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Abstract

A standard problem in distributed optimal control is to design a controller for each system in
a network of interconnected systems to minimise the amplification of external disturbances.
In addition, we often wish to constrain communication among controllers so that each
control input is computed from local information. Traditional optimal control methods,
such as the Youla parametrisation, are of limited utility in this setting, as they can often
only encode communication sparsity as a non-convex constraint. The recently developed
system-level approach aims to circumvent that issue in the case of discrete-time LTI systems.
To that end, it introduces the system response, which describes the effects of disturbances
on the closed-loop dynamics, and reformulates the entire design cycle in terms of that. In
this thesis, we present a continuous-time adaptation of the system-level approach, from
parametrisation to controller design.
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Chapter 1

Introduction

Modern control problems are often concerned with networks of a very large number of
interacting systems that are each equipped with their own controllers. We typically wish
to design these local controllers in such a way that they stabilise the entire interconnection.
On top of stability, we often have the additional objective that the global system should
achieve optimal performance with respect to a chosen cost criterion.

An illustrative example is the smart electricity grid with millions of homes equipped
with both solar panels and appliances with large power demand, such as charging stations
for electric cars. The solar panels generate power at certain times and feed some of it
back to the grid, while at other times, some houses may need more electricity and a power
plant needs to be turned on. With all these fast changes, the grid must remain stable at
all times. Moreover, it is desirable to optimise, for example, the cost of electricity or the
environmental impact.

While our objectives are formulated in terms of the entire interconnection of systems, the
controllers are attached to specific systems and their communication may be restricted by
various factors such as a predetermined network topology or limited bandwidth. Therefore,
we aim to design controllers such that each control input can be computed from locally
available information. In the context of the smart grid example, it is easy to see that, for
example, the control of a given charging station should not depend on the state of a solar
panel hundreds of kilometres away. This requirement is one of the central challenges of
distributed control and is one of the main topics of this thesis.

To formalise our problem setup, consider a system G(s) that encodes the entire intercon-
nection of local systems, and assume it is equipped with a feedback controller K(s). That
is, K(s) is a virtual centralised controller, constructed as a collection of local controllers.
This setup is shown in Figure 2.3. The system G(s) is assumed to have two inputs, the
control input u and external disturbance w, and two outputs, namely the measurement
y and regulated output z. The measurement comprises the information available for the
controller, while the regulated output is some quantity of interest that is to be kept min-
imal. Specifically, the optimal control problem is to find K(s) such that it minimises the
amplification from w to z while stabilising G(s). To satisfy the requirement of restricted
information sharing among local controllers, we may impose further constraints on the
structure of K(s).

Then, the distributed optimal control problem can be stated as an optimisation problem
where the objective function is a chosen norm of the transfer function from w to z and the
constraints ensure that K(s) stabilises G(s) and has the desired structure. In its direct
formulation, that optimisation problem is not convex. If the structural constraints on
K(s) are dropped, the famous Youla parametrisation [1], [2] can be used to to obtain
an equivalent convex problem. However, information sharing constraints on K(s) can be
expressed as convex constraints on the Youla parameter if and only if the strict condition of
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quadratic invariance is satisfied [3], [4]. Quadratic invariance depends on both the chosen
constraints and the underlying network topology of G(s), and it severely limits the range
of structural constraints that we can impose on the controller.

These limitations were the main motivation behind the development of the system-level
approach to distributed optimal control, presented in [5]–[7]. That theory provides a new
framework for the entire design cycle in the case of discrete-time linear time-invariant (LTI)
systems. The main idea is to parametrise stabilising controllers via the system response,
defined as a map from disturbances to closed-loop dynamics, and to express design specifica-
tions in terms of that. In particular, the optimal control problem is reformulated such that
the decision variable is the system response, and information sharing constraints are phrased
as sparsity patterns of that. This leads to a convex problem for any sparsity pattern, and
the enforced communication constraints carry over to the corresponding controller, which
is constructed based on the computed optimal system response.

It is shown in [6] that the system-level approach is suitable for the convex parametri-
sation of a strictly wider class of distributed optimal control problems under information
sharing constraints than the traditional Youla approach or any other known alternative.

To make these benefits available for continuous-time systems, in this thesis, we de-
velop the continuous-time equivalent of the system-level approach. With that objective,
our contributions are the following. First, through arguments analogous to those used in
the discrete-time case, we introduce the continuous-time system-level parametrisation for
state feedback problems through the definition and algebraic characterisation of the sys-
tem response, and show that it provides a new parametrisation of all internally stabilising
controllers. We extend this discussion by a new characterisation of the system response via
geometric conditions on its state-space realisations.

Second, we show how information sharing constraints can be expressed as convex con-
straints on the system response and that they carry over to the controller, as in the discrete-
time case. In addition, we present a number of minor results regarding the feasibility of
such constraints, an explicit construction for a system response with communication con-
fined to the physical network topology in a full control problem, and a direct proof that
quadratically invariant subspace constraints on the controller can be expressed as linear
constraints on the system response.

Third, recognising that the resulting problem is infinite-dimensional and that the meth-
ods to overcome this obstacle in discrete-time are not applicable in continuous-time, we
present two approaches that solve the synthesis problem with some limitations.

Accordingly, the structure is as follows. In Chapter 2, we discuss some mathematical
preliminaries and derive the Youla parametrisation. Chapter 3 introduces the system-level
parametrisation, which is used in Chapter 4 to discuss communication restrictions and
performance constraints. Finally, Chapter 5 covers the remaining challenges in controller
synthesis and provides partial solutions for them. Moreover, it gives a brief introduction to
how appropriate constraints can aid localised synthesis.
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Chapter 2

Background

In this chapter, we introduce the general setup in which the system-level parametrisation is
utilised. To that end, we present some mathematical preliminaries, the notion of internally
stabilising controllers, and the general optimal control problem. In addition, we introduce
the Youla parametrisation, a well-known and celebrated method of characterising all inter-
nally stabilising controllers of a system in such a way that the objective function in the
optimal control problem becomes convex.

Finally, we discuss the idea of distributed optimal control under structural communica-
tion constraints and examine the conditions under which we can express such restrictions
as convex constraints on the Youla parameter. The latter also serves as a motivation for
the system-level parametrisation.

2.1 Preliminaries

In this section, we provide a brief discussion of some of the mathematical preliminaries of
the theory in the rest of the thesis. All of this is standard material, based on [8] and [9].

2.1.1 Real-Rational Transfer Functions

In most of our analysis, we represent LTI systems with their transfer functions. Thus, we
give a short overview of some of their properties.

First, it is well-known that LTI systems which admit standard state-space realisations
have real-rational transfer functions. In the multivariable case, that means matrices of
real-rational functions. We denote the space of matrices of size m × n with real-rational
entries as R(s)m×n. For a square rational matrix T (s) ∈ R(s)n×n, invertibility and inverses
are defined the same way as for real matrices.

Second, we call a rational function proper if the degree of the denominator polynomial
is greater than or equal to that of the numerator polynomial. It is called strictly proper
if that inequality is strict. A rational matrix T (s) ∈ R(s)m×n is called proper if all of its
entries are proper and strictly proper if all of its entries are strictly proper. The transfer
function of any LTI system that admits a state-space realisation is proper, and it is strictly
proper if realisations have no direct feedthrough. The following lemma provides a useful
characterisation of properness.

Lemma 1. A rational function T (s) ∈ R(s)m×n is proper if and only if

T∞ = lim
s→∞

T (s)

exists, and strictly proper if and only if T∞ = 0.
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We call an invertible square rational matrix bi-proper if it is proper and has proper
inverse.

Second, poles and stability are crucially important concepts. After cancelling common
factors of the numerator and denominator polynomials, a pole of a rational transfer function
is a root of its denominator, or, in the multivariable case, a root of the denominator of
any of its entries. A transfer function is called stable if all of its poles are contained in
C− = {s ∈ C | ℜ(s) < 0}. The interpretation is that the output remains bounded for any
bounded input. In case T (s) ∈ R(s)n×n is invertible, it is called bi-stable if it is stable and
has stable inverse.

2.1.2 The Spaces RH∞ and RH2

With the notions of stability and properness, we can define two useful spaces of transfer
functions, namely RH∞ and RH2. To that end, we first define the space

Hm×n
∞ = {T : C → Cm×n | T is bounded and analytic on C\C−},

which is a Banach space with the norm

∥T∥H∞
= sup

ℜ(s)≥0

(
λmax(T (s)

HT (s))
)1/2

,

where λmax(·) returns the maximal eigenvalue and T (s)H is the Hermitian transpose of
T (s). Then, we call the restriction of Hm×n

∞ to real-rational functions RHm×n
∞ .

Similarly, we define

Hm×n
2 = {T : C → Cm×n | T is analytic on C\C− and ∥T∥H2

< ∞},

where the H2-norm is given by

∥T∥H2
=

sup
σ>0

∫
R

m∑
k=1

n∑
j=1

∣∣Tkj(σ + iω)
∣∣2 dω

1/2

.

The restriction of Hm×n
2 to real-rational functions is called RHm×n

2 . By convention, we
only write the dimensions explicitly if they are not clear from the context.

It can be shown that RH∞ and RH2 are both vector spaces over R. Moreover, a
well-known result which is used frequently in this thesis is that RH∞ coincides with the
set of proper real-rational and stable transfer functions, while RH2 is equal to the set of
strictly proper real-rational and stable transfer functions. In particular, it follows that
RH2 ⊂ RH∞.

