
Determining
Gauge Field Induced Primordial

Non-Gaussianity by Calculation of the
Bispectrum employing Green’s Functions

Author:
Giacomo BELLERI

(S4759141)

Supervisor:
Dr. E. DIMASTROGIOVANNI

Second examiner :
Prof. Dr. A. MAZUMDAR

Bachelor’s Thesis
To fulfill the requirements for the degree of

Bachelor of Science in Physics
at the University of Groningen

July 9, 2024



2 CONTENTS

Contents
Page

Abstract 4

Acknowledgements 5

1 Introduction 6

2 Theoretical Background 9
2.1 Notation Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 General Relativity and FLRW Cosmology . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Einstein’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 The Cosmological Principle and the FLRW Metric . . . . . . . . . . . . . . 10
2.2.3 The Friedmann Equations and Cosmological Evolution . . . . . . . . . . . . 11

2.3 Quantum Field Theory and Field Dynamics . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Scalar and Gauge Field Dynamics . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Quantization and Creation/Annihilation Operators . . . . . . . . . . . . . . 13

2.4 Scalar Field Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Inflation and Its Importance . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Main Features of Slow-Roll Inflation . . . . . . . . . . . . . . . . . . . . . 15

3 Quantum Fluctuations and Their Statistics 16
3.1 Quantum Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Vacuum Fluctuations and Sourced Fluctuations . . . . . . . . . . . . . . . . 16
3.1.2 Evolution of Scalar Fluctuations: The Mukhanov-Sasaki Equation . . . . . . 16
3.1.3 The Importance of Quantum Fluctuations . . . . . . . . . . . . . . . . . . . 18
3.1.4 Sourced Quantum Fluctuations and The Mukhanov-Sasaki Equation . . . . . 20

3.2 Field Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 (Non-)Gaussian Random Fields . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Power Spectrum and Bispectrum . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Characteristics of The Bispectrum . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 The Local and Equilateral Bispectrum . . . . . . . . . . . . . . . . . . . . . 23
3.2.5 Self-Interaction Bispectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.6 The PLANCK Constraints On fNL . . . . . . . . . . . . . . . . . . . . . . . 25

4 Gauge-Interactions 27
4.1 Mediator Effect of Gauge Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 The Modified Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Gauge Field Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 The Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 The Bispectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 The Value Of f equil

NL and A Comparison With Maldacena’s Bispectrum . . . . . . . . 32

5 Conclusion 35

Bibliography 36



CONTENTS 3

Appendix 39
A.1 Equations of Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.1.1 Scalar Field Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.1.2 Gauge Field Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.1.3 The Mukhanov-Sasaki Equation . . . . . . . . . . . . . . . . . . . . . . . . 41
A.1.4 Green’s Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.2 Vacuum Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2.1 The Vacuum Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2.2 The Vacuum Bispectrum and Higher-Order Correlators . . . . . . . . . . . . 44

A.3 Gauge Interaction Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.3.1 ”Electric” And ”Magnetic” Fields . . . . . . . . . . . . . . . . . . . . . . . 45
A.3.2 Gauge Modes And Their Derivative . . . . . . . . . . . . . . . . . . . . . . 46
A.3.3 Gauge-Interaction Power Spectrum . . . . . . . . . . . . . . . . . . . . . . 47
A.3.4 Gauge-Interaction Bispectra . . . . . . . . . . . . . . . . . . . . . . . . . . 52



4

Abstract
Cosmological late-time observables are characterized by small deviations from homogeneity and
isotropy. These originate in quantum fluctuations produced during inflation, a period of rapid ex-
pansion during the earliest moments of the universe. The nature of this process depends on its field
content. More than one field may have been present and their interactions often result in sourced
quantum fluctuations. These generally introduce non-Gaussian features in the distribution of the
anisotropies. Therefore, non-Gaussianity is often used as a probe of inflation. This paper analyzes
the effects and evolution of sourced quantum fluctuations originating from interactions of the inflaton
with Gauge fields. After a discussion of the mechanism involved, the power spectrum and bispec-
trum related to these interactions are computed using Green’s functions. For most configurations of
parameters, the bispectrum exhibits an equilateral shape with large non-Gaussianities. The applica-
tion of PLANCK constraints (−73 ≤ f equil

NL ≤ 21) imposes ξ ≤ 2.5 and H(α/ f )≤ 1.44 ·10−3. These
correspond to configurations in which Gauge interaction effects are small. In fact, for these values,
the primordial amplitude deviates from its inflaton-only counterpart by a maximum of 1.98%. In
addition, a comparison with the self-interaction bispectrum ( fNL ≪ 1) suggests that self-interactions
are minor corrections to the larger contribution produced by interactions with Gauge fields.
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1 Introduction
First introduced in 1981 by A.H. Guth [1] and preceded by the works of Starobinsky [2], the inflation
paradigm is now accepted by most cosmologists as a valid addition to the standard cosmic evolution
(Fig.1) and is currently one of the most stimulating aspects of both theoretical and observational cos-
mology.

