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Abstract

This research evaluates the efficiency of various object-tracking algorithms compared to traditional
accelerometer measurements in non-contact, vision-based structural vibration analysis. Specifically, the
study focuses on validating the use of a smartphone for monitoring vibrations on a cantilever beam,
assessing data quality in both time and frequency domains. The study explores the performance of different
tracking algorithms, including the CSRT, MIL, KCF, and OF trackers, in capturing structural vibrations.
Findings reveal that the OF tracker shows promise due to its high accuracy and sensitivity, as evidenced
by its excellent signal-to-noise ratio and precise identification of primary frequency components. A real-
world application on a lamppost further explores the potential of the OF tracker in practical scenarios.
These findings highlight the potential of vision-based monitoring systems as valuable tools for structural
health monitoring.

Keywords: Vision-based monitoring, Structural Health Monitoring (SHM), Object-tracking algorithms,
Structural vibration analysis, Non-contact measurement, Smartphone-based monitoring, Signal-to-noise ratio
(SNR), Frequency domain analysis, Cantilever beam, Optical Flow (OF) tracker, Accelerometer comparison,
Real-world application.
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I. LIST OF ABBREVIATIONS

• CSRT: Channel and Spatial Reliability Tracking
• FFT: Fast Fourier Transform
• fps: Frames Per Second
• KCF: Kernelized Correlation Filter
• KPIs: Key Performance Indicators
• MATLAB: Matrix Laboratory
• MIL: Multiple Instance Learning
• OF: Optical Flow
• OpenCV: Open Source Computer Vision
• RUG: Rijksuniversiteit Groningen
• SHM: Structural Health Monitoring
• SNR: Signal-to-Noise Ratio
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II. INTRODUCTION
Vision-based technologies offer an opportunity for non-contact measurement of structural vibration.

These technologies can ease structural health monitoring (SHM), enabling more frequent and widespread
evaluations at a fraction of the cost and complexity (Feng & Feng, 2018) (Ferraris et al., 2023).

A. State of the Art
Traditional single point-based vibration measurement methods have several limitations that affect

their effectiveness in SHM. These methods often require direct contact with the machine or structure,
leading to potential failures and downtime. Moreover, point measurements can provide data from limited
locations, limiting analysis to specific points and potentially overlooking broader vibration problems
throughout the machine or structure (Tiboni et al., 2022). These limitations highlight the need for
advanced non-contact techniques, such as camera-based measurement techniques (Zhuang et al., 2022)
(Feng & Feng, 2018).
The evolution of computer vision has significantly influenced and accelerated recent advancements in
SHM. These technologies enable non-contact, efficient monitoring of infrastructures, offering a leap
forward from traditional methods. This shift enhances the capability for comprehensive assessments
and ensures more accessible, cost-effective, and widespread evaluations (Ferraris et al., 2023).
A contribution to this is a comparative study of vision camera-based vibration analysis with the laser
vibrometer method (Muralidharan & Yanamadala, 2021). Their research delves into the application of
advanced image processing to detect and analyze structural vibrations, demonstrating the potential of
camera-based systems as a cost-effective and accessible option for vibration measurement.
Complementing this, the advancement in the field with a focus on practical applications of camera-
based vibration measurement (Baqersad & Di Maio, 2023). Their volume on Computer Vision & Laser
Vibrometry highlights comparative studies which assesses the effectiveness of these technologies in
SHM of various infrastructures. This collective body of work confirms the validity of vision-based
methods and paves the way for broader adoption of vision-based methods in structural dynamics and
SHM systems, leading to safer and more efficiently maintained structures.

B. Contribution
This paper aims to validate the effectiveness of vision-based monitoring against accelerometer

measurements using a smartphone to record the vibrations on a cantilever beam. It assesses the data
quality in both the time and frequency domain. Comparing different object-tracking algorithms can help
refine these methods in SHM by making vision-based monitoring more accessible and efficient (Ye
et al., 2016).
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III. PRELIMINARIES

A. System Description

Fig. 1: Overview of the system. The system includes video data generation using a smartphone camera,
excitation of the structural element, data acquisition from both the camera and an accelerometer, and
data analysis using object-tracking algorithms to measure displacement and frequency.

The system representation focuses on using vision-based technologies to measure structural vibration
and includes the following subsystems:

• Generating Video Data: This subsystem uses the integrated camera of a smartphone to record video
data of the cantilever beam, during vibrations. The availability of advanced smartphone technologies
supports it. Moreover, the lighting conditions will influence the quality of the recorded video.

• Generating Excitations: This subsystem is the practical setup where the structural element is exposed
to an to generate a vibration for analysis.

• Data Acquisition: The raw vibration data is collected through the smartphone camera, which is then
supported by an accelerometer to provide the reference measurement: acceleration. The generation of
the video and excitations influence the quality of data collection.

• Data Analysis: Raw data is processed and analysed using object tracking algorithms. The analysis
focuses on extracting the displacement over time by tracking a fixed point on the cantilever beam.

The key performance indicators (KPIs) in Figure 1 serve as the system’s measurable outputs to
evaluate the effectiveness of the vibration analysis of the different tracker algorithms. The KPIs provide
quantifiable metrics, which are crucial for assessing the performance of the vibration measurement
system. The displacement over time is determined by taking the derivatives of the acceleration over
time measured by the accelerometer. As shown in figure 1.

a′′(t) = v′(t) = x(t) (1)

The displacement over time is extracted from the video data using the object tracking algorithms.
The fast Fourier transform (FFT) is used to determine the frequency domain and natural frequency.

time domain x(t) FFT−−→ frequency domain x( f ) (2)

9



(a) Demonstrates the conversion of a vibration signal
(displacement over time) to the frequency domain using
FFT. The example highlights how structural vibrations can
be analyzed to identify primary frequency components.
(“Wikipedia”, 2024)

(b) Another example showing the conversion process of a
vibration signal to the frequency domain, emphasizing the
practical application of FFT in analyzing structural vibra-
tions for health monitoring purposes. (NTi Audio, 2024)

Fig. 2: Examples of Fast Fourier Transform (FFT) Conversion.

Figures 2 shows an example of converting a vibration (displacement over time) to frequency by FFT.

B. Sampling Frequency and Its Influence on the Frequency Domain
Sampling frequency is a critical parameter in vibration measurement and analysis, influencing the

accuracy and resolution of the frequency domain representation. In the context of SHM, understanding
the implications of sampling frequency is essential for ensuring precise and reliable measurements.
This subsection explores the role of sampling frequency, comparing the high-frequency capabilities of
an accelerometer with the relatively lower sampling rate of a smartphone camera.
The sampling frequency, or sampling rate, is the number of samples per second taken from a continuous
signal to create a discrete signal. It is measured in Hertz (Hz). In vibration analysis, the sampling
frequency determines the highest frequency that can be accurately captured, known as the Nyquist
frequency, which is half the sampling rate. Accurate vibration analysis requires a sampling frequency
at least twice the signal’s highest frequency component (Gohil, 2019).

1) Accelerometer vs. Camera Sampling Frequencies
This study used two primary data acquisition tools: an accelerometer and a smartphone camera. The

accelerometer employed has a sampling frequency of 8192 Hz, while the smartphone camera operates
at 240 frames per second (fps), equivalent to a sampling frequency of 240 Hz.

• Accelerometer Sampling Frequency:
– The accelerometer’s high sampling frequency (8192 Hz) allows it to capture high-frequency

vibration components up to 4096 Hz (Nyquist frequency). This high resolution enables detailed
frequency domain analysis, capturing fine and high-frequency vibrations that might be crucial
for detecting structural abnormalities. (Gohil, 2019)

• Camera Sampling Frequency:
– The smartphone camera’s sampling frequency of 240 Hz limits its ability to capture high-

frequency components to 120 Hz (Nyquist frequency). Although significantly lower than the
accelerometer’s, the camera’s sampling frequency is sufficient for many practical applications,
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especially applications where the primary interest is lower-frequency vibrations typically
associated with large-scale structural movements. (Sheet, 2023)

2) Influence on Frequency Domain Analysis
The difference in sampling frequencies between the accelerometer and the smartphone camera has

direct implications on the frequency domain analysis:

• Resolution and Accuracy:
– The higher sampling frequency of the accelerometer provides greater resolution and accuracy in

the frequency domain. It captures a wider range of frequencies, offering a more comprehensive
view of the vibration spectrum.
The lower sampling frequency of the camera results in a coarser frequency domain representation,
potentially missing higher frequency components. However, it remains effective for analyzing
lower frequency vibrations, often the most critical for SHM (Gohil, 2019) (Dataloggers, 2023).

