a frequency-independent topological magnetoelectric polarization (TMEP).

Later, they propose a frequency-dependent surface conductivity for a more accurate description

of the Casimir effect between TIs. In 2014, they predicted repulsive forces at larger separations

and attractive forces at smaller separations between two Chern insulators, making stable levitation

impossible. However, the effects of frequency-dependent surface conductivity on repulsive forces

between 3D TIs have not been thoroughly studied.

We now introduce the simplified model, which employs a single Lorentz oscillator. This model
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describes the dielectric response as follows [24]:

̄𝜖(𝜔) = 1 +
𝜔2

𝐴
𝜔2

0 − 𝜔2 − 𝑖𝛾𝜔
̄𝜖(𝑖𝜉) = 1 +

𝜔2
𝐴

𝜔2
0 + 𝜉2 + 𝛾𝜉

, (2.17)

Here, 𝜔𝐴, 𝜔0, and 𝛾 represent the amplitude-frequency, natural frequency, and dissipation

respectively. Replacing 𝜔 with 𝑖𝜉 facilitates the transition to imaginary frequencies. In this study,
we consider the topological insulator (TI) to be non-magnetic ( ̄𝜇B = 1), and we simplify the gap
medium (A) as vacuum ( ̄𝜇A = 1) [35].
To underscore the practical implications of our findings, we construct a simplified model

based on TlBiSe2 [36]. Available literature shows this material exhibits a natural frequency of

approximately ℏ𝜔0 ∼ 6.58meV. Previous research indicates that dissipation minimally affects
the Casimir force, hence we set 𝛾 = 0.01𝜔0 [37]. Considering the inverse relationship between

static permittivity and equilibrium distances, we choose 𝜔𝐴 = 0.45𝜔0. The permittivity and its

analytical continuation for this model are depicted in Figure 2.3a, Figure 2.3b.

(a)

(b)

Figure 2.3: (A) Permittivity at imaginary frequencies, no extrapolation is needed for insulators. (B) Explor-

ing the Imaginary Permittivity: Bi2Te3 on the left, SiO2 & Toy TI on the right.

A particularly useful method for representing the forces between different values of TMEP is

to compare them with the force experienced by the topologically trivial phase, in this way, we can

gauge the effects of surface conductivity in the total force. We define the topological force contrast
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(TFC) as follows:

TFC(𝑑) =
𝐹sp (𝑑; 𝑛1, 𝑛2)

𝐹sp(𝑑; 0,0)
(2.18)

where 𝐹sp (𝑑; 𝑛1, 𝑛2) is the sphere-plate force at distance 𝑑 for TMEPs given by (𝑛,𝑛2). This result

is noteworthy as it is independent of the sphere’s radius.

2.3.2 Vacuum - Toy Model system as a Baseline for Future Comparisons

A simple system, consisting of a first layer of vacuum and a second layer of a topological insulator

(TI) with conductivity in the middle, is used to establish a baseline for future comparisons. The

Topological Force Contrast (TFC) and Reduction factor are calculated for different conductivity

values in configurations with opposite 𝑛2 values.

Figure 2.4: (A) Topological Force Contrast (TFC) for Varying Theta in a Toy Model with Fixed Parameters

B=4nm and C=10nm. (B) Reduction Factor for the Toy Model with Varying Conductivity

In Figure 2.4, the force values for some 𝜃 configurations present negative TFC values corre-

sponding to a levitation effect on the material. Essentially, as the conductivity varies, the forces

acting on the material increase, indicating that the material might experience a lifting force strong

enough to counteract gravity, leading to levitation.

Future calculations in this thesis will try to substitute real topological insulator materials like Bi2Se3

in different configurations, attempting to determine if levitation is also possible.
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2.3.3 Bi2Se3 with Surface Conductivity: Simplest Case

(a) (b)

Figure 2.5: (A) Material A (Vacuum) and Material B with conductivity profiles. (B) Topological Force

Contrast (TFC) for a two-layer system in which Bi2Se3 is the Material B.

We analyzed the influence of different theta values on the Topological Force Contrast (TFC). For

subsequent values of theta involved in the first 25nm, a change of approximately 1.5%, the results

are shown Figure 2.5b. Bi2Se3 TFC decreases with distance for all theta values, with the effect

being more pronounced for larger theta values.

2.3.4 Comparative Analysis

The simple toy model case, depicted in Figure 2.4, shows that a great difference in TFC values sug-

gests a substantial variation in force profiles—values of 2 indicate a 200% difference, illustrating

a significant disparity in force; however, real material exhibits a more modest 1% contrast. Our

ongoing work aims to explore strategies for increasing this contrast, such as employing liquid gaps

and multilayers. These approaches are crucial for understanding how surface properties, like con-

ductivity, can be tailored to manipulate the magnitude and nature of Casimir force. Furthermore,

in realistic scenarios, the disappearance of repulsive forces and the reduction in TFC underscore

the complexity of real material interactions compared to idealized models like the toy model.
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2.4 Oscillator Model at Different Frequencies

Simple oscillators are valuable for parameterizing dielectric functions, particularly at imaginary

frequencies for liquid gaps. This section explores the application of oscillator models to compre-

hensive dielectric data derived using the Kramers-Kronig method 1. The classical oscillator model,

as described in [38], represents the dielectric function at imaginary frequencies as follows:

𝜀(𝑖𝜁) = 1 + ∑
𝑖

𝐶𝑖
1 + (𝜁/𝜔𝑖)2 (2.19)

where 𝐶𝑖 denotes the strength of an oscillator associated with a specific resonance frequency 𝜔𝑖.

We employ this model to fit the dielectric functions obtained through the aforementioned method.

This approach facilitates the application of Lifshitz’s theory for Casimir force calculations. The

extensive frequency range covered by the measured dielectric data significantly enhances the accu-

racy of these oscillator representations [39]. For most materials, the constructed oscillator models

are valid within the frequency range of 10−2 to 102 eV. This range includes the first infrared (IR)

Matsubara term, which is essential for finite-temperature force calculations. It is important to note

that, unlike solids, where sample dependence necessitates using two sets of dielectric data, liquids

are not expected to exhibit such variations. Therefore, a single data set is sufficient for constructing

oscillator models for liquids. Using this assumption, Ninham and Parsegian obtained a simplified

expression for 𝜖(𝑖𝜔𝑛) as [40]:

𝜖(𝑖𝜔𝑛) = 1 + 𝜖∞ − 𝜖0
1 + 𝜔𝑛/𝜔MW

+ 𝜖0 − 𝑛2
0

1 + (𝜔𝑛/𝜔IR)2 + 𝑛2
0 − 1

1 + (𝜔𝑛/𝜔UV)2 (2.20)

where 𝜖∞ is the static dielectric constant, 𝜖0 is the dielectric constant when the microwave relax-

ation ends and the infrared relaxation begins, 𝑛0 is the refractive index in the visible range, and

𝜔MW, 𝜔IR, and 𝜔UV are the characteristic microwave, infrared, and ultraviolet absorption frequen-

cies.

1The Kramers-Kronig relations enable the determination of the refractive index profile and chromatic dispersion of

a material using only its frequency-dependent absorption losses, which can be measured across a wide spectral range.
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Chapter 3

Casimir Effect in Liquid Gaps

Liquid gaps have previously been associated with repulsive forces. The question now arises

whether such liquid gaps could potentially increase the TFC. In this section, we focus on exam-

ining the impact of fluid permittivity on the forces involved. Utilizing Equation 2.20 and the real

material data presented in [41], [42], we analyze how variations in liquid permittivity influence

these forces.

Table 3.1: Dielectric Dispersion Data and Spectroscopic Constants of Methanol, Glycerol, and Water

Material 𝜖∞ 𝜖0 𝜔MW (rad/s) 𝑛2
0 𝜔IR × 10−14 (rad/s) 𝜔UV × 10−16 (rad/s)

Methanol 33.64 5.7 1.88 × 1010 1.7349 3.52 1.87

Glycerol 42.5 4.16 8 × 108 2.136 3.28 1.895

Water 80.1 5.2 1.06 × 1011 1.755 5.66 1.793

Figure 3.1: Plot showing the dielectric permittivity 𝜖(𝑖𝜔𝑛) of Methanol, Glycerol, and Water as a function

of the imaginary frequency. The dielectric permittivity is calculated using the simplified model considering

contributions from microwave, infrared, and ultraviolet relaxations.
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3.1 Conductivity in Liquids

Figure 3.2: Visualization of two distinct materi-

als: (A) composed of CH3OH, C3H8O3, H2O,
and (B) Bi2Se3. Arrows depict the propagation
of electric field, while ellipses signify surface

electronic states.

Figure 3.3: Comparison of dielectric

responses between different materi-

als: Material A (toy model), Material

B (CH3OH, C3H8O3, H2O), and Ma-

terial C (toy model).

The effects of a fluid gap in the Casimir forces in the presence of surface conductivity are crucial

for studying Casimir forces in liquid-solid systems. In this context, the dielectric properties of

the intervening liquid medium are essential. The dielectric constant of the liquid significantly

influences the magnitude and nature of the Casimir force between two closely spaced surfaces

immersed in the liquid.

3.1.1 Toy Model for Enhancement of Repulsive Casimir Force

In our study, we examine the behaviour of a Lorentz oscillator, a simplified model often used to

describe the dielectric response. We will now focus on systems as the one described in Figure 3.3

where the two other layers are described by the toy model and the inner layer is a liquid one.

Figure 3.4 illustrates that the TFC values never exhibit negative values, corresponding to the

levitation case, thus more closely resembling real materials.

Figure 3.4: (A) TFC Glycerol-Toy Model. (B) TFC Water-Toy Model. (C) TFC Methanol-Toy Model.
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The toy model predicts that the TFC should decrease with increasing distance and that the TFC

for water should be greater than the TFC for methanol or glycerol. These predictions contradict

the one reported for the single Toy model structure presented in Figure 2.4, anyway in Figure 3.4,

the impact of 𝜃 values on the TFC is consistently observed across methanol, glycerol, and water.

3.1.2 Real Material Behaviour

We analysed the influence of different 𝜃 values on the Topological Force Contrast (TFC) for glyc-
erol, water, and methanol for the system described in Figure 3.2, where Bi2Se3 is used as first layer.

To achieve this, we calculated the percentage contribution of each 𝜃 value to the total TFC for each

liquid.

Figure 3.5: Topological Force Contrast (TFC) for Glycerol, Methanol and Water using the schematics pre-

sented in Figure 3.2

.

For Water and Methanol, a change between subsequent values of 𝜃 involves a change of ap-
proximately 1.4% in the first 2.5 nm, while for Glycerol, the decrease is in the same range, roughly

2.0%.

3.2 Analysis of Topological Force Contrast Data

The impact of 𝜃 values on the topological force contrast is consistent in all three media (methanol,
glycerol, and water). Positive 𝜃 values lead to an initial increase in the TFC, whereas negative 𝜃
values result in an initial decrease. This pattern indicates a uniform response to 𝜃 variations across
different media. Glycerol exhibits the most significant range of TFC values, suggesting that the

properties of this medium greatly influence the extent of TFC variation. Methanol and Water, on

the other hand, show a similar range of TFC values. However, Water displays a sharper initial

divergence, highlighting a more pronounced response at the onset of the interaction.

As the distance increases, the TFC in all three media approaches 1. This asymptotic behaviour

indicates that, regardless of the medium, the TFC’s long-range behaviour remains consistent. This
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convergence to unity suggests that the surface conductivity effects are negligible at larger distances.

We performed pairwise t-tests to compare the means of the TFC data between each pair of liquids

corresponding to the same values of 𝜃s, to assess whether the means of two groups are statistically
different, as differences in TFC could reflect variations in physical properties such as viscosity,

density, or molecular interactions in the realm of Casimir Force measurements. More detailed

results and discussions on these comparisons can be found in Appendix I.

3.2.1 Data Comparison

The toy model shows a more pronounced separation between the positive and negative 𝜃 values

than the real material results. Water, in particular, demonstrates a sharper initial divergence in

both cases, reinforcing the idea of a distinct response to 𝜃 variations at short distances. In the real
material results and the toy model, the TFC approaches 1 as the distance increases, indicating a

consistent long-range behaviour regardless of the medium. While both sets of figures demonstrate

similar overall trends, there are differences in the magnitude and rate of change of TFC values.