2.1.3 Well-Posed Interconnections

Recall from Section 2.1.1 that transfer functions of LTI systems that admit state-space
realisations are always proper real-rational. This idea generalises to interconnections of
systems. In that case, if the interconnection has a state-space realisation, then so does the
system from any input to any internal signal or output in the interconnection. Accordingly,
an interconnection is called well-posed if the transfer function between any two signals in
the interconnection is well-defined, real-rational, and proper.

2.2 Internally Stabilising Controllers

Consider the simplest feedback control setup, where a plant P (s), with input u and output
y, is equipped with a controller K(s), such that u = K(s)y.

5



P (s)

K(s)

d1

yu

d2

Figure 2.1: Feedback interconnection A to determine internal stability.

P (s)

K(s)
d1

u y

d2

Figure 2.2: Feedback interconnection B to determine internal stability.

The first objective in practically every control problem is stability. In particular, when-
ever we use a feedback controller, we would like the closed-loop system to be asymptotically
stable. To test that, we introduce the perturbations d1 and d2 to the loop, as shown in
Figure 2.1, and check if the all signals in the feedback loop remain bounded for bounded
d1, d2. The notion of an internally stabilising controller captures exactly that.

Definition 1. The feedback controller given by a transfer function K(s) internally stabilises
the plant with transfer function P (s) if, with the interconnection shown in Figure 2.1, the
system from (d1, d2) to (y, u) is stable.

Due to the utmost importance of this property, internally stabilising controllers are often
referred to as admissible controllers in the optimal control setting. Naturally, if additional
constraints are present, then the meaning of that term is adapted accordingly.

Although Definition 1 is used in the relevant literature [8, Chapter 5.3], [9, Chapter 6.2],
its analogue with the interconnection of Figure 2.1 replaced with that of Figure 2.2 gives
an equivalent definition.

Theorem 1. The feedback controller given by the transfer function K(s) internally sta-
bilises the system P (s) with the definition using the interconnection of Figure 2.1 if and
only if it does so with the definition using the interconnection of Figure 2.2.

Proof. Consider the interconnection of Figure 2.1. Assuming well-posedness of the feedback
loop, direct calculations reveal the relations

y = (I − P (s)K(s))−1(d1 + P (s)d2),

u = (I −K(s)P (s))−1(d2 +K(s)d1).

Hence, the system from (d1, d2) to (y, u) is described by[
y
u

]
= HA(s)

[
d1
d2

]
,

where

HA(s) =

[
(I − P (s)K(s))−1 (I − P (s)K(s))−1P (s)

(I −K(s)P (s))−1K(s) (I −K(s)P (s))−1

]
. (2.1)
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G(s)

K(s)

wz

uy

Figure 2.3: The interconnection considered in the general optimal control problem.

On the other hand, the interconnection of Figure 2.2 yields

y = (I − P (s)K(s))−1(P (s)K(s)d1 + P (s)d2),

u = (I −K(s)P (s))−1(K(s)P (s)d2 +K(s)d1).

Then, we have [
y
u

]
= HB(s)

[
d1
d2

]
,

with

HB(s) =

[
(I − P (s)K(s))−1P (s)K(s) (I − P (s)K(s))−1P (s)

(I −K(s)P (s))−1K(s) (I −K(s)P (s))−1K(s)P (s)

]
. (2.2)

Comparing (2.1) and (2.2), it is clear that only the diagonal blocks differ. By symmetry, it
suffices to consider the upper left block. For that, we immediately have that

(I − P (s)K(s))−1 = I + (I − P (s)K(s))−1P (s)K(s),

and hence (I − P (s)K(s))−1 ∈ RH∞ if and only if (I − P (s)K(s))−1P (s)K(s) ∈ RH∞.
Then, the statement of the theorem follows directly.

The concept of an internally stabilising controller prompts the definition of a stabilisable
plant.

Definition 2. Consider the interconnection in Figure 2.1. The plant P (s) is called stabil-
isable if there exists a feedback controller K(s) that internally stabilises P (s).

Many control problems deal with plants with additional inputs and outputs. That is,
plants that have an exogenous input or disturbance w and regulated output z, on top of
the control input u and measurement y. The system G(s) in Figure 2.3 is an example of
that. In this case, we may modify the definition of internal stability to require stability
of the transfer function from (w, d1, d2) to (z, y, u). As above, stabilisability refers to the
existence of an internally stabilising feedback controller. By [10, Theorem 2], the conditions
for an internally stabilising controller in this setup can be simplified to resemble those for
the simpler interconnection above, assuming the plant is stabilisable. Namely, we have the
following result.

Theorem 2. Consider the interconnection of Figure 2.4, and assume G(s) is stabilisable.
Then, the transfer function from (w, d1, d2) to (z, y, u) is stable if and only if the transfer
function from (d1, d2) to (y, u) is.

The proof of Theorem 2 is omitted here; it can be found in [10, Chapter 4].
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G(s)

K(s)

wz

u

y

d1

d2

Figure 2.4: The interconnection of Figure 2.3 with external perturbations to determine
stability.

2.3 Optimal Control

On top of achieving stability, optimal control also aims for efficiency. That is, we typically
wish to minimise some cost criterion associated with the closed-loop dynamics of the system
over time. Accordingly, in its most general formulation, the optimal control problem is to
minimise a chosen norm of the transfer function from the disturbance w to the regulated
output z of the interconnection in Figure 2.3, where G(s) is the plant and K(s) is the
controller [8]. Assuming the plant is of the general form

G(s) =

[
G11(s) G12(s)
G21(s) G22(s)

]
,

so that [
z
y

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
w
u

]
,

the optimal control problem is formalised as

min
K(s)

∥∥∥G11(s) +G12(s)K(s)(I −G22(s)K(s))−1G21(s)
∥∥∥ (2.3)

subject to K(s) internally stabilises G(s).

We assume G(s) is stabilisable, otherwise the control problem is not feasible. Then, in
accordance with Theorem 2, K(s) internally stabilises G(s) if and only if the transfer
function from (d1, d2) to (y, u), as in Figure 2.4, is stable. Since that part of the closed-
loop dynamics is determined by G22(s) and K(s), we have internal stability if and only if
K(s) satisfies Definition 1 with the plant P (s) = G22(s). Thus, the internally stabilising
controllers of G(s) and G22(s) coincide.

It is immediate that (2.3) is a non-convex optimisation problem. Therefore, while state-
space methods are known for certain cases, for example, the linear quadratic regulator
(LQR) problem [11, Chapter 10], a convex reparametrisation is highly desirable. A well-
known approach is to utilise the Youla parametrisation, originally presented in [1], [2]. In
what follows, we briefly discuss the Youla parametrisation, following [9, Chapter 6.2]. For
the sake of conciseness, we suppress the dependence on s here.

Consider the interconnection shown in Figure 2.1, and let U, V, Ũ , Ṽ ∈ RH∞ form a
doubly coprime factorisation of P over RH∞. That is,

P = V U−1 = Ũ−1Ṽ ,

where U and Ũ are bi-proper, and there exist corresponding Bézout coefficientsX,Y, X̃, Ỹ ∈
RH∞ such that [

X Y

−Ṽ Ũ

][
U −Ỹ

V X̃

]
= I. (2.4)
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Note that such doubly coprime factorisation exists for any system that is stabilisable via
a feedback controller [9, Chapter 3.3]. With that, the Youla parametrisation is introduced
by the following theorem.

Theorem 3. With the feedback interconnection of Figure 2.1, the controller K internally
stabilises P if and only if there exists Q ∈ RH∞ such that

K = (X +QṼ )−1(−Y +QŨ)

or, equivalently,
K = (−Ỹ + UQ)(X̃ + V Q)−1.

Moreover, K is well-posed if and only if X∞ + Q∞Ṽ∞ or, equivalently, X̃∞ + V∞Q∞ is
nonsingular.

Proof. Let H denote the transfer function from (d1, d2) to (y, u). As shown in the proof of
Theorem 1,

H =

[
(I − PK)−1 (I − PK)−1P
(I −KP )−1K (I −KP )−1

]
=

[
I P
0 I

]
+

[
P
I

]
K(I −KP )−1

[
I P

]
=

[
I P
0 I

]
+

[
V
U

]
U−1K(I − PK)−1Ũ−1

[
Ũ Ṽ

]
,

and, by Definition 1, internal stability is equivalent to H ∈ RH∞. Note that (2.4) implies
that the factors on its LHS are bi-stable. It is easily verified that if T and T ′ are two square
transfer functions and T is bi-stable, then T ′ is stable if and only if T ′T or, equivalently,
TT ′ is. Hence, H ∈ RH∞ if and only if

H̃ =

[
0 I
I 0

][
X Y

−Ṽ Ũ

] [
0 I
I 0

]
H

[
0 I
−I 0

] [
U −Ỹ

V X̃

] [
0 I
I 0

]

=

[
Ũ −Ṽ
Y X

]
H

[
X̃ V

Ỹ −U

]
∈ RH∞.

We compute H̃ as the sum of[
Ũ −Ṽ
Y X

] [
I P
0 I

] [
X̃ V

Ỹ −U

]
=

[
ŨX̃ ŨV

Y X̃ + U−1Ỹ Y V − I

]
and [

Ũ −Ṽ
Y X

] [
V
U

]
U−1K(I − PK)−1Ũ−1

[
Ũ Ṽ

] [X̃ V

Ỹ −U

]

=

[
0
I

]
U−1K(I − PK)−1Ũ−1

[
I 0

]
.