• Nyquist Frequency:
– The accelerometer’s high Nyquist frequency (4096 Hz) ensures that high-frequency vibrations

are accurately represented without distortion (Dataloggers, 2023).
The camera’s Nyquist frequency (120 Hz) imposes a limitation, meaning any frequency
components above 120 Hz will not be accurately captured and could be aliased, distorting the
frequency domain representation (Gohil, 2019).

C. Stakeholder Analysis

Fig. 3: Mendelow matrix including the different stakeholders in the research.

• Government and Policy Makers:
The implementation of advanced SHM technologies like vision-based systems can significantly
enhance structural safety, reduce maintenance costs, and ensure compliance with evolving safety
standards. These outcomes are critical for public welfare and economic viability, aligning with national
safety standards (Payawal & Kim, 2023). The government and policy makers, initially positioned in
’Has Power’, may see their interest grow as the project progresses. As regulations develop, aligning
the research with these changes could elevate the government’s role from a powerful overseer to an
active participant in promoting and mandating the use of vision-based SHM technologies (Abdulkarem
et al., 2020).
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• Researcher(s) at the RUG:
Researchers are vital players with a substantial stake in the project’s success, potential for publication,
and further academic exploration. Their stakes lie in the project’s ability to contribute novel insights
into SHM and validate new methodologies.

• Construction Engineers:
The research findings’ practical applicability, reliability, and cost-effectiveness are essential for
construction engineers. They are interested in solutions that can be integrated into existing
workflows, enhance structural safety, and provide economic benefits through the efficiency of
structures. Successful integration of vision-based SHM into existing workflows can enhance
structural safety and provide economic benefits by reducing the need for manual inspections

D. Why-What Model

Fig. 4: Why-What model, showing the original problem and enhancing the understanding of this problem.

The Why-What Model is an analytical framework that helps understand the underlying problem and
explains the steps taken to address it (Verschuren et al., 2010).

1) Why
The primary motivation behind employing the Why-What Model in this research stems from the

limitations associated with traditional single-point vibration measurement methods. These traditional
methods often necessitate direct contact with the monitored structure, leading to significant challenges
such as high operational costs, complex setups, and unavoidable downtime during measurements.
Additionally, data acquired from limited locations may provide an incomplete view of the structural
vibrations, potentially overlooking broader issues affecting the entire structure.

2) What
To address these limitations, this research proposes using vision-based monitoring techniques,

specifically by applying smartphone camera object-tracking algorithms. The Why-What Model guides
the research process by identifying the core problem and the proposed solution. Here, the core problem
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is the inefficiency and impracticality of traditional single point-based vibration measurement methods.
The proposed solution involves using advanced object-tracking algorithms to capture structural
vibrations non-contact, thus providing a more efficient, cost-effective, and comprehensive approach to
SHM.

IV. PROBLEM STATEMENT
Single-point-based methods often require direct contact with the structure and present substantial

challenges, including high costs, complex setups, and operational downtime. These limitations hinder
the practicality and accessibility of structural health monitoring. Moreover, these methods provide data
from limited locations, restricting the analysis to specific points and potentially overlooking broader
vibration issues across the entire structure.

V. RESEARCH OBJECTIVE
This research aims to analyse and compare the accuracy of object-tracking algorithms with

accelerometer measurements for vision-based vibration analysis on a cantilever beam, focusing on the
accuracy of the displacement and frequency over time. The research planned to be completed within a
12-week period.

VI. RESEARCH QUESTIONS
A. Main Research Question

How does the accuracy of object-tracking algorithms compare with accelerometer measurements in
both time and frequency domains on a cantilever beam, and which object-tracking algorithm proves
most effective?

B. Sub-Questions
• What object-tracking algorithms have been effectively utilized in similar studies for processing

vision-based data?
• Which object-tracking algorithms are best suited for analyzing the data collected through

smartphone-based vibration analysis on a cantilever beam?
• How does an impulse excitation affect the measurement accuracy of smartphone-based vibration

analysis on a cantilever beam?
• Which of the tested object-tracking algorithms demonstrates the highest accuracy on impulse testing

in smartphone-based vibration analysis on a cantilever beam compared to the accelerometer’s
reference measurements?

13



VII. METHODS AND TOOLS

A. Experimental Setup

(a) Shows the overall experimental setup with a cantilevered
beam subjected to vibrations, captured by a smartphone camera
fixed on a stable tripod. (Side View)

(b) Shows the hammer setup used to generate impulse
vibrations on the cantilever beam. (Top-Bottom View)

Fig. 5: Experimental Setup for Vision-Based Vibration Measurement.

Central to the experiment is a setup with a cantilevered beam subjected to various generated
vibrations captured with the smartphone camera fixed on a stable tripod, as shown in figure 5a. The
hammer, as displayed in figure generates an impulse that exerts a vibration effect on the cantilever
beam. The accelerometer’s reference measurements and the video data are essential for assessing the
frequency response accuracy.

1) Impulse Testing
The unique characteristic of impulse testing is its ability to generate a complex frequency spectrum.

An impulse force is a non-periodic pulse that simultaneously excites all the structure’s natural
frequencies. This broad frequency range is captured due to the short duration and high energy of
the impulse, which induces vibrations across the entire spectrum of the structure’s modal frequencies
(Gohil, 2019) (Dataloggers, 2023).

B. Data Analysis

After acquiring the data, the focus shifts towards comparing object-tracking algorithms. In this phase,
Open Source Computer Vision (OpenCV) object-tracking algorithms are integrated in Python. This
integration includes edge detection and other tracker variations essential for extracting vibration data
from recorded videos. The edge detection algorithms identify the boundaries of vibrating structures,
and the trackers follow the movement throughout the experiment, as illustrated by Figure 6b. The
tracker algorithms provided by OpenCV will allow visualization of the extracted displacement in both
time and frequency domains, capturing the dynamics of structural vibrations of the cantilever beam.
(Sharma et al., 2021)
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(a) Object tracking using the Optical Flow (OF) algorithm.
(Top-Bottom View)

(b) Object tracking using CSRT, MIL, and KCF algorithms.
(Top-Bottom View)

Fig. 6: Application Visualization of Object Tracking Algorithms

Upon completion of the experiment and analysis, the accuracy of the graphs derived from the
algorithm will be benchmarked against those from the accelerometer, with the most closely matching
profile considered the most accurate.

Sub-Question Method Tool Milestone

1 Evaluation of currently utilized
object-tracking algorithms Literature Review

Compilation of a list of object-tracking
algorithms for vision-based data pro-
cessing

2 Analysis of algorithms’ suitability
for smartphone-based analysis Literature Review

Selection of optimal algorithms for
smartphone-based vibration analysis on
a cantilever beam

3 Impact assessment of different ex-
citations on measurement accuracy Empirical Testing using Python

Determination of excitation types of
impact on the accuracy of vibration
analysis

4 Comparative analysis of object-
tracking algorithms’ accuracy

Empirical Testing and Data Analy-
sis with Python

Identification of the most accurate
object-tracking algorithm for various
excitations

TABLE I: Overview of Methods, Tools, and Milestones for Object-Tracking Algorithm Analysis.
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1) Signal-to-Noise Ratio (SNR)
The SNR is essential for assessing how well object-tracking algorithms perform in vision-based

structural vibration measurements. SNR measures the strength of the desired signal relative to the
background noise, indicating the data’s quality and reliability.

2) Calculation Method
The SNR is calculated as follows:
• Signal Power Calculation: The signal power is determined by averaging the squared values of the

primary frequencies identified.
• Noise Power Calculation: The noise power is calculated by averaging the squared values of the

frequency components that did not include the primary frequency peaks.
• SNR Formula: The SNR was calculated as the ratio of the signal power to the noise power,

expressed in decibels (dB) using the formula:

SNR = 10log10

(
Signal Power
Noise Power

)
(Xiu et al., 2023)

How the SNR is incorporated in the MATLAB coding can be observed in the Appendix.