Figure 1: Diagrammatic representation of the cosmic history, including the inflationary phase, ac-
cording to current data. The Big Bang is taken as the origin of time. The numbers presented approxi-
mately indicate the starting moment of each evolutionary phase. Source: [3].

Cosmic inflation refers to a brief (timescale of 1×10−33 s [4]) period of accelerated, rapid, and almost
exponential expansion of the universe that took place shortly after the Big Bang. Due to these charac-
teristics, inflation can explain the approximate flatness of the universe, its complete thermal equilib-
rium, and its lack of magnetic monopoles [5–7]. In standard cosmology (Sec. 2.2), these cosmological
features lack a justification and are thus referred to as ”Flatness”, ”Horizon”, and ”Monopole” prob-
lems.

The length and energy scale of the inflationary period vary with different models. However, all mod-
els of inflation are described by the dynamics of one or multiple fields known as inflatons [6–9].
These fields may vary in nature but all govern the universe’s evolution due to their non-negligible
contributions to its energy density and pressure. There often are additional fields with small contribu-
tions to the energy density but relevant effects on inflatons or observables. For example, Gauge fields
[10] might have been present. The field content and the corresponding dynamics actively shape the
observables that can now be measured.

Of particular observational importance are the Cosmic Microwave Background (CMB) and the Large
Scale Structure (LSS) distribution (Fig.2). The latter refers to the spatial distribution of matter on
cosmological scales, which are much larger than the size of any galaxy or galaxy cluster. On the other
hand, the CMB is the ensemble of primordial photons that have been streaming freely since their last
scattering shortly after recombination [6, 8, 11]. Recombination refers to the moment free protons
and electrons combined to form the first hydrogen atoms, which led to a considerable decrease in the
free electron’s number density. Consequentially, the scattering probability of photons reduced consid-
erably and the universe transitioned from being photon-opaque to its current photon-transparent state.
As such, both the CMB and the LSS distribution constitute valuable observables for cosmologists as
they provide information on primordial conditions and their gravitational evolution.
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(a) Full-sky map of the Cosmic Microwave Back-
ground. Orange and blue spots correspond to pos-
itive and negative fluctuations with respect to the
mean temperature. The fluctuations are in the or-
der of 1×10−5 K. Source: [12].

(b) Simulated partial sky map of the Large Scale
Structure distribution on the scale of 500 Mpc/h in
the present. Brighter and darker portions corre-
spond to positive and negative density fluctuations.
Source: [13].

Figure 2: Sky maps of CMB and LSS distribution.

On cosmological scales, the CMB appears to be homogeneous and isotropic. However, precise mea-
surements of the CMB from COBE[14], WMAP[15], and PLANCK[16], evidenced the presence of
small anisotropies. A similar analysis applies to the LSS distribution. The reasons for these deviations
can be found in inflation. During inflation, the quantum fluctuations of the fields involved grow to
super-horizon scales and evolve according to gravitational non-linear dynamics [9]. However, due to
the stronger coupling of gravity to matter than to radiation, the initial quantum fluctuation conditions
have a smaller effect on the LSS distribution than on the CMB, as the gravitational evolution quickly
masks them [17]. Therefore, the CMB anisotropies are the ideal probe of primordial cosmology [17,
18].

Consequently, statistical analyses of the CMB have the potential to unveil specific characteristics of
inflation and provide new information on its field content and related dynamics. To extract this in-
formation, n-point correlation functions, and their Fourier transforms are often computed [9, 17, 18].
The 2-point correlation function and the corresponding power-spectrum are particularly significant.
However, measurements of these statistics do not provide a complete picture of the statistical distri-
bution of primordial anisotropies. To determine whether quantum fluctuations are entirely Gaussian
or if they present small deviations from Gaussianity, one has to compute the 3-point correlation func-
tion and its bispectrum [9, 17, 18]. These statistics are related to the non-linearity parameter fNL, a
measure of the strength of the Primordial non-Gaussianity. The latest constraints on this parameter
allow fNL to be non-zero and do not exclude values up to order 101.
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Research Scope and Outline
The amount of primordial non-Gaussianity allows cosmologists to discern between different infla-
tionary models. However, for such a task to be efficient, cosmologists have to predict the primordial
deviations from Gaussianity produced by each model.