Hence,

H̃ =

[
ŨX̃ ŨV

Y X̃ Y V − I

]
+

[
0
I

]
(U−1Ỹ + U−1K(I − PK)−1Ũ−1)

[
I 0

]
,

where the first term is stable by the assumptions in the doubly coprime factorisation. Hence,
defining

Q = U−1Ỹ + U−1K(I − PK)−1Ũ−1,
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H ∈ RH∞ if and only if Q ∈ RH∞.
The details of the inversion of the expression to recover K require the theory of lin-

ear fractional transformations, which is out of the scope of this thesis. Comprehensive
discussions are found in, for example, [9, Chapter 5.2] and [8, Chapter 10]. That theory,
[9, Proposition 5.6] in particular, implies that the map K 7→ Q is bijective if and only if
I + P∞Q∞ is nonsingular. If I + P∞Q∞ is nonsingular, K is given by

K = −Ỹ X̃−1 + (U + Ỹ X̃−1V )Q(I + X̃−1V Q)−1X̃−1

= (−Ỹ X̃−1(X̃ + V Q) + (U + Ỹ X̃−1V )Q)(X̃ + V Q)−1

= (−Ỹ + UQ)(X̃ + V Q)−1.

The other claimed expression in the theorem follows by direct computation.

Theorem 3 allows us to express all stabilising controllers of the system G in terms of
the Youla parameter Q. Let P = G22, and consider the setup of Theorem 3. With that,
the objective function in (2.3) can be rewritten as∥∥∥G11 +G12K(I −G22K)−1G21

∥∥∥
=
∥∥∥G11 +G12(−Ỹ + UQ)(X̃ + V Q)−1(I −G22(−Ỹ + UQ)(X̃ + V Q)−1)−1G21

∥∥∥
=

∥∥∥∥G11 +G12(−Ỹ + UQ)
(
(I −G22(−Ỹ + UQ)(X̃ + V Q)−1)(X̃ + V Q)

)−1

G21

∥∥∥∥
=

∥∥∥∥G11 +G12(−Ỹ + UQ)
(
(I + (Ũ−1 − X̃ − V Q)(X̃ + V Q)−1)(X̃ + V Q)

)−1

G21

∥∥∥∥
=
∥∥∥G11 −G12Ỹ G21 +G12UQŨG21

∥∥∥ . (2.5)

Hence, the optimisation problem (2.3) can be equivalently phrased as

min
Q

∥∥∥G11 −G12Ỹ G21 +G12UQŨG21

∥∥∥ (2.6)

subject to Q ∈ RH∞.

Hence, the Youla parametrisation provides a way to formulate the general optimal con-
trol problem as a convex optimisation problem. This is a major advantage regarding the
existence and computation of solutions.

2.4 Optimal Control for Distributed Systems

Modern control problems are often concerned with engineering systems that involve a very
large number of interconnected and interacting parts. Although we may still model the
interconnection of local systems as one global system, we typically aim for distributed
control, where each part is equipped with its own controller instead of employing one
centralised controller.

In many realistic scenarios, communication among local controllers is constrained by
a predetermined network topology, limited bandwidth, and similar factors. Therefore, we
wish to design distributed controllers such that each local control action only depends on
information from a prescribed subset of local systems and controllers. If G is the global
system and K is the corresponding collection of distributed controllers into a centralised
controller, we can impose such constraints by requiring K to satisfy a desired sparsity
pattern. Namely, Kij = 0, where the indices correspond to blocks of appropriate dimen-
sions, signifies that subsystem i is controlled independently of subsystem j, and hence no
communication is needed between the corresponding controllers.

10



In problem (2.3), such sparsity requirements can be directly imposed as linear subspace
constraints on the decision variable K. However, as established in Section 2.3, that opti-
misation problem is not convex and warrants the reformulation (2.6) in terms of the Youla
parameter Q. At the same time, Theorem 3 suggests that constraints on the structure of
K can not be as simply expressed in terms of Q.

To discuss when and how subspace constraints, such as a sparsity pattern, on K can
be translated to convex constraints on Q, we introduce the concept of quadratic invariance
(QI), based on the original paper on the topic [3], but adapted to the use case at hand.

Definition 3. Let S, a set of rational transfer functions, define a constraint on the con-
troller K. We call S quadratically invariant under G22 if

KG22K ∈ S

for all K ∈ S.

It is shown in [3] and [4] that a linear subspace constraint C for the controller K can be
imposed on Q in a convex manner if and only if C is quadratically invariant under G22.

Suppose C is a subspace of all real-rational transfer functions of appropriate dimensions
and is quadratically invariant under G22, and define h(K) = −K(I −G22K)−1. Then, by
the results in [3], C = h(C) and h is involutive, meaning that h(h(K)) = K. Therefore,
K ∈ C if and only is h(K) ∈ C. Define g(Q) = Ỹ −UQŨ , so that (2.5) implies g(Q) = h(K).
Noting that g is an invertible affine map since U and Ũ are nonsingular, the optimal control
problem (2.3) with a subspace constraint C on K that is quadratically invariant under G22

can be formulated, following [6], as

min
Q

∥∥∥G11 −G12Ỹ G21 +G12UQŨG21

∥∥∥ (2.7)

subject to Q ∈ RH∞, g(Q) ∈ C.

That is, if the constraints on the controller are quadratically invariant under G22, we
can formulate the constrained optimal control problem as a convex optimisation problem
in the Youla parameter. Since the constraints are preserved under the involution h, they
carry over to the controller K. That said, constraints that encode a sparsity pattern for
K are never quadratically invariant under a plant G22 if the underlying system is strongly
connected [6], i.e., information can propagate from any subsystem to any other subsystem.
It is important to emphasise that the network topology of a strongly connected system need
not be a complete graph. For example, a chain of systems with bidirectional communication
can be strongly connected, depending on the specifics of the local systems.

Hence, the Youla parametrisation is only useful in special cases of distributed opti-
mal control. Chapter 4 shows how these limitations are overcome using the system-level
parametrisation.
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Chapter 3

System-Level Parametrisation

Motivated by the limited utility of the Youla parametrisation for distributed optimal control,
the series of papers [5]–[7] introduces a new approach to parametrise all internally stabilising
controllers. The core idea of this new approach is to consider the feedback interconnection of
Figure 2.3 and represent a controller by the resulting closed-loop response to disturbances.
In the following, we present the details of this idea, adapted to continuous-time systems.
We only discuss the state feedback case, but emphasise that [6] extends the approach to
output feedback problems in a way that suggests the possibility of a similar extension in
continuous time as well.

We consider finite-dimensional linear time-invariant systems of the form

Σ :


ẋ = Ax+B1w +B2u

z = C1x+D11w +D12u

y = x,

(3.1)

where x,w, u, z, y are the state, external disturbance, control input, regulated output, and
measurement, respectively. In addition, we denote the external disturbance on the state as
δx = B1w. Write the Laplace transforms of these variables as x̂, ŵ, û, ẑ, ŷ, δ̂x. Then, using
the notation of [8], the system Σ can be written in Laplace domain as

G(s) =

[
G11(s) G12(s)
G21(s) G22(s)

]
=

 A B1 B2

C1 D11 D12

I 0 0

 , (3.2)

so that [
ẑ
ŷ

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
ŵ
û

]
.

As in Figure 2.3, we connect a feedback controller

K(s) =

[
AK BK

CK DK

]
(3.3)

to the system such that û = K(s)ŷ = K(s)x̂. Then, we encode the closed-loop dynamics

by the transfer functions from δ̂x to x̂ and û. This prompts the following definition.

Definition 4. Consider the LTI system (3.1) equipped with a feedback controller. Its system
response is the pair of transfer functions

(
R(s),M(s)

)
such that[

x̂
û

]
=

[
R(s)
M(s)

]
δ̂x.

12



1
s B2

A

K(s)

δ̂y

x̂

ŷ

û δ̂u

δ̂x

Figure 3.1: Block diagram of G22(s) together with the disturbance δ̂x and the feedback
controller K(s).

Given a controller K(s), (3.1) implies

(sI −A)x̂ = δ̂x +B2û = δ̂x +B2K(s)x̂, (3.4)

which immediately leads to

R(s) = (sI −A−B2K(s))−1,

M(s) = K(s)(sI −A−B2K(s))−1.
(3.5)

The system responses achievable by an appropriately chosen internally stabilising con-
troller K(s) are given by the following theorem.

Theorem 4. The conditions

1.
[
sI −A −B2

] [R(s)
M(s)

]
= I,

2. R(s),M(s) ∈ RH2,

characterise all system responses of the system (3.1) achievable by an internally stabilising
feedback controller K(s) of the form (3.3).

Proof. Necessity of the first condition is immediate from (3.5). Consider the interconnection
shown in Figure 3.1. By Definition 1 and Theorem 2, the controller given by K(s) is

internally stabilising if and only if the system from (δ̂y, δ̂u) to (ŷ, û) is stable. It is clear
from the proof of Theorem 1 that we may replace ŷ with x̂ in that test. Since we would
like to examine the effect of δ̂x, we exploit Theorem 2 and consider the equivalent condition
of stability of the transfer function H(s) from (δ̂x, δ̂y, δ̂u) to (x̂, û). To determine H(s), we
note that

(sI −A)x̂ = B2û+ δ̂x = B2(δ̂u +K(s)(δ̂y + x̂)) + δ̂x,

which leads to
x̂ = R(s)(B2δ̂u +B2K(s)δ̂y + δ̂x),

and
û = δ̂u +K(s)(x̂+ δ̂y) = δ̂u +K(s)(R(s)(B2δ̂u +B2K(s)δ̂y + δ̂x) + δ̂y).