VIII. DELIVERABLE AND VALIDATION METHOD
The primary outcome of this research is a comparative analysis of different object-tracking algorithms

using OpenCV and Python for structural vibration measurement via smartphone-based vision technology.
This comparison not only evaluates these algorithms’ capabilities and efficiencies but also validates the
research methodology used. The accuracy and effectiveness of the algorithms, as measured against
accelerometer measurements, validate the research’s effectiveness. Hence, the research’s validation is
bound to the comparative accuracy of the object-tracking algorithms as benchmarked against known
accelerometer measures.
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IX. RESEARCH STRATEGY
The research strategy involves an assessment of different object-tracking algorithms to evaluate their

efficiency in non-contact, vision-based structural vibration measurement. Each algorithm’s advantages
and drawbacks were analyzed to ensure a comprehensive comparison. Below, the methodology for
each algorithm’s application within the experimental setup is described.

A. Algorithm Description
In this research, an examination of various object-tracking algorithms is conducted to evaluate their

efficiency in non-contact, vision-based structural vibration measurement. Each algorithm processes data
differently, making them suitable for SHM applications.

1) CSRT (Channel and Spatial Reliability Tracking)
The CSRT tracker is known for its high precision and resilience in tracking rapidly moving objects,

which are common in structural vibration scenarios. This tracker enhances traditional correlation
filters by including spatial reliability, improving performance under various conditions. Its capability
to accurately track objects even when they temporarily disappear from the view makes it particularly
useful for SHM applications. (Muralidharan & Yanamadala, 2021)

2) MIL (Multiple Instance Learning)
MIL is included for its robustness in scenarios where the tracked object is partially obscured. MIL

can maintain tracking accuracy even with intermittent visual obstructions by creating multiple potential
positive models around the object’s location. This capability is advantageous in practical SHM scenarios
where environmental factors might partially block the structure being monitored. (Muralidharan &
Yanamadala, 2021)

3) KCF (Kernelized Correlation Filter)
KCF is integrated into the strategy due to its speed and accuracy, essential for environments with

rapid motion changes. Using machine learning classifiers trained on the target, KCF offers precise and
efficient tracking. This makes it particularly suitable for SHM where quick and accurate detection of
structural vibrations is critical. (Muralidharan & Yanamadala, 2021)

4) OF (Optical Flow)
The OF tracker calculates motion between frames based on object displacement, making it well-suited

for analyzing continuous and smooth movements typical of structural vibrations. This method assesses
motion by examining changes between consecutive frames, using a reference point to ensure accurate
tracking. The reference point plays a crucial role. The reference point, marked in green in the setup in
Figure 6a, maintains a consistent baseline against which the displacement of the measurement point,
marked in red, is calculated. By tracking both the reference point and the measurement point across
frames, the algorithm can determine the exact displacement and, thus, the vibration characteristics of
the structure. (Xiu et al., 2023)
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X. RESULTS

A. Acceleration obtained by Accelerometer during Impulse Test Analysis

This section presents the acceleration collected by the accelerometer during an impulse test. This
data is crucial as it serves as a benchmark for evaluating the performance of various object-tracking
algorithms. The acceleration profile, illustrated in Figure 7, reflects the response of the cantilever beam
to the impulse, providing a benchmark for comparisons.

Fig. 7: This figure presents the acceleration data collected by the accelerometer during an impulse test
on the cantilever beam. The profile reflects the beam’s response to the impulse, serving as a benchmark
for evaluating the performance of various object-tracking algorithms.

B. Velocity obtained by Tracking Algorithms during Impulse Test Analysis

This part examines the velocity profiles generated by different object-tracking algorithms during the
impulse test. Figures 8 to 9 display the velocity profiles for each algorithm:

(a) Velocity profile obtained using the CSRT tracker during
impact testing.

(b) Velocity profile obtained using the MIL tracker during
impact testing.

Fig. 8: Velocity Profile csrt during Impact Testing; Velocity Profile MIL during Impact Testing.
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(a) Velocity profile obtained using the KCF tracker during
impact testing.

(b) Velocity profile obtained using the OF tracker during
impact testing.

Fig. 9: Velocity Profile KCF during Impact Testing; Velocity Profile OF during Impact Testing.

The velocity plot for the CSRT algorithm shows a noticeable trend down towards the end of the
measurement period. This decline indicates that the tracker lose accuracy or stability over time when
following the structural vibrations. One factor could be the drift in the tracker’s bounding box, leading
to less accurate tracking as the sequence progresses. (Mallick, 2017) (SciTePress, 2020)

In the velocity plots for CSRT, MIL, and KCF, there is a particular “jumping” pattern. This behaviour
is primarily due to the algorithms’ dependence on integral pixel values for tracking. When the object’s
movement does not align with pixel boundaries, the algorithms can display sudden jumps or shifts in
the tracked position. (Mallick, 2017) (SciTePress, 2020)

In contrast, the OF algorithm demonstrates smoother tracking in its velocity plot. The capability to
handle sub-pixel movements effectively results in a more continuous and accurate representation of the
object’s velocity, free from the jumping patterns seen in the other algorithms (Xiu et al., 2023). The
smooth tracking provided by the OF algorithm makes it particularly suitable for applications requiring
precise measurement of continuous motion, such as in SHM.

C. Frequency Domain Analysis
The upcoming subsections explain the frequency domain analysis of the data collected during the

impulse test, using the FFT to convert time-domain signals into the frequency domain.
• Absolute Spectrum: Shows the magnitude of frequency components in the acceleration data, helping

to identify the primary frequencies that describe the structural vibrations. The primary frequencies
are obtained using the MATLAB MinPeakProminancy function. Additionally, the DC component,
which represents the mean of the signal in the time domain, can be observed as the node around
0 Hz.

• Logarithmic Spectrum: Represents the frequency components on a logarithmic scale, making
smaller magnitudes more visible. This is useful for detecting small frequencies that might not be
seen in the absolute spectrum.
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1) Acceleration FFT
Figures 10a and 10b display the FFT spectra of the acceleration data from the accelerometer:

(a) FFT of acceleration data collected by the accelerometer
during impact testing. Identifies primary frequencies at 8.25
Hz and 52.79 Hz, serving as benchmarks for comparison.

(b) Logarithmic spectrum of the accelerometer’s FFT data,
enhancing visibility of smaller frequency components.

Fig. 10

• Peak 1: Frequency = 8.25 Hz
• Peak 2: Frequency = 52.79 Hz

The peaks measured by the accelerometer will serve as a benchmark for the rest of the analysis.

2) CSRT FFT
Figures 11a and 11b show the FFT spectra of the velocity data obtained with the CSRT tracker:

(a) FFT of velocity data obtained with the CSRT tracker
during impact testing. Identifies primary frequencies at 8.53
Hz and 25.66 Hz.

(b) Logarithmic spectrum of the CSRT tracker’s FFT data,
highlighting detailed frequency components.

Fig. 11

• Peak 1: Frequency = 8.53 Hz
• Peak 2: Frequency = 25.66 Hz
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3) MIL FFT
Figures 12a and 12b present the FFT spectra for the velocity data obtained with the MIL tracker:

(a) FFT of velocity data obtained with the MIL tracker during
impact testing. Identifies primary frequencies at 8.53 Hz and
25.66 Hz.

(b) Logarithmic spectrum of the MIL tracker’s FFT data,
highlighting detailed frequency components.

Fig. 12

• Peak 1: Frequency = 8.53 Hz
• Peak 2: Frequency = 25.66 Hz

4) KCF FFT
Figures 13a and 13b display the FFT spectra for the velocity data obtained with the KCF tracker:

(a) FFT of velocity data obtained with the KCF tracker during
impact testing. Identifies primary frequencies at 8.53 Hz and
25.59 Hz.

(b) Logarithmic spectrum of the KCF tracker’s FFT data,
highlighting detailed frequency components.

Fig. 13

• Peak 1: Frequency = 8.53 Hz
• Peak 2: Frequency = 25.59 Hz
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5) OF FFT
Figures 14a and 14b show the FFT spectra for the velocity data obtained with the OF tracker:

(a) FFT of velocity data obtained with the OF tracker during
impact testing. Identifies primary frequencies at 8.53 Hz and
54.99 Hz.

(b) Logarithmic spectrum of the OF tracker’s FFT data,
highlighting detailed frequency components.