In this paper, the deviations from Gaussian distributions are analyzed for two different models. In
the first model, quantum fluctuations produced by the inflaton self-interactions and the related non-
Gaussianity are considered. The second model extends the first by introducing Gauge fields. Given the
scope of the research, the justification and history of this addition are not treated but its phenomenol-
ogy is. Consequentially, the latter’s ability to source inflaton’s quantum fluctuations is studied.
A comparison between the two models is performed through an analysis of the bispectra. This allows
for the following research questions to be answered:

Q1. What is the effect of Gauge-field induced interactions on primordial non-Gaussianity?

Q2. How do Gauge field interactions affect the shape of the bispectrum?

Q3. How does the fNL parameter compare to the PLANCK measurements?

Sec.2 establishes the necessary theoretical background for an accurate analysis of primordial non-
Gaussianity arising from inflaton interactions. Sec.3, discussed the evolution of quantum fluctuations
and the effects of sourced quantum fluctuations on field statistics. The latter are then discussed in the
context of Gauge field interactions in Sec. 4.
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2 Theoretical Background
This section briefly outlines relevant concepts of General Relativity (GR) and Quantum Field Theory
(QFT). The reader is also introduced to Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) cosmology
and inflation.

2.1 Notation Conventions
In the following sections, several notation conventions are used. In particular, Einstein’s summation
convention is assumed whenever an index is repeated. Greek indices range from 0 to 3 i.e. µ, . . . =
0, . . . , 3 while Latin indices range from one to three i.e. i, . . . = 1, 2, 3. Partial derivatives with
respect to any variable k are represented with the shorthand notation ∂k while over-dots and primes
indicate full derivatives with respect to proper time τ and cosmic time t respectively. In addition,
natural units ( h̄ = c = 1) are used.

2.2 General Relativity and FLRW Cosmology
The universe is neutral and several orders of magnitude larger than a nucleus or an atom. As such,
gravity is the relevant interaction (Tab.1) for cosmological evolution [5]. When distances and energy
contents are comparable to the ones of our solar system, the latter is theoretically described by the
familiar Newtonian formalism. However, Einstein’s General Relativity is the appropriate framework
for analyzing high-energy systems like the universe.

Interaction Range (m) Associated Boson
Weak 10−18 W, Z
Strong 10−15 Gluon

Electromagnetic ∞ Photon
Gravity ∞ Graviton

Table 1: Properties of the four fundamental interactions. For each interaction, the range and strength
relative to gravity are presented together with the associated boson(s). The only boson that has not
yet been experimentally observed is the Graviton. Source: [19]

2.2.1 Einstein’s Equations

General relativity extends special relativity to accelerated reference frames. This is summarised in
the two following principles [6]:

The Equivalence Principle:
The laws of physics in a freely falling

reference frame take the same form as the ones
in an inertial reference frame.

Curved Path of a Moving Object:
Objects move through spacetime following

geodesics, the shortest possible trajectories on
curved spacetime manifolds.

The equivalence principle finds its roots in the idea that a freely falling observer is unable to deter-
mine whether they are freely falling or are immobile. A familiar example is a person in a closed and
opaque elevator moving with constant acceleration. Said person is unable to determine whether they
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are moving or not. The second principle can be understood by considering a light beam propagating
with a freely falling observer. According to the latter, the light will propagate in a straight line. On
the other hand, for a different observer light will appear to have a curved trajectory as the light source
moves with respect to the observer.

The two principles suggest a relation between gravity, curved spacetime, and energy. The latter is
one of the main differences from Newtonian gravity as even massless particles can follow curved
trajectories. Indeed, General Relativity establishes a relationship between the curvature of spacetime,
its local energy content, and the related gravity in the form of Einstein’s Equations [6, 8]:

Gαβ +gαβΛ︸ ︷︷ ︸
Curvature

= κ

Energy︷︸︸︷
Tαβ (1)

For the sake of brevity and simplicity, an intuitive description of these equations is favored over the
often challenging mathematical description. On the left-hand side of Eq.1, the Einstein tensor Gαβ

depends on the spacetime metric gαβ, a quantity that encodes the curvature of spacetime and relates
them to the spacetime interval ds2 = gαβdxαdxβ. The quantity Λ is the cosmological constant gener-
ally associated with dark energy. On the right-hand side, the energy-momentum tensor Tαβ encodes
the local energy content and is scaled by the constant κ.

Einstein’s Equations (Eq.1) suggest a bilateral relation between spacetime’s curvature and its energy
content. That is, the energy generates spacetime’s curvature which in turn affects the motion of
its energy content. The resulting changes in the energy distribution lead to further changes in the
metric/curvature and this process repeats. Therefore, gravity is the manifestation of the spacetime’s
curvature’s effect on the local energy density. However, modeling gravity is not an easy task. As
the Einstein, metric, and energy tensors are symmetric, Einstein’s Equations (Eq.1) are ten coupled
non-linear equations that are often difficult to solve.