Hence,

H(s) =

[
R(s) R(s)B2K(s) R(s)B2

K(s)R(s) K(s)R(s)B2K(s) +K(s) K(s)R(s)B2 + I

]
. (3.6)

13



Since K(s) is internally stabilising, all blocks of H(s), in particular R(s) and M(s) =
K(s)R(s), are contained in RH∞.

To show that R(s) and M(s) are strictly proper, note that it follows from the state-space
realisation (3.3) that K(s) is proper with K∞ = Dk. Then,

R∞ = lim
s→∞

(sI −A−B2K(s))−1

=

(
lim
s→∞

sI −A−B2K(s)

)−1

= lim
s→∞

(sI −A−B2Dk)
−1

= 0,

(3.7)

where we use that, for sufficiently large |s|, R(s) is invertible, and that taking the inverse is a
continuous transformation. Hence, R(s) is strictly proper, and so is M(s) = K(s)R(s).

Conversely, any pair of transfer matrices
(
R(s),M(s)

)
that satisfies the conditions of

Theorem 4 leads to an internally stabilising controller, as formalised by the following the-
orem.

Theorem 5. Suppose R(s) and M(s) satisfy

1.
[
sI −A −B2

] [R(s)
M(s)

]
= I,

2. R(s),M(s) ∈ RH2.

Then, there exists a state feedback controller K(s) = M(s)R(s)−1 that achieves (3.5).
Moreover, K(s) is an internally stabilising controller.

Proof. We first show that R(s) is invertible. To that end, define R′(s) = sR(s) and consider

lim
s→∞

R′(s) = lim
s→∞

I +AR(s) +B2M(s)

= I,

which shows R′
∞ is invertible. Then, by [12, Proposition 3.3], R′(s) is invertible and R′(s)−1

is proper. Consequently, R(s) = 1
sR

′(s) is invertible, meaning that K(s) = M(s)R(s)−1 is
defined. In addition, K(s) = (sM(s))( 1sR(s)−1) is proper, and hence it can be realised as
in (3.3).

We claim that R(s) and M(s) satisfy (3.5) with the above choice of K(s). The feedback
control law û = K(s)x̂ leads to

(sI −A)x̂ = B2û+ δ̂x

= B2(M(s)R(s)−1x̂) + δ̂x,

which implies

(sI −A−B2M(s)R(s)−1)x̂ = δ̂x.

Plugging in K(s) = M(s)R(s)−1 and x̂ = R(s)δ̂x shows that R(s) satisfies (3.5), and the
corresponding result for M(s) follows from the construction of K(s).

To examine internal stability, we introduce the perturbations δ̂y and δ̂u as in Figure 3.1.

Since (3.5) holds, the transfer function from (δ̂x, δ̂y, δ̂u) to (x̂, û) is H(s) as in (3.6). For
K(s) to be internally stabilising, all blocks of H(s) need to be contained in RH∞. That
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is clear for the first and the third column. The remaining two blocks can be rewritten as
follows.

R(s)B2K(s) = R(s)(B2M(s)R(s)−1 +R(s)−1)− I

= R(s)(sI −A)− I,

and

M(s)B2K(s) +K(s) = M(s)(B2M(s)R(s)−1 +R(s)−1)

= M(s)(sI −A).

Since R(s),M(s) ∈ RH∞ and both are strictly proper, it follows that R(s)(sI − A)− I ∈
RH∞ and M(s)(sI − A) ∈ RH∞. Hence, the controller specified by K(s) is internally
stabilising.

Therefore, the system response provides a way to parametrise all internally stabilising
controllers of a system of the form (3.1). We call this approach system-level parametrisation.

Theorem 5 above is more general than the corresponding result in [6] in that it shows
that any controller with transfer function K(s) = M(s)R(s)−1 is internally stabilising.
We present the specific controller implementation used in [6] in Chapter 4, as it behaves
particularly well regarding constraints on the system response.

The system-level parametrisation is compatible with the usual notion of stabilisability
in the sense that the affine subspace of possible system responses, given by the conditions
of Theorems 4 and 5, is nonempty if and only if the plant is stabilisable. This is formalised
and proven in the following lemma, adapted to continuous time from [6, Lemma 6].

Lemma 2. The conditions

1.
[
sI −A −B2

] [R(s)
M(s)

]
= I,

2. R(s),M(s) ∈ RH2

are feasible if and only if the pair (A,B2) is stabilisable.

Proof. if. Suppose the pair (A,B2) is stabilisable. Then, there exists a real matrix F such
that A + B2F is Hurwitz. Let K(s) = F , which implies R(s) = (sI − A − B2F )−1 and
M(s) = F (sI −A−B2F )−1. It is readily verified that 1. holds for this choice of K(s).

Then, R(s) and M(s) are stable since A+ B2F is Hurwitz. In addition, the equations
(3.7) with K(s) = DK = F show that R(s) and M(s) are strictly proper.

only if. Assume there exist strictly proper and stable R(s) and M(s) such that[
sI −A −B2

] [R(s)
M(s)

]
= I.

Then, since all poles of R(s) and M(s) are in the open left-half plane, [sI − A − B2] is
right-invertible for all s with ℜ(s) ≥ 0. In other words, [sI − A − B2] has full row rank
for all such s. The Hautus test then implies that the pair (A,B2) is stabilisable.

The system-level parametrisation should not be seen as merely a different choice of
parameters but rather as a new perspective on quantifying closed-loop behaviour. Accord-
ingly, it elicits a new design approach aimed at the system response itself, instead of the
transfer function K(s) of the controller or Q(s) of the feedback loop between outputs and
inputs as in the naive or the Youla approach, respectively [6]. This new perspective on the
entire design cycle is sometimes called the system-level approach.

While Theorem 4 gives a characterisation of all achievable system responses in terms of
the affine space they live in, we may also formulate similar conditions in terms of the state-
space realisations of R(s) and M(s). The following result gives an equivalent geometric
characterisation in that setting.
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∫
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d
dt

A
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∫
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CM −B2

δx

ξ̇ ξ

−
+

η̇ η u

+

ỹ

Figure 3.2: State-space realisation of [sI −A −B2][R(s)T M(s)T ]T .

Theorem 6. Suppose R(s) and M(s) are strictly proper and have state-space realisations
(AR, BR, CR) and (AM , BM , CM ), respectively. Define the matrices

Ã =

[
AR 0
0 AM

]
, B̃ =

[
BR

BM

]
, C̃ =

[
CRAR −ACR −B2CM

]
.

Then, the following are equivalent.

1.
[
sI −A −B2

] [R(s)
M(s)

]
= I,

2. ⟨Ã | im B̃⟩ ⊂ ker C̃ and CRBR = I,

3. im B̃ ⊂ ⟨ker C̃ | Ã⟩ and CRBR = I,

4. there exists an Ã-invariant subspace V such that im B̃ ⊂ V ⊂ ker C̃ and CRBR = I.

Proof. The equivalence of 2., 3., and 4. follows from the results that the reachable subspace
⟨Ã | im B̃⟩ is the smallest Ã-invariant subspace containing im B̃ [11, Chapter 3.2] and that
the unobservable subspace ⟨ker C̃ | Ã⟩ is the largest Ã-invariant subspace contained in ker C̃
[11, Chapter 3.3].

For the equivalence of 1. and 2., consider the block diagram in Figure 3.2, which shows
the realisations of R(s) and M(s) in cascade interconnections with (sI − A) and −B2,
respectively. The former is described by

ΣR :

{
ξ̇ = ARξ +BRδx

yR = (CRAR −ACR)ξ + CRBRδx,

while the latter is given as

ΣM :

{
η̇ = AMη +BMδx

yM = −B2CMη.

16



We consider the combined system shown in the diagram, from input δx to output ỹ =
yR + yM . With the matrices defined in the theorem, the combined system has state-space
realisation (Ã, B̃, C̃, CRBR) in the internal state z = [ξT ηT ]T .

It follows that statement 1. is satisfied if and only if ỹ = δx for z(0) = 0 with any
input δx. In particular, this condition at z = 0 is equivalent to CRBR = I. That leads to
C̃z + δx = δx for every possible value of z with any input δx, which holds if and only if
⟨Ã | im B̃⟩ ⊂ ker C̃.

With the system-level parametrisation at hand, we may turn our attention back to the
general optimal control problem (2.3). Considering the plant given by (3.2), the optimisa-
tion problem reduces to

min
R(s),M(s)

∥∥∥∥∥D11 +
[
C1 D12

] [R(s)
M(s)

]
B1

∥∥∥∥∥ (3.8)

subject to
[
sI −A −B2

] [R(s)
M(s)

]
= I, R(s),M(s) ∈ RH2.

Both the objective function and the constraints are affine in this formulation, and thus we
obtain a convex optimisation problem. While convexity is also achieved by the Youla
parametrisation in the unconstrained case, the structure of Q(s) is not related to the
achieved dynamics and information exchange topology as clearly as that of the system
response. In other words, with the Youla approach, design goals are not direct character-
istics of the decision variable, whereas, with the system-level parametrisation, we aim to
design the system response itself, which allows us to enforce a wider range of constraints.
The specifics are discussed in Chapter 4.
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Chapter 4

Constraints

Given that the main motivation behind the system-level parametrisation is to overcome
the limitations of the Youla parametrisation when it comes to distributed optimal control,
possibilities to impose constraints on the system response are a topic of utmost importance.
As discussed in Section 2.4, sparsity constraints on the controller can be used to enforce
distributed control with only local information exchange. With the Youla parameter, such
constraints turn out to be non-convex in any system where information can eventually reach
any state from any other state. In this chapter, we present how similar constraints can be
imposed using the system-level parametrisation and that quadratic invariance is no longer
necessary for constraints to be convex.