Fig. 14

• Peak 1: Frequency = 8.53 Hz
• Peak 2: Frequency = 54.99 Hz

D. SNR Results

CSRT 22.95 dB
MIL 23.88 dB
KCF 24.30 dB
OF 24.83 dB

TABLE II: Signal-to-Noise Ratio (SNR) of Different Object-Tracking Algorithms.

The SNR analysis in II provided insights into the performance differences among the various object-
tracking algorithms. The SNR values indicate each algorithm’s ability to distinguish the desired signal
from background noise, thereby reflecting the data quality and reliability.

• CSRT Tracker: The CSRT tracker exhibited a moderate SNR of 22.95 dB, indicating a reasonable
capacity for distinguishing the signal from noise. However, its effectiveness diminished in
environments with higher noise levels compared to other trackers.

• MIL Tracker: The MIL tracker demonstrated an improved noise resilience with an SNR of 23.88
dB. Despite this, its precision in identifying smaller frequency components was limited.

• KCF Tracker: The KCF tracker achieved a high SNR of 24.30 dB, showcasing strong performance
in environments characterized by rapid motion changes. It effectively minimized noise interference
while accurately capturing the primary vibration signals. However, similar to the MIL tracker, it
struggled to capture smaller frequency nodes effectively.

• OF Tracker: The OF tracker recorded the highest SNR of 24.83 dB, demonstrating its ability to
track continuous movements and differentiate noise. Its high SNR and capability to accurately
capture primary and secondary frequencies made it the most effective algorithm for vision-based
structural vibration measurement among the algorithms tested.

22



XI. REAL-WORLD APPLICATION
To further validate the OF tracker, a practical test at Zernike Campus was conducted on a lamppost

subjected to impulse vibrations caused by a physical kick. This section outlines the setup, methods,
and findings from this test.

A. Setup
A smartphone was secured on a stable tripod to film the lamppost, which was kicked to induce

an impulse vibrations. The camera was positioned to maintain a clear and unobstructed view of the
lamppost’s motion.

(a) Experimental setup where a smartphone is secured on a
stable tripod to film the lamppost. The figure highlights the
point and the reference point used in the OF algorithm.

(b) Pixel difference over time between the reference point a
the measured point on the lamppost.

Fig. 15: Real-World Application on Lamppost Subjected to Impulse Vibrations
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B. Velocity Analysis
The tracker effectively recorded the lamppost’s velocity changes, providing a detailed view of how

the velocity varied over time.

(a) Frequency amplitude spectrum of the lamppost’s velocity
data obtained during impact testing.

(b) Logarithmic frequency amplitude spectrum, enhancing the
visibility of smaller frequency components in the lamppost’s
vibration data.

Fig. 16: Frequency Analysis of Lamppost Vibrations Using FFT

C. Frequency Analysis
The FFT analysis of the velocity data identified the primary frequency node of the lamppost’s

vibrations.
• Primary Frequency Node = 18.29 Hz
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XII. DISCUSSION
A. Algorithm Performance Analysis

The comparative analysis of object-tracking algorithms highlights advancements in computer vision
tools that enhance non-contact measurement techniques. The CSRT, MIL, KCF, and OF trackers
demonstrated unique capabilities and limitations.

1) CSRT Tracker
• Exhibited moderate accuracy, with an SNR of 22.95 dB.
• Showed a noticeable decline in tracking accuracy over time due to drift in the tracker’s bounding

box.
• Effective in certain conditions but less reliable in maintaining stability throughout the measurement

period.
2) MIL Tracker
• Demonstrated higher noise resilience with an SNR of 23.88 dB.
• Effective in scenarios with intermittent visual obstructions but lacked precision in identifying

smaller frequency components.
• Robust against environmental factors but less accurate in fine-detail tracking.
3) KCF Tracker
• Achieved a high SNR of 24.30 dB, indicating strong performance in environments with rapid

motion changes. Effective in minimizing noise interference while accurately capturing primary
vibration signals. Similar to MIL, it failed to capture small frequency nodes effectively.

4) OF tracker
• Achieved the highest SNR of 24.83 dB, demonstrating exceptional ability in tracking continuous

movements and differentiating noise.
• Closely matched the accelerometer’s frequency components, making it the most accurate algorithm

tested.
• Its ability to handle sub-pixel movements and smooth tracking makes it particularly suitable for

SHM applications.

B. Frequency Domain Analysis
The FFT analysis provided a comprehensive view of the vibration frequencies captured by each

tracking algorithm. Key findings include:
1) Accelerometer Benchmark Frequencies
• Primary Peak: 8.25 Hz
• Secondary Peak: 52.79 Hz
2) CSRT, MIL, and KCF Trackers
• Identified primary frequencies around 8.53 Hz, but deviated significantly in secondary frequencies,

highlighting their limitations in capturing the complete vibration profile.
3) OF tracker
• Identified frequencies at 8.53 Hz and 54.99 Hz, closely matching the accelerometer benchmark

and demonstrating superior accuracy in frequency domain analysis.

C. Future Work
Future research could apply these findings to various structural elements and environmental conditions.

Additionally, further integrating machine learning techniques to refine the object-tracking algorithms
could enhance their accuracy and adaptability. The continuous development of smartphone camera
technology, particularly the increase in fps, promises to expand the capabilities and precision of vision-
based SHM systems by increasing the sampling frequency and, therefore, the Nyquist frequency domain.
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XIII. CONCLUSION
This research evaluated the efficiency of various object-tracking algorithms compared to traditional

accelerometer measurements in non-contact, vision-based structural vibration analysis. Specifically, the
study focused on validating the use of a smartphone for monitoring vibrations on a cantilever beam,
assessing data quality in both time and frequency domains.

A. Algorithm Performance
The OF tracker demonstrated the highest accuracy and sensitivity among the tested algorithms. This

was evident from its excellent SNR and precise identification of primary frequency components. The
SNR results were as follows:

• CSRT: 22.95 dB
• MIL: 23.88 dB
• KCF: 24.30 dB
• OF: 24.83 dB

These results highlight the OF tracker’s exceptional ability to capture signals and minimize noise
interference, making it the most effective algorithm for vision-based structural vibration measurement.

B. Frequency Domain Analysis
FFT analysis provided a comprehensive view of the vibration frequencies captured by each tracking

algorithm. The key frequencies identified by the accelerometer served as a benchmark:
• Primary Peak: 8.25 Hz
• Secondary Peak: 52.79 Hz

The FFT results for the tracking algorithms showed that the OF tracker closely matched the accelerom-
eter’s frequencies, with nodes at 8.53 Hz and 54.99 Hz. In contrast, algorithms CSRT, MIL, and KCF
exhibited deviations, particularly in the smaller frequencies components:

• CSRT: 8.53 Hz, 25.66 Hz
• MIL: 8.53 Hz, 25.66 Hz
• KCF: 8.53 Hz, 25.59 Hz
• OF: 8.53 Hz, 54.99 Hz

These differences underscore the best frequency-capturing ability of the OF tracker, which successfully
identified the primary frequency components with high accuracy.

C. Comparative Analysis
The velocity profiles and frequency domain analyses indicated that while all tracking algorithms could

capture the essential dynamics of the vibrating structure, the OF algorithm consistently produced results
closest to the accelerometer’s reference measurements. This underscores its robustness in environments
characterized by continuous, smooth motions typical of structural vibrations.

