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Abstract

Shallow water moment equations are a set of partial differential equations which can
describe the water flow accurately by allowing different horizontal velocities over the vertical
scale. These equations where derived from the incompressible Navier-Stokes equation. What
these models do not take into account is aquatic vegetation in rivers. Vegetation can appear
in various types and shapes and each interact with the water flow differently. In this paper
the important ideas for deriving the shallow moment system will be reviewed. Using these
ideas the shallow water moment system with rigid submerged and emergent vegetation will
be derived by including a friction term for the vegetation in the momentum balance equation.
In this new model the friction increase over the vegetation height gives logical and explainable
observations.
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1 Introduction

The Shallow Water Equations (SWE) are a set of partial differential equations which are used to
model the flow in scenarios where the horizontal scales are much greater than the vertical scales.
Such scenarios can be oceans, rivers, coastal areas and lakes. The SWE can be implemented in
a wide range of applications in different scientific fields. They are for example used in modelling
tsunamis [12] or weather forecasting [22]. An important note to make is that SWE are limited in
their applications since it averages the vertical velocity. Averaging the vertical velocity is a strong
simplification and it has been shown that it renders inaccurate numerical simulations. In many
situations, the velocity of the water flow is lower on the bottom, than in another water layer in
the river due to friction. Furthermore, due to strong winds blowing over the water surface, a
higher flow velocity will be generally measured in the top layer than at any other depth.

To solve these problems, the Shallow Water Moments Equations (SWME) were derived [14].
These equations allow for different horizontal velocities that depend on the vertical coordinate.
The SWME system is obtained by using the method of moments, which includes the expansion
of the vertical flow velocity in a polynomial basis and a subsequent Galerkin projection to obtain
evolution equations for the expansion coefficients [14]. These equations render a more accurate
approximation in describing the water flow than the SWE. A disadvantage of the SWME is that it
is not globally hyperbolic. The lack of hyperbolicity can lead to unstable numerical simulations.
To resolve this lack of hyperbolicity a hyperbolic regularization is derived by modifying the
system matrix resulting in the hyperbolic shallow water moment equations [13].

Another variable which the SWME system does not take into account is aquatic vegetation in
rivers. Aquatic vegetation occurs in most rivers and other types of waters. Vegetation can appear
in numerous variations, from sea grasses and algae to mangroves and reefs, each interacting
differently with the flow. Vegetation can be rigid or flexible and it can even be further classified
into submerged, emergent or floating vegetation. The presence of vegetation stimulates slowing
down river erosion and stabilizing floodplains or riverbanks [2]. Furthermore, they also absorb
pollutants and promote oxidation which improves the self-purification ability of the river [9].
Vegetation also provides for a suitable habitat for aquatic animals which contributes to the
development of the diversity in aquatic species [17].

The importance of doing research into the SWE with vegetation is high, since at this mo-
ment there is still no theory which accommodates all the classification of different types of
vegetation [9]. It can also help in all sorts of practical implications in environmental engineer-
ing and management. For instance in Coastal engineering, modeling how mangroves and other
coastal plants attenuate wave energy is crucial for developing nature-based solutions to coastal
protection [7, 21].

The aim of this paper is to investigate SWME and modify these equations by including a
vegetation friction term. By including this term we can find a set of equations which can describe
the flow in rivers with vegetation. Because of the complex geometry of real plants, the aquatic
vegetation is often simplified to rigid circular cylinder array with uniform diameter, which is a
reasonable generalization for plants with fewer branches and leaves below the water surface [9].
This simplified representation of the aquatic vegetation will also be used in this paper.

Before we derive the new set of equations for a river flow with vegetation, we will start
at the beginning and lay the focus on how the SWME system is derived using [14]. Using this
information we are going to research how other papers investigated the river flow with vegetation.
The information gained here will be used to find the new SWME with vegetation. Here we
are going to investigate how these equations will look like for rigid emergent and submerged
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vegetation.
The structure of the paper is as follows: In section 2 an explanation will be given on how

the SWME are derived with the help of two important ideas. An short overview will be given
in section 3 on research which has been done in modelling the shallow water flow. In section 4
the information obtained in section 2 and 3 will be used to derive the SWME system for rigid
vegetation. This will first be done for emergent vegetation in 4.1 and then for submerged in 4.2.
In section 5 an analysis will be given for the SWME system with rigid vegetation.

2 The Shallow Water Moments Equations

In this section the two main ideas will be shown on how the shallow water moment system is
derived. It is important to have these ideas clear before we can include the effect of vegetation
on the flow. We refer to [14] for any major calculations.

The starting point of deriving the SWME are the incompressible Navier-Stokes equations.
These equations can be reduced by an asymptotic analysis implied by the shallowness assumption(
H
L ≪ 1

)
[14], H is the fluid depth and L is the horizontal scale of motion, resulting in the

following mass and momentum balance equations

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (1)

∂u

∂t
+

∂u2

∂x
+

∂uv

∂y
+

∂uw

∂z
= −1

ρ

∂p

∂x
+

1

ρ

∂σxz
∂z

+ gex, (2)

∂v

∂t
+

∂vu

∂x
+

∂v2

∂y
+

∂vw

∂z
= −1

ρ

∂p

∂y
+

1

ρ

∂σyz
∂z

+ gey. (3)

Here we have that the state variables u= (u, v, w)T are the velocities, p denotes the pressure and
σ is the deviatoric stress tensor. All these variables depend on space (x, y, z) and time t. Where
the hydrostatic pressure is given by

p (x, y, z, t) = (hs (x, y, t)− z) ρgez, (4)

where hs (x, y, t) indicates the water surface height. Furthermore ρ is the density which is con-
stant and g indicates the gravitational acceleration. Finally we have that (ex, ey, ez)

T is a unit
vector.