2.2.2 The Cosmological Principle and the FLRW Metric

Solving Einstein’s equations is a task that is greatly simplified by the Cosmological Principle [5]
which states that the universe is maximally symmetric, and thus homogenous and isotropic, on cos-
mological scales. This principle is deeply rooted in observation. The CMB, LSS distribution, and
many other observables present negligible discrepancies from homogeneity and isotropy on scales
much larger than the ones of the largest galaxy clusters.

Each manifold has a curvature K. Out of all the possible curved spacetime manifolds, only three
are consistent with the cosmological principle: uniformly positively curved, negatively curved, and
not curved. These correspond to the spherical, hyperbolic saddle, and flat (Minkowski) manifolds
respectively (Fig.3). These constraints simplify the metric tensor to the following FLRW metric [6, 8]
in spherical coordinates:

gαβ =

[
−1 0
0 a2(t)γi j

]
γi jdxidx j =

dr2

1−Kr2 + r2 (dθ
2 + sin2(θ)dϕ

2) (2)

Eq.2 is expressed in terms of time t and the comoving coordinates (r, θ, φ). These coordinates do not
stretch and change as the universe expands over time. Evidence for this expansion was found by E.
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(a) Spherical manifold with cur-
vature K > 0.

(b) Euclidean manifold with cur-
vature K = 0.

(c) Hyperbolic (Saddle) manifold
with curvature K < 0.

Figure 3: Three-dimensional representation of the spacetime manifolds consistent with the cosmo-
logical principle. It includes spherical/positively curved (3a), flat (3b), and saddle/negatively curved
(3c) manifolds.

Hubble in 1929 [20]. His research forced many cosmologists to move away from a static universe
model in favor of the current dynamic universe. This led to the introduction of the scale factor a(t)
which quantifies the expansion of cosmological distances. This allows for the definition of the proper
time dτ = dt/a(t). The rate of expansion is related to the Hubble parameter H or to its proper time
equivalent H :

H =
a′

a
H =

ȧ
a

(3)

2.2.3 The Friedmann Equations and Cosmological Evolution

In a universe with FLRW metric, the energy-momentum tensor simplifies to the tensor of a perfect
fluid T µ

ν = diag(−ρ, P, P, P) where ρ and P are the energy density and pressure associated with the
universe’s energy content. The metric and the associated energy-momentum tensor reduce Einstein’s
Equations (Eq.1) to two coupled equations for the scale factor a(t) and its rate of change a′(t). These
equations, known as Friedmann Equations, are reported below together with the continuity equation.

1st Friedmann Equation: H2 =
(
a′/a

)2
= ρ(3M2

p)
−1 −Ka−2 (4)

2nd Friedmann Equation: H ′+H2 =
(
a′′/a

)
=−(ρ+3P)(6M2

p)
−1 (5)

Continuity Equation: ρ̇+3H(ρ+P) = 0 (6)

In the case of a flat, single-component universe, the equations above reduce to:

H =
a′

a
= a−

3
2 (1+w)H0 w =

P
ρ

(7)

The equation above is of fundamental importance for discussions of the inflationary phase (Sec.2.4).
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2.3 Quantum Field Theory and Field Dynamics
Most of modern physics is built on (relativistic) fields and their dynamics. Like the familiar electric
and magnetic fields, fields describe a quantity’s value and its changes at every point in spacetime.
Classically, this ensures that the physical system and the related equations satisfy locality [21] and
thus ensure agreement with special relativity.

These concepts can be expanded to quantum physics. Planck and Einstein suggested that electric and
magnetic fields can be described entirely by photons, the particle quanta of said fields [22]. Indeed,
once fields are quantized, fundamental particles naturally manifest as their quanta.

Therefore, Quantum Field Theory provides a framework for the analysis of particles and their interac-
tions, which will be introduced after a discussion of field dynamics. For detailed discussions on these
topics, the reader is referred to [21, 22], the resources on which the following sections are based on.

2.3.1 Scalar and Gauge Field Dynamics

Relativistic field dynamics are analyzed through the Lagrangian formalism. In this formalism, the
Lagrangian L = Ek −V is defined as the difference between the field’s kinetic energy Ek and its
potential energy V . It is often useful to deal with the Lagrangian density L i.e. Lagrangian per
unit volume. The field’s equations of motion can be found by minimizing the action S (Eq.8) using
the Euler-Lagrange equations. These are reported below for a scalar field φ(t, x⃗) but can easily be
extended to vector and tensor fields.

S =
∫

dx4√−gL ∂µ

(
∂L

∂(∂µφ)

)
− ∂L

∂φ
= 0 (8)

The factor
√
−g =

√
−det(g) in Eq.8 arises as a result of the change from the locally flat system of

coordinates to the generalized (curved) system. It constitutes a generalization of the action to curved
spacetime manifolds.