D. Practical Implications
The real-world application on a lamppost confirmed the OF tracker’s ability to measure structural

vibrations accurately in real-world scenarios. Its high sensitivity and precision in identifying key
frequency node(s) make it an excellent tool for SHM, especially where traditional contact-based methods
may be impractical or expensive.
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APPENDIX

A. Python Code for Trackers

1 i m p o r t cv2 as cv
2 i m p o r t numpy as np
3 from s c i p y . i o i m p o r t savemat
4

5 cap = cv . VideoCap tu re ( r ” / Use r s / h u i b v a n d e r v e e n / Desktop / Expe r imen t / Expe r imen t .MOV” )
6 t r a c k e r = cv . T r a c k e r K C F c r e a t e ( ) # change d i f f e r e n t methods
7

8 r e t , f rame = cap . r e a d ( )
9 bbox = cv . s e l e c t R O I ( ” T r a c k i n g ” , frame , F a l s e )

10 t r a c k e r . i n i t ( frame , bbox )
11 t r a c k p a t h = [ ]
12 p r i n t ( ” S u c c e s s f u l ” )
13

14 w h i l e True :
15 r e t , f rame = cap . r e a d ( )
16

17 i f n o t r e t :
18 b r e a k
19

20 r e t , bbox = t r a c k e r . u p d a t e ( f rame )
21

22 i f r e t :
23 ( x , y , w, h ) = [ i n t ( i ) f o r i i n bbox ]
24 t r a c k p a t h . append ( ( x + w / / 2 , y + h / / 2 ) )
25

26 i f cv . wai tKey ( 1 ) & 0xFF == ord ( ’ q ’ ) :
27 b r e a k
28

29 cap . r e l e a s e ( )
30 cv . des t royAl lWindows ( )
31

32 d i s p l a c e m e n t s = np . d i f f ( t r a c k p a t h , a x i s =0)
33 m a t l a b d a t a = { ’ c s r t ’ : d i s p l a c e m e n t s } #name of v a r i a t i o n
34 savemat ( r ’ / Use r s / h u i b v a n d e r v e e n / Desktop / Expe r imen t /KCF . mat ’ , m a t l a b d a t a )
35 #name of s a v i n g d a t a

1) OF Tracker
1 i m p o r t cv2 as cv
2 i m p o r t numpy as np
3 from s c i p y . i o i m p o r t savemat
4 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
5

6 # Number o f f r am e s p e r second :
7 f p sV id = 30
8

9 cap = cv . VideoCap tu re ( ” 1 1 1 . mp4” ) # Rep lace wi th t h e c o r r e c t p a t h t o your v i d e o f i l e
10

11 f r a m e w i d t h = i n t ( cap . g e t ( 3 ) )
12 f r a m e h e i g h t = i n t ( cap . g e t ( 4 ) )
13 s i z e = ( f r a me wi d t h , f r a m e h e i g h t )
14

15 , f rame = cap . r e a d ( )
16

17 o l d g r a y = cv . c v t C o l o r ( frame , cv . COLOR BGR2GRAY)
18

19 # Lucas Kanade p a r a m e t e r s :
20 l k p a r a m s = d i c t ( w inS ize =(20 , 20) ,
21 maxLevel =5 ,
22 c r i t e r i a =( cv . TERM CRITERIA EPS | cv . TERM CRITERIA COUNT , 10 , 0 . 0 3 ) )
23
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24 p o i n t s = [ ]
25 o u t p u t = [ ]
26 f r = 0
27 pause = True
28

29 # Ask t h e u s e r i f a r e f e r e n c e p o i n t i s needed
30 p r i n t ( ”Do you want t o s e l e c t a r e f e r e n c e p o i n t ? ( y / n ) ” )
31 u s e r i n p u t = i n p u t ( )
32 i f u s e r i n p u t . l ower ( ) == ’ y ’ :
33 r e f e r e n c e n e e d e d = True
34 e l s e :
35 r e f e r e n c e n e e d e d = F a l s e
36

37 # mouse c a l l b a c k f u n c t i o n :
38 d e f s e l e c t p o i n t ( even t , x , y , f l a g s , params ) :
39 g l o b a l p o i n t s , p o i n t s e l e c t e d , o l d p o i n t s , f r , pause
40 i f e v e n t == cv .EVENT LBUTTONDOWN:
41 p o i n t s . append ( ( x , y ) )
42 p r i n t ( f ” P o i n t { l e n ( p o i n t s ) } : { p o i n t s [ −1]} ” )
43

44 i f r e f e r e n c e n e e d e d and l e n ( p o i n t s ) == 2 :
45 p o i n t s e l e c t e d = True
46 o l d p o i n t s = np . a r r a y ( p o i n t s , d t y p e =np . f l o a t 3 2 )
47 pause = n o t pause # Toggle t h e pause s t a t e
48 e l i f n o t r e f e r e n c e n e e d e d and l e n ( p o i n t s ) == 1 :
49 p o i n t s e l e c t e d = True
50 o l d p o i n t s = np . a r r a y ( p o i n t s , d t y p e =np . f l o a t 3 2 )
51 pause = n o t pause # Toggle t h e pause s t a t e
52

53 cv . namedWindow ( ” Frame ” )
54 cv . s e t M o u s e C a l l b a c k ( ” Frame ” , s e l e c t p o i n t )
55 p o i n t s e l e c t e d = F a l s e
56 o l d p o i n t s = np . a r r a y ( [ [ ] ] )
57

58 # L i s t s t o s t o r e t h e x and y c o o r d i n a t e s o f t h e p o i n t s f o r p l o t t i n g
59 x c o o r d s p o i n t 1 = [ ]
60 y c o o r d s p o i n t 1 = [ ]
61 x c o o r d s p o i n t 2 = [ ]
62 y c o o r d s p o i n t 2 = [ ]
63

64 w h i l e True :
65 t r y :
66 i f pause :
67 cv . imshow ( ” Frame ” , f rame )
68 key = cv . wai tKey ( 3 0 ) & 0xFF
69 i f key == ord ( ’ q ’ ) :
70 b r e a k
71 c o n t i n u e
72

73 , f rame = cap . r e a d ( )
74

75 i f f rame i s None :
76 p r i n t ( ” E r r o r : F a i l e d t o r e a d f rame . ” )
77 b r e a k
78

79 g r a y f r a m e = cv . c v t C o l o r ( frame , cv . COLOR BGR2GRAY)
80

81 f o r i i n r a n g e ( l e n ( o l d p o i n t s ) ) :
82 c e n t e r = ( i n t ( o l d p o i n t s [ i , 0 ] ) , i n t ( o l d p o i n t s [ i , 1 ] ) )
83 c o l o r = ( 0 , 255 , 0 ) i f i == 0 e l s e ( 0 , 0 , 255)
84 cv . c i r c l e ( frame , c e n t e r , 35 , c o l o r , 3 )
85

86 # D i s p l a y l a b e l s n e a r t h e p o i n t s
87 l a b e l = ” R e f e r e n c e P o i n t ” i f r e f e r e n c e n e e d e d and i == 1 e l s e ” P o i n t ”

29



88 l a b e l p o s i t i o n = ( i n t ( o l d p o i n t s [ i , 0 ] ) + 30 , i n t ( o l d p o i n t s [ i , 1 ] ) − 30)
89 cv . p u t T e x t ( frame , l a b e l , l a b e l p o s i t i o n , cv . FONT HERSHEY SIMPLEX , 1 , ( 0 , 0 , 255) ,

2 )
90

91 n e w p o i n t s , s t a t u s , e r r o r = cv . c a l c O p t i c a l F l o w P y r L K ( o l d g r a y , g r a y f r a m e , o l d p o i n t s ,
None , ** l k p a r a m s )

92 o l d g r a y = g r a y f r a m e . copy ( )
93

94 i f s t a t u s i s n o t None and a l l ( s t a t u s ) :
95 # Only u p d a t e o l d p o i n t s and draw t h e c i r c l e i f s t a t u s i s v a l i d f o r a l l p o i n t s
96 o l d p o i n t s = n e w p o i n t s
97

98 f o r i i n r a n g e ( l e n ( n e w p o i n t s ) ) :
99 x , y = n e w p o i n t s [ i ] . r a v e l ( )

100 c o l o r = ( 0 , 0 , 255) i f i == 0 e l s e ( 0 , 255 , 0 )
101 l a b e l = 1 i f r e f e r e n c e n e e d e d and i == 1 e l s e 0
102 cv . c i r c l e ( frame , ( i n t ( x ) , i n t ( y ) ) , 30 , c o l o r , −1)
103 o u t p u t . append ( [ f r / fpsVid , x , y , l a b e l ] )
104

105 # Append c o o r d i n a t e s f o r p l o t t i n g
106 i f i == 0 :
107 x c o o r d s p o i n t 1 . append ( x )
108 y c o o r d s p o i n t 1 . append ( y )
109 e l i f i == 1 :
110 x c o o r d s p o i n t 2 . append ( x )
111 y c o o r d s p o i n t 2 . append ( y )
112

113 f r += 1
114

115 cv . imshow ( ” Frame ” , f rame )
116

117 i f cv . wai tKey ( 1 0 ) & 0xFF == ord ( ’ q ’ ) :
118 b r e a k
119 e x c e p t cv . e r r o r a s e :
120 p r i n t ( f ” E r r o r : {e}” )
121 b r e a k
122