The first important step in deriving the SWME is to transform our reference system with
respect to the z direction into a scaled space where we introduce the following scaled vertical
variable ζ (x, y, t) using

ζ (x, y, t) =
z − hb (x, y, t)

h (x, y, t)
. (5)

Here the water height is defined as h (x, y, t) = hs (x, y, t) − hb (x, y, t) from the bottom hb to
the water surface hs, hence we have that ζ ∈ [0, 1]. This mapping implies that z = ζh (x, y, t) +
hb (x, y, t) (see figure 1). Using these mappings we can transform the governing equation (see
figure. Given an arbitrary function which depends on space and time S, then we can compute
its mapped counterpart by

Ŝ (x, y, ζ, t) = S (x, y, ζh (x, y, t) + hb (x, y, t) , t) , (6)
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Figure 1: In the physical space (left) the flow is constrained in the z-direction between the
bottom topography hb and the water surface hs. Using the mapping (5) the flow is constrained
in the projected depth coordinate ζ-direction between 0 and 1 (right) [14].

Which implies
S (x, y, z, t) = Ŝ

(
x, y, (z − hb (x, y, t))h (x, y, t)

−1 , t
)
. (7)

The method to transform the differential operators of the mappings works as follows

h
∂S

∂n
=

∂hŜ

∂n
− ∂

∂ζ

(
∂

∂n
(ζh+ hb) Ŝ

)
, for n ∈ {x, y, t}, (8)

h
∂S

∂z
=

∂Ŝ

∂ζ
. (9)

Multiplying h with the mass and momentum balance equations (1)-(3) and using the trans-
formation rules mentioned above (6)-(9), the complete vertically resolved shallow flow model
according to [14] has the following form

∂h

∂t
+

∂

∂x
(hum) +

∂

∂y
(hvm) = 0, (10)

∂

∂t
(hû) +

∂

∂x

(
hû2 +

g

2
ezh

2
)
+

∂

∂y
(hûv̂) +

∂

∂ζ

(
hûω − 1

ρ
σ̂xz

)
= gh

(
ex − ez

∂hb
∂x

)
, (11)

∂

∂t
(hv̂) +

∂

∂x
(hv̂û) +

∂

∂y

(
hv̂2 +

g

2
ezh

2
)
+

∂

∂ζ

(
hv̂ω − 1

ρ
σ̂yz

)
= gh

(
ey − ez

∂hb
∂y

)
. (12)

Where um =
∫ 1
0 ûdζ and vm =

∫ 1
0 v̂dζ denotes the mean velocity in the respective x and y

direction. The vertical coupling operator ω is defined by

hω = − ∂

∂x

(
h

∫ ζ

0
û− umdζ̃

)
− ∂

∂y

(
h

∫ ζ

0
v̂ − vmdζ̃

)
. (13)

observing the balance equations (10)-(12) it can be seen that these equations have a lot in
common with the SWE. This is definitely true for the mass balance equation (10). In case of the
momentum balance equations, for a constant flow in ζ the vertical coupling term ω will vanish.
If the shear stresses will be negligible meaning that σ̂xz = σ̂yz = 0, the whole system (10)-(12)
reduces to the frictionless shallow water equations.
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The next step is to examine the momentum balance equation (11) and use the Newtonian
relations from [14]. For readability we drop the hat and calculate the integral with respect to ζ
from 0 to 1∫ 1

0

(
∂

∂t
(hu) +

∂

∂x

(
hu2 +

g

2
ezh

2
)
+

∂

∂y
(huv) +

∂

∂ζ

(
huω − ν

h

∂u

∂ζ

))
dζ =∫ 1

0
(gh( ex − ez

∂hb
∂x

)) dζ,

⇒ ∂

∂t
(hum) +

∂

∂x

(
h

∫ 1

0
u2dζ +

g

2
ezh

2

)
+

∂

∂y

(
h

∫ 1

0
uvdζ

)
+
[ν
λ
u
]
ζ=0

= gh

(
ex − ez

∂hb
∂x

)
.

(14)
This is called the evolution equation for the mean velocity um. We used the fact that the vertical
coupling operator ω vanishes at the top and bottom. The constants ν and λ are respectively the
kinematic viscosity and the slip length.

The second main step in deriving the shallow water moment system, is writing both lateral
velocity components u and v as the sum of the mean velocities and its deviation which is modelled
by a finite polynomial expansion also known as the moment expansion [14]

u (x, y, ζ, t) = um (x, y, t) +

N∑
j=1

αj (x, y, t)ϕj (ζ) , (15)

v (x, y, ζ, t) = vm (x, y, t) +

N∑
j=1

βj (x, y, t)ϕj (ζ) . (16)

Where ϕj denotes the shifted and scaled Legendre polynomials of degree j. The variables αj and
βj are the corresponding basis coefficients, also known as the moments for respective velocities
u and v. These moments will give rise to different horizontal velocities over the height. This
is an extension compared to the classical SWE where the horizontal velocity does not change
over the height. The scaled Legendre polynomials ϕj have the property that they are orthogonal
in the interval [0, 1]. Lastly, N ∈ N denotes the degree of the largest polynomial to which we
describe the velocity profile. Increasing this coefficient will render in a better approximation of
the velocity profile.