Using Eq.8 it is now possible to analyze the dynamics of a general case. For the sake of clarity, details
of these derivations are reported in Sec.A.1 A possible Lagrangian density for the scalar field φ(t, x⃗)
is given in Eq.9 [8]. The minimization of the action leads to the following equations of motion [8]:

Lφ =−1
2

gαβ
∂αφ∂βφ−V (φ) (9)

1√
−g

∂α

(√
−ggαβ

∂βφ

)
+∂φV (φ) = 0 (10)

As explained in Sec.A.1, Eq.10 can be simplified by using the FLRW metric As explained in Sec.A.1.
In conformal time the equation reads:

φ̈+2H φ̇−∇
2
φ+a2

∂φV (φ) = 0 (11)
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The same procedure can be applied to the Gauge field1 Aµ(t, x⃗). The Lagrangian density and the
equations of motion associated with this particular field are given below:

LAµ =−1
4

FαβFαβ Fαβ = ∂αAβ −∂βAα (12)

−
√
−ggµβ∂αFαβ = 0 (13)

The detailed derivation of the equations of motion can be found in Sec.A.1.2, together with the details
of its simplification when the FLRW metric and Coulomb gauge are used in Eq.13. The Coulomb
gauge sets A0 = ∇⃗ · A⃗ = 0 such that the equations of motion reduce to:

∂
2
τA⃗−∇

2A⃗ = 0 (14)

2.3.2 Quantization and Creation/Annihilation Operators

So far, fields have been treated purely classically. To introduce quantum effects, the fields need to be
promoted to operator-valued functions, a task that can be performed by analyzing the fields’ behavior
in momentum space. When spacetime is flat, this can be done by considering the fields’ Fourier
transform, as can be seen below for the scalar and gauge fields:

φ(t, x⃗) =
∫ d3k

(2π)3/2 φ k⃗ (t)e
i⃗k ·⃗x A⃗(t, x⃗) =

∫ d3k
(2π)3/2 A⃗⃗k (t)e

i⃗k ·⃗x (15)

In the limit of a flat, non-expanding universe the equations of motion of the free scalar and gauge
fields simplify to the equations of motion of harmonic oscillators in momentum space:(

∂
2
t −∇

2)
φ(t, x⃗) =

(
∂

2
t + k2)

φ k⃗ (t) = 0
(
∂

2
t −∇

2) A⃗(t, x⃗) =
(
∂

2
t + k2) A⃗ k⃗ (t) = 0 (16)

Following Eq.15-16, fields can be interpreted as an infinite collection of harmonic oscillators in mo-
mentum space. Therefore, similarly to the quantum harmonic oscillator, the Fourier modes can be
quantized by introducing creation and annihilation operators which excite (create) and de-excite (an-
nihilate) specific modes (particles). This quantization can be extended to an expanding flat space.
Therefore, the scalar field is given by [6, 23]:

φ(τ, x⃗) =
∫ d3k

(2π)3/2

[
b⃗k v⃗k (τ)+b†

−⃗k
v∗−⃗k

(τ)
]

ei⃗k ·⃗x (17)[
b⃗k , b⃗q

]
= [b†

k⃗
, b†

q⃗] = 0 [b⃗k , b†
q⃗] = δ(⃗k − q⃗) (18)

where v⃗k (τ), b⃗k and b†
k⃗

are the amplitude of the mode, the annihilation operator, and the creation
operator respectively. Similarly, the Gauge field can be promoted to an operator using the following
expression [10, 24]:

A⃗(τ, x⃗) = ∑
λ=±

∫ d3k
(2π)3/2

[⃗
ελ(⃗k)aλ(⃗k)Aλ(τ,⃗k)+ ε⃗

∗
λ
(−⃗k)a†

λ
(−⃗k)A∗

λ
(τ,−⃗k)

]
ei⃗k ·⃗x (19)

[aλ1 (⃗k), aλ2 (⃗q)] = [a†
λ1
(⃗k), a†

λ2
(⃗q)] = 0 [aλ1 (⃗k), a†

λ2
(⃗q)] = δλ1λ2δ(⃗k − q⃗) (20)

1While the Gauge field Aµ(t, x⃗) is virtually equivalent to the photon field of Quantum Electrodynamics, in this research
the Gauge Field is not required to have standard model features and as such it will be considered as a general field.
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where Aλ(τ,⃗k), aλ(⃗k), and a†
λ
(⃗k) are the amplitude of the mode, the annihilation operator, and the

creation operator respectively. The field’s polarisation is determined by ε⃗λ(⃗k), which takes on multi-
ple values depending on the wavevector (⃗k ) and the direction of polarisation (λ). These vectors have
the following characteristics [24]:

k⃗ ·⃗ ελ(⃗k) = 0 k⃗ × ε⃗λ(⃗k) =−ikλ⃗ελ(⃗k) ε⃗λ(⃗k) = ε⃗
∗
λ
(−⃗k) ε⃗

∗
λ1
(⃗k) ·⃗ ελ2 (⃗k) = δλ1λ2 (21)

2.4 Scalar Field Inflation
2.4.1 Inflation and Its Importance

While not a part of standard cosmology, inflation has quickly become accepted as a fundamental part
of the universe’s evolution. This is due to its ability to solve issues that plague FLRW cosmology,
including the ”horizon problem” [6].