The toy model’s separation between the curves for different 𝜃 values appears more pronounced,

especially at shorter distances. This could suggest that the toy model exaggerates certain effects

seen in the real material data or that it captures some idealized aspects of the system not present in

the real-world measurements. Overall, the comparative analysis between the real material results

and the toy model highlights consistent trends in the impact of 𝜃 values, medium dependency, and

asymptotic behaviour of TFC. Both approaches confirm that Glycerol exhibits the most significant

TFC variations. The toy model provides a useful, though slightly exaggerated, representation of the

real material phenomena, with an enhancement of almost 20% if the surface states are considered,

the effects are anyway visible only in a short distance range. A last consideration is that the TFC

for Bi2Se3 increased compared with the vacuum case, but very little.

23



Chapter 4

Multilayers with Free Parameters

4.1 Three Layers with Varying Thickness of Middle Layer

(a) (b)

Figure 4.1: (A) Materials Slab: (a) Vacuum, (b) Bi2Se3, (c) SiO2. The diagram illustrates the interface

between these materials, highlighting their distinct boundaries and interfaces. The parameter to be changed

is the thickness of the middle layer. (B) Reduction Factor across Various Thicknesses of a Stack as described

in A.

4.1.1 Reduction Factor

The influences of different thicknesses of Bi2Se3 on the reduction factor can be seen in Figure 4.1.

It can be seen that there is an increasing trend for all thicknesses except for 0 nm and infinite

thickness.

It is evident that the reduction factor values fall between those of the two limiting cases: one with

infinite thickness (indicating the presence of Bi2Se3) and the other with zero thickness (indicating

the absence of Bi2Se3). This suggests that the observed system includes Bi2Se3, but there are no

enhancements in the reduction factors beyond the expected range set by these limits, apart from the

thickness of 40 nm in a very short range of distances.

Our calculations assume no change in the electronic properties (specifically the dielectric constant,
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𝜖) with thickness. However, this assumption is inaccurate for topological insulators (TIs), like

Bi2Se3, where the surface states mix and can significantly alter the electronic properties. This

factor should be considered for a more accurate representation of the system.

4.1.2 Toy model comparison

Figure 4.2: Reduction Factor across Various Thicknesses of the Middle Layer in a Stack Comprising Vac-

uum, Toy Model, and Silicon Oxide.

Figure 4.2 reveals that the reduction factor is significantly influenced by the thickness of the middle

layer. Thinner layers provide a higher reduction factor at shorter distances, while thicker layers

show a more gradual increase over a longer distance range in agreement with other studies [32],

[43]. The infinite thickness scenario sets an upper bound for reduction effectiveness; zero thickness

represents minimal reduction.

The comparative analysis reveals that the type of material in the middle layer significantly affects

the reduction factor’s behaviour. In the first stack (vacuum, toy model, and SiO2 ), the reduction

factor consistently increases and plateaus at long distances, especially for thicker layers. In contrast,

the second stack (vacuum, Bi2Se3, and SiO2) exhibits a more dynamic response, with thicker layers

showing a peak and decline, indicating that Bi2Se3 introduces complex interactions affecting the

reduction factor over distance. This highlights the critical role of the middle layer material in

determining the overall reduction behaviour in multilayer stacks.

In contrast to the Bi2Se3 case, the reduction factor is highest for the thinnest layer (0.4 nm) and

decreases with increasing thickness, reaching its lowest point for infinite thickness.
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4.2 N Layers with Varying Thickness of Each Layer (Except

the First One)

In this step, our analysis becomes more intricate as we extend the system to N layers, where N is a

variable1. The mathematical model is adapted to accommodate multiple layers, and the thickness

of each layer, except the first, corresponds. This configuration allows us to explore the collective

impact of layer thickness variations on the Casimir force and reduction factor.

4.2.1 Calculations for repetition N=2 of 3 Layers

Figure 4.3: (A) Layered heterostructure composed of Vacuum (A), Bi2Se3 (B), and SiO2(C) with corre-
sponding layer thicknesses denoted as 𝑡𝐵 and 𝑡𝐶, repetition of the layers twice. (B) Repetition of 3 layers
twice: Reduction factor for different combinations of the thicknesses of Layer B and C. (C) Reduction Factor

where Layer B is the Toy model

The reduction factor for the systems was calculated as shown in Figure 4.3. For the Bi2Se3 case,

it can be seen that for the short-range between 30 and 100 nm, there is an enhancement in the

force for the configurations with B=14 nm and C=14 nm. Additionally, the configurations with

B=4 nm and C=14 nm and B=40 nm and C=14 nm show force enhancement over a longer range.

Therefore, it can be concluded that in this configuration, a substrate thickness of 14 nm enhances

the force, unless the bulk thickness is too large (as in the 40 nm case).

For the toy model, on the other hand, the only case in which the force improves, and only at

very large distances, is when the toy model itself is very large, as seen with the B=40 nm line.

However, this configuration follows a similar trend to the B=0.4 nm and C=14 nm configurations,

so no clear trend can be deduced.

1The number of layers refers to the layers of TI, but the last layer is always the substrate.
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Figure 4.4: Correlation matrix N=2 repetition comparison.

The Figure 4.4 presents a correlation matrix that illustrates the correlation coefficients between

various thickness combinations of layers B and C in a multilayer system with 𝑁 = 2 repetition.

These matrices provide insights into the interaction patterns of the Casimir force reduction factor

for both Bi2Se3 and a simplified toy model. The analysis aims to determine whether the thickness

of the middle gap plays a crucial role in the behaviour of the reduction factor over distance.

A general trend observed is that areas with the highest correlation correspond to similar thick-

nesses of the second layer. In the correlation matrix for Bi2Se3, high correlation pairs include 𝐵 =
0.4 nm, 𝐶 = 14 nm and𝐵 = 4 nm, 𝐶 = 14 nm,𝐵 = 0.4 nm, 𝐶 = 4 nm and𝐵 = 4 nm, 𝐶 = 4 nm,
and 𝐵 = 14 nm, 𝐶 = 0.4 nm and 𝐵 = 14 nm, 𝐶 = 4 nm with a correlation of 0.99. These high

values indicate that the reduction factors for these combinations behave very similarly over the

observed distance range.

On the other hand, moderate to low correlation pairs can be seen in combinations like 𝐵 =
0.4 nm, 𝐶 = 4 nm and 𝐵 = 40 nm, 𝐶 = 0.4 nm. A general trend is that layers with 𝐵 = 0.4 nm
generally show high correlations with both thin and thicker layers like 𝐶 = 14 nm.
The correlation matrix for the toy model shows similar high correlation values, particularly in con-

figurations like 𝐵 = 0.4 nm, 𝐶 = 14 nm, 𝐵 = 4 nm, 𝐶 = 14 nm, 𝐵 = 0.4 nm, 𝐶 = 4 nm, and
𝐵 = 4 nm, 𝐶 = 4 nm with a correlation of 0.98. However, distinct low correlation pairs, such as

𝐵 = Infinite and 𝐵 = 0.4 nm, 𝐶 = 14 nm, show a moderate correlation of 0.79. Both thin and

thick layers in the toy model show high correlations with various thickness combinations, indicat-

ing a uniform response in the reduction factor across different distance ranges.

The comparative analysis underscores the importance of layer thickness in determining the Casimir

force in multilayer systems. The high correlation values in both Bi2Se3 and toy model systems in-

dicate that certain thickness combinations can be optimized for desired Casimir force properties,
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providing valuable insights for applications in nanotechnology and materials science.

4.3 Three Layers with Surface Conductivity on Both Top and

Bottom of Middle Layer

In this step, the complexity of our analysis increases as we introduce surface conductivity not

only to one or both layers but specifically on the top and bottom surfaces of the middle layer in a

three-layer system. This modification explores the combined effects of layer thickness and surface

properties on the Casimir force.

Figure 4.5: (A) Layered heterostructure composed of Vacuum (A), Bi2Se3 (B), and SiO2(C). Layer thick-
nesses are denoted as 𝑡𝐵, and surface conductivity is present. (B) Topological Force Contrast as a Function
of Distance for two Theta Values for a three-layer system described in A, the dotted lines correspond to the

oppositely oriented n1 and n2 of the TFC.

Notably, the data suggests that theta does not influence the reduction factor; variations are

observed solely based on thickness, which can be particularly observed in the TFC graph. Further-

more, for the same thickness, all lines overlap, indicating consistent behaviour across the sampled

range. T-test and Anova Test for statistical analysis of the results are reported in Appendix J.

In both cases, an enhancement of the force is presented, as some cases present higher TFC than the

corresponding two-layer case presented in Figure 2.5b. In particular, for 𝜃 = 5, the thicknesses
of 0.4 nm and 14 nm for Bi2Se3 present a 0.5% enhancement, while for 𝜃 = 3 all combinations

present better results.

4.3.1 Comparative Analysis with Previous Steps

Surface conductivity alters the electromagnetic properties of the material surfaces, leading to mod-

ifications in the dispersion relations and, consequently, the Casimir force. Particularly in a three-

layer system where surface conductivity is present on both the top and bottom surfaces of the

middle layer, these alterations can manifest as changes in the magnitude and spatial distribution of

the Casimir force. The interplay between surface conductivity and layer thickness further compli-
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cates the scenario, as variations in one parameter can exacerbate or mitigate the effects of the other,

ultimately negatively influencing the reduction factor of the Casimir force.

4.3.2 Comparison with Toy Model

Figure 4.6: Topological Force Contrast as a Function of Distance for two 𝜃 Values for a three-layer system,
where the middle layer is now the toy model.

Similar to Figure H.2b, the TFC initially varies with distance and stabilizes. This consistent pattern

across different configurations underscores the importance of distance in achieving a stable TFC.

Different thicknesses at 𝜃=(5,5) (0.4 nm, 4 nm, 14 nm, 40 nm) exhibit significant initial variations
in TFC values. However, despite these initial differences, all curves stabilize around a TFC value

of 1.000 after a distance of 30-40 nm. None of them presents an enhancement of the TFC, as

they are both bounded by the values presented in Figure 2.4 nor levitation, as the reduction factor

did not present trends similar to the rising ones presented in Figure 2.4. In particular, the TFC

was not plotted, as for the simple Toy model case, the values ranged from -7 to 7, making all the

other values in the graph not visible anymore. We can, therefore, conclude that the Toy model

significantly reduces the Force in this multi-layer structure.

4.3.3 Extending Dual-Sided Surface Conductivity to N Layers

In this final step, we extend the complexity introduced in the above subsection to a multilayer sys-

tem with N layers, incorporating dual-sided surface conductivity on the middle layer. The math-

ematical model is adapted to accommodate multiple layers, each with the potential for surface

conductivity on both the upper and lower surfaces of the middle layer.
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Figure 4.7: (a) Layered heterostructure composed of Vacuum (A), Bismuth Selenide (B), and Silicon Oxide

(C), where repetition N=2. Layer thicknesses are denoted as 𝑡𝐵 and surface conductivity is present. (b)

Topological Force Contrast as a Function of Distance for Various Thicknesses combinations of Layer B and

C for a three-layer system with repetition N=2, when 𝜃=3 (B) or 𝜃=5 (C).

A notable observation from the figure above is that the TFC value has decreased from 1.01 in

the infinite case to 1.006 in the current scenario. Furthermore, for 𝜃 = 3, the curves show smaller

deviations from the baseline of 1.000 compared to those for 𝜃 = 5. The curves for 𝜃 = 5 display
more pronounced deviations both above and below the baseline of 1.000, indicating a stronger re-

sponse in topological force contrast.

In the 𝜃 = 3 graph, the curves for B=0.4nm C=14nm, B=4nm C=0.4nm, B=4nm C=4nm, and

B=4nm C=14nm are all above the limit case of B=Infinite, indicating more subtle changes in topo-

logical force contrast with distance.

In the 𝜃 = 5 graph, the curves for the same parameters show similar variations except for the

B=0.4nm C=14nm line, which is significantly smaller than in the previous case. Additionally,

only the B=4nm C=0.4nm curve presents a higher topological force contrast compared to the limit

case.

4.3.4 Reduction Factor for 𝜃=5, 𝜃=3

Figure 4.8 illustrates the reduction factor across different thickness combinations.

In the parallel case, the reduction factor curves are almost indistinguishable, irrespective of the

thickness combinations of layers B and C. The reduction factor starts from 0 and increases slightly

with distance, stabilizing at a low value.

The minimal variation among the curves indicates that the reduction factor in the parallel case is

largely independent of the thicknesses of layers B and C. This suggests that the parallel configu-

ration minimizes the impact of layer thickness variations on the reduction factor, resulting in no

significant enhancement. In contrast, the antiparallel case shows more significant variations in the

reduction factor with different thickness combinations of layers B and C. The reduction factor is

higher for combinations with smaller overall thicknesses, indicating a stronger dependency on layer

thickness in the antiparallel configuration.

Specifically, the curves for combinations like B=0.4nm C=0.4nm and B=0.4nm C=4nm show the
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highest reduction factors, while the thicker combinations exhibit lower values. However, as all the

lines are included in the limiting case, no enhancement is present.