Using the expansions of (15)(16) and the properties of the scaled Legendre polynomials, we
can write out the integrals from equation (14) as follows∫ 1

0
u2dζ = u2m +

N∑
j=1

α2
j

2j + 1
,

∫ 1

0
uvdζ = umvm +

N∑
j=1

αjβj
2j + 1

. (17)

Inserting this in (14), we obtain the equation

∂

∂t
(hum) +

∂

∂x

h

u2m +

N∑
j=1

α2
j

2j + 1

+
g

2
ezh

2

+
∂

∂y

h

umvm +

N∑
j=1

αjβj
2j + 1

 =

− ν

λ

um +
N∑
j=1

αj

+ gh

(
ex − ez

∂hb
∂x

)
. (18)
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Analogously the same yields for the averaging the y-momentum balance

∂

∂t
(hvm) +

∂

∂y

h

v2m +

N∑
j=1

β2
j

2j + 1

+
g

2
ezh

2

+
∂

∂x

h

vmum +

N∑
j=1

αjβj
2j + 1

 =

− ν

λ

vm +

N∑
j=1

βj

+ gh

(
ey − ez

∂hb
∂y

)
. (19)

When the deviations from the mean can be neglected all the coefficients αj and βj will be zero
and we will return back to the SWE.

If this is not the case we need equations for the moments coefficients αi and βi. We do this by
multiplying the scaled Legendre polynomial ϕi of degree i with the expansions (15)(16) resulting
in ∫ 1

0
ϕiudζ =

αi

2i+ 1
,

∫ 1

0
ϕivdζ =

βi
2i+ 1

. (20)

These equations are used to obtain the evolution equation for αi and βj which look like

∂

∂t
(hαi)+

∂

∂x

h

2umαi +
N∑

j,k=1

αjαkAijk

+
∂

∂y

h

umβi + vmαi +
N∑

j,k=1

αjβkAijk

 =

umDi −
N∑

j,k=1

αkBijkDi − (2i+ 1)
ν

λ

um +
N∑
j=1

(
1 +

λ

h
Cij

)
αj

 , (21)

∂

∂t
(hβi)+

∂

∂y

h

2vmβi +

N∑
j,k=1

βjβkAijk

+
∂

∂x

h

vmαi + umβi +

N∑
j,k=1

αjβkAijk

 =

vmDi −
N∑

j,k=1

βkBijkDi − (2i+ 1)
ν

λ

vm +

N∑
j=1

(
1 +

λ

h
Cij

)
βj

 . (22)

Where we have that

Aijk = (2i+ 1)

∫ 1

0
ϕiϕjϕkdζ, Bijk = (2i+ 1)

∫ 1

0
ϕ′
i

(∫ ζ

0
ϕjdζ̂

)
ϕkdζ, (23)

Cij =

∫ 1

0
ϕ′
iϕ

′
jdζ and Di =

∂

∂x
(hαi) +

∂

∂y
(hβi) . (24)

The details of the derivation of the evolution equations and the matrices Aijk, Bijk and Cij

are given in [14]. An important thing to note here is that N indicates the order of the moment
system and i denotes the actual equation for the specific moment αi and βi.

One problem of the SWME is that it is not globally hyperbolic. Hyperbolicity generally
implies well-posedness and stability for quasi-linear, first order partial differential equations and
is an important property for not only modelling flow problems in hydrodynamics, but also in
modelling the flow in other fields like gas dynamics [4, 15]. The lack in hyperbolicity can lead to
uncontrolled growth of linear instabilities and unwanted grid dependencies.
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Figure 2: The hyperbolic regions of the quadratic system N = 2. The beige area denotes the
hyperbolic region where the eigenvalues are real. The blue area denotes the occurrence of complex
eigenvalues and hence have a hyperbolic breakdown [13].

In context with the shallow water moment system, a lack in hyperbolicity can lead to a pres-
ence of complex eigenvalues in certain regions of the state space. Figure 2 gives a visualization for
the quadratic case N = 2. Where we have a lack in hyperbolicity in the blue region and the beige
area is the hyperbolic region. The break down of hyperbolicity in the shallow moment system
can be associated with a degeneracy of the associated vertical velocity profiles or inappropriate
projection of these profiles.

To deal with the loss of hyperbolicity, [13] uses two approaches. In the first approach, all
coefficients αi of the system matrix are set to zero, except for α1. The resulting system is called
the Hyperbolic Shallow Water Moments Equations (HSWME) using a modified system matrix
AH . In the second approach a generalization of the first approach is used, where hyperbolicity is
guaranteed by introducing a new parameter βi to the last row of the system matrix AH . The new
system matrix is denoted by Aβ and the system is called the generalized β-Hyperbolic Shallow
Water Moment Equations (β-HSWME).

Other ways to deal with the lack of hyperbolicity can be by using different projection tech-
niques based on quadrature for example [6]. An alternative approach was proposed in the field
of kinetic gas theory which relies on a non-linear maximum entropy approach [16]. The rest of
the paper will not consider hyperbolicity of the system, since we only want to investigate what
the effect of vegetation is on the water flow.