The ”horizon problem” corresponds to the apparent thermal equilibrium of regions of the sky that
would have never been causally connected in the standard cosmological evolution. For example,
CMB photons produced at diametrically opposite positions are in thermal equilibrium even though
they were not in causal contact at the time of last scattering (Fig.4a). Causal connection is determined
by the ”particle horizon” χ, defined as the maximum distance traveled by a signal produced at time
ti. Given this definition, and noting that c = 1, the horizon distance can be expressed as shown below
[25]:

χ =
∫ t

ti

dt
a(t)

=
∫ lna

lnai

(aH)−1 ≡ τ− τi (22)

where RH = (aH)−1 is the comoving Hubble radius. By substitution of Eq.7, the particle horizon can
be expressed in the following way [25]:

χ = H−1
0

∫ lna

lnai

a
1
2 (1+3w) =

2H−1
0

(1+3w)

[
a

1
2 (1+3w)−a

1
2 (1+3w)
i

]
(23)

To properly analyze Eq.23, it is useful to consider its limits as time approaches zero:

w >−(1/3) : lim
ai→0

τi = 0 =⇒ χ → τ ∼ RH (24)

w <−(1/3) : lim
ai→0

τi =−∞ =⇒ χ → ∞ (25)

In addition, if w <−1/3 in Eq.7, the following features can be derived [25]:

d
dt
(aH)−1 =− a′′

(a′)2 < 0 a′′ > 0 (26)

These limits apply to different phases of the evolution of the universe. Throughout matter and
radiation-dominated eras (w > −1/3), the particle horizon is dominated by late times and, while
increasing, the horizon distance is finite. The same cannot be said for eras dominated by fluids with
w <−1/3. In these particular phases, χ is dominated by early times. As a result, the particle horizon
is unbounded at the beginning of the universe. It naturally follows that, if the universe began with a
phase dominated by a fluid with w <−1/3, it would have been completely causally connected at one
point in time (Fig.4b). This would allow disconnected patches of the sky to be in thermal equilibrium
at later times. In addition, the cosmological expansion would have been accelerating while the Hubble
radius would have been decreasing. Indeed, these are well-established features of inflation.
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(a) Photons streaming from the surface of last-
scattering, a spherical shell with a radius equal to the
distance traveled by photons since the time of decou-
pling. Smaller circles have a radius corresponding to
the particle horizon at the time of decoupling. p and
q correspond to photons in thermal equilibrium origi-
nating at two diametrically opposite points in the sky.
The observer is at position O. Figure from [25].

(b) Light-cone diagram of two patches of the sky. The
Hot Big Bang evolution considers the evolution of two
causally disconnected patches. The addition of infla-
tion ensures that the two patches were in causal con-
tact before recombination. The start of the standard
evolution corresponds with the end of inflation while
the beginning of the universe/time singularity is be-
fore inflation. Figure from [11].

Figure 4: Diagrammatic representation of the horizon problem and its solution.

2.4.2 Main Features of Slow-Roll Inflation

Inflation is an early period of accelerating growth, characterized by a decreasing Hubble radius and
w < −1/3. These attributes can be produced by a wide range of models. One of the most common
is the single-field slow-roll inflation model. This model is extensively treated in [6, 25] and here only
the relevant details are reported.

For slow-roll inflation to be effective, the inflaton must satisfy a set of conditions. In particular, the
slow-roll parameters ε and η, must be much smaller than one (i.e. ε,η ≪ 1). Similarly, one can define
potential slow-roll parameters εV , ηV . These parameters are defined as follows:

ε =−H ′

H2 =
φ′

′

2M2
pH2 η =

ε′

Hε
(27)

εV =
M2

p

2

(
∂φV
V

)2

|ηV |= M2
p

∂2
φ
V

V
(28)

Using Eq.28, one can deduce whether the inflaton’s potential can be associated with inflationary
expansion. Therefore, in this mode, only particularly flat regions of the potential meet these require-
ments. As inflation progresses, the inflaton slowly moves away from these regions, as if it were slowly
rolling over the potential. Eventually, the potential becomes steeper and results in the end of inflation.
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3 Quantum Fluctuations and Their Statistics
This section briefly outlines the concepts of power spectra, bispectra, and their connection to ran-
dom fields. It discusses Gaussianity and elements of cosmological perturbation theory. With this
knowledge as a basis, the reader should be adequately equipped for the calculations and analyses of
Sec.4.6.