Figure 4.8: Reduction factor for different thicknesses combinations of layers B and C in both parallel and

antiparallel cases.

Figure 4.9: Reduction factor for different thicknesses combinations of layers B and C in both parallel and

antiparallel cases.

A similar behaviour can be seen when 𝜃 = 3; in this case, however, for the antiparallel case, the
highest reduction factor can be seen for the smallest combination possible (B=0.4nm, C=0.4nm). It

can therefore be concluded that the reduction factor does not depend significantly on the different

thicknesses of layers B and C. The overall effect is minimal, showing no enhancement due to layer

thickness variations.

On the contrary, the reduction factor is more sensitive to the thickness combinations of layers B and

C. Smaller overall thicknesses correspond to higher reduction factor values, indicating that thinner

layers enhance the reduction factor in the antiparallel configuration.
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4.3.5 Comparison with Toy Model

Figure 4.10: Topological Force Contrast as a Function of Distance for Various Thicknesses combinations

of Layer B and C for a three-layer system with repetition N=2, when 𝜃 = 3 or 𝜃 = 5.

Comparing Figure 4.7 with Figure 4.10, similar trends can be observed. The initial values for

the lines in the second set of graphs slightly differ from the first set but follow the same general

trends. For example, the red line (B=4nm, C=14nm) shows only a 0.2% difference in TFC. The

primary difference is that in the Toy model, for longer distance ranges up to 25 nm, the TFC value

remains different from the limiting value of 1. This consistency indicates that the topological force

contrast behaves similarly across different modelling approaches or experimental setups despite

slight differences in initial values and rates of decline. Notably, in both cases of the Toy model, no

enhancement is present.

Furthermore, the toy model, differently from the Bi2Se3 case, presents no differences in reduction

factor, depending on the thickness of layer C, as shown in Figure 4.11

Figure 4.11: Toy Model reduction factor for different combinations of thicknesses.
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Chapter 5

Conclusion

This thesis thoroughly investigated the Casimir force in multilayer systems and liquid gaps, aiming

to identify configurations that enhance this force and achieve stable repulsion. Key results from

the study are highlighted below:

Multilayer Systems

• The study revealed that thinner layers in multilayer systems exhibit a higher reduction factor,

especially in the antiparallel configuration. This indicates that thinner layers enhance the

reduction factor, making them more effective in manipulating the Casimir force.

• Comparative analysis with toy models demonstrated consistent trends across different con-

figurations, reinforcing the non-validity of the toy model as a representation of real material

phenomena. The toy model showed a significant reduction in force, particularly at shorter

distances.

Topological Insulators

• Introducing surface conductivity to the top and bottom surfaces of the middle layer in a three-

layer system significantly impacted the Casimir force. This effect was more pronounced in

systems with topological insulators like Bi2Se3, where thickness and surface conductivity

variations altered the electromagnetic properties and, consequently, the Casimir force.

• For both positive and negative Theta values, variations in thickness notably influenced the

Topological Force Contrast (TFC) only between specific thickness pairs.
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Liquid Gaps

• The analysis of the Casimir effect in liquid gaps showed that Glycerol exhibited the most sig-

nificant range of TFC values compared to Methanol andWater, indicating that the properties

of Glycerol greatly influence TFC variations. Water displayed a sharper initial divergence,

emphasizing a more pronounced response at the onset of the interaction.

• Statistical analyses, including t-tests and ANOVA, confirmed significant differences in TFC

values among the liquids. For example, the t-test comparing TFC data between Glycerol and

Methanol revealed a statistically significant difference, whereas comparisons betweenWater

and Methanol showed no significant difference.

In only one case, a significant enhancement of the Casimir force was observed as reported in Fig-

ure 4.3. However, this was due to geometrical configuration rather than the topological response

of the material.

5.1 Practical Applications and Future Directions

The insights gained from the systematic exploration of Casimir force interactions in multilayer

systems hold significant promise for practical applications and future research directions.

5.1.1 Practical Applications

The understanding of Casimir force dynamics in multilayer structures can be leveraged in the de-

sign and optimization of nanoscale devices and systems. For instance, the ability to control and

manipulate the Casimir force through variations in layer thickness and surface properties opens up

possibilities for the development of novel nanomechanical systems, such as nanoscale actuators,

switches, and sensors. In addition, the possibility of achieving a stable repulsive force can help

the design, fabrication, and characterization of optical materials capable of regulating the intensity

and nature of the Casimir-Lifshitz force. The aim is to enable the observation and characteriza-

tion of levitation phenomena resulting from the equilibrium between this force and gravity. This

innovative approach relies on optical spectroscopic techniques, leveraging optical interferometry

between the partially reflected and transmitted light at the interfaces of the plane-parallel system.

These techniques facilitate the determination of the equilibrium distance at which the system lev-

itates over a substrate. Recent findings from our research group suggest that certain materials

possess optical constants and densities conducive to levitation when immersed in a fluid.

These self-supporting thin films, whether in single layers or multilayer configurations, must meet

stringent criteria: compactness, mechanical stability, smooth surfaces, controlled thicknesses, and

chemical compatibility with the surrounding fluid. The macroscopic observation of repulsive
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Casimir-Lifshitz forces, facilitated by optical spectroscopic measurements, would mark an un-

precedented achievement in studying fundamental matter interactions. Furthermore, the insights

gained from this research can inform the development of innovative materials and coatings with

tailored Casimir force properties.

5.1.2 Future Directions

Future research directions in this field could focus on two key areas:

• Advanced Modeling Techniques: Further refinement of computational models and simu-

lation techniques can provide deeper insights into the complex interplay of Casimir forces

in multilayer systems, for example, using more repetitions or different materials rather than

SiO2 as substrate and Bi2Se3 as TI.

• Experimental Validation: Experimental validation of theoretical predictions is crucial for

verifying the accuracy and reliability of Casimir force calculations in real-world scenarios.

Future research efforts should prioritize experimental studies that validate theoretical find-

ings and explore the feasibility of practical applications.

In conclusion, this thesis investigated the effect of the Casimir force in multilayer systems and

liquid gaps, seeking configurations that enhance this force. The study also compared real material

data with methods that appeared to facilitate repulsion.
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Appendix A

Quantum Harmonic Oscillator

An intriguing similarity emerges between the equations governing a harmonic oscillator and those

describing an electromagnetic field oscillating at the same frequency. The quantization of the elec-

tromagnetic field is rooted in the quantum analysis of a harmonic oscillator. Starting with the clas-

sical Hamiltonian for a harmonic oscillator, given by 𝐻 = 𝑝2

2𝑚 + 𝑚
2 𝜔2𝑞2, a transformation of mo-

mentum and position facilitates a more convenient representation, leading to 𝐻 = 𝜔
2 (𝑃 2 + 𝑄2).

This form proves advantageous for introducing complex coordinates and subsequent factorization

[44].

The transformation involves redefining variables as follows:

𝐻 = 1√
2

(𝑄 + 𝑖𝑃) ∗ 1√
2

(𝑄 − 𝑖𝑃) (A.1)

Transitioning into the realm of quantum mechanics, it is well-established that the Hamiltonian of

the oscillator retains a structure akin to its classical counterpart. In terms of operators:

�̂� = 𝜔
2

( ̂𝑃 2 + �̂�2) (A.2)

where the operators ̂𝑃 and �̂� have dimensions of
√

ℏ.
In the position representation, the Hamiltonian is expressed as:

�̂� = 𝜔
2

(−ℏ2 𝑑2

𝑑𝑄2 + 𝑄2) (A.3)

with corresponding position and momentum operators:

�̂�𝜓(𝑥, 𝑡) = 𝑥𝜓(𝑥, 𝑡), ̂𝑃𝜓(𝑥, 𝑡) = −𝑖ℏ 𝜕
𝜕𝑥

𝜓(𝑥, 𝑡) (A.4)

The solutions are given by eigenfunctions 𝜓𝑛(𝑥):

𝜓𝑛(𝑥, 𝑡) = 𝑒−𝑖 𝐸𝑛𝑡
ℏ 𝜓𝑛(𝑥) (A.5)
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with eigenvalues:

𝐸𝑛 = ℏ𝜔 (𝑛 + 1
2

) (A.6)

In the momentum representation, the position and momentum operators are interchanged [45]:

̂𝑃𝜓(𝑝, 𝑡) = 𝑝𝜓(𝑝, 𝑡), �̂�𝜓(𝑝, 𝑡) = 𝑖ℏ 𝜕
𝜕𝑝

𝜓(𝑝, 𝑡) (A.7)

The eigenvectors of the Hamiltonian are given by:

𝜓𝑛(𝑝) = ( 1
2𝜋𝑝2

𝑐
)

1
4 1√

2𝑛!
𝑒− 𝑝2

4𝑝2𝑐 𝐻𝑛 ( 𝑝√
2𝑝𝑐

) (A.8)

where 𝐻𝑛 represents Hermite polynomials and 𝑝𝑐 is the characteristic momentum.

In the quantummechanical treatment of harmonic oscillators, a pivotal aspect is the introduction

of creation and annihilation operators in the energy representation. These operators, denoted as ̂𝑎
and ̂𝑎†, respectively, are defined in terms of position (�̂�) and momentum ( ̂𝑃) operators:

̂𝑎 = 1√
2ℏ

(�̂� + 𝑖 ̂𝑃 ), ̂𝑎† = 1√
2ℏ

(�̂� − 𝑖 ̂𝑃 ) (A.9)

The Hilbert space associated with the harmonic oscillator system is spanned by a basis defined

by these operators. Within this basis, the Hamiltonian (�̂�) and the number operator ( ̂𝑁) play crucial

roles[46]. The Hamiltonian, representing the total energy of the system, is expressed as a function

of the number operator, which counts the number of excitations in the system:

�̂� = ℏ𝜔 ( ̂𝑎 ̂𝑎† − 1
2

𝐼) = ℏ𝜔 ( ̂𝑁 + 1
2

𝐼) (A.10)

where ℏ is the reduced Planck constant, 𝜔 is the angular frequency of the oscillator, and 𝐼 is the
identity operator.

Moreover, the commutation relations between these operators are fundamental, dictating the

algebraic structure of the system [46]:

[ ̂𝑁, ̂𝑎] = − ̂𝑎, [ ̂𝑁, ̂𝑎†] = ̂𝑎†, [ ̂𝑎, ̂𝑎†] = 𝐼 (A.11)

Operating within this basis, the creation and annihilation operators act to transition the system

between different energy states. Their actions on the basis states reveal the underlying structure of

the harmonic oscillator system, allowing for the determination of eigenstates and eigenvalues of

the Hamiltonian.

The eigenstates, often referred to as number states or Fock states, represent distinct energy levels

of the harmonic oscillator [47]:
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|𝜓𝑛⟩ = ( ̂𝑎†)𝑛
√

𝑛!
|𝜓0⟩ (A.12)

where 𝑛 is a non-negative integer representing the number of excitations, and |𝜓0⟩ is the vac-
uum state characterized by ̂𝑎|0⟩ = 0. These states form a complete orthonormal basis for the

Hilbert space associated with the oscillator [48].

Ultimately, this formalism provides a powerful framework for understanding the quantum behavior

of harmonic oscillators. Through the manipulation of creation and annihilation operators within the

energy representation, one can analyze the dynamics, energy levels, and transitions of these funda-

mental systems with remarkable precision and insight.