123 cap . r e l e a s e ( )
124 cv . des t royAl lWindows ( )
125

126 # P l o t t i n g t h e p o i n t s ove r t ime f o r two p o i n t s
127 p l t . f i g u r e ( f i g s i z e =(15 , 5 ) )
128

129 # P l o t x− c o o r d i n a t e ove r t ime f o r P o i n t 1
130 p l t . s u b p l o t ( 1 , 3 , 1 )
131 p l t . p l o t ( r a n g e ( l e n ( x c o o r d s p o i n t 1 ) ) , x c o o r d s p o i n t 1 , l a b e l = ’ P o i n t 1 ’ )
132 p l t . t i t l e ( ’X C o o r d i n a t e Over Time f o r P o i n t 1 ’ )
133 p l t . x l a b e l ( ’ Frame Number ’ )
134 p l t . y l a b e l ( ’X C o o r d i n a t e ’ )
135

136 # P l o t y− c o o r d i n a t e ove r t ime f o r P o i n t 1
137 p l t . s u b p l o t ( 1 , 3 , 2 )
138 p l t . p l o t ( r a n g e ( l e n ( y c o o r d s p o i n t 1 ) ) , y c o o r d s p o i n t 1 , l a b e l = ’ P o i n t 1 ’ )
139 p l t . t i t l e ( ’Y C o o r d i n a t e Over Time f o r P o i n t 1 ’ )
140 p l t . x l a b e l ( ’ Frame Number ’ )
141 p l t . y l a b e l ( ’Y C o o r d i n a t e ’ )
142

143 # P l o t t h e p o i n t s t h e m s e l v e s
144 p l t . s u b p l o t ( 1 , 3 , 3 )
145 p l t . s c a t t e r ( x c o o r d s p o i n t 1 , y c o o r d s p o i n t 1 , c= r a n g e ( l e n ( x c o o r d s p o i n t 1 ) ) , cmap= ’ v i r i d i s ’ ,

marker = ’ o ’ , l a b e l = ’ P o i n t 1 ’ )
146 p l t . t i t l e ( ’ P o i n t s Over Time ’ )
147 p l t . x l a b e l ( ’X C o o r d i n a t e ’ )
148 p l t . y l a b e l ( ’Y C o o r d i n a t e ’ )
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149 p l t . c o l o r b a r ( l a b e l = ’ Frame Number ’ )
150

151 p l t . t i g h t l a y o u t ( )
152 p l t . show ( )
153

154 # P l o t S i n g l e − S ided FFT of p o i n t 1
155 p l t . f i g u r e ( f i g s i z e =(10 , 5 ) )
156 p l t . s u b p l o t ( 1 , 2 , 1 )
157 f f t v a l u e s x = np . f f t . f f t ( x c o o r d s p o i n t 1 )
158 f r e q x = np . f f t . f f t f r e q ( l e n ( f f t v a l u e s x ) , d=1 / f p s Vid )
159 p l t . p l o t ( f r e q x [ : l e n ( f r e q x ) / / 2 ] , 20 * np . log10 ( np . abs ( f f t v a l u e s x ) [ : l e n ( f f t v a l u e s x ) / / 2 ] ) )
160 p l t . t i t l e ( ’ S i n g l e − s i d e d FFT f o r P o i n t 1 X C o o r d i n a t e ’ )
161 p l t . x l a b e l ( ’ F requency ( Hz ) ’ )
162 p l t . y l a b e l ( ’ Ampl i tude ( dB ) ’ )
163

164 p l t . s u b p l o t ( 1 , 2 , 2 )
165 f f t v a l u e s y = np . f f t . f f t ( y c o o r d s p o i n t 1 )
166 f r e q y = np . f f t . f f t f r e q ( l e n ( f f t v a l u e s y ) , d=1 / f p s Vid )
167 p l t . p l o t ( f r e q y [ : l e n ( f r e q y ) / / 2 ] , 20 * np . log10 ( np . abs ( f f t v a l u e s y ) [ : l e n ( f f t v a l u e s y ) / / 2 ] ) )
168 p l t . t i t l e ( ’ S i n g l e − s i d e d FFT f o r P o i n t 1 Y C o o r d i n a t e ’ )
169 p l t . x l a b e l ( ’ F requency ( Hz ) ’ )
170 p l t . y l a b e l ( ’ Ampl i tude ( dB ) ’ )
171

172 p l t . t i g h t l a y o u t ( )
173 p l t . show ( )
174

175

176

177 p l t . f i g u r e ( f i g s i z e =(15 , 5 ) )
178 # P l o t x− c o o r d i n a t e ove r t ime f o r P o i n t 1
179 p l t . s u b p l o t ( 1 , 3 , 1 )
180 p l t . p l o t ( r a n g e ( l e n ( x c o o r d s p o i n t 2 ) ) , x c o o r d s p o i n t 2 , marker = ’ o ’ , l a b e l = ’ R e f e r e n c e p o i n t ’ )
181 p l t . t i t l e ( ’X C o o r d i n a t e Over Time f o r R e f e r e n c e p o i n t ’ )
182 p l t . x l a b e l ( ’ Frame Number ’ )
183 p l t . y l a b e l ( ’X C o o r d i n a t e ’ )
184

185 # P l o t y− c o o r d i n a t e ove r t ime f o r P o i n t 1
186 p l t . s u b p l o t ( 1 , 3 , 2 )
187 p l t . p l o t ( r a n g e ( l e n ( y c o o r d s p o i n t 2 ) ) , y c o o r d s p o i n t 2 , marker = ’ o ’ , l a b e l = ’ R e f e r e n c e p o i n t ’ )
188 p l t . t i t l e ( ’Y C o o r d i n a t e Over Time f o r R e f e r e n c e p o i n t ’ )
189 p l t . x l a b e l ( ’ Frame Number ’ )
190 p l t . y l a b e l ( ’Y C o o r d i n a t e ’ )
191

192 # P l o t t h e p o i n t s t h e m s e l v e s
193 p l t . s u b p l o t ( 1 , 3 , 3 )
194 p l t . s c a t t e r ( x c o o r d s p o i n t 2 , y c o o r d s p o i n t 2 , c= r a n g e ( l e n ( x c o o r d s p o i n t 1 ) ) , cmap= ’ v i r i d i s ’ ,

marker = ’ o ’ ,
195 l a b e l = ’ R e f e r e n c e p o i n t ’ )
196 p l t . t i t l e ( ’ P o i n t s Over Time ’ )
197 p l t . x l a b e l ( ’X C o o r d i n a t e ’ )
198 p l t . y l a b e l ( ’Y C o o r d i n a t e ’ )
199 p l t . c o l o r b a r ( l a b e l = ’ Frame Number ’ )
200 p l t . t i g h t l a y o u t ( )
201 p l t . show ( )
202

203 x d i f f = np . a r r a y ( x c o o r d s p o i n t 2 ) − np . a r r a y ( x c o o r d s p o i n t 1 )
204 y d i f f = np . a r r a y ( y c o o r d s p o i n t 2 ) − np . a r r a y ( y c o o r d s p o i n t 1 )
205 p l t . f i g u r e ( f i g s i z e =(20 , 20) )
206 p l t . s u b p l o t ( 2 , 2 , 1 )
207 p l t . p l o t ( r a n g e ( l e n ( x d i f f ) ) , x d i f f )
208 p l t . t i t l e ( ’ P i x e l − D i f f e r e n c e Over Time i n x− d i r e c t i o n ’ )
209 p l t . x l a b e l ( ’X C o o r d i n a t e ’ )
210 p l t . y l a b e l ( ’Y C o o r d i n a t e ’ )
211
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212 p l t . s u b p l o t ( 2 , 2 , 2 )
213 p l t . p l o t ( r a n g e ( l e n ( y d i f f ) ) , y d i f f )
214 p l t . t i t l e ( ’ P i x e l − D i f f e r e n c e Over Time i n y− d i r e c t i o n ’ )
215 p l t . x l a b e l ( ’X C o o r d i n a t e ’ )
216 p l t . y l a b e l ( ’Y C o o r d i n a t e ’ )
217