3 Study of vegetation

In this section, a short review will be given about research which has been done in modelling
shallow water flow with vegetation.

Vegetation can appear in numerous ways and can have a very complex geometry. To analyse
how these kinds of vegetation with complex geometry will interact with the water flow is com-
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plicated. A solution to this problem is to simplify the representation of the vegetation into an
array without branches [20]. Here they mimic the behaviour of sea grasses by using sea grass
surrogates. How these surrogates interacts with the water flow depends highly on the chosen
mechanic and properties of the surrogates. To measure the instantaneous velocity fields in the
vicinity and wake of the surrogates a stereoscopic particle image velocimetry is used, where all
employed surrogates disrupt and interact with the flow by changing their posture.

Since flexible vegetation can still be hard to model mathematically, aquatic vegetation is
usually represented as rigid circular cylinder array [9, 10, 11]. In figure 3, a visualization is
shown on how the velocity profiles for respectively rigid submerged and emergent vegetation
should look like. Different from the emergent velocity profile, The horizontal velocity over the
vertical scale of submerged vegetation shows obvious zonal characteristics. Using these zonal
characteristics and momentum balance theory, various n-layers models have been developed to
represent the full variation of the mean velocity distribution [10, 8]. The general approaches
were summarized by Nepf [18]. To approximate the velocity profile for submerged vegetation
with SWME is promising to do in combination with the multilayer approach.

In the next section, we will derive the shallow moment system with rigid emergent and
submerged vegetation. Here the ideas will be used obtained from section 2 and include a new
term for the friction caused by the vegetation.

Figure 3: Visualization on how the velocity profiles should look like for rigid submerged (a) and
emergent vegetation (b). Here you see how the velocity profile is affected by the vegetation

4 The SWME with vegetation

In this section, we will derive the SWME model with vegetation. First the focus will be on rigid
emergent vegetation which is the simplest case. From here we will investigate the more complex
case which is rigid submerged vegetation.

4.1 Emergent vegetation

As mentioned before, to incorporate the vegetation friction in our system, an extra term is
implemented in the momentum balance equations from (1). The mass balance equation will
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remain the same [5]. The modified Navier-Stokes equations are as follows:
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (25)

∂u

∂t
+

∂u2

∂x
+

∂uv

∂y
+

∂uw

∂z
= −Fx −

1

ρ

∂p

∂x
+

1

ρ

∂σxz
∂z

+ gex, (26)

∂v

∂t
+

∂vu

∂x
+

∂v2

∂y
+

∂vw

∂z
= −Fy −

1

ρ

∂p

∂y
+

1

ρ

∂σyz
∂z

+ gey. (27)

Here we have that the terms Fx and Fy are the vegetation friction per unit area in the respective
x- and y-directions. The friction terms depend on the velocities u and v in the respective x-
and y-directions, the drag coefficient Cd, the vegetation density per unit area Nv and the frontal
frontal area of the vegetation Av. The friction terms also depend on the z variable, since u and
v vary over z and are not constant like in the SWE models. We us the following formulas for
the vegetation friction [3]:

Fx =
1

2
CdNvAvu

√
u2 + v2 and Fy =

1

2
CdNvAvv

√
u2 + v2. (28)

It is important to note that there are many other possibilities to define the vegetation friction.
Using this information we can derive the SWME with emergent vegetation in the same way as

in section 2 by multiplying the momentum balance equations with h and use the transformations.
We will only do this for the 1D case, since this is better to integrate. Then the friction term for
the x-direction will reduce to:

Fx =
1

2
CdNvAvu

2. (29)

The x-momentum balance equation will then reduce to:
∂

∂t
(hû) +

∂

∂x

(
hû2 +

g

2
ezh

2
)
+

∂

∂ζ

(
hûω − 1

ρ
σ̂xz

)
= gh

(
ex − ez

∂hb
∂x

)
− hF̂x. (30)

Where F̂x denotes the vegetation friction Fx after the transformation

F̂x (x, ζ, t) =
1

2
CdNvAvû (x, ζ, t)

2 . (31)

Again for readability we drop the hat and integrate from 0 to 1 on both sides of equation (30)
with respect to ζ. This results in the following:

∂

∂t
(hum) +

∂

∂x

h

u2m +
N∑
j=1

α2
j

2j + 1

+
g

2
ezh

2

 =

− h

2
CdNvAv

∫ 1

0
u2dζ − ν

λ

um +

N∑
j=1

αj

+ gh

(
ex − ez

∂hb
∂x

)
.

Using (17) the evolution equation for the mean velocity um with emergent vegetation is obtained:

∂

∂t
(hum) +

∂

∂x

h

u2m +

N∑
j=1

α2
j

2j + 1

+
g

2
ezh

2

 =

− h

2
CdNvAv

u2m +
N∑
j=1

α2
j

2j + 1

− ν

λ

um +
N∑
j=1

αj

+ gh

(
ex − ez

∂hb
∂x

)
. (32)
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Next we need to find expressions for the coefficients αi and βi by again taking the moments
of the velocity fields with respect to the shifted and scaled Legendre polynomials ϕj . We only
have to focus on what happens to the vegetation drag term, since the rest of the equation is
equal to (21). Hence the following integral is of interest∫ 1

0
ϕiFxdζ =

1

2
CdNvAv

∫ 1

0
ϕiu

2dζ

=
1

2
CdNvAv

∫ 1

0

ϕiu
2
m + 2um

N∑
j=1

αjϕjϕi + ϕi

 N∑
j=1

αjϕj

2 dζ

=
1

2
CdNvAv

2umαi

2i+ 1
+

N∑
j,k=1

αjαk

∫ 1

0
ϕiϕjϕkdζ


=

1

2 (2i+ 1)
CdNvAv

2umαi +

N∑
j,k=1

αjαkAijk

 .