Relating this to the Casimir force, the expression for the energy levels𝐸𝑛 = ℏ𝜔 (𝑛 + 1
2) highlights

the zero-point energy, which is the energy of the vacuum state (n=0). The Casimir force, which

arises between two conducting plates, results from these vacuum fluctuations and the zero-point

energy of the quantum fields between the plates. The discrete energy levels and the role of the

vacuum state are crucial in understanding how the electromagnetic field behaves in the space be-

tween the plates. The Casimir effect can be seen as a macroscopic manifestation of the principles

governing quantum harmonic oscillators, where the quantum fluctuations lead to an observable at-

tractive force. This underscores the importance of the quantum harmonic oscillator in explaining

fundamental quantum phenomena such as the Casimir effect.
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Appendix B

Rotation from Real Frequencies (𝜔) to
Matsubara Frequencies (𝜉𝑚) at 𝑇 ≠ 0 K

First, consider a system at 𝑇 = 0 K. Rapid oscillations in the integrand of Equation (??) for

𝑇 = 0 K complicate the computation of 𝐹𝐶−𝐿. To circumvent this, a closed integral in the com-

plex plane can be performed. By doing so, available frequencies are now expressed as a complex

variable Ω = 𝜔 + 𝑖𝜉, where 𝜔 and 𝜉 are the real and imaginary parts, respectively.
According to Cauchy’s theorem, the closed integral (∮) of any function 𝑓(Ω) analytic in a

region of the complex plane, such as the first quadrant of the Ω complex plane, satisfies:

∮
𝐶

𝑑Ω 𝑓(Ω) = 0 (B.1)

where 𝐶 is an arbitrary closed path within that region. In Figure 2.2(a), the closed path 𝐶
consists of three segments: two straight and one circular, denoted as 𝐿1, 𝐶𝑅, and 𝐿2. Specifically,

𝐿1 corresponds to a segment along the positive real axis (0, ∞), 𝐶𝑅 is the 90∘ arc with infinite

radius from the positive real axis to the positive imaginary axis, and 𝐿2 runs along the positive

imaginary axis (𝑖∞, 0). In panel (b) for 𝑇 > 0 K, the closed path changes slightly due to poles

introduced by the integrand on the 𝜉-axis.
If 𝑓(Ω) vanishes on the arc and is real for 𝑓(𝑖𝜉), then:

Im ∫
∞

0
𝑑𝜔 𝑓(𝜔) = ∫

∞

0
𝑑𝜉 𝑓(𝑖𝜉) (B.2)

It follows that:

𝐹𝐶−𝐿(𝑑0) = − ℏ
2𝜋2 ∫

∞

0
𝑘⟂𝑑𝑘⟂ ∫

∞

0
𝑑𝜉 𝑘0 ∑

𝑗=𝑇 𝐸,𝑇 𝑀
[ 𝑒2𝑘0𝑑0

𝑟(0,1)
𝑗 (𝑖𝜉, 𝑘⟂) ⋅ 𝑟(0,−1)

𝑗 (𝑖𝜉, 𝑘⟂)
− 1]

−1

(B.3)
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with 𝑘𝑙 expressed in terms of 𝑖𝜉 and 𝑘⟂:

𝑘𝑙 = 𝑘𝑙(𝑖𝜉, 𝑘⟂) = [𝑘2
⟂ + 𝜀𝑙(𝑖𝜉)𝜉2

𝑐2 ]
1/2

(B.4)

and:

𝜀𝑙(𝑖𝜉) = 1 + 2
𝜋

∫
∞

0

𝜔𝜀″
𝑙 (𝜔)

𝜔2 + 𝜉2 𝑑𝜔 (B.5)

In these equations, 𝜀𝑙(𝑖𝜉) is real for any 𝑖𝜉 value, and 𝑘𝑙(𝑖𝜉, 𝑘⟂) is real for any 𝑖𝜉 and 𝑘⟂ values

in Equation (B.3), eliminating complex exponentials and rapid oscillations. It is important to note

that dielectric functions must be known over a wide frequency range, typically including main

absorption bands, to approximate the integrated dielectric function accurately.

The Fresnel coefficients 𝑟(0,±1)
𝑗 in Equation (B.3) are expressed in terms of 𝑖𝜉 and 𝑘

p as follows:

𝑟(0,±1)
𝑇 𝑀 (𝑖𝜉, 𝑘⟂) =

𝜀±1(𝑖𝜉)𝑘0(𝑖𝜉, 𝑘⟂) − 𝜀0(𝑖𝜉)𝑘±1(𝑖𝜉, 𝑘⟂)
𝜀±1(𝑖𝜉)𝑘0(𝑖𝜉, 𝑘⟂) + 𝜀0(𝑖𝜉)𝑘±1(𝑖𝜉, 𝑘⟂)

(B.6)

𝑟(0,±1)
𝑇 𝐸 (𝑖𝜉, 𝑘⟂) =

𝑘0(𝑖𝜉, 𝑘⟂) − 𝑘±1(𝑖𝜉, 𝑘⟂)
𝑘0(𝑖𝜉, 𝑘⟂) + 𝑘±1(𝑖𝜉, 𝑘⟂)

(B.7)

These expressions for 𝐹𝐶−𝐿 are valid for 𝑇 = 0 K, where the only contribution to EM field

fluctuations is from zero-point energy. At finite temperatures 𝑇 > 0 K, thermal fluctuations also

contribute to the Casimir-Lifshitz force.

According to Bose-Einstein statistics, the population of an EM field mode of frequency 𝜔 at

finite temperature 𝑇 is:

𝑝(𝜔) = 1
2

+ 1
𝑒ℏ𝜔/𝑘𝐵𝑇 − 1

= 1
2

coth ( ℏ𝜔
2𝑘𝐵𝑇

) (B.8)

The Casimir-Lifshitz force at finite temperature in real frequencies is:

𝐹𝐶−𝐿(𝑑0, 𝑇 ) = − ℏ
2𝜋2 ∫

∞

0
𝑘⟂𝑑𝑘⟂ ∫

∞

0
𝑑𝜔 coth ( ℏ𝜔

2𝑘𝐵𝑇
)

Im
⎧{
⎨{⎩

𝑘0 ∑
𝑗=𝑇 𝐸,𝑇 𝑀

[ 𝑒2𝑘0𝑑0

𝑟(0,1)
𝑗 (𝜔, 𝑘⟂) ⋅ 𝑟(0,−1)

𝑗 (𝜔, 𝑘⟂)
− 1]

−1⎫}
⎬}⎭

(B.9)

The integral can be replaced by a summation over Matsubara frequencies 𝑖𝜉𝑚:

𝜉𝑚 = 2𝜋𝑘𝐵𝑇
ℏ

⋅ 𝑚 (B.10)

where 𝑚 = 0, 1, 2, …. The integral in Equation (B.9) is replaced by a summation over Mat-
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subara frequencies, leading to:

ℏ
2𝜋

∫
∞

0
𝑑𝜉 ⟷ 𝑘𝐵𝑇

∞
∑

𝑚′=0
(B.11)

where the prime (’) indicates that the term with 𝑚 = 0 is multiplied by 1/2. This substitution
yields the expression for 𝐹𝐶−𝐿 at 𝑇 > 0 K:

𝐹𝐶−𝐿(𝑑0, 𝑇 ) = −𝑘𝐵𝑇
𝜋

∞
∑
𝑚=0

∫
∞

0
𝑘𝑚

0 𝑘⟂𝑑𝑘⟂

∑
𝑗=𝑇 𝐸,𝑇 𝑀

[ 𝑒2𝑘𝑚
0 𝑑0

𝑟(0,1)
𝑗 (𝑖𝜉𝑚, 𝑘⟂) ⋅ 𝑟(0,−1)

𝑗 (𝑖𝜉𝑚, 𝑘⟂)
− 1]

−1

(B.12)

with

𝑘𝑚
𝑙 = 𝑘𝑙(𝑖𝜉𝑚, 𝑘⟂) = [𝑘2

⟂ + 𝜀𝑙(𝑖𝜉𝑚)𝜉2
𝑚

𝑐2 ]
1/2

(B.13)

In these expressions, the Fresnel coefficients 𝑟(0,1)
𝑗 (𝑖𝜉𝑚, 𝑘⟂) and 𝑟(0,−1)

𝑗 (𝑖𝜉𝑚, 𝑘⟂) evaluated at
𝑖𝜉𝑚 are given by Equations (B.6) and (B.7), respectively.
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Appendix C

Casimir Energy in Infinite Plates

Let’s assume we make the surface area of the two conducting plates infinite while keeping the

distance a unchanged. This implies that the longitudinal term in the summation will be replaced

by an integral (as the oscillation modes become infinite) [49].

𝐸0(𝑎) = ℏ
2

∑
𝐽

𝜔𝐽

= ℏ
2

∑
𝐽

|k𝐽|

= ℏ
2

∫ 𝐿2 𝑑2𝑘‖

(2𝜋)2 [∣k‖∣∣ + 2
∞

∑
𝑛=1

√∣k‖∣
2

+ 𝑛2𝜋2

𝑎2 ]

(C.1)

This expression gives a divergent contribution. The term (2𝜋)2 arises from complex analysis, using

the following relation:
+∞

∑
𝑖=1

𝑓 (𝑥𝑖) = 1
2𝜋𝑖

∫
𝐶

𝑓(𝑥) 𝑑
𝑑𝑥

log 𝐹(𝑥)𝑑𝑥 (C.2)

Recall that any analytic function in the entire complex plane can be represented in the following

way:

𝑓(𝑧) = 𝑧𝑚𝑒𝑔(𝑧)
∞
∏
𝑛=1

(1 − 𝑧
𝑎𝑛

) 𝑒
𝑧

𝑎𝑛
+ 1

2 ( 𝑧
𝑎𝑛

)
2
+⋯+ 1

𝑚 ( 𝑧
𝑎𝑛

)
𝑚𝑛

(C.3)

where 𝑎𝑛 are the zeros of the function such that lim𝑛→∞ 𝑎𝑛 = 0, 𝑔(𝑧) is an integral function,
and 𝑚𝑛 are integer values [50]. A corollary of the previous theorem ensures that any meromorphic

function throughout the entire complex plane can be written as the ratio of two integral functions.

From here, we can introduce the canonical product [31]:

∞
∏
𝑛=1

(1 − 𝑧
𝑎𝑛

) 𝑒
𝑧

𝑎𝑛
+ 1

2 ( 𝑧
𝑎𝑛

)
2
+⋯+ 1

ℎ ( 𝑧
𝑎𝑛

)
ℎ

(C.4)
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It represents an integral function and converges if the condition [51]:

∞
∑
𝑛=1

(𝑅/ |𝑎𝑛|)ℎ+1

ℎ + 1
(C.5)

converges for any 𝑅 of a uniform closed disk |𝑧| ≤ 𝑅. The function sin 𝜋𝑧 can be expressed
as:

sin 𝜋𝑧 = 𝜋𝑧 ∏
𝑛≠0

(1 − 𝑧
𝑛

) 𝑒 𝑧
𝑛 (C.6)

Applying the logarithmic derivative to both sides of equation, we get:

𝜋 cot 𝜋𝑧 = 1
𝑧

+ ∑
𝑛≠0

( 1
𝑧 − 𝑛

+ 1
𝑛

) (C.7)

From here, using the second integral theorem of Cauchy, for which [51]:

𝑓(𝜉) = 1
2𝜋𝑖

∮
+𝐹𝐷

𝑓(𝑧)𝑑𝑧
𝑧 − 𝜉

(C.8)

we represent 1
𝑧−𝜉 inside as the logarithmic derivative of a function 𝑔(𝑧), represented using canon-

ical products. Applying these considerations to our case, considering a one-dimensional case, we

introduce the analytic function 𝐹(𝑥) and use a path 𝐶 counterclockwise that contains the poles

related to 𝐹 (𝑥𝑗) = 0.
Assuming an electromagnetic field confined in a one-dimensional box and choosing our 𝐹(𝑧) by
applying periodic boundary conditions:

𝐹(𝑘) = sin 𝑘𝐿 (C.9)

where 𝑘 = 𝑛𝜋
𝐿 , with 𝐿 as the side of the box. It follows [52]:

= lim
𝐿→∞

𝐿
2𝜋

∫
+∞

−∞
𝑓(𝑘) coth(𝑘𝐿)𝑑𝑘

= 𝐿
2𝜋

∫
+∞

−∞
𝑓(𝑘)𝑑𝑘

(C.10)

In𝑁 dimensions, the factorization involves the appearance of a term (2𝜋)𝑁 in the denominator. The

expression can be regularized in different ways. In his original article, Casimir used a frequency-

damping function in which a parameter 𝛿 appears, which can be removed by taking the limit as
𝛿 → 0 [4].
Now let’s consider the expression for the vacuum energy in the case where the distance 𝑎 between
the two conductors becomes infinite, i.e., the contribution of free energy obtained in the same
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volume, a quantity that will then be subtracted from the initial energy.

𝐸0(∞) = ℏ
2

∫
𝐿2𝑑2𝑘‖

(2𝜋)2 ∫
+∞

−∞

𝑎𝑑𝑘𝑧
2𝜋

2√∣k‖∣
2

+ 𝑘2
𝑧

= ℏ
2

∫
𝐿2𝑑2𝑘‖

(2𝜋)2 ∫
∞

0
𝑑𝑦√∣k‖∣

2
+ 𝑦2𝜋2

𝑎2

(C.11)

where, in the last step, we performed the variable change 𝑘𝑧 = 𝑦𝜋
𝑎 , 𝑑𝑘𝑧 = 𝑑𝑦𝜋

𝑎 .