218 # P l o t S i n g l e − S ided FFT of p o i n t d i f f e r e n c e
219 p l t . s u b p l o t ( 2 , 2 , 3 )
220 f f t v a l u e s = np . f f t . f f t ( x d i f f )
221 f r e q = np . f f t . f f t f r e q ( l e n ( f f t v a l u e s ) , d=1 / f p s Vi d )
222 p l t . p l o t ( f r e q [ : l e n ( f r e q ) / / 2 ] , np . l o g ( np . abs ( f f t v a l u e s ) [ : l e n ( f f t v a l u e s ) / / 2 ] ) , marker = ’ o ’

)
223 p l t . t i t l e ( ’ S i n g l e − s i d e d FFT f o r r e l a t i v e mot ion X C o o r d i n a t e ’ )
224 p l t . x l a b e l ( ’ F requency ( Hz ) ’ )
225 p l t . y l a b e l ( ’ Ampl i tude ’ )
226

227 p l t . s u b p l o t ( 2 , 2 , 4 )
228 f f t v a l u e s = np . f f t . f f t ( y d i f f )
229 f r e q = np . f f t . f f t f r e q ( l e n ( f f t v a l u e s ) , d=1 / f p s Vi d )
230 p l t . p l o t ( f r e q [ : l e n ( f r e q ) / / 2 ] , np . l o g ( np . abs ( f f t v a l u e s ) [ : l e n ( f f t v a l u e s ) / / 2 ] ) )
231 p l t . t i t l e ( ’ S i n g l e − s i d e d FFT f o r r e l a t i v e mot ion Y C o o r d i n a t e ’ )
232 p l t . x l a b e l ( ’ F requency ( Hz ) ’ )
233 p l t . y l a b e l ( ’ Ampl i tude ’ )
234 p l t . show ( )
235

236

237 m a t l a b d a t a = { ’ o u t p u t ’ : np . a r r a y ( o u t p u t ) }
238 savemat ( ’ o u t p u t d a t a . mat ’ , m a t l a b d a t a )
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B. MATLAB Code for Evaluating and Plotting the CSRT, MIL and KCF Tracking Data

1 % Load v e l o c i t y d a t a from t h e f i r s t column
2 l o a d ( ’CSRT . mat ’ ) ;
3 v e l o c i t y d a t a = CSRT ( 1 , : ) ;
4

5 % P l o t v e l o c i t y d a t a h i g h l i g h t i n g t h e i mpa c t a r e a
6 f i g u r e ;
7 p l o t ( v e l o c i t y d a t a ) ; % O r i g i n a l v e l o c i t y d a t a i n b l u e
8 x l a b e l ( ’ Frame ’ ) ;
9 y l a b e l ( ’ V e l o c i t y ( p i x e l / f rame ) ’ ) ;

10 t i t l e ( ’ V e l o c i t y ’ ) ;
11

12 % S e t x− a x i s l i m i t s t o f o c u s on t h e r e g i o n around t h e i mp ac t
13 xl im ( [ 0 , 2 2 5 0 ] ) ; % A d j u s t t h e s e v a l u e s a s needed
14

15 % Frequency a n a l y s i s o f t h e d e r i v e d a c c e l e r a t i o n d a t a
16 k = 240 ;
17 N = l e n g t h ( v e l o c i t y d a t a ) ;
18 c e n t e r e d v e l o c i t y = v e l o c i t y d a t a − mean ( v e l o c i t y d a t a ) ; % C e n t e r i n g t h e d a t a
19 f f t v e l o c i t y = abs ( f f t ( c e n t e r e d v e l o c i t y ) ) /N* 2 ; % FFT of c e n t e r e d d a t a
20 h a l f f f t v e l o c i t y = f f t v e l o c i t y ( 1 : f l o o r (N/ 2 ) ) ;
21 f r e q u e n c y a m p l i t u d e = h a l f f f t v e l o c i t y . * 2 . * p i ;
22

23 % G e n e r a t e t h e t t v e c t o r t o match t h e l e n g t h o f f r e q u e n c y a m p l i t u d e
24 t t = l i n s p a c e ( 0 , k / 2 , l e n g t h ( f r e q u e n c y a m p l i t u d e ) ) ;
25

26 % Ensure no z e r o v a l u e s b e f o r e l o g a r i t h m
27 l o g f r e q u e n c y a m p l i t u d e = l o g ( f r e q u e n c y a m p l i t u d e + 1e −6) ; % Adding a s m a l l c o n s t a n t t o

a v o i d l o g ( 0 )
28

29 % Make s u r e f r e q u e n c y a m p l i t u d e i s a v e c t o r
30 f r e q u e n c y a m p l i t u d e = f r e q u e n c y a m p l i t u d e ( : ) ; % Conve r t t o column v e c t o r i f n e c e s s a r y
31

32 % F i n d i n g and marking peaks − R e g u l a r Spect rum
33 [ p e a k v a l u e s , p e a k l o c a t i o n s ] = f i n d p e a k s ( f r e q u e n c y a m p l i t u d e , ’ MinPeakProminence ’ , 6 ) ; %

Tune t h e s e p a r a m e t e r s
34

35 % C a l c u l a t e SNR
36 s i g n a l p o w e r = mean ( p e a k v a l u e s . ˆ 2 ) ;
37 n o i s e p o w e r = mean ( ( f r e q u e n c y a m p l i t u d e ( s e t d i f f ( 1 : end , p e a k l o c a t i o n s ) ) ) . ˆ 2 ) ;
38 SNR = 10 * log10 ( s i g n a l p o w e r / n o i s e p o w e r ) ;
39 d i s p ( [ ’SNR: ’ , num2s t r (SNR) , ’ dB ’ ] ) ;
40

41 % P l o t t i n g f r e q u e n c y a m p l i t u d e s p e c t r u m
42 f i g u r e ;
43 p l o t ( t t , f r e q u e n c y a m p l i t u d e ) ;
44 x l a b e l ( ’ F requency ( Hz ) ’ ) ;
45 y l a b e l ( ’ Ampl i tude ( p i x e l ) ’ ) ;
46 t i t l e ( ’ F requency Ampl i tude Spect rum ’ ) ;
47 % S e t y− a x i s l i m i t s t o f o c u s on t h e r e g i o n around t h e i mp ac t
48 %yl im ( [ 0 , 3 0 0 ] ) ;
49 %xl im ( [ 0 , 1 2 0 ] ) ;
50

51 % Marking peaks
52 ho ld on ;
53 p l o t ( t t ( p e a k l o c a t i o n s ) , p e a k v a l u e s , ’ rv ’ , ’ MarkerFaceColo r ’ , ’ r ’ ) ; % Mark peaks wi th r e d

i n v e r t e d t r i a n g l e s
54 ho ld o f f ;
55

56 % A n n o t a t i n g t h e peaks wi th t h e i r f r e q u e n c y v a l u e s
57 f o r i = 1 : l e n g t h ( p e a k v a l u e s )
58 t e x t ( t t ( p e a k l o c a t i o n s ( i ) ) , p e a k v a l u e s ( i ) , s p r i n t f ( ’ %.2 f Hz ’ , t t ( p e a k l o c a t i o n s ( i ) ) ) , ’

V e r t i c a l A l i g n m e n t ’ , ’ bot tom ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’ ) ;
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59 end
60

61 % P l o t t i n g l o g a r i t h m i c f r e q u e n c y a m p l i t u d e s p e c t r u m
62 f i g u r e ;
63 p l o t ( t t , l o g f r e q u e n c y a m p l i t u d e ) ;
64 x l a b e l ( ’ F requency ( Hz ) ’ ) ;
65 y l a b e l ( ’ Ampl i tude ( p i x e l ) ’ ) ;
66 t i t l e ( ’ L o g a r i t h m i c Frequency Ampl i tude Spect rum ’ ) ;
67 % S e t y− a x i s l i m i t s t o f o c u s on t h e r e g i o n around t h e i mp ac t
68 yl im ([ −10 , 5 ] ) ;
69

70 % F i n d i n g and marking peaks i n l o g a r i t h m i c d a t a
71 l o g f r e q u e n c y a m p l i t u d e = l o g f r e q u e n c y a m p l i t u d e ( : ) ; % Conve r t t o column v e c t o r i f

n e c e s s a r y
72 [ l o g p e a k v a l u e s , l o g p e a k l o c a t i o n s ] = f i n d p e a k s ( l o g f r e q u e n c y a m p l i t u d e , ’ MinPeakProminence