Where we used that the scaled Legendre polynomial of degree zero is one, ϕ0 = 1. Further, (23) is
used in the last equality. Putting everything together we eventually obtain the resulting equation
for αi

∂

∂t
(hαi) +

∂

∂x

h

2umαi +
N∑

j,k=1

αjαkAijk

 = −h

2
CdNvAv

2umαi +
N∑

j,k=1

αjαkAijk


+ um

∂

∂x
(hαi)−

N∑
j,k=1

αkBijk
∂

∂x
(hαi)− (2i+ 1)

ν

λ

um +
N∑
j=1

(
1 +

λ

h
Cij

)
αj

 . (33)

The next section will investigate the case when the rigid circular cylinder vegetation is sub-
merged and how we can derive the SWME system with this kind of vegetation.

4.2 Submerged vegetation

In the case where the rigid vegetation height is below the water surface height, hv < h, we are
dealing with submerged vegetation. Here hv denotes the real vegetation height, hv = hvt − hb
where hvt denotes the top of the vegetation, in our reference system from the beginning of this
paper (see figure 4). Here the vegetation height hv can depend on the position x, since the height
can be different at different other positions in the water. We will leave this for future work and
set that the vegetation height is constant of over the position x. It is important to note that the
vegetation drag force only affect the velocity in the region where the vegetation occurs, hence for
rigid vegetation of length hv, then when hb < z < hvt, Fx is equal to (29). In the region where
hvt < z < hs, The vegetation friction will be zero, Fx = 0. Thus, the following formula for the
vegetation friction is obtained

Fx (x, z, t) =
{ 1

2
CdNvAvu(x,z,t), for hb<z<hvt,

0, for hvt<z<hs.
(34)

We need to transform the rigid vegetation height hv to the scaled space and do this by doing the
following:

δv =
hvt − hb

h
=

hv
h
. (35)
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hvt

hb

hs

x

z

δv

1

x

ζ

Figure 4: In the physical space (left), the vegetation height hv is equal to the vegetation top hvt
minus the bottom topography hb. Using the mapping (35) the vegetation height can be mapped
to δv which is in the region [0, 1].

Where δv is the dimensionless vegetation height in the scaled space and again use the transfor-
mation (5) which result in the following transformed vegetation friction formula

F̂x (x, ζ, t) =
{ 1

2
CdNvAvû(x,ζ,t), for 0<ζ<δv ,

0, for δv<ζ<1.
(36)

Hence, in the region 0 < ζ < δv, the vegetation friction will affect the velocity and in the region
δv < ζ < 1 it will be zero.

The starting point of the SWME system with submerged rigid vegetation is equation (30).
Here we will integrate both sides from zero to one with respect to ζ. Then we have the following
for the vegetation friction term:∫ 1

0
hFxdζ = h

∫ δv

0
Fxdζ + h

∫ 1

δv

Fxdζ

=
h

2
CdNvAv

∫ δv

0
u2dζ

=
h

2
CdNvAv

∫ δv

0

u2m + 2um

N∑
j=1

αjϕj +

 N∑
j=1

αjϕj

2 dζ.

(37)

Here we use in the second equation the fact that Fx = 0 when δv < ζ < 1. The last integral
can be dealt with term by term. The first term is straightforward, since um does not depend on
ζ. The second term, on the other hand is already a bit more complicated, because we are now
integrating over the interval [0, δv] and not over [0, 1]. Writing out this term results in:∫ δv

0
2um

N∑
j=1

αjϕjdζ = 2um

N∑
j=1

αj

∫ δv

0
ϕjdζ. (38)

Before we can compute this integral we need the following property and definition of Legendre
polynomials from [1].

10



Property 4.2.1 Let Pj (x) be the Legendre polynomial of degree j, then the following holds:

Pj (x) =
d

dζ

Pj+1 (x)− Pj−1 (x)

2j + 1
. (39)

Pj (−ζ) = (−1)j Pj (x) . (40)

Pj (1) = 1. (41)

Definition 4.2.2 Let Pj (x) be the Legendre polynomial of degree j with x ∈ [−1, 1], then we
have the following variable transformation x(y) = 1 − 2y with y ∈ [0, 1]. Since this variable
transformation is bijective, it is also invertible. Hence, we can also define the transformation by
y(x) = 1−x

2 . Then the shifted Legendre polynomials ϕj are defined as

ϕj (y) = Pj (x (y)) . (42)

Alternatively, one can define
ϕj (y (x)) = Pj (x) . (43)

Using these properties, we can find a formula which looks like the formula of the Legendre
polynomial (39) in the following way:

Pj (x (y)) =
d

dx (y)

Pj+1 (x (y))− Pj−1 (x (y))