The reasons that allow us to surpass the limitations of the Youla approach are twofold.
First, the change of perspective explained in Chapter 3, namely that we aim to design
the system response itself, means that we can express structural requirements as subspace
constraints directly on the decision variables of problem (3.8). Second, as we show below,
once the desired system response is found, the controller K(s) can be implemented in a way
that it inherits the structural properties of the system response.

In addition to sparsity requirements, we can also impose performance constraints on the
closed-loop system. That is, it is possible to place an upper bound on a chosen norm of the
transfer function from disturbances to regulated output. The purpose may be suboptimal
control or a sufficient performance requirement with respect to a norm different from the
one used for optimisation. Such constraints are discussed in Section 4.4.

4.1 Locality Constraints

A common design objective in distributed control problems is that controllers should only
rely on locally available measurements and information from a select subset of other con-
trollers. This may be required by the physical characteristics of the global system and the
available communication network or motivated by factors such as reduced computational
and hardware costs.

As discussed in Section 2.4, if we collect local controllers into a centralised feedback
controller K(s), then we may directly enforce local computation of each control input ûi by
imposing an appropriate sparsity pattern on K(s). Namely, Kij(s) = 0 implies that control
input i is independent from the state of system j.

As noted above, we wish to solve the optimal control problem by directly designing the
system response, and, accordingly, enforcing local information transfer on R(s) and M(s).
To that end, we formalise the notion of a locality constraint.

Definition 5. Let L ⊂ R(s)m×n be a subspace defined by a chosen sparsity pattern of
rational matrices of an appropriate size m × n. That is, let I be a collection of pairs of
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Σ1

Γ1

Σ2

Γ2

Σ3

Γ3

Σ4

Γ4

(δx)1

y1 y2 y3 y4u1 u2 u3 u4

out1(LR)

out1(LM )

Figure 4.1: An example of a locality constraint for four interconnected systems Σi with
controllers Γi. The disturbance on the state of Σ1 is only allowed to affect the states of Σ1

and Σ2 and the control inputs of Σ1, Σ2, Σ3.

indices and
L = {H(s) ∈ R(s)m×n | Hij(s) = 0 ∀(i, j) ∈ I}.

Then, for a transfer function H(s), the condition H(s) ∈ L is called a locality constraint.
Moreover, the incoming and outgoing sets of system i with respect to a locality constraint
L are defined as

ini(L) = {j ̸= i | (i, j) /∈ I}

and
outi(L) = {j ̸= i | (j, i) /∈ I},

respectively.

We further specify this concept to a system response
(
R(s),M(s)

)
by constructing two

sets of pairs of indices IR and IM and the corresponding subspaces LR and LM , respectively.
If the states or inputs are not scalars, then indices correspond to blocks of appropriate
dimensions. With that, we define L = LR × LM and impose a locality constraint on the
system response by requiring [

R(s)
M(s)

]
∈ L.

Accordingly, we construct the incoming and outgoing sets as ini(L) = ini(LR) ∪ ini(LM )
and outi(L) = outi(LR) ∪ outi(LM ).

The interpretation is that disturbances entering system j do not affect the state of
system i for (i, j) ∈ IR, and control input i is independent of disturbances entering system
j for each (i, j) ∈ IM . An example is shown in Figure 4.1. Since our goal is to restrict
information propagation among systems and not disturbance decoupling, we assume that
(i, i) /∈ IR ∪ IM for any system index i, unless explicitly stated otherwise.

Confining the effect of each disturbance to a local region of the global system comes with
an additional benefit. Namely, in some cases, it allows us to optimise the response to any
given disturbance locally, with lower-dimensional transfer functions at hand. The global
system response

(
R(s),M(s)

)
can then be constructed by inserting the local responses into

the appropriate components and exploiting the superposition principle of LTI systems [7],
[13]. That is, the synthesis problem not only remains tractable to compute using convex
optimisation, but appropriate locality constraints can also aid decentralised synthesis such
that its complexity is independent of the scale of the global system. Section 5.3 discusses
this in more detail.

Remark 1. In general, the control input affects the dynamics through the matrix B2. That
is, a given block of the state may be influenced by several blocks of the input, depending
on the structure of B2. To take that into account, we may either impose constraints on
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I − sR(s)

sM(s)
ŷ β̂ û

Figure 4.2: Proposed centralised implementation of the controller K(s) = M(s)R(s)−1.

Πi

[I − sR(s)]i

[sM(s)]i
ŷi β̂i ûi

Πiβ̂i

∑
j∈ini(L) Πj β̂j

Figure 4.3: Proposed distributed controller implementation. The map Πi embeds β̂i in
block i of a zero vector with the same dimension as β̂, and [·]i denotes block row i.

B2M(s) instead of M(s) or assume that control inputs can be locally shared, in accordance
with the structure of B2.

In case the global system is an interconnection of systems with no feedthrough in their
coupling, the matrix B2 is block diagonal, where the diagonal is interpreted in terms of
possibly non-square blocks if B2 is non-square. Then, Mij(s) = 0 implies [B2M(s)]ij =
0. Conversely, if [B2M(s)]ij = 0, then Mij(s) can be set to zero in the implementation
of controller i with no effect on the dynamics. Hence, if B2M(s) satisfies some locality
constraints, then M(s) can be modified such that it does too, while preserving internal
stability.

It is immediate that locality constraints on the system response are convex constraints
on the decision variables R(s) and M(s) in the optimisation problem (3.8). Therefore, any
locality constraint on the system response can be enforced in a convex manner, irrespective
of the structure of the global system. Nevertheless, it is not guaranteed that a stabilising
controller with the desired structure exists. In other words, the intersection of the chosen
constraints with those of (3.8) may be an empty set. That issue is explored in Section 4.2.

Since the main motivation for imposing locality constraints on the system response is
to restrict communication among local controllers, it is natural to ask whether the imposed
constraints carry over from the system response to the corresponding controller. The answer
is positive, at least with a specific controller implementation. This claim is formalised by
the following theorem, which is a generalisation of [13, Theorem 1].

Theorem 7. Suppose the system response
(
R(s),M(s)

)
satisfies a locality constraint L =

LR × LM . Then, the controller K(s) = M(s)R(s)−1 can be implemented in a distributed
manner such that controller i, which computes ûi, only measures state i and only receives
information from each controller j for j ∈ ini(L). That is, K(s) ∈ LR ∪ LM .

Proof. Consider the interconnection shown in Figure 4.2. We claim that it constitutes a
centralised implementation of the controller K(s). Indeed, observe that we have

β̂ = ŷ + (I − sR(s))β̂, (4.1)
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and hence

β̂ =
1

s
R(s)−1ŷ,

where ŷ = x̂+ δ̂y. Therefore, recalling from the proof of Theorem 5 that 1
sR(s)−1 is proper,

the feedback loop within the controller is well-posed. Moreover, it is clear that the proposed
implementation has transfer function K(s) = M(s)R(s)−1.

It follows from R(s) ∈ LR that the block I− sR(s) only depends on β̂i and β̂j such that
j ∈ ini(LR) to compute component i of its output. Similarly, M(s) ∈ LM implies that the

block sM(s) only uses β̂i and β̂j such that j ∈ ini(LM ) to compute ûi.
Hence, the centralised controller shown in Figure 4.2 can be decomposed into distributed

controllers as follows. Relying on the i-th block row of (4.1), each controller i computes its

own state β̂i using the output of the corresponding subsystem and β̂j for each j ∈ ini(LR),
which it receives from the corresponding local controllers. It computes the control input
ûi based on β̂i and β̂j for each j ∈ ini(LM ), also received from the other controllers in
ini(LM ). This construction is shown in Figure 4.3.

It follows that the distributed implementation yields the same control inputs for all
subsystems as the centralised implementation and only requires each local controller to
broadcast its own state β̂i to outi(L) and, conversely, to read the states from ini(L). Thus,
communication is constrained as desired.

The internal loop in the implementation of K(s) = M(s)R(s)−1 given by Figure 4.2 can
be interpreted as an observer for disturbances integrated in time. In the distributed setting,
we then have that local controllers share the estimates β̂i of the integrated disturbances
entering the corresponding systems, so that the control inputs ûi can be computed via
sM(s). This also provides an intuitive explanation for the locality of the proposed controller
implementation: the observer part of controller i depends only on those disturbances that
can affect the output of system i, and ûi is computed from estimates of those disturbances
that are allowed to influence it.

Remark 2. Replacing I − sR(s) and sM(s) in the proposed controller implementation
with I − R(s) and M(s), respectively, leads to the same transfer function K(s) from ŷ to

û. However, in that case, the transfer function from ŷ to β̂ is R(s)−1, which is not proper.
Therefore, the internal feedback loop is ill-posed.

A particularly intuitive class of locality constraints, presented in [13], is the following.
We consider N interconnected systems that interact along the network topology given by
a directed graph G = (V, E), where each vertex in V = {1, 2, . . . , N} corresponds to an
individual system and (i, j) ∈ E if and only if system j directly influences system i when no
control is applied. In other words, (i, j) ∈ E if and only if the (i, j) block of A is nonzero.
In this setting, we define the following concepts.

Definition 6. For two subsystems i and j of a global system with network topology given
by G = (V, E), the distance from j to i, denoted dist(i, j), is the length of the shortest path
in G from vertex j to vertex i. For subsystem i, the d-outgoing set is

outi(d) = {j ∈ V | dist(j, i) ≤ d}.