’ , 4 . 6 ) ; % A d j u s t ’ MinPeakProminence ’ a s needed
73 ho ld on ;
74 p l o t ( t t ( l o g p e a k l o c a t i o n s ) , l o g p e a k v a l u e s , ’ rv ’ , ’ MarkerFaceColo r ’ , ’ r ’ ) ; % Mark peaks

wi th r e d i n v e r t e d t r i a n g l e s
75 ho ld o f f ;
76

77 % A n n o t a t i n g t h e peaks wi th t h e i r f r e q u e n c y v a l u e s
78 f o r i = 1 : l e n g t h ( l o g p e a k v a l u e s )
79 t e x t ( t t ( l o g p e a k l o c a t i o n s ( i ) ) , l o g p e a k v a l u e s ( i ) , s p r i n t f ( ’ %.2 f Hz ’ , t t (

l o g p e a k l o c a t i o n s ( i ) ) ) , ’ V e r t i c a l A l i g n m e n t ’ , ’ bot tom ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’ ) ;
80 end

C. MATLAB Code for Evaluating and Plotting the OF tracker Data

1 % Load v e l o c i t y d a t a from t h e f i r s t column
2 x c o o r d s p o i n t 1 = O F s e l e c t e d ( : , 1 ) ;
3 x c o o r d s p o i n t 2 = O F r e f e r e n c e ( : , 1 ) ;
4

5 y c o o r d s p o i n t 1 = O F s e l e c t e d ( : , 2 ) ;
6 y c o o r d s p o i n t 2 = O F r e f e r e n c e ( : , 2 ) ;
7

8 x d i f f = x c o o r d s p o i n t 2 − x c o o r d s p o i n t 1 ;
9 y d i f f = y c o o r d s p o i n t 2 − y c o o r d s p o i n t 1 ;

10

11 % P l o t v e l o c i t y d a t a h i g h l i g h t i n g t h e i mpa c t a r e a
12 f i g u r e ;
13 p l o t ( x d i f f ) ; % O r i g i n a l v e l o c i t y d a t a i n b l u e
14 x l a b e l ( ’ Time ’ ) ;
15 y l a b e l ( ’X C o o r d i n a t e D i f f e r e n c e ’ ) ;
16 t i t l e ( ’ P i x e l − D i f f e r e n c e Over Time i n x− d i r e c t i o n ’ ) ;
17

18 % Frequency a n a l y s i s o f t h e d e r i v e d a c c e l e r a t i o n d a t a
19 k = 240 ;
20 N = l e n g t h ( x d i f f ) ;
21 t t = l i n s p a c e ( 0 , k / 2 , f l o o r (N/ 2 ) ) ; % Frequency v e c t o r
22

23 % Ensure t t i s a column v e c t o r
24 t t = t t ( : ) ;
25

26 c e n t e r e d v e l o c i t y = x d i f f − mean ( x d i f f ) ; % C e n t e r i n g t h e d a t a
27 f f t v e l o c i t y = abs ( f f t ( c e n t e r e d v e l o c i t y ) ) /N* 2 ; % FFT of c e n t e r e d d a t a
28 h a l f f f t v e l o c i t y = f f t v e l o c i t y ( 1 : f l o o r (N/ 2 ) ) ;
29 f r e q u e n c y a m p l i t u d e = h a l f f f t v e l o c i t y . * (2 * p i * ( 0 : f l o o r (N/ 2 ) −1) / N * k ) ;
30

31 % Ensure f r e q u e n c y a m p l i t u d e i s a v e c t o r
32 f r e q u e n c y a m p l i t u d e = f r e q u e n c y a m p l i t u d e ( : ) ; % Ensure i t i s a column v e c t o r
33

34 % Ensure no z e r o v a l u e s b e f o r e l o g a r i t h m
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35 l o g f r e q u e n c y a m p l i t u d e = l o g ( f r e q u e n c y a m p l i t u d e + 1e −6) ; % Adding a s m a l l c o n s t a n t t o
a v o i d l o g ( 0 )

36

37 % P l o t t i n g f r e q u e n c y a m p l i t u d e s p e c t r u m
38 f i g u r e ;
39 p l o t ( t t , f r e q u e n c y a m p l i t u d e ) ;
40 x l a b e l ( ’ F requency ( Hz ) ’ ) ;
41 y l a b e l ( ’ Ampl i tude ( p i x e l ) ’ ) ;
42 t i t l e ( ’ F requency Ampl i tude Spect rum ’ ) ;
43

44 % Find t h e h i g h e s t peak i n t h e f r e q u e n c y a m p l i t u d e s p e c t r u m
45 [ ˜ , p e a k i n d e x ] = max ( f r e q u e n c y a m p l i t u d e ) ;
46 p e a k f r e q u e n c y = t t ( p e a k i n d e x ) ;
47 p e a k a m p l i t u d e = f r e q u e n c y a m p l i t u d e ( p e a k i n d e x ) ;
48

49 % C a l c u l a t e SNR
50 s i g n a l p o w e r = mean ( p e a k i n d e x . ˆ 2 ) ;
51 n o i s e p o w e r = mean ( ( f r e q u e n c y a m p l i t u d e ( s e t d i f f ( 1 : end , p e a k i n d e x ) ) ) . ˆ 2 ) ;
52 SNR = 10 * log10 ( s i g n a l p o w e r / n o i s e p o w e r ) ;
53 d i s p ( [ ’SNR: ’ , num2s t r (SNR) , ’ dB ’ ] ) ;
54

55

56 % P l o t t h e ups ide −down r e d t r i a n g l e a t t h e peak
57 ho ld on ;
58 p l o t ( p e a k f r e q u e n c y , p e a k a m p l i t u d e , ’ v ’ , ’ Co lo r ’ , ’ r e d ’ ) ; % ’ v ’ f o r ups ide −down t r i a n g l e
59

60 % A n n o t a t e t h e peak d i r e c t l y above t h e r e d t r i a n g l e
61 t e x t ( p e a k f r e q u e n c y , p e a k a m p l i t u d e + 0 . 5 , s p r i n t f ( ’ %.2 f Hz ’ , p e a k f r e q u e n c y ) , ’ Co lo r ’ , ’

b l a c k ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’ ) ;
62 ho ld o f f ;
63

64 % P l o t t i n g l o g a r i t h m i c f r e q u e n c y a m p l i t u d e s p e c t r u m
65 f i g u r e ;
66 p l o t ( t t , l o g f r e q u e n c y a m p l i t u d e ) ;
67 x l a b e l ( ’ F requency ( Hz ) ’ ) ;
68 y l a b e l ( ’ Ampl i tude ( p i x e l ) ’ ) ;
69 t i t l e ( ’ L o g a r i t h m i c Frequency Ampl i tude Spect rum ’ ) ;
70

71 % S e t y− a x i s l i m i t s t o f o c u s on t h e r e g i o n around t h e i mp ac t
72 yl im ([ −5 , 1 0 ] ) ;
73

74 % Ensure l o g f r e q u e n c y a m p l i t u d e i s a v e c t o r
75 l o g f r e q u e n c y a m p l i t u d e = l o g f r e q u e n c y a m p l i t u d e ( : ) ; % Ensure i t i s a column v e c t o r
76

77 % P l o t t h e ups ide −down r e d t r i a n g l e a t t h e peak i n t h e l o g a r i t h m i c p l o t
78 ho ld on ;
79 p l o t ( p e a k f r e q u e n c y , l o g f r e q u e n c y a m p l i t u d e ( p e a k i n d e x ) , ’ v ’ , ’ Co lo r ’ , ’ r e d ’ ) ; % ’ v ’ f o r

ups ide −down t r i a n g l e
80

81 % A n n o t a t e t h e peak d i r e c t l y above t h e r e d t r i a n g l e i n t h e l o g a r i t h m i c p l o t
82 t e x t ( p e a k f r e q u e n c y , l o g f r e q u e n c y a m p l i t u d e ( p e a k i n d e x ) + 0 . 5 , s p r i n t f ( ’ %.2 f Hz ’ ,

p e a k f r e q u e n c y ) , ’ Co lo r ’ , ’ b l a c k ’ , ’ H o r i z o n t a l A l i g n m e n t ’ , ’ c e n t e r ’ ) ;
83 ho ld o f f ;
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