2j + 1

⇒ ϕj (y) =
d

dy

ϕj+1 (y)− ϕj−1 (y)

2j + 1

dy

dx (y)

⇒ ϕj (y) =
d

dy

ϕj+1 (y)− ϕj−1 (y)

2j + 1

1
dx(y)
dy

⇒ ϕj (y) = − d

dy

ϕj+1 (y)− ϕj−1 (y)

4j + 2
.

and this is very useful in computing integrals of the shifted Legendre polynomial. Combining
this with the fact that the shifted Legendre polynomial is normalized by ϕj(0) = 1 for any j, we
get ∫ δv

0
ϕjdζ =

[
−ϕj+1(ζ)− ϕj−1(ζ)

4j + 2

]δv
0

= −ϕj+1(δv)− ϕj−1(δv)

4j + 2
+

ϕj+1(0)− ϕj−1(0)

4j + 2

= −ϕj+1(δv)− ϕj−1(δv)

4j + 2
.

This can be inserted back in (37) finishing the integral for this term. For the last term of (37),
we first want to denote the following function depending on the rigid vegetation height:

Qjk (δv) =

∫ δv

0
ϕjϕkdζ. (44)

11



We note here that Qjk can be pre-computed if the vegetation height is known. Otherwise it can
be computed at runtime analytically, but it does not need a approximation since it is just an
integral of polynomials.

Using (44) the last term of (37) can be written in a different form resulting in

∫ δv

0

 N∑
j=1

αjϕj

2 dζ =
N∑

j,k=1

αjαk

∫ δv

0
ϕjϕkdζ

=

N∑
j,k=1

αjαkQjk (δv) .

Using (44) in the last equation. Combining everything we eventually obtain

∫ 1

0
hFxdζ =

h

2
CdNvAv

∫ δv

0

u2m + 2um

N∑
j=1

αjϕj +

 N∑
j=1

αjϕj

2 dζ

=
h

2
CdNvAv

u2mδv − 2um

N∑
j=1

αj
ϕj+1 (δv)− ϕj−1 (δv)

4j + 2
+

N∑
j,k=1

αjαkQjk (δv)

 .

Inserting this back in the evolution equation for um, we finally get

∂

∂t
(hum) +

∂

∂x

h

u2m +
N∑
j=1

α2
j

2j + 1

+
g

2
ezh

2

 =

− h

2
CdNvAv

u2mδv − 2um

N∑
j=1

αj
ϕj+1 (δv)− ϕj−1 (δv)

4j + 2
+

N∑
j,k=1

αjαkQjk (δv)


− ν

λ

um +

N∑
j=1

αj

+ gh

(
ex − ez

∂hb
∂x

)
. (45)

What may be interesting now, is to check whether (45) will go to (32) when the rigid sub-
merged vegetation becomes emergent or, i.e. when δv → 1. Taking the first term after the
equality of equation (45) and computing the limit

lim
δv→1

h

2
CdNvAv

u2mδv − 2um

N∑
j=1

αj
ϕj+1 (δv)− ϕj−1 (δv)

4j + 2
+

N∑
j,k=1

αjαkQjk (δv)

 =

h

2
CdNvAv

 lim
δv→1

u2mδv − lim
δv→1

2um

N∑
j=1

αj
ϕj+1 (δv)− ϕj−1 (δv)

4j + 2
+ lim

δv→1

N∑
j,k=1

αjαkQjk (δv)

 .

(46)

The first limit is straightforward. The second one is a bit more complicated and we need formu-
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las (48) and (41) of property 4.2.1:

ϕj+1 (1)− ϕj−1 (1) = Pj+1 (−1)− Pj−1 (−1)

= (−1)j+1 Pj+1 (1)− (−1)j−1 Pj−1 (1)

= (−1)j+1 − (−1)j−1

= − (−1)j + (−1)j

= 0.

Hence the second limit will go to zero. For the last limit it is important to remember that the
shifted Legendre polynomial is orthogonal on the interval [0, 1] which means that

Qjk (1) =

∫ 1

0
ϕjϕkdζ =

1

2j + 1
δjk. (47)

where δjk = 1 for j = k and zero otherwise, hence

lim
δv→1

N∑
j,k=1

αjαkQjk (δv) =
N∑

j,k=1

αjαkQjk (1)

=
N∑

j,k=1

αjαk

2j + 1
δjk

=

N∑
j,k=1

α2
j

2j + 1
.

Putting this back in (46) we get

h

2
CdNvAv

 lim
δv→1

u2mδv − lim
δv→1

2um

N∑
j=1

αj
ϕj+1 (δv)− ϕj−1 (δv)

4j + 2
+ lim

hv→1

N∑
j,k=1

αjαkQjk (δv)

 =

h

2
CdNvAv

u2m +
N∑

j,k=1

α2
j

2j + 1

 .

Which is exactly the same as the vegetation friction term in the evolution equation of the mean
velocity um (32) for the rigid emergent vegetation case of section 4.1.