Similarly, the d-incoming set is

ini(d) = {j ∈ V | dist(i, j) ≤ d}.

This allows us to define an important class of locality constraints.

Definition 7. Given a network topology G = (V, E) and a nonnegative integer d, a d-
localised constraint is a locality constraint with (j, i) ∈ I whenever j /∈ outi(d).
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P (s)

K(s)

ûŷ

Figure 4.4: Feedback interconnection of P (s) and K(s).

It is important to note that d may be chosen separately for R(s) and M(s). If a dR-
localised constraint is imposed on R(s) and a dM -localised one on M(s), then we call the
system response

(
R(s),M(s)

)
(dR, dM )-localised. In particular, dM > dR is feasible in more

scenarios than dM ≤ dR, as appropriate control inputs are typically needed to decouple the
dR + 1st states. In that case, each system i such that dist(i, j) = dR + 1 can be seen
as a boundary that is controlled such that it stops a disturbance entering system j from
propagating further [13].

As d-localised constraints are a special case of locality constraints, Theorem 7 can be
specified for them.

Corollary 1. Suppose the system response
(
R(s),M(s)

)
is (dR, dM )-localised with dR ≤

dM and the controller K(s) = M(s)R(s)−1 is implemented as in Figure 4.2. Then, the
controller can be broken up into a set of distributed controllers such that controller i, which
computes ûi, only measures state i and only receives information from ini(dM ).

Proof. The proof follows immediately from that of Theorem 7.

4.2 Feasibility

In Section 4.1, we have shown that locality constraints imposed on the system response are
trivially convex, regardless of the properties of the global system. Nevertheless, as with any
parametrisation, feasibility of the chosen constraints is not guaranteed. In particular, we
know from Theorems 4 and 5 that[

sI −A −B2

] [R(s)
M(s)

]
= I,

R(s),M(s) ∈ RH2

(4.2)

are necessary and sufficient conditions on the system response with an internally stabilising
controller K(s), which, whenever it exists, is given by K(s) = M(s)R(s)−1. Thus, a
locality constraint is feasible if and only if it can be simultaneously satisfied with (4.2).
While easily testable necessary and sufficient conditions for feasibility are not known for
arbitrary continuous-time systems with general constraints, we provide a number of results
here that are informative in specific cases.

We first examine necessary conditions. To that end, we introduce the notion of fixed
modes with respect to a given information sharing constraint. This concept is originally
from [14] and is generalised in [15].

Consider the interconnection of a strictly proper plant P (s) with input û and output ŷ
and a feedback controller K(s), as in Figure 4.4. Assume P (s) is realised as

P (s) =

[
AP BP

CP 0

]
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and K(s) as in (3.3). Then, the closed-loop dynamics is given by

ẋcl = Acl(P,K)xcl,

where xcl = [xT
P xT

K ]T is the collected state and the closed-loop system matrix Acl(P,K)
is given by

Acl(P,K) =

[
AP +BPDKCP BPCK

BKCP AK

]
.

Definition 8. Consider the interconnection in Figure 4.4 with plant P (s) and controller
K(s). Let Acl(P,K) denote the closed-loop system matrix, and let L be a locality constraint.
Then, the set of fixed modes of P (s) with respect to L is defined as

Λ(P,L) = {λ ∈ C | λ ∈ σ(Acl(P,K)) ∀K(s) ∈ L}.

Moreover, we define Λs(P,L) with the additional restriction that K(s) = DK is a static
feedback controller.

Fixed modes are analogous to uncontrollable closed-loop eigenvalues, taking into account
that controllers need to satisfy the constraint L. The purpose of introducing the concept
is the following result from [15].

Theorem 8. For any plant P (s) and any locality constraint L, we have

Λ(P,L) = Λs(P,L).

Proof. See [15, Theorem 10].

Assuming G(s) is stabilisable and taking P (s) = G22(s), Theorem 2 implies K(s) inter-
nally stabilises P (s) if and only if it internally stabilises G(s). Hence, Theorem 8 leads to
a necessary condition for the feasibility of a chosen locality constraint.

Corollary 2. Assume L = LR × LM defines a locality constraint on the system response(
R(s),M(s)

)
and its intersection with the affine subspace given by (4.2) is non-empty.

Then,
Λs(G22,LR ∪ LM ) ⊂ C−.

Proof. Let the system response
(
R(s),M(s)

)
satisfy the locality constraint L and (4.2).

Theorem 7 then implies that there exists an internally stabilising controller with transfer
functionK(s) = M(s)R(s)−1 such thatK(s) ∈ LR∪LM . It follows that Λ(G22,LR∪LM ) ⊂
C−, and hence, by Theorem 8, Λs(G22,LR ∪ LM ) ⊂ C−.

Another approach to derive necessary conditions for feasibility is through the sparsity
operator.

Definition 9. Let H(s) ∈ R(s)Mm×Nn be a partitioned rational matrix with blocks of
dimension m× n. Then, the sparsity operator is defined as

sp : R(s)Mm×Nn → {0, 1}M×N

sp(H(s))ij =

{
1 if Hij(s) ̸= 0

0 if Hij(s) = 0,

where Hij(s) stands for a block of H(s). Let H ′(s) be another rational matrix of the same
size. Then, we say sp(H ′(s)) ⊂ sp(H(s)) if H ′

ij(s) ̸= 0 implies Hij(s) ̸= 0. In addition, we
define sp(H ′(s)) ∪ sp(H(s)) as the element-wise OR operation.

Finally, assuming compatible dimensions, the product sp(H(s)) sp(H ′(s)) is defined via
the rule

sp(H(s)) sp(H ′(s))ij =

{
1 if ∃k s.t. sp(H(s))ik sp(H

′(s))kj = 1

0 otherwise.
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Rewriting the equation in (4.2) as

(sI −A)R(s) = I +B2M(s)

allows us to apply the sparsity operator on both sides. Then, the following lemma provides
a way to relate the sparsity of M(s) to that of R(s).

Lemma 3. Let H(s) and H ′(s) be rational matrices of compatible dimensions. Then, we
have that

sp(H(s)H ′(s)) ⊂ sp(H(s)) sp(H ′(s)).

Proof. Assume sp(H(s)H ′(s))ij = 1. Then, by definition,

0 ̸= (H(s)H ′(s))ij =
∑
k

H(s)ikH
′(s)kj .

Hence, there exists k such that Hik(s)H
′
kj(s) ̸= 0, which implies sp(H(s))ik = 1 and

sp(H ′(s))kj = 1.

Hence,
sp(I +B2M(s)) ⊂ sp(sI −A) sp(R(s)) (4.3)

is a necessary condition for (4.2) to hold. Let [B2M(s)]ij denote an off-diagonal block of
B2M(s) and assume it is nonzero. Then, (4.3) requires that (sI −A)ik ̸= 0 and Rkj(s) ̸= 0
for some k. Noting that (sI − A)ii ̸= 0 and (sI − A)ik = Aik for i ̸= k, that translates to
either Rij(s) ̸= 0 or there exists an index k such that Rkj(s) ̸= 0 and Aik ̸= 0. That is,
if disturbance j affects the control action on system i, then it must also affect its state or
the state of one of its in-neighbours k in the physical network topology. A special case is
formalised below.

Lemma 4. Suppose
(
R(s),M(s)

)
is a (dR, dM )-localised system response with dM > dR +

1 that satisfies (4.2), and B2 is a block diagonal matrix of full column rank. Then,(
R(s),M(s)

)
is (dR, dR + 1)-localised.

Proof. Note that the full column rank of B2 implies that the blocks on its diagonal have
full column rank as well. That means sp(B2M(s)) = sp(M(s)). The reasoning above then
completes the proof.

As a step towards sufficient conditions for feasibility, we consider a special case. In
particular, assume B2 is block diagonal, so that sp(B2M(s)) ⊂ sp(M(s)), and has full row
rank. An example of that is a full control problem, where B2 = I. Then, the system
response

R(s) =
1

s+ c
I,

M(s) = − 1

s+ c
B†

2(A+ cI),

(4.4)

where B†
2 is a right inverse of B2 and c > 0, satisfies (4.2). Indeed, R(s) ∈ RH2 and

M(s) ∈ RH2 are immediate, and we have

(sI −A)R(s)−B2M(s) =
s

s+ c
I − 1

s+ c
A+

1

s+ c
A+

c

s+ c
I = I.

Moreover, B2M(s) satisfies a 1-localised constraint with respect to the physical network
topology given by A. In the spirit of Remark 1, the same constraint can be enforced
on the obtained M(s) without changing the dynamics, simply by setting the appropriate
blocks to zero. Hence, since R(s) is diagonal, the system response is (0, 1)-localised. This
immediately implies the following.
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Lemma 5. Assume B2 is block diagonal and has full row rank, and let L be a locality con-
straint on

(
R(s),M(s)

)
such that it contains every (0, 1)-localised system response. Then,

L is a feasible constraint.

Therefore, assuming B2 satisfies the premises of Lemma 5, communication among con-
trollers can always be restricted to the physical network topology, and such restrictions can
be encoded in convex constraints on the system response. This is in stark contrast with the
necessary condition of QI for convex locality constraints in the Youla approach.

While sufficient conditions for feasibility of locality constraints on the system response
in the case of more general systems are unknown to us, the following result from [16] is
worth stating.

Theorem 9. Consider a plant P (s) with input û and output ŷ, equipped with a to-be-
designed feedback controller K(s). Given a locality constraint L to be imposed on K(s), an
internally stabilising controller K(s) ∈ L exists if and only if Λs(P (s),L) ⊂ C−.