Next, we evaluate the integral over 𝑘‖, using the representation:

1√
𝑎2 + 𝑏2

= 𝑎
𝑏

∫
∞

0
𝑒−𝑡

√
𝑎2+𝑏2𝑑𝑡 (C.12)

Choosing 𝑎 = ∣k‖∣ , 𝑏 = 𝜋𝑦
𝑎 , the result is:

𝐸0(∞) = ℏ
2

∫
∞

0
𝑑𝑦 ∫

𝐿2𝑑2𝑘‖

(2𝜋)2
𝜋𝑦
𝑎

𝑒−𝑦√∣k‖∣
2
+ 𝜋2𝑦2

𝑎2

= ℏ
2

∫
∞

0
𝑑𝑦𝜋𝑦

𝑎
𝑒−𝑦𝜋/𝑎 ∫

𝐿2𝑑2𝑘‖

(2𝜋)2 𝑒−𝑦√∣k‖∣
2

(C.13)

Now, we evaluate the integral over 𝑘‖:

= ℏ
2

∫
∞

0
𝑑𝑦𝜋𝑦

𝑎
𝑒−𝑦𝜋/𝑎 𝐿2

2𝜋
∫

+∞

−∞
𝑑𝑘𝑥 ∫

+∞

−∞
𝑑𝑘𝑦𝑒−𝑦√∣k‖∣

2

= ℏ𝐿2

4𝑎
∫

∞

0
𝑑𝑦𝑦𝑒−𝑦𝜋/𝑎 ∫

+∞

−∞
𝑑𝑘𝑥 ∫

+∞

−∞
𝑑𝑘𝑦𝑒−𝑦√𝑘2

𝑥+𝑘2
𝑦

= ℏ𝐿2

4𝑎
∫

∞

0
𝑑𝑦𝑦𝑒−𝑦𝜋/𝑎𝜋

(C.14)

The integral over 𝑘𝑥 and 𝑘𝑦 is calculated using polar coordinates [51], and the final result is:

𝐸0(∞) = ℏ𝜋2

8𝑎2 𝐿2 (C.15)

The Casimir energy, defined as the difference between the vacuum energy in the finite and

infinite cases, is then [53]:

Δ𝐸 = 𝐸0(𝑎) − 𝐸0(∞)

= ℏ
2

∫
𝐿2𝑑2𝑘‖

(2𝜋)2

∞
∑
𝑛=1

2√∣k‖∣
2

+ 𝑛2𝜋2

𝑎2

− ℏ𝜋2

8𝑎2 𝐿2

(C.16)

Introducing cylindrical coordinates ∣k‖∣ = 𝜌 cos 𝜃, 𝑛𝜋/𝑎 = 𝜌 sin 𝜃 and performing the integra-
tion over 𝜃, the Casimir energy becomes:
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Δ𝐸 = ℏ
4𝜋

∫
∞

0
𝑑𝜌𝜌 [√𝜌2 + 𝜋2

𝑎2 + √𝜌2 + 4𝜋2

𝑎2 + √𝜌2 + 9𝜋2

𝑎2 + …] (C.17)

The sum of square roots can be expressed in terms of the Riemann zeta function:

∞
∑
𝑛=1

√𝜌2 + 𝑛2𝜋2

𝑎2 = 1
𝜋𝑎

∞
∑
𝑛=1

𝐾0 (2𝜋𝑛𝜌
𝑎

) (C.18)

where 𝐾0 is the modified Bessel function of the second kind.

The Casimir energy can then be written as:

Δ𝐸 = ℏ
4𝜋𝑎

∫
∞

0
𝑑𝜌𝜌𝐾0 (2𝜋𝜌

𝑎
) (C.19)

The integral above is divergent, and a regularization procedure is needed. One common method is

to use zeta function regularization, where the Riemann zeta function is employed to give meaning

to series [51].

𝐸∗ = ℏ𝜋2

𝑎3 𝐵44! (C.20)

where 𝐵4 = − 1
30 therefore this technique yields the following expression for the Casimir energy

[28].:

Δ𝐸 = − 𝜋2ℏ𝑐
720𝑎3 (C.21)
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Appendix D

Measurements of Casimir Force

In this chapter, we will discuss the basics of experiments conducted to measure the Casimir force,

keeping in mind that it becomes measurable at a distance of ∼ 1𝜇𝑚 and is on the order of 10−7N

for a surface area of 1 cm2. The first experiment on the Casimir force was performed by Sparnay,

who reported a 100% error [54].

D.1 Experimental Basis for Measurement

The technical prerequisites for Casimir force measurement demand precise surface separation and

high instrument sensitivity [54]. Sparnay emphasized the need for chemically clean, flat surfaces

and accurate distance measurements, while minimizing potential differences to mitigate electro-

static forces [55]. However, practical challenges arise, such as impurities on glass or quartz surfaces

altering force measurements [56]. Notably, recent experiments by Sparnay, van Blokland, and

Overbeek explored metal surfaces, followed by Lamoreaux’s torsion pendulum and Mohideen’s

atomic force microscopy approaches [54]–[56].

D.2 Sparnay’s Experiment, 1958

Sparnay’s experiment 1 provided the first indication of an attractive Casimir force between two

metallic surfaces, although conclusive information was not obtained. He tried to measure the force

using a dynamometer with a sensitivity of (0.1 − 1) × 10−3𝑑𝑦𝑛.
The capacitance of the system consisting of the two metal plates (from which the required exten-

sion to the spring was derived) was calibrated using tungsten and platinum wires.

The entire apparatus was isolated from vibrations, and the metal surfaces were electrically isolated

from the rest of the instrumentation and the environment. The use of the spring led to significant

difficulties in evaluating the distance between the surfaces.

1Information in this section have been sourced from [9]
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Sparnay also found that a potential difference between the media of 17mV was sufficient to make

force measurement impossible. For this reason, at the beginning of the experiment, the two plates

were brought into contact.

Three sets of surfaces were used for measurements, namely aluminum-aluminum, chromium-

chromium, and chromium-steel, trying to achieve maximum alignment for each set. It was also

taken into account that, due to the presence of residual particles on the surfaces, the distance be-

tween the two plates in ”contact” had to be about 0.2𝜇𝑚. Repulsive forces were measured in the

aluminum-aluminum set, and Sparnay believed that to eliminate them from the measurements, it

was necessary to improve the instrumental settings of the experiment, requiring greater accuracy

for both the measurement of the distance between the two planes and their parallelism, as well

as for the presence of potential differences due to residual particles on metals. In the case of the

chromium-chromium and chromium-steel sets, an attractive force measurement was obtained, but

the uncertainty in the measurements was too significant for a meaningful comparison with theory.

D.3 Van Blokland and Overbeek’s Experiment, 1978

Van Blokland and Overbeek also used a balanced spring to measure the force between a lens (thus

a curved surface) and a plate covered with a layer of 100±5 nm or 50±5 nm of chromium, which

was then covered with a film of 1 − 2 nm of oxide 2. Water vapor was used to reduce charges

on the surfaces. The problems encountered in this experiment included the presence of undesired

potential differences between the two plates and the impossibility of obtaining a good measure of

the distance between the two media, as in Sparnay’s experiment. They tried to solve the first of

these problems by seeking the minimum of the Casimir force as a function of an applied potential,

balancing potential differences. In fact, their measurement gave a value between 19 and 20mV,
an amount that for a distance of 400 nm was equal to the sought Casimir force. The presence

of the chromium surface also proved problematic, as chromium has strong absorption bands for

600 nm. To experimentally reproduce the Lifshitz model, the imaginary part of the dielectric

function corresponding to absorption was treated as a Lorentzian atom, and the two overlapping

bands were treated as a single absorption band. The absorption force was evaluated as 40% of the

total force. The uncertainty in force measurements was 25% near 150 nm, and the overall accuracy

of the experiment was estimated at 50%.

D.4 Lamoreaux’s Experiment, 1997

Lamoreaux’s experiment 3 opened a modern phase of Casimir force measurements. His experi-

mental setup consisted of a torsion pendulum for force measurement, a spherical lens with a radius

2Information in this section have been sourced from [57]
3Information in this section have been sourced from [58]

47



of 11.3±0.1 cm and a flat surface. The two surfaces were covered with a layer of 0.5𝜇m of copper,

further coated with 0.5𝜇m of gold through evaporation. The lens was mounted on a piezo, while

the flat surface was attached to one arm of the torsion pendulum. The other arm of the torsion

balance was connected to the center of two capacitors, so that the torsion angle could be controlled

by the potential between the two capacitors. The potential difference to balance the capacitance

difference was the measure of the Casimir force. Due to the application of potential from the piezo,

the lens was moved, and during the experiment, measurements were divided into 16 steps, varying

both distances and applied potentials related to the measurement of the torsion balance angle. The

total force was measured within 10𝜇m of distance between the surfaces.

The experiment was repeated by changing the variables at each step and reported values of the

residual electrostatic force and the distance between the surfaces in contact through a fit between

the expected value of the Casimir force and the measured total force.

The fit function has the following form:

𝐹 𝑚(𝑖) = 𝐹 𝑇
𝐶 (𝑎𝑖 + 𝑎0) + 𝛽

𝑎𝑖 + 𝑎0
+ 𝑏

where 𝐹 𝑚(𝑖) is the measured total force at the i-th step, 𝐹 𝑇
𝐶 is the theoretical Casimir force, 𝑎0

is a fit parameter that accounts for the absolute separation of contact between the surfaces, 𝑏 is a
constant, and 𝛽 represents the electrostatic force between the surfaces.

The relationship between the experimental measured force 𝐹 𝑚
𝐶 and the theoretical one 𝐹 𝑇

𝑐 was:

𝐹 𝑚
𝐶 (𝑎𝑖) = (1 + 𝛿)𝐹 𝑇

𝑐 + 𝑏′

D.5 Mohideen’s Experiment, 1998

Thanks to contributions and information from less recent experiments, such as Sparnay’s, which

highlighted the issues of his experimental setup, emphasizing, for example, the need to use non-

reactive materials with as few residues as possible, Mohideen succeeded in obtaining the most

significant result for the Casimir force measurement in 1998 4. He used atomic force microscopy

(AFM) and reported a statistical precision of 1% for the measured minimum distance. His first

experiment involved a system consisting of a polystyrene sphere with a diameter of 200 ± 4𝜇m, a

cantilever, photodiodes, and a laser source.

4Information in this section have been sourced from [58]
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Figure D.1: Mohideen’s experimental set-up.

The deflection of the cantilever beam is measured by the deflection of the laser beam, whose

signal difference is collected by the photodiodes. The signal difference is calibrated by an electro-

static force. The sphere is mounted on the tip of the metallic cantilever beam, the latter covered

with a layer of silver. The beam, the sphere, and the plate are in turn covered with a layer of 300 nm
of aluminum through evaporation. The choice of aluminum is justified by the fact that it is very

reflective for small wavelengths (thus allowing small distances between surfaces), and it adheres

well to various metals. Also, aluminum has a low melting point. During the experiment, the plate

is moved towards the sphere in steps of 3.6 nm, and the corresponding signal reaching the photodi-

odes is measured. From the obtained data, it was found that for large separations between surfaces,

a linear signal was measured, due to the increasing number of laser beams deflected and captured

by the diodes [59]. Instead, for separations ranging from contact between surfaces to 350 nm, the

data effectively represented the attractive Casimir force.
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Appendix E

The Electro-Magnetic Theory

The concept of vacuum energy resurfaces in connection with the advancement of quantum theory,

particularly through the quantization of the electromagnetic field. This chapter begins by laying

down the groundwork for a comprehensive examination of the quantum perspective. It explores

the essential principles of classical electromagnetism, delineating Maxwell’s equations, introduc-

ing electromagnetic potentials, and subsequently delving into the wave equation and gauge trans-

formations.

E.1 Maxwell’s equations

Maxwell’s equations stand out for their ability to depict the phenomena of classical electrodynamics

[60]. They are expressed locally as linear differential equations in four variables, incorporating the

charge density 𝜌(x, 𝑡) and current density j(x, 𝑡). These equations establish connections between
various physical quantities computed at the same location [61].

1) ∇ ⋅ E(x, 𝑡) = 4𝜋𝜌(x, 𝑡)

2) ∇ ⋅ B(x, 𝑡) = 0

3) ∇ × E(x, 𝑡) + 1
𝑐

𝜕B(x, 𝑡)
𝜕𝑡

= 0

4) ∇ × B(x, 𝑡) − 1
𝑐

𝜕E(x, 𝑡)
𝜕𝑡

= 4𝜋
𝑐
j(x, 𝑡).

(E.1)

In particular, the first equation is a result of applying the divergence theorem and Gauss’s theorem

to the electric field vector, with the only requirement that the field E is differentiable at every point

in the considered domain, an assumption not considered for the sole validity of Gauss’s theorem

[62].