3.1 Quantum Fluctuations
In the previous section, the universe and its energy content have been treated as homogeneous and
isotropic. Even though this approximation is valid on cosmological scales, fields are often char-
acterized by local quantum fluctuations. These are (mostly) small variations of the field value at
specific points in spacetime. Therefore, quantum fluctuations evolve into small inhomogeneities and
anisotropies. In the following sections, the origin and inflationary evolution of quantum fluctuations
in single-field inflation are discussed.

3.1.1 Vacuum Fluctuations and Sourced Fluctuations

Quantum fluctuations can be of two main types depending on their origin: i) vacuum fluctuations or ii)
”sourced” fluctuations. Vacuum fluctuations are virtual particles that arise as a temporary violation
of energy conservation as allowed by the Energy-Time uncertainty principle. The latter states that
the energy can vary by an amount ∆E for a time period ∆t as long as ∆E∆t > (1/2) [26]. One can
consider this energy as being ”borrowed” from the vacuum and used to excite the field temporarily,
resulting in virtual particles. On the other hand, sourced fluctuations are quantum fluctuations arising
from the self-interactions or interactions with other fields. While these concepts will be expanded
upon in Sec.4, Fig.5 provides a visualization of the origin of sourced quantum fluctuations in the case
of self and external interactions.

δφ

δφ

δφ

(a) Tree-level Feynman diagram of a self-interaction
involving three inflaton fluctuations. No external
fields are involved. This interaction leads to the pro-
duction of two quantum fluctuations.

δφ

ϕ

ϕ

(b) Tree-level Feynman diagram of an external inter-
action involving two external fields ϕ and one inflaton
fluctuation. This interaction leads to the production
of one quantum fluctuation.

Figure 5: Examples of interactions leading to sourced quantum fluctuations.

3.1.2 Evolution of Scalar Fluctuations: The Mukhanov-Sasaki Equation

During Inflation, the universe’s evolution is governed by the scalar field φ, which has so far been
treated as maximally symmetric due to the negligible contribution of quantum fluctuations. Nonethe-
less, the fluctuations can affect late-time observables such as the CMB and LSS distribution (Sec. 1).
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Therefore, their evolution is highly relevant to current cosmological research.

The appropriate framework to determine the fluctuation’s evolution is cosmological perturbation the-
ory [9]. In this approach, the focus is put on inflaton fluctuations. Nonetheless, this method is
viable for fluctuations of additional scalar fields which might be responsible for the generation of
anisotropies. In perturbation theory, the inflaton’s fluctuations δφ(n) are treated as nth-order cor-
rections to the background (homogeneous) field φ(0). Similarly, the metric is expanded around the
background FLRW metric g(0)

αβ
to treat small deviations arising from inhomogeneities in the energy

content as perturbations. The expansions are evaluated as follows [9]:

φ = φ
(0)+δφ

(1)+
1
2

δφ
(2)+ · · · ≃ φ

(0)+δφ
(1) (29)

gαβ = g(0)
αβ

+δg(1)
αβ

+
1
2

δg(2)
αβ

+ · · · ≃ g(0)
αβ

(30)

In principle, perturbative expansions can be carried out to infinite order. However, higher-order cor-
rections are often negligible and expansions can be stopped at first order. In addition, metric perturba-
tions generally introduce sub-leading corrections, especially when acting on energy contents weakly
coupled to gravity. Therefore, it is useful to fix the gauge such that metric perturbations are zero.

Within this framework, it is thus possible to derive the evolution equations for the perturbations.
Considering the previously discussed assumption, the equation of motion for δφ(1) can be obtained
by direct substitution of Eq.29 into Eq.11. The resulting equation can then be further simplified by
expressing it in terms of the φ̃= aφ field and later substituting its Fourier transform. The final equation
is known as the Mukhanov-Sasaki (MS) equation for the Fourier modes uk(τ) (Eq.31). Note that for
light slow-roll fields ε ≪ 1 and ηφ = (m2

φ
/3H2)≪ 1.