Proof. See [16, Theorem 12].

That is, if blockG22(s) of the stabilisable global systemG(s) has no unstable fixed modes
with respect to the chosen locality constraints, then an internally stabilising controller
that satisfies the constraints always exists. However, the sparsity of the controller does
not necessarily manifest itself in a related sparsity pattern of the system response. In
other words, the converse of Theorem 7 does not hold. A trivial example is a strongly
connected and open-loop stable system, where K(s) = 0 is a stabilising controller but the
corresponding R(s) is not sparse.

This shows that locality of the system response is a stricter condition than locality of
the controller. Consequently, although the system-level parametrisation is less restrictive
than other approaches, it still does not allow us to impose all feasible sparsity patterns of
the controller of a general system as locality constraints on the system response.

4.3 QI Subspace Constraints

To illustrate the power of imposing constraints on the system response, we consider subspace
constraints that are quadratically invariant with respect to the plant at hand. By the results
in Section 2.4, such constraints can be enforced on the Youla parameter in a convex manner.
The following theorem, adapted to state feedback from [6, Corollary 1], shows that they
can also be expressed as convex constraints on the system response.

Theorem 10. Assume the plant G(s) admits a feedback controller K(s) of dimension m×n.
Consider a linear subspace C ⊂ R(s)m×n such that it is quadratically invariant with respect
to G22(s) = (sI − A)−1B2. Then, K(s) ∈ C if and only if M(s)(sI − A) ∈ C, where M(s)
is as in (3.5).

Proof. From Section 2.4, we know that the function h(K(s)) = −K(s)(I −G22(s)K(s))−1

preserves C and is involutive. Hence, K(s) ∈ C is equivalent to h(K(s)) ∈ C.
To prove the theorem, we show that M(s)(sI − A) = −h(K(s)) and note that C is a

linear subspace. Indeed,

M(s)(sI −A) = K(s)(sI −A−B2K(s))−1(sI −A),

and(
I − (sI −A)−1B2K(s)

) (
(sI −A−B2K(s)

)−1
(sI −A)

= (sI −A)−1
(
(sI −A)(sI −A−B2K(s))−1 −B2K(s)(sI −A−B2K(s))−1

)
(sI −A)

= I,
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which implies

M(s)(sI −A) = K(s)
(
I − (sI −A)−1B2K(s)

)−1

= −h(K(s)).

Theorem 10 thus shows that subspace constraints that are quadratically invariant under
the plant can be expressed as linear constraints on the system response. As discussed
in Section 2.4, QI is a necessary condition for a subspace constraint to induce a convex
constraint on the Youla parameter. Hence, any convex constraint in the Youla approach that
corresponds to a subspace constraint, such as a required sparsity pattern, on the controller
can be equivalently imposed as a convex constraint using the system-level parametrisation.

4.4 Performance Constraints

In addition to restricting communication among controllers, we may wish to prescribe re-
quirements on quantities associated to the overall dynamics of the closed-loop system. The
motivations for that fall into two categories. First, instead of optimal control, where the
desired controller minimises the norm of the transfer function from disturbances to the
regulated output, we may aim for suboptimal control, where we only require the controller
to keep said norm below an appropriate performance level. Second, in optimal control, it
is sometimes desirable to optimise one performance metric while keeping another, perhaps
a different norm of the same quantity, below a critical value.

Irrespective of the motivation, performance constraints can be imposed in a rather
straight-forward fashion in the system-level approach, as shown in [6]. Namely, let g :
RH∞ → R be any convex function with domain of the same dimensions as

(
R(s),M(s)

)
.

Then, since sublevel sets of convex functions are convex,

g(R(s),M(s)) ≤ γ, (4.5)

where γ ∈ R, is a convex constraint on the system response. Hence, it can be used as an
additional constraint in (3.8). Based on (3.8),

g(R(s),M(s)) =

∥∥∥∥∥D11 +
[
C1 D12

] [R(s)
M(s)

]
B1

∥∥∥∥∥ (4.6)

with a suitable norm is a notable choice of g. For suboptimal control, we choose g like (4.6)
and accept any system response

(
R(s),M(s)

)
that satisfies (4.2) and (4.5).
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Chapter 5

Synthesis

Building on the previous chapters, we turn our attention to controller synthesis in the
system-level design approach. Consider a stabilisable system G(s) as in (3.2), and let
C denote a convex constraint on the system response. Of course, C may as well be the
intersection of several convex constraints. Then, we aim to find the solution to

min
R(s),M(s)

∥∥∥∥∥D11 +
[
C1 D12

] [R(s)
M(s)

]
B1

∥∥∥∥∥ (5.1)

subject to
[
sI −A −B2

] [R(s)
M(s)

]
= I, R(s),M(s) ∈ RH2 ∩ C.

Once the optimal system response
(
R(s),M(s)

)
is found, Theorem 7 provides a recipe for

the implementation of the corresponding controller.
While (5.1) is a convex optimisation problem, it is, in general, infinite-dimensional.

Thus, standard optimisation methods cannot solve it directly.
For discrete-time systems, [5] and [6] propose to utilise deadbeat control in order to turn

(5.1) into a finite-dimensional problem. Specifically, by imposing finite impulse response
(FIR) constraints on the system response, we obtain the finite-dimensional representations

R(z) =
∑T

t=0 z
−tRt and M(z) =

∑T
t=0 z

−tMt, where T is a chosen time horizon and Rt,Mt

are real matrices for each t. In terms of the resulting dynamics, such constraints mean that
the effects of any disturbance are extinguished in at most T time steps. It is shown in [6]
that FIR constraints are always feasible for sufficiently large T if the plant is controllable
and observable, and relaxations exist for the remaining cases [17].

With appropriate FIR constraints, the discrete-time optimal control problem can be
readily solved. Nevertheless, this approach is not without shortcomings, as the additional
constraint may alter the attainable optimal value. That difference can be made arbitrarily
small by increasing the time horizon T , however, the minimal state-space realisation of the
resulting controller, developed in [18], has a state-space dimension that grows linearly with
T . Hence, there is an important trade-off between performance and complexity in both
synthesis and implementation.

Due to the fundamental differences between discrete- and continuous-time dynamics,
the above method does not work with continuous-time systems. In particular, deadbeat
control is not possible for continuous-time LTI systems. In this chapter, we examine two
approaches towards solving the optimal control problem (5.1) with locality constraints, but
note that a universal method for general systems and constraints remains a topic of future
research. Lastly, in Section 5.3, we briefly discuss how locality constraints enable localised
synthesis.
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5.1 Approximate Solutions

A straight-forward approach to turning (5.1) into a finite-dimensional problem is to replace
R(s) and M(s) with finite-order approximations. This method is suggested in, for example,
[19] for an input-output parametrisation similar to the system-level parametrisation, and a
more general treatment of the topic is found in [20, Chapter 15.1].

First, we construct an approximation for each component of a given transfer function.
To that end, we state the following result as a special case of the discussion in [21].

Lemma 6. Let a > 0 and define

Vn =


n−1∑
i=0

cis
i

(s+ a)n

∣∣∣∣∣∣ ci ∈ R

 .

Then,
∞⋃

n=0

Vn

is dense in RH2 under both the H2- and the H∞-norm.

Proof. See [21, Theorem 1] and the accompanying discussion.

Motivated by Lemma 6, we can define the additional constraint

FN =
{
H(s) ∈ RHk×l

2

∣∣∣ Hij(s) ∈ ∪N
n=0Vn ∀(i, j) ∈ {1, 2, . . . , k} × {1, 2, . . . , l}

}
,

where N is the chosen order of the approximation, on transfer functions of dimension k× l.
We do not indicate k and l explicitly for these constraints, as they are always clear from
the context. It is easily verified that FN is convex.

Then, problem (5.1) with the additional constraint of(
R(s),M(s)

)
∈ FN

is a finite-dimensional convex optimisation problem. Hence, a range of standard techniques
can be utilised for solving it. In addition, by Lemma 6, taking the limit as N → ∞ in this
setting is equivalent to solving the original, infinite-dimensional problem. It is therefore
advantageous to repeatedly solve the approximate problem with increasing N until the
update of the optimal value becomes negligible.

An obvious downside of this method is that there is no guarantee about the order
N needed to obtain a feasible optimisation problem and a solution sufficiently close to
the optimum of (5.1). These limitations are similar to those of the FIR method for the
discrete-time case.

5.2 Synthesis through Vectorisation

In this section, we turn our attention to the H2 optimal control problem, that is, problem
(5.1) where the norm is the H2-norm. We present a method that is intended as a step-
ping stone towards a general algorithm for solving the H2 problem with the system-level
parametrisation in the presence of locality constraints. It is inspired by the idea in [3], where
a constrained problem in the Youla parameter is transformed into a higher-dimensional un-
constrained optimal control problem. An unconstrained H2 problem can then be solved via
well-established state-space methods; see [8, Chapter 14] for example.
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Consider the optimal control problem (5.1) with the H2-norm and a locality constraint
L. Let S denote the intersection of the relevant constraints, so that

S =

{[
R(s)
M(s)

]
∈ RH2 ∩ L

∣∣∣∣∣ [sI −A −B2

] [R(s)
M(s)

]
= I

}
, (5.2)

and assume
(
Rnom(s),Mnom(s)

)
∈ S is a system response that satisfies the constraints. See

(4.4) for an example of a nominal system response. Define

K = ker[sI −A −B2] ∩RH2 ∩ L.