Next, the expressions for the moment coefficients αi are obtained by:

h

∫ δv

0
ϕiFxdζ =

h

2
CdNvAv

∫ δv

0

ϕiu
2
m + 2um

N∑
j=1

αjϕjϕi + ϕi

 N∑
j=1

αjϕj

2 dζ. (48)

The integral over the first term is computed by using the recurrence formula which is also used
for computing the second integral of the vegetation friction term of the evolution equation for
the mean velocity um. The second integral results in:

2um

N∑
j=1

αj

∫ δv

0
ϕiϕjdζ = 2um

N∑
j=1

αjQij(δv). (49)
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Where (44) is used, but now with respect to i and j. For the last integral, consider the following
function:

Aijk(δv) = (2i+ 1)

∫ δv

0
ϕiϕjϕkdζ. (50)

Here we remark the same as for Qjk of (44). Now, we can compute the last integral as:

∫ δv

0
ϕi

 N∑
j=1

αjϕj

2

dζ =
N∑

j,k=1

αjαk

∫ δv

0
ϕiϕjϕkdζ

=
1

2i+ 1

N∑
j,k=1

αjαkAijk (δv)

Combining everything and inserting it back in equation (48) we obtain:

h

2
CdNvAv

−u2m
ϕj+1 (δv)− ϕj−1 (δv)

4j + 2
+ 2um

N∑
j=1

αjQij(δv) +
1

2i+ 1

N∑
j,k=1

αjαkAijk(δv)

 .

(51)
Hence, we obtain the following evolution equation for αi:

∂

∂t
(hαi) +

∂

∂x

h

2umαi +
N∑

j,k=1

αjαkAijk

 =

− h

2
CdNvAv

−u2m
ϕj+1 (δv)− ϕj−1 (δv)

4j + 2
+ 2um

N∑
j=1

αjQij(δv) +
1

2i+ 1

N∑
j,k=1

αjαkAijk(δv)


+ umDi −

N∑
j,k=1

αkBijkDi − (2i+ 1)
ν

λ

um +

N∑
j=1

(
1 +

λ

h
Cij

)
αj

 . (52)

When the rigid vegetation becomes emergent, δv → 1, we note that the first term of (51) will
vanish, The second term can be computed by using (47) and for the third term Aijk(1) = Aijk.
Hence, formula (52) will go to the evolution equation of αi from the emergent vegetation case (33)
of section 4.1.

In the next section, an analysis will be given to investigate how the dimensionless vegetation
height δv will influence the vegetation friction term Fx for different velocity profiles.

5 Analysis of the vegetation friction term

In this section, an analysis will be given about the vegetation friction term. We will investigate
how the vegetation friction term will grow for different velocity profiles with respect to the dimen-
sionless vegetation height. In figure 5, the different velocity profiles, which will be investigated,
are given. We want to make it clear that we only investigate the effect of the friction term on
the momentum equation and not on the higher order coefficient equations.
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Figure 5: Velocity profiles for the case N = 0 (left above), N = 1 for α1 = −um (right above)
and N = 1 for α1 = um (below).

First we remember the moment expansion of the velocity (15) and use the assumption that
we have a linear velocity profile (N = 1), then the moment expansion will reduce to:

u (x, ζ, t) = um (x, t) +

1∑
j=1

αj (x, t)ϕj (ζ)

= um (x, t) + α1 (x, t)ϕ1 (ζ) .

As seen in figure 5. Important to note is that α1 ∈ [−um, um]. When α1 is equal to −um or
um, then the respective velocity profiles looks like the second and the third figure. The velocity
profiles will get steeper when α1 goes to zero and if α1 = 0 the average case is obtained (first
figure). We exclude the case where α1 > um or α1 < −um, since this leads to a change in sign
for the velocity, which might lead to small scale phenomena in the flow that are not considered
in the shallow flow assumption (see figure 6).

Going back to the friction term of the evolution equation of the mean velocity um (45), then
for the average case when N = 0 the vegetation friction term will go to:

h

2
CdNvAv

u2mδv − 2um

N∑
j=1

αj
ϕj+1 (δv)− ϕj−1 (δv)

4j + 2
+

N∑
j,k=1

αjαkQjk (δv)

 =
h

2
CdNvAvu

2
mδv.

(53)
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Figure 6: Velocity profile when α1 < −um.

Looking at this equation, it can been seen that we can take out the square resulting in the
following:

h

2
CdNvAvu

2
mδv =

h

2
CdNvAvum

√
δvum

√
δv.

Using (35) we obtain:

h

2
CdNvAvum

√
δvum

√
δv =

h

2
CdNvAvum

√
hv
h
um

√
hv
h

=
h

2
CdNvAvu

2
v

Where uv = um

√
hv
h denotes the apparent velocity which was proposed by Stone and Shen [19].

When the rigid vegetation is emergent, the apparent velocity will be uv = u.
The more interesting case is when the velocity profile is linear, then for the vegetation friction

term we can fill in N = 1, which results in:

h

2
CdNvAv

(
u2mδv − 2umα1

ϕ2 (δv)− ϕ0 (δv)

6
+ α2

1Q11 (δv)

)
,

⇒ h

2
CdNvAv

(
u2mδv − 2umα1

1− 6δv + 6δ2v − 1

6
+ α2

1

∫ δv

0
ϕ2
1dζ

)
,

⇒ h

2
CdNvAv

(
u2mδv − 2umα1

(
δ2v − δv

)
+ α2

1

∫ δv

0
(1− 2ζ)2 dζ

)
,

⇒ h

2
CdNvAv

(
u2mδv − 2umα1

(
δ2v − δv

)
+ α2

1

(
δv − 2δ2v +

4

3
δ3v

))
.