Deriving the second equation from the fundamental law of magnetostatics (Biot and Savart) [63],

B(r) = 𝜇0
4𝜋

∮
𝑙′

𝐼𝑑l′ × Δr

|Δr|3
, (E.2)
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where 𝑙′ is a closed circuit and 𝜇0 is the vacuum magnetic permeability. Applying the divergence

operator:

∇ ⋅ B = 𝜇0𝐼
4𝜋

∮
𝑙′

∇ ⋅ 𝑑l′ × Δr

|Δr|3
, (E.3)

and using the divergence operator, we obtain [64]:

∇ ⋅ B = 𝜇0𝐼
4𝜋

∮
𝑙′

[ Δr

|Δr|3
⋅ (∇ × 𝑑l′) − 𝑑l′ ⋅ (∇ × Δr

|Δr|3
)] = 0, (E.4)

leading to the second Maxwell equation ∇ ⋅ B(x, 𝑡) = 0 [65].
Repeating the same reasoning after rewriting the fundamental law of magnetostatics using the cur-

rent density J(r′),

B(r) = 𝜇0
4𝜋

∫
𝜏′

J(r9) × Δr

Δ𝑟3 𝑑𝜏 ′, (E.5)

we obtain the fourth Maxwell equation in the stationary, vacuum case: ∇ × B = 𝜇0J [61].

The third equation, referred to as the Faraday-Neumann law, delineates the behavior of the electric

field’s motion, while the fourth equation, Ampère’s law, characterizes the motion of the magnetic

field. Together, these four pivotal relationships illustrate the potential for generating magnetic

fields from electric fields and vice versa.

Moreover, it’s noteworthy that the electric and magnetic field vectors can be broken down into both

transverse and longitudinal components, as follows [66]:

E = E𝐿 + E𝑇

B = B𝐿 + B𝑇
(E.6)

We establish that the transverse components of the fields govern the dynamics of the system. This

is demonstrated by utilizing the decomposition of the electric field into components within the first

Maxwell equation:

∇ ⋅ E = ∇ ⋅ (E𝐿 + E𝑇) (E.7)

But using Gauss’s law, we have

∇ ⋅ E𝑇 = 0 (E.8)

∇ ⋅ E = ∇ ⋅ E𝐿 = 4𝜋𝜌 (E.9)

With a similar procedure regarding the second Maxwell equation, we arrive at the conclusion that

the longitudinal component of the magnetic field is solenoidal [65].
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∇ ⋅ B𝐿 = 0 (E.10)

Additionally, being irrotational, 𝐵𝐿 = 0, implying that 𝐵 = 𝐵𝑇. Consequently, the magnetic

field solely possesses a transverse component. Concerning the charge density j(x, 𝑡), it’s crucial to
recall its adherence to the continuity equation ∇ ⋅ j + 𝜕𝜌

𝜕𝑡 = 0 [60].

E.2 Electromagnetic Potentials

The vector potential of the magnetic field, denoted as A, is a field in which the magnetic field

equals its curl [60], expressed

B = ∇ × A (E.11)

It’s worth noting that considering a vector of the formA′ = A+∇𝑓, where 𝑓 is any scalar function,
also yields a potential vector. This relationship is termed a gauge transformation.

For a vector potential with zero divergence, it suffices that ∇2𝑓 = −∇ ⋅ A [67]. Maxwell’s equa-

tions consist of six independent first-order partial differential equations relating the six components

of the electric and magnetic fields. Analytical solutions are feasible only in simple cases. Utilizing

equations in terms of the vector potential A and scalar potential 𝑉, which we’ll introduce later,
offers advantages by reducing the number of equations to four second-order differential equations.

Moreover, this approach allows for decoupled equations, each containing only one of the unknown

functions 𝐴𝑥, 𝐴𝑦, 𝐴𝑧, and 𝑉.
It’s important to highlight that the second Maxwell equation ∇ ⋅B(x, 𝑡) = 0 holds even under non-
stationary conditions. For a time-dependent magnetic field, we define the vector potential through

the relation [67]:

∇ × A = B

A = A(r, 𝑡)
(E.12)

Now, introducing this definition into the third Maxwell equation, we find:

∇ × E = −𝜕B
𝜕𝑡

= − 𝜕
𝜕𝑡

(∇ × A) = −∇ × (𝜕A
𝜕𝑡

)

∇ × (E + 𝜕A
𝜕𝑡

) = 0
(E.13)

Since the vector E + 𝜕A
𝜕𝑡 is irrotational, it can be expressed as the gradient of a scalar potential 𝑉:

−∇𝑉 − 𝜕A
𝜕𝑡

= E (E.14)
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By introducing potentials, the second and third Maxwell equations (which are homogeneous equa-

tions without source terms) are automatically satisfied [60]:

∇ ⋅ B = ∇ ⋅ (∇ × A) = 0

(∇ × E) + 𝜕B
𝜕𝑡

= ∇ × (E + 𝜕A
𝜕𝑡

) = ∇ × (−∇𝑉 ) = 0
(E.15)

Consequently, for determining potentials, the non-homogeneous Maxwell equations are utilized

[67]:

{
∇2𝑉 + 𝜕

𝜕𝑡(∇ ⋅ A) = −𝜌
𝜀

∇2A − 𝜀𝜇𝜕2A
𝜕𝑡2 − ∇(∇ ⋅ A + 𝜀𝜇𝜕𝑉

𝜕𝑡 ) = −𝜇J
(E.16)

assuming 𝜀 and 𝜇 are constants and uniform. However, these equations are still not decoupled. To

achieve decoupled equations, we introduce the following gauge transformations:

{
A → A′ = A + ∇𝜑
𝑉 → 𝑉 ′ = 𝑉 − 𝜕𝜑

𝜕𝑡
(E.17)

where 𝜑 is a scalar function in the variables r and 𝑡 called the gauge function. An appropriate
choice allows us to arrive at a system of decoupled equations, and the condition for this to happen

is that the potentials satisfy the Lorenz condition [60]:

∇ ⋅ A + 𝜀𝜇𝜕𝑉
𝜕𝑡

= 0 (E.18)

Thus, the system of electrodynamics equations becomes:

{
∇2A − 𝜀𝜇𝜕2A

𝜕𝑡2 = −𝜇J
∇2𝑉 − 𝜀𝜇𝛿2𝑉

𝜕𝑡2 = −𝜌
𝜖

(E.19)

When the potentials satisfy the Lorenz condition, they are said to belong to the Lorenz gauge [67].

Note the formal analogy of the electrodynamics equations written in terms of potentials belonging

to this gauge in the general case and the equations describing the behavior of fields in the steady-

state case.

E.3 Coulomb’s Gauge

Another important gauge condition is given by the Coulomb gauge, with the condition ∇ ⋅ A = 0
(i.e., the vector potential is solenoidal), leading to a Poisson equation of the form ∇2𝑉 = 4𝜋𝜌.
Indeed, by substituting the gauge into Equation E.21, the potentials 𝑉 and A satisfy the following

conditions [60]:
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∇2𝑉 = −𝜌
𝜀

∇2A − 𝜀𝜇𝜕2A

𝜕𝑡2 = 𝜀𝜇∇𝜕𝑉
𝜕𝑡

− 𝜇J
(E.20)

The first of these equations has a solution of the form [61]:

𝑉 (x, 𝑡) = ∫ 𝜌 (x′, 𝑡)
|x − x′|

𝑑3x′ (E.21)

It represents the instantaneous Coulomb potential due to the charge density. The Coulomb gauge

is generally used in the absence of sources (𝜌 = 0, J = 0) and is therefore also called the pure
radiation gauge.

E.4 Electromagnetic Wave Equation

Let’s rewrite the Maxwell’s equations for an infinite, isotropic, and homogeneous dielectric

medium, assuming the medium is everywhere electrically neutral, i.e., its 𝜌 is 𝜌 = 0 [61]:

1)∇ ⋅ E = 0

2)∇ ⋅ B = 0

3)∇ × E = 𝜕B
𝜕𝑡

4)∇ × B = 𝜖𝜇𝜕E
𝜕𝑡

(E.22)

and apply the curl to the third equation [61], obtaining

−∇2E = ∇ × 𝜕B
𝜕𝑡

= − 𝜕
𝜕𝑡

(∇ × B) (E.23)

Now, evaluating the time derivative of the fourth Maxwell equation, we arrive at the wave equation

for the E field:

∇2E = 𝜖𝜇𝜕2E

𝜕𝑡2 (E.24)

Applying the curl to the fourth equation andwith a similar procedure, we obtain the electromagnetic

wave equations:

{
∇2E = 𝜖𝜇𝜕2E

𝜕𝑡2

∇2B = 𝜖𝜇𝜕2B
𝜕𝑡2

(E.25)

Their solution is represented by waves propagating at the speed 𝑣 = 1√𝜀𝜇 [61].

Note that the electrodynamics equations written in terms of vector potential and scalar potential, in

the absence of sources, coincide with the wave equation [61]:
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{
∇2A − 𝜀𝜇𝜕2A

𝜕𝑡2 = 0
∇2𝑉 − 𝜀𝜇𝜕2𝑉

𝜕𝑡2 = 0
(E.26)

E.5 A fluctuating vacuum

To understand the origin of the Casimir force, it is crucial to delve into the consequences of electro-

magnetic fluctuations and how a fluctuating electromagnetic field can result in a non-zero pressure.

Examining Maxwell’s stress tensor in space, denoted as [68]:

𝜎𝑖𝑗 = 𝜖0𝐸𝑖𝐸𝑗 + 1
𝜇0

𝐵𝑖𝐵𝑗 − 1
2

(𝜖0𝐸2 + 1
𝜇0

𝐵2) 𝛿𝑖𝑗 (E.27)

Here, 𝜎𝑖𝑗 represents the 𝑖, 𝑗 component of the stress tensor in rectangular coordinates (𝑖, 𝑗 ∈
{𝑥, 𝑦, 𝑧}), 𝐸𝑖(𝐵𝑖) is the electric (magnetic) field in the 𝑖 direction, 𝜖0 and 𝜇0 are the vacuum

permittivity and permeability, respectively, and 𝛿𝑖𝑗 is the Kronecker symbol [30]. Taking the ex-

pectation value of E on both sides reveals that the stress tensor is diagonal: 𝜎𝑖𝑗 = −𝑃𝛿𝑖𝑗, where 𝑃
is given by [69]:

𝑃 = 1
3

𝔼 [𝜖0
2

|𝐸|2 + 1
2𝜇0

|𝐵|2] = 1
3

𝔼[𝑢] (E.28)

The expression inside the expected value corresponds to the electromagnetic energy density 𝑢. No-
tably, 𝑢 depends quadratically on the magnitude of the fields. Consequently, a fluctuating electro-

magnetic field generates a non-zero pressure even when the average field is zero (𝔼[𝐸𝑖] = 𝔼[𝐵𝑗] =
0, yet 𝑃 ≠ 0). This phenomenon is feasible because the second moment of any non-degenerate
random variable is always nonzero, implying 𝔼[𝐸2

𝑖 ] ≠ 0 ⟹ 𝑃 ≠ 0 [70].
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Appendix F

Derivation Liftshitz Energy

Electric and magnetic fields can be expressed in the exponential form [71]:

E
(𝑖)
k||

(𝑡, r) = f(𝑖) (k‖, 𝑧) 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)−𝑖𝜔𝑡 (F.1)

B
(𝑖)
k||

(𝑡, r) = g(𝑖) (k‖, 𝑧) 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)−𝑖𝜔𝑡 (F.2)

where the index 𝑖 indicates the polarization state. The wave equations for the electric and magnetic
fields (𝜇 = 1) are:

∇2E
(𝑖)
k||

(𝑡, r) − 𝜀
𝑐2

𝜕2E
(𝑖)
k||

(𝑡, r)
𝜕𝑡2 = 0 (F.3)

∇2B
(𝑖)
k||

(𝑡, r) − 𝜀
𝑐2

𝜕2B
(𝑖)
k||

(𝑡, r)
𝜕𝑡2 = 0 (F.4)

With respect to the 𝑧 axis, we have [72] :

𝑑2𝑓 (𝑖)

𝑑𝑧2 − 𝑅2𝑓 (𝑖) = 0 (F.5)

𝑑2𝑔(𝑖)

𝑑𝑧2 − 𝑅2𝑔(𝑖) = 0 (F.6)

Here, we have introduced [71]:

𝑅2 = 𝑘2
‖ − 𝜀(𝜔)𝜔2

𝑐2 (F.7)

𝑘2
‖ = 𝑘2

1 + 𝑘2
2 (F.8)
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The differential equation F.6 has a solution of the form [72] :

𝑓𝑧 = 𝑓𝑧,1 = 𝐴𝑒𝑅𝑧, if 𝑧 ≤ 0 (F.9)