Then, any admissible system response
(
R(s),M(s)

)
∈ S can be written as[

R(s)
M(s)

]
=

[
Rnom(s)
Mnom(s)

]
+

[
R̄(s)
M̄(s)

]
,

for some [
R̄(s)
M̄(s)

]
∈ K.

Pick Ξ1(s),Ξ2(s), . . . ,Ξp(s) ∈ K for some p ∈ Z>0 and construct K̃ as

K̃ =


p∑

i=0

ηi(s)Ξi(s)

∣∣∣∣∣∣ ηi(s) ∈ RH1×1
∞

 . (5.3)

That is, K̃ is the span of Ξ1(s),Ξ2(s), . . . ,Ξp(s) over RH∞, which can be considered as a

ring but not as a field, meaning that K̃ is a module over RH∞. It is immediate that K̃ ⊂ K.
Moreover, K̃ can be seen as a real vector space and is therefore convex. In what follows,
we solve the optimal control problem restricted to the affine subspace

S̃ =

[
Rnom(s)
Mnom(s)

]
+ K̃ ⊂ RH∞. (5.4)

To that end, we define the vectorisation operator.

Definition 10. Let R be any ring. The vectorisation operator is defined as the function

vec : Rm×n → Rmn

vec(X)(i−1)·m+j = Xji

for i = 1, . . . , n and j = 1, 2, . . . ,m.

That is, vec(·) returns a vector of the columns of a matrix stacked on top of each other.
Clearly, it is a bijection provided that the dimensions are fixed. With that, we construct

T (s) =
[
vec(Ξ1(s)) vec(Ξ2(s)) · · · vec(Ξp(s))

]
,

and introduce the notation
W = BT

1 ⊗
[
C1 D12

]
.

Then, the following result holds.

Theorem 11. Suppose η(s) ∈ RHp
∞ is the solution of

min
η

∥∥∥∥∥∥vec(D11) +W vec

([
Rnom(s)
Mnom(s)

])
+WT (s)η(s)

∥∥∥∥∥∥
H2

(5.5)

subject to η(s) ∈ RH∞.
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Then, [
R(s)
M(s)

]
=

[
Rnom(s)
Mnom(s)

]
+ vec−1(T (s)η(s))

solves

min
R(s),M(s)

∥∥∥∥∥D11 +
[
C1 D12

] [R(s)
M(s)

]
B1

∥∥∥∥∥
H2

(5.6)

subject to

[
R(s)
M(s)

]
∈ S̃.

Proof. It can be verified by direct computation that for any compatible matrices P,Q,R,

vec(PQR) = (RT ⊗ P ) vec(Q).

Thus,

(BT
1 ⊗

[
C1 D12

]
) vec

([
Rnom(s)
Mnom(s)

])
+ (BT

1 ⊗
[
C1 D12

]
)T (s)η(s)

= vec

[C1 D12

]([Rnom(s)
Mnom(s)

]
+ vec−1(T (s)η(s))

)
B1

 .

In addition, it follows from (5.3) and (5.4) that{[
Rnom(s)
Mnom(s)

]
+ vec−1(T (s)η(s))

∣∣∣∣∣ η(s) ∈ RH∞

}
= S̃.

Hence, (5.5) is precisely the vectorised formulation of (5.6). From Section 2.1.2, we observe
that the H2-norm is invariant under vectorisation. Then, the statement of the theorem
follows.

Notice that (5.5) is an unconstrained optimal control problem of the form (2.6). That
is, η(s) can be seen as the Youla parameter for the system

G̃(s) =

vec(D11) +W vec

([
Rnom(s)
Mnom(s)

])
WT (s)

I 0

 ,

using that a doubly coprime factorisation of G̃22(s) = 0 is given by 0 = I0 = 0I with Bézout
coefficients X = X̃ = I and Y = Ỹ = 0. Hence, (5.5) can be solved by readily available
state-space methods for unconstrained H2 optimal controller synthesis, such as those in [8,
Chapter 14].

However, this method still has a clear limitation in that it introduces additional con-
straints to the optimal control problem. More specifically, at the present time, we do not
know if it is possible to construct K̃ such that it is equal to K, which would imply S̃ = S. A
further examination of that is an interesting direction for future research. That said, if the
optimal control problem with the original constraint set S is feasible, it is always possible
to construct K̃ ̸= ∅ so that (5.6) and, equivalently, (5.5) are feasible problems.

5.3 Separable Synthesis

As explained in Section 4.1, locality constraints on the system response confine the effects
of disturbances to local regions in the global system. In other words, the system response

30



to a disturbance entering a given system is allowed to be nonzero in specific components
only. Formally, if

(
R(s),M(s)

)
∈ L = LR × LM , then block column j of R(s) can only be

nonzero at each block row i such that i ∈ outj(LR), and the analogous statement holds for
M(s) with LM . This suggests that block columns of the system response can be optimised
locally, only considering the block rows that are permitted to be nonzero.

Optimising the block columns of the system response independently is motivated by
the superposition principle of LTI systems. That is, the system response to disturbances
entering all systems is the sum of the responses to disturbances entering each one of the
systems in the interconnection. Nevertheless, whether or not we can optimise the block
columns independently depends on the chosen performance criterion as well. A compre-
hensive treatment of this topic is found in [7], which is the basis of our brief discussion
below.

First, we define column-wise separable objective functions and constraints in the context
of the optimisation problem

min
R(s),M(s)

g
(
R(s),M(s)

)
(5.7)

subject to
(
R(s),M(s)

)
∈ S,

where g : RH2 → R is some convex function and S ⊂ RH2 is some convex constraint set.

Definition 11. Consider the optimisation problem (5.7), and assume the system response
is partitioned into N block columns. Then, the objective function g is called column-wise
separable if there exist functions g1, g2, . . . , gN such that

g
(
R(s),M(s)

)
=

N∑
i=1

gi
(
Ri(s),Mi(s)

)
,

where Ri(s) and Mi(s) denote block column i of R(s) and M(s), respectively.
Similarly, the constraint set S is called column-wise separable if there exist sets

S1,S2, . . . ,SN such that (
R(s),M(s)

)
∈ S

if and only if (
Ri(s),Mi(s)

)
∈ Si

for i = 1, 2, . . . , N .

If the objective function and the constraints are both column-wise separable, then the
optimal control problem can be solved column-wise. In that case, by our discussion above,
appropriate locality constraints lead to lower-dimensional synthesis problems for each block
column. Hence, the optimal system response to the disturbances that enter system j in the
interconnection can be computed locally, and the complexity of such computation depends
only on the number of systems in outj (LR ∪ LM ), as opposed to the scale of the entire in-
terconnection. In large-scale networks of systems, this property is extremely advantageous.

Lastly, we present an example of a column-wise separable constraint set and objective
function. Specifically, assume S is as in (5.2). Then, S is column-wise separable. Indeed, a
locality constraint can be trivially separated into constraints for each block column, RH2

is interpreted component-wise by definition, and the constraint[
sI −A −B2

] [R(s)
M(s)

]
= I

is column-wise separable by the rules of matrix multiplication.
For the objective function, consider

g
(
R(s),M(s)

)
=

∥∥∥∥∥D11 +
[
C1 D12

] [R(s)
M(s)

]
B1

∥∥∥∥∥
2

H2

,
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where B1 is block diagonal so that the disturbances on different systems are decoupled.
Note that optimising the square of the norm is equivalent to optimising the norm itself, as
it is a nonnegative quantity. Then, g is a column-wise separable objective function. This
can be seen from the following. By the rules of matrix multiplication, the block columns
of the transfer function inside the norm can be computed independently, using that B1 is
block diagonal. Our claim then follows from the fact that the square of the H2-norm of a
transfer function matrix is the sum of the squared H2-norms of its components.

Hence, assuming disturbances are decoupled, synthesis for theH2 problem under locality
constraints can be performed locally, independent of the scale of the global system. For a
variety of other separable constraints and objective functions, see [7].

32



Chapter 6

Conclusion

In this thesis, we have introduced the distributed optimal control problem subject to con-
straints on communication among controllers. Aiming to solve that problem, we have
presented the Youla parametrisation and its limitations, namely the necessity of quadratic
invariance, in encoding information sharing constraints as convex constraints. Motivated
by these limitations, we have developed a system-level design approach for continuous-time
LTI systems, analogous to the approach presented in [5]–[7] for the discrete-time case.

In particular, we have considered the state feedback case and defined the system response
as the pair of transfer functions that map disturbances affecting the state to the state and
the control input. We have shown that the system response can be used to parametrise all
internally stabilising controllers of a given system and that such parametrisation leads to a
convex formulation of the distributed optimal control problem. In that setup, communica-
tion sparsity can be enforced via convex constraints on the system response such that they
carry over to the controller. In particular, any subspace constraint on the controller that
can be expressed as a convex constraint on the Youla parameter can also be imposed on the
system response in a convex fashion, and for a full control problem, it is always possible to
restrict communication to the physical network topology.

Finally, we have explained the difficulties in solving the resulting synthesis problem,
which are due to the optimisation problem being infinite-dimensional. As partial solutions,
we have presented a finite-dimensional approximation method, and proposed a construction
that translates the constrained H2 problem into an unconstrained H2 problem of a higher-
dimensional system that can be solved with available state-space methods. While it is
unclear at the moment whether the latter can be carried out without introducing additional
constraints, feasibility is guaranteed provided that the original problem is feasible.

Based on the work presented in this thesis, several directions of future research can
be identified. Namely, a full solution of the synthesis problem, possibilities to incorporate
modular design techniques, and constraints that encode communication delays would all be
interesting and useful areas of further work within the theme of system-level design.
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