Using this formula, we can plot the vegetation friction term and see how this will increase
when the dimensionless vegetation height δv varies between zero and 1 for different values of
α1 ∈ [−um, um]. First we note that for linear increasing velocity profile like in the second figure
of 5, we see that for short vegetation height the vegetation friction term should have small
friction for short vegetation. When the vegetation height grows, the vegetation friction term
should grow increasingly fast. If the velocity profile is linear decreasing like in the third figure
of 5, we have the opposite. For short vegetation, the vegetation friction should be high and when
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Figure 7: The vegetation friction increase over the dimensionless vegetation height δv, for the
constant and linear velocity profiles with respective order N = 0 and N = 1, for different values
α1 ∈ [−um, um].

the vegetation height grows higher, the friction increase should flatten out. Eventually, for both
cases the vegetation friction term should be equal when the vegetation is emergent, since both
cases have the same velocity profile only they are the opposites of each other.

In figure 7, the different vegetation friction increase trajectories are displayed over the the
dimensionless vegetation height δv. Where the drag coefficient Cd, vegetation density per unit
area Nv and the frontal area of the vegetation Av stays constant. When these constants are
changed, we obtain the same results. Further we will divide Fx with the water depth such that
the friction will be dimensionless. The first interesting point obtained from 7 is that for the
constant velocity case N = 0, we have a linear friction increase over the vegetation height. From
the first figure of 5 this makes sense, since the horizontal velocity stays the same over the vertical
scale. The following point which can be obtained is when the velocity has a linear increasing
profile N = 1 and α1 = −um, then as expected, there is small friction for short vegetation height.
When δv grows larger, we observe a rapid increase of the vegetation friction. When the increasing
linear velocity profile becomes steeper, for example for α1 = −um

2 and α1 = −um
4 , there is higher

velocity at the bottom, than for α1 = −um. Hence, there is more friction for short vegetation,
but will increase less faster later. Eventually, for emergent vegetation δv = 1, the friction for the
case α1 = −um is higher than for the steeper linear increase velocity profiles. This happens due
to the fact that the velocity in the vegetation friction formula (29) is squared. Hence, because
the velocity is higher at the water surface for α1 = −um than for the steeper cases, thus the
friction is also higher when the vegetation is emergent. Next, when the velocity has a decreasing
linear profile, α1 = um the friction will be high for short vegetation and will flatten out over
the vegetation height. When the decreasing velocity profile becomes steeper, the velocity at the
bottom will be slower, which leads to less friction for short vegetation. Furthermore, the friction
for decreasing velocity profile equals with there respective increasing velocity profiles when the
vegetation is emergent. Other points which can be observed from figure 7 is that when α1 goes
to zero, the friction increase converges to a linear line equal to the constant velocity profile. For
emerging vegetation, the linear velocity profile always increases the friction and for submerged
vegetation it depends on α1 whether the friction is larger or smaller than that for the constant
case.
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It is important to note that there are some limitations on the research done in this paper,
but can be investigated in future work. Here we only investigated friction increase when velocity
profile is constant (N = 0) or linear (N = 1), but not for higher orders which should be
investigated too. Further, we showed the friction increase over the vegetation height, but it is
also interesting to see what happens when the mean velocity changes for different vegetation
heights. Other limitations are the vegetation friction effect on the higher order equations or
what happens to the SWME when the vegetation is floating. All these limitations can be taking
into account in future work on this topic.

6 Conclusion

In this paper we derived the shallow water moment system for rigid submerged and emergent
vegetation by introducing a new term for the vegetation friction. Here the vegetation was rep-
resented by a circular cylinder with uniform diameter. The vegetation friction term from the
evolution equation of the mean velocity gave a logical increase over the vegetation height.

After a brief introduction about the importance of the topic the derivation of the SWME was
reviewed and explained the importance of the transformation and expansion ideas. Further, a
brief introduction has been given on some research done on how vegetation can affect the velocity
profiles in rivers.

Using the information gained, a vegetation friction term was included into the reduced in-
compressible Navier-Stokes equations. With the help of the transformation and expansion idea
the shallow moment system was derived with rigid emergent and submerged vegetation. Where
for submerged vegetation there is only friction in the region where vegetation is present. Hence,
when we integrate to derive the evolution equations for the shallow moment system, over the
water depth. We only need to integrate the friction formula over the vegetation height.

In the analysis we showed using the derived evolution equation of the mean velocity the
vegetation friction increase over the vegetation height for a constant, linear increasing, and
linear decreasing velocity profiles for various different values of the moment coefficient. Here we
obtained that for a linear increasing velocity profile there is small friction for short vegetation,
but will increase rapidly later just as expected. For the decreasing case there is a direct opposite
behaviour.

It is important to note that the research done in this paper is a beginning in describing the
water flow with vegetation, since we only show the friction increases when the velocity profiles
are constant or linear. It can be interesting to investigate the friction increase over the vegetation
height when the order N > 1 or what happens when the vegetation is floating. Other research can
be done by simulating the derived SWME with vegetation for real life scenarios. Furthermore,
in this paper we simplified the representation of the vegetation into a rigid circular cylinder,
where in reality vegetation can have a more complex geometry which can interact with the flow
differently. Hence, there is still a lot of research which can be done by future work.
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