𝑓𝑧 = 𝑓𝑧,2 = 𝐵𝑒𝑅0𝑧 + 𝐶𝑒−𝑅0𝑧, if 0 ≤ 𝑧 ≤ 𝑑 (F.10)

𝑓𝑧 = 𝑓𝑧,3 = 𝐷𝑒−𝑅𝑧, if 𝑧 ≥ 𝑑 (F.11)

with

𝑅 = √𝑘2
‖ − 𝜀(𝜔)𝜔2

𝑐2 , 𝑅0 = √𝑘2
‖ − 𝜔2

𝑐2 (F.12)

We impose continuity conditions at 𝑧 = 0 and 𝑧 = 𝑑 for 𝜕𝑓𝑧
𝜕𝑧 and 𝜀𝑓𝑧:

𝜀𝑓𝑧,1(0) = 𝜀𝑓𝑧,2(0), 𝜀𝑓𝑧,2(𝑑) = 𝜀𝑓𝑧,3(𝑑) (F.13)

𝑓 ′
𝑧,1(0) = 𝑓 ′

𝑧,2(0), 𝑓 ′
𝑧,2(𝑑) = 𝑓 ′

𝑧,3(𝑑) (F.14)

which results in [72] :

𝜀𝐴 = 𝜀𝐵 + 𝜀𝐶 (F.15)

𝜀𝐵𝑒𝑅0𝑑 + 𝜀𝐶𝑒−𝑅0𝑑 = 𝐷𝑒−𝑅𝑑 (F.16)

𝑅𝐴 = 𝐵𝑅0 − 𝐶𝑅0 (F.17)

𝑅0𝐵𝑒𝑅0𝑑 − 𝑅0𝐶𝑒−𝑅0𝑑 = −𝑅𝐷𝑒−𝑅𝑑 (F.18)

Setting the discriminant of the coefficient matrix of the resulting homogeneous linear system to

zero, ensuring the existence of nontrivial solutions, leads to the equation [73]:

𝐷(𝜔) = 𝑒−𝑅0𝑑 (𝜀(𝜔)𝑅0 − 𝑅)2 + 𝑒𝑅0𝑑 (𝜀(𝜔)𝑅0 + 𝑅)2
(F.19)

Similarly, the boundary conditions for 𝑓𝑦 and
𝑑𝑓𝑦
𝑑𝑦 lead to a similar result for the perpendicular

polarization [73].

Using the second Cauchy’s theorem [73]:

𝑓(𝜉) = 1
2𝜋𝑖

∮
+𝐹𝐷

𝑓(𝑧)𝑑𝑧
𝑧 − 𝜉

, (F.20)

representing 1
𝑧−𝜉 inside as the logarithmic derivative of a function 𝑔(𝑧) using canonical products
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[51], we use the following formula to derive the zero-point energy:

1
2𝜋𝑖

∫
𝐶

𝑧 𝑑
𝑑𝑧

ln 𝑔(𝑧)𝑑𝑧 (F.21)

In our case, we will use a function of the form 𝑔(𝑧) = sin 𝜋𝑧, as:

sin 𝜋𝑧 = 𝜋𝑧 ∏
𝑛≠0

(1 − 𝑧
𝑛

) 𝑒 𝑧
𝑛 , (F.22)

and its logarithmic derivative results in a summation of terms of the form 1
𝑧−𝜉 . In our discussion,

the function 𝑔 (𝜔𝑖) = 𝐷(𝜔). Indeed, it is a function that vanishes for every 𝜔𝑖 in the spectrum [51].

∑
𝐽

𝜔𝐽 = 1
2𝜋𝑖

[∫
𝑖∞

𝑖∞
𝜔𝑑 ln 𝐷(𝜔) + ∫

𝐶+

𝜔𝑑 ln 𝐷(𝜔)] (F.23)

Where 𝐶+ is the upper semicircle of infinite radius in the complex plane centred at the origin. We

evaluate the integral ∫
𝐶+

𝜔𝑑 ln 𝐷(𝜔) with the conditions [74]:

lim
𝜔→∞

𝜀(𝜔) = 1 (F.24)

lim
𝜔→∞

𝑑𝜀(𝜔)
𝑑𝜔

= 0 (F.25)

in all directions of the complex 𝜔 plane. It follows:

∫
𝐶+

𝜔𝑑 [ln (𝑒−𝑅0𝑑 (𝜀(𝜔)𝑅0 − 𝑅1)2 + 𝑒𝑅0𝑑 (𝜀(𝜔)𝑅0 + 𝑅)2)] (F.26)

∫
𝐶+

𝜔
𝑑 [ln (𝑒−𝑅0𝑑 (𝜀(𝜔)𝑅0 − 𝑅1)2 + 𝑒𝑅0𝐷 (𝜀(𝜔)𝑅0 + 𝑅)2)]

𝑑𝜔
𝑑𝜔(2 (F.27)

= ∫
𝐶+

𝜔𝑑[ln 𝐷(𝜔)]
𝑑𝜔

𝑑𝜔 (F.28)

And by performing the lim𝜔→∞
𝑑[ln 𝐷𝜔)]

𝑑𝜔 , taking into account all dependencies on 𝜔 in 𝑅 and 𝑅0

in the derivative calculation, it follows [74]:

∫
𝐶+

𝜔𝑑 ln 𝐷(𝜔) = 4 ∫
𝐶+

𝑑𝜔 (F.29)
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Introducing a new variable 𝜁 = −𝑖𝜔:

∑
𝐽

𝜔𝐽 = 1
2𝜋

∫
−∞

∞
𝜁𝑑 ln 𝐷(𝑖𝜁) + 2

𝜋
∫

𝐶+

𝑑𝜁 (F.30)

We take the lim𝑑→∞ 𝐷(𝜔):

lim
𝑑→∞

∑
𝐽

𝜔𝐽 = 1
2𝜋

∫
−∞

∞
𝜁𝑑 ln 𝐷∞(𝑖𝜁) + 2

𝜋
∫

𝐶+

𝑑𝜁 (F.31)

lim
𝑑→∞

𝐷 = 𝐷∞ (F.32)

(∑
𝐽

𝜔𝐽)
𝑟𝑒𝑛

= (F.33)

= ∑
𝐽

𝜔𝐽 − lim
𝑑→∞

∑
𝐽

𝜔𝐽 (F.34)

= 1
2𝜋

∫
−∞

∞
𝜁𝑑 ln 𝐷(𝑖𝜁) + 2

𝜋
∫

𝐶+

𝑑𝜁 (F.35)

− 1
2𝜋

∫
−∞

∞
𝜁𝑑 ln 𝐷∞(𝑖𝜁) − 2

𝜋
∫

𝐶+

𝑑𝜁 (F.36)

(∑
𝐽

𝜔𝐽)
𝑟𝑒𝑛

= 1
2𝜋

∫
−∞

∞
𝜁𝑑 ln 𝐷(𝑖𝜁)

𝐷∞(𝑖𝜁)
(F.37)

By performing integration by parts [74]:

(∑
𝐽

𝜔𝐽)
𝑟𝑒𝑛

= 1
2𝜋

𝜁 ln 𝐷(𝑖𝜁)
𝐷∞(𝑖𝜁)

− 1
2𝜋

∫
−∞

∞
𝑑𝜁 ln 𝐷(𝑖𝜁)

𝐷∞(𝑖𝜁)
(F.38)

= 1
2𝜋

∫
∞

−∞
𝑑𝜁 ln 𝐷(𝑖𝜁)

𝐷∞(𝑖𝜁)
(F.39)

Now, we substitute the normalized quantity obtained into the electromagnetic field’s zero-point

energy:

𝐸∗

𝐿2 = ℏ
2

∫
𝑑𝑘‖

(2𝜋)2 ∑
𝐽

(𝜔(1)
𝐽 + 𝜔(2)

𝐽 ) (F.40)

= ℏ
2𝜋

∫
+∞

0

2𝜋𝑘𝑑𝑘
(2𝜋)2 ∫

∞

−∞
𝑑𝜁 ln 𝐷(𝑖𝜁)

𝐷∞(𝑖𝜁)
(F.41)

Remember that 𝐷 (𝜔𝐽) relates to both the frequency (𝜔𝐽) of parallel-polarized modes and
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perpendicular-polarized ones. It is called [74] 𝑄1(𝑖𝜁) = 𝐷(1)(𝑖𝜁)
𝐷(1)

∞ (𝑖𝜁)
and 𝑄2(𝑖𝜁) = 𝐷(2)(𝑖𝜁)

𝐷(2)
∞ (𝑖𝜁)

.

ℏ
(2𝜋)2 ∫

+∞

0
𝑘𝑑𝑘 ∫

∞

0
𝑑𝜁 [ln 𝑄1(𝑖𝜁) + ln 𝑄2(𝑖𝜁)] (F.42)

Introduce the variable 𝑘2 = 𝜁
𝑐 (𝑝2 − 1):

ℏ
(2𝜋𝑐)2 ∫

+∞

1
𝑝𝑑𝑝 ∫

∞

0
𝜁2𝑑𝜁 [ln 𝑄1(𝑖𝜁) + ln 𝑄2(𝑖𝜁)] (F.43)

The latter expresses a finite contribution to the Casimir energy density [75]. Let’s now introduce

the variable 𝑘2 = 𝜁
𝑐(𝑝2 − 1)

ℏ
(2𝜋𝑐)2 ∫

+∞

1
𝑝 𝑑𝑝 ∫

∞

0
𝜁2 𝑑𝜁 [ln 𝑄1(𝑖𝜁) + ln 𝑄2(𝑖𝜁)] (F.44)

The Equation F.43 expresses a finite contribution to the Casimir energy density. We derive

from it the Casimir force per unit area between the two half-spaces, introducing a new variable

change 𝐾 = 𝐾(𝑖𝜁) = √𝑝2 − 1 + 𝜀(𝑖𝜁) = 𝑐
𝜁𝑅(𝑖𝜁)

𝐹(𝑑) = −𝜕𝐸∗(𝑑)
𝜕𝑑

= − ℎ
2𝜋2𝑐3 ∫

∞

1
𝑝2 𝑑𝑝 ∫

∞

0
𝜁3 𝑑𝜁 [((𝐾 + 𝜀𝑝

𝐾 − 𝜀𝑝
)

2
𝑒−2( 𝜁

𝑐 )𝑝𝑑 − 1)
−1

+ ((𝐾 + 𝑝
𝐾 − 𝑝

)
2

𝑒−2( 𝜁
𝑐 )𝑝𝑑 − 1)

−1

]

(F.45)

At distances comparable to the characteristic absorption length of dielectric materials (𝑑 ≪ 𝜆0),

the equations above can be written in a simpler form, which includes the Hamaker constant [76]:

𝐼 = 3ℏ
8𝜋

∫
∞

0
𝑥2 𝑑𝑥 ∫

∞

0
𝑑𝜁 [(𝜀 + 1

𝜀 − 1
)

2
𝑒𝑥 − 1]

−1

(F.46)

where the integration variable used is 𝑥 = 2𝑣𝑐𝑑
𝑐 , and the Casimir force and energy density become:

𝐹 = − 𝐻
6𝜋𝑑3 , 𝐸∗ = − 𝐻

12𝜋𝑎2 (F.47)

the equation above:

𝐸∗ = − ℏ
32𝜋2𝑑2 ∫

∞

0
𝑑𝜔 ∫

∞

0
𝑑𝑥 𝑥2 [(𝜀(𝑖𝜔) + 1

𝜀(𝑖𝜔) − 1
)

2

𝑒𝑥 − 1]
−1

(F.48)
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which, in the limit of perfect conductors, reduces to the Casimir formula

𝐸∗(𝑑) = − 𝜋2

720
ℏ𝑐
𝑎3 . (F.49)
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Appendix G

Non-Specular Scattering

We will now present a more generalized formalism for calculating the Casimir force and energy,

considering non-specular reflection by the plates. Non-specular reflection represents the general

reflection process on any mirror, as opposed to specular reflection, which is an idealization.

We can rewrite the expression of the Casimir energy between two flat plates as a sum over modes

labeled by 𝜉 and 𝑚 ≡ k, 𝑝 [77]:

𝐸sp = ℏ ∫
∞

0

d𝜉
2𝜋

Tr Δ𝑝
k[𝑖𝜉], Δ𝑝

k[𝑖𝜉] = ln (1 − 𝑟1𝑟2e−2𝜅𝐿) . (G.1)

This can be interpreted as the energy stored inside the cavity during the scattering process. It is

expressed in terms of the phase shifts Δ𝑝
k[𝑖𝜉] acquired by the field modes upon scattering on the

cavity. These phase shifts are deduced from the 𝑆-matrix of the cavity in such a manner that the
Casimir energy is simply equal to the logarithm of the determinant of the 𝑆-matrix 1, this can also

be written as the trace of a matrix, here diagonal, defined on these modes [29]:

𝐸sp = ℏ ∫
∞

0

d𝜉
2𝜋

∑
𝑚

⟨𝑚 ∣ln (1 − 𝑟1𝑟2e−2𝜅𝑖𝐿)∣ 𝑚⟩ . (G.2)

Here, 𝑟1 and 𝑟2 are diagonal matrices containing the specular reflection amplitudes as seen from

fields inside the cavity:

⟨𝑚 |𝑟𝑖| 𝑚′⟩ ≡ 𝛿𝑚,𝑚′𝑟𝑖(𝜉, 𝑚), 𝛿𝑚,𝑚′ ≡ 4𝜋2𝛿 (k − k′) 𝛿𝑝,𝑝′ , (G.3)

while 𝜅 is a diagonal matrix over the same modes:

⟨𝑚|𝜅|𝑚′⟩ ≡ √k2
𝑚 + 𝜉2𝛿𝑚,𝑚′ . (G.4)

1In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system under-

going a scattering process
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It is now straightforward to derive a more general formula for the Casimir energy in the case of

stationary but non-specular scattering [29]:

𝐸nsp = ℏ ∫
∞

0

d𝜉
2𝜋

Tr ln (1 − ℛ1e−𝜅𝐿ℛ2e−𝜅𝐿) . (G.5)

The two matrices ℛ1 and ℛ2 are no longer diagonal on plane waves since they describe non-

specular reflection on the two mirrors. The propagation factors remain diagonal on plane waves

[77].
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Appendix H

Topological Insulators

H.1 Quantized Bulk Linear Magneto-Electric in Topological

Insulators

The phenomenon of quantized (bulk) linear magneto-electric properties in topological insulators

is a fascinating aspect of condensed matter physics. The material’s constitutive equations are ex-

pressed in terms of electromagnetic parameters for regions (A) and (B) and the constitutive equa-

tions for the electromagnetic field in momentum space (𝐷𝑘 and 𝐻𝑘) are given by

𝐷𝑘 = 𝜀(𝜔, 𝑘) ⋅ 𝐸𝑘 + 𝑣(𝜔, 𝑘) ⋅ 𝐵𝑘

𝐻𝑘 = 𝜁(𝜔, 𝑘) ⋅ 𝐸𝑘 + 𝜇−1(𝜔, 𝑘) ⋅ 𝐵𝑘
(H.1)

These equations describe the intricate interplay of electric and magnetic properties in these unique

materials, as reported in [34].

(a) (b)

Figure H.1: (A) Interface conditions between two media characterized by surface conductivities, denoted as

𝜎A
𝑠 and 𝜎B

𝑠 respectively. (B) Interface conditions between two media are characterized by surface conduc-

tivities indicated by the different 𝜃 values only.

Moreover, topological insulators, at finite frequencies, exhibit quantized bulk linear magneto-

electric behaviour [78], where the quantities 𝜀A(𝜔)𝜇A(𝜔) and 𝜀B(𝜔)𝜇B(𝜔) play a crucial role. The
introduction of the topological magnetoelectric polarizability (𝜃) further enriches the material’s
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characteristics. This polarizability is represented in a tabular form [33]: Furthermore, under time-

reversal symmetry, the constitutive equation for 𝐻𝑘 takes a simplified form

𝐻𝑘 = −𝛼𝜀0𝑐 𝜃
𝜋

𝐸𝑘 + 𝜇−1(𝜔, 𝑘) ⋅ 𝐵𝑘 (H.2)

In the absence of time-reversal symmetry, the topological magnetoelectric polarizability (𝜃) takes
values in the set {… , − 3𝜋, − 𝜋,𝜋,3𝜋, …}. This intriguing behaviour highlights the rich physics
underlying topological insulators. The constitutive equations, describing the relationship between

electric and magnetic fields in momentum space, take the form

𝐻𝑘 = −𝛼𝜀0𝑐 𝜃
𝜋

𝐸𝑘 + 𝜇−1(𝜔, 𝑘) ⋅ 𝐵𝑘 (H.3)

This set of equations is crucial for understanding the intricate interplay between electric and mag-

netic responses in topological insulators [79].

Furthermore, the TMEP introduces polarization mixing, leading to non-zero coefficients 𝑟𝑝𝑠 and

𝑟𝑠𝑝 in the reflection coefficients. The relationships are given by:

(HB − H∧) × n̂AB = 0, (H.4)

and

k × Ek − 𝜔Bk = 0. (H.5)

It then follows that:

𝑟𝑝𝑠 ≠ 0

𝑟𝑠𝑝 ≠ 0
(H.6)

These equations highlight the nontrivial impact of TMEP, indicating that the Casimir force in topo-

logical insulators involves a complex interplay of polarizations, paving the way for intriguing pos-

sibilities in nanoscale physics and quantum technologies.

H.2 Topological Insulators vs Topologically Trivial Materials

The distinction between topological insulators and topologically trivial materials can be captured by

the parameter 𝜃, which classifies time-reversal (𝒯) invariant insulators. The value of 𝜃 determines
the topological nature of the material [80]:

• For 𝜃 = 0 mod (2𝜋) ⇒ 𝑚𝑒𝑖𝜃𝛾5 = 𝑚 > 0, the material is topologically trivial.

• For 𝜃 = 𝜋(2𝑛 + 1) ⇒ 𝑚𝑒𝑖𝜃𝛾5 = −𝑚 < 0, the material is a topological insulator.
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(a)
(b)

Figure H.2: Comparison between topologically trivial material (A) and topological insulator (B).

H.2.1 Axion Electrodynamics

The EM response of a topological insulator can be described by the following Lagrangian [81]:

ℒ = 1
2

(𝜖E2 + 𝜇−1B2) + 𝛼𝜃
2𝜋

E ⋅ B + ℱ𝜇𝐴𝜇. (H.7)

This leads to a set of modified Maxwell’s equations, often referred to as axion electrodynamics

[60]:

∇⃗ ⋅ E = 𝜌 − 𝛼
𝜋
B ⋅ ∇⃗𝜃,

∇⃗ × E = −𝜕𝑡B,

∇⃗ ⋅ B = 0,

∇⃗ × B = J + 𝜕𝑡E + 𝛼
𝜋

̇𝜃B − 𝛼
𝜋
E × ∇⃗𝜃.

(H.8)

If 𝜃 is constant, electrodynamics remain unchanged, but if ̇𝜃 ≠ 0, magnetoelectric couplings
arise, leading to modified constitutive relations [82]:

D = 𝜖E + 𝛼𝜃
𝜋
B, (H.9)

H = 𝜇−1B − 𝛼𝜃
𝜋
E. (H.10)

H.2.2 Surface of a Topological Insulator

Inside the bulk of a topological insulator, the action is described by [83]:

𝑆𝑇 𝐼 = ∫ 𝑑3𝑥 𝑑𝑡 (1
2

(𝜖E2 + 𝜇−1B2) + 𝛼𝜃
2𝜋

E ⋅ B) = 𝑆die + 𝑆𝜃. (H.11)

At the boundary, Stokes’ theorem gives the surface contribution to the action [68]:

𝑆𝜃 = 𝜃 𝛼
4𝜋

∫ 𝑑2𝑥 𝑑𝑡 𝜖𝜈𝜌𝜎 (𝐴𝜈𝜕𝜌𝐴𝜎) . (H.12)
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This is analogous to the action for the Quantum Hall Effect (QHE) [69]:

𝑆𝑄𝐻𝐸 =
𝜎𝑥𝑦

2
∫ 𝑑2𝑥 𝑑𝑡 𝜖𝜈𝜌𝜎 (𝐴𝜈𝜕𝜌𝐴𝜎) , (H.13)

where 𝜃 = (2𝑛 + 1)𝜋 ⇒ 𝜎𝑥𝑦 = 𝜃 𝛼
2𝜋 = 𝑒2

ℎ (𝑛 + 1
2). This equation encapsulates the connection be-

tween the topological properties of a material and its observable physical phenomena, specifically

the quantum Hall effect (QHE). The action 𝑆𝑄𝐻𝐸 describes the quantized Hall conductivity 𝜎𝑥𝑦,

which arises due to the presence of a non-trivial 𝜃 term. When 𝜃 is quantized to (2𝑛+1)𝜋, the Hall
conductivity 𝜎𝑥𝑦 is given by

𝑒2

ℎ (𝑛 + 1
2), indicating half-integer quantization [83]. This result is a

hallmark of the topological insulator’s edge states, which conduct electricity in a manner robust

against local perturbations [80]. Thus, the equation highlights the profound impact of topologi-

cal order on electronic transport properties, bridging abstract theoretical concepts with measurable

experimental effects in condensed matter physics.
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Appendix I

Additional Results Analysis Liquids

I.0.1 T-test Results

We performed pairwise t-tests to compare the means of the TFC data between each pair of liquids

corresponding to the same values of 𝜃s, to assess whether the means of two groups are statistically
different, as differences in TFC could reflect variations in physical properties such as viscosity,

density, or molecular interactions in the real of Casimir Force measurements [84].

For each comparison:

• Calculate the t-statistic: A value that measures the size of the difference relative to the vari-

ation in your sample data [84].

• Determine the p-value: A probability that measures the evidence against the null hypothesis

(which states there is no difference in the means) [84].

The results of the t-tests are summarized below:

Glycerol vs. Water:

The t-test comparing the TFC data between glycerol and water yielded a t-statistic of 1.816

(𝑑𝑓 = 7198 1, 𝑝 = 0.0694). The obtained p-value suggests that there is not enough evidence

to reject the null hypothesis, indicating that the means of the TFC data for glycerol and water are

not significantly different at the 0.05 significance level.

Glycerol vs. Methanol:

In contrast, the t-test comparing the TFC data between glycerol and methanol revealed a statisti-

cally significant difference (𝑡 = 2.562, 𝑑𝑓 = 8398 1, 𝑝 = 0.0104). The obtained p-value indicates
that the means of the TFC data for glycerol and methanol are significantly different at the 0.05

significance level.

Water vs. Methanol:

Similarly, the t-test comparing the TFC data between water and methanol showed no significant

1 df indicates the degrees of freedom, which reflect the number of independent values in a data set that can vary, in

this case the number of distances values included.
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difference (𝑡 = 0.730, 𝑑𝑓 = 7198 1, 𝑝 = 0.4654), suggesting that the means of the TFC data for

water and methanol are not significantly different at the 0.05 significance level.

I.0.2 ANOVA Results

Unlike t-tests that compare two groups at a time, Analysis of Variance (ANOVA) can handle mul-

tiple groups simultaneously. We compared the means of the TFC data among all three liquids.

ANOVA calculates an F-statistic, which is a ratio of the variance between the group means to the

variance within the groups. A corresponding p-value determines the significance of the result [84].

If the p-value is less than the chosen significance level (usually 0.05), it suggests that at least one

group mean is significantly different from the others.

The ANOVA test in the first 10 nm yielded a statistically significant result (𝐹 = 4.050, 𝑝 =
0.0174), indicating that there are no significant differences in the means of the TFC data among

glycerol, water, and methanol.
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Appendix J

Additional Results TI Multilayers

J.1 Statistical analysis of section 4.3

J.1.1 T-Test Results

For both 𝜃 = 5 and 𝜃 = −5, the analysis of topological force contrast (TFC) across different
thicknesses yielded interesting insights.

For 𝜃 = 5:

• TFC Comparison for Thicknesses 0.4nm and 14nm: A significant difference was found in

TFC values between these thicknesses (T-Statistic: -4.8589, P-Value: 1.51e-06), indicating

an influence of thickness on TFC for 𝜃 = 5. However, no significant differences were

observed in TFC values between other thickness pairs (0.4nm vs. 4nm, 0.4nm vs. 40nm,

4nm vs. 14nm, 4nm vs. 40nm, 14nm vs. 40nm).

For 𝜃 = −5:

• TFC Comparison for Thicknesses 0.4nm and 14nm: Similarly, a significant difference was

found in TFC values between these thicknesses (T-Statistic: -22.7603, P-Value: 3.87e-83),

highlighting the impact of thickness on TFC for 𝜃 = −5. As with 𝜃 = 5, no significant
differences were observed in TFC values between other thickness pairs (0.4nm vs. 4nm,

0.4nm vs. 40nm, 4nm vs. 14nm, 4nm vs. 40nm, 14nm vs. 40nm).

These findings suggest that, for both 𝜃 orientations, variations in thickness notably influence TFC
only between specific thickness pairs. This underscores the importance of considering the interplay

between thickness and TFC in the analysis and interpretation of experimental results.
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