ük(τ)+

(
k2 − 1

τ2

(
ν

2
φ −

1
4

))
uk(τ) = 0 ν

2
φ =

(
9
4
−

m2
φ

H2

)
≃ 3

2
− ε+ηφ (31)

The general solution to the MS equation is given, in terms of the nth-order Hankel functions H(n)
(3/2)(−kτ),

by Eq.32 [9]. The behavior of the Hankel functions is shown in Fig.6.

uk(τ) =
√
−τ

[
c1(k)H

(1)
νφ

(−kτ)+ c2(k)H
(2)
νφ

(−kτ)
]

(32)

It is interesting to analyze Eq.32 in the subhorizon and superhorizon limits. The former is char-
acterised by a fluctuations’s wavelength λ that is much smaller than Hubble Radius RH = (aH)−1

(−kτ ≫ 1). On the other hand, in the superhorizon limit, the fluctuation’s wavelength is greater than
the Hubble radius (−kτ ≪ 1). The approximations in these limits are the following:

Subhorizon limit: H(1)
νχ

(x ≫ 1)∼
√

2
πx

ei(x− π

2 νφ− π

4) H(2)
νφ

(x ≫ 1)∼
√

2
πx

e−i(x− π

2 νφ− π

4) (33)

Superhorizon limit: H(1)
νχ

(x ≪ 1)∼
√

2/πe−i π

2 2(νφ− 3
2 )
(
Γ
(
νφ

)
/Γ(3/2)

)
x−νφ (34)

To recover the plane-wave solution of the flat, non-expanding vacuum in the subhorizon limit, it is
possible to discard the Hankel function of the second kind (c2 = 0) and choose an appropriate constant
c1 [6, 9]. The result and its superhorizon limit for light fields are presented in Eq.35.

uk(τ) =

√
π

2
ei(νφ+

1
2)

π

2
√
−τH(1)

νφ
(−kτ) |uk(τ)| ≃

aH√
2k3

(
k

aH

) 3
2−νφ

(35)
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(a) Behavior of Hankel function H(1)
(3/2)(−kτ) as a

function of −kτ. The behavior is reported for both
the real and imaginary parts, together with their
asymptotic approximation for the sub-horizon limit
(−kτ ≫ 1). The grey line indicates the start of the re-
gion in which the asymptotic approximation is valid.

(b) Behavior of Hankel function H(2)
(3/2)(−kτ) as a

function of −kτ. The behavior is reported for both
the real and imaginary parts, together with their
asymptotic approximation for the sub-horizon limit
(−kτ ≫ 1). The grey line indicates the start of the re-
gion in which the asymptotic approximation is valid.

(c) Evolution of the Fourier modes vk(τ) = a−1uk(τ) and their asymptotic behavior in the superhorizon limit
(−kτ ≪ 1) given in Eq.35. The graphs are produced for ν = (3/2). The real (blue, dashed) and imaginary
(orange, dashed) parts are plotted separately. The absolute value is represented as the continuous green line.
The asymptotic absolute value is shown as a continuous red line.

Figure 6: Behavior of first and second order Hankel functions, together with the evolution of Fourier
modes, as a function of −kτ for ν = 3/2.

3.1.3 The Importance of Quantum Fluctuations

As discussed in Sec.2.4, during Inflation the Hubble Radius R = (aH)−1 =−τ decreases and so does
the size of local sky patches. If the decrease is large enough, the wavelength of quantum fluctuations
can quickly enter superhorizon scales.

The growth of quantum fluctuations, as predicted by the Mukhanov-Sasaki equation, can be seen in
Fig.6c. In this visualization, Field perturbations are produced at early times (τ →−∞) with a comov-
ing wavenumber k. During inflation (τ → 0), the amplitude of such fluctuations steadily decreases
until it is frozen to a constant value in the superhorizon limit [6, 9]. Alternatively, in expanding co-
ordinates, the wavelength rapidly grows to superhorizon scales while the amplitude decreases until
it reaches a constant value at late times. The superhorizon freezing of the fluctuation amplitude can
be physically interpreted by looking at the equation of motion of scalar fields. The second term of
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the equation is the ”Hubble Drag”, which acts as a friction term and counteracts the gravitational
growth of the amplitude presented in the fourth term. The Hubble drag dominates on subhorizon
scales, resulting in a gradual decrease of the amplitude. However, gravitational amplification be-
comes increasingly relevant at larger scales. Eventually, the two effects counteract each other and,
on superhorizon scales, the amplitude is frozen [9]. If the Hubble drag extended its dominance to the
superhorizon limit, the large-scale fluctuation’s amplitude would eventually vanish.

After inflation, the Hubble Radius starts increasing. In addition, the inflaton and its fluctuations decay
into matter and radiation through a process known as reheating2 [25]. As a result, quantum fluctua-
tions that previously grew to superhorizon scales slowly re-enter the horizon as density perturbations
(Fig.7) [9]. The perturbations locally alter the geometry of spacetime and gravitational potential,
which ultimately affect the CMB and LSS distribution.

Finally a last remark on subhorizon and superhorizon fluctuations. So far, the discussion has been
limited to the latter. Ignoring subhorizon fluctuations is a valid approximation as long as their effects
on late-time observables are negligible. Thankfully, to significantly affect the gravitational evolution
of the CMB and LSS distribution, perturbations must be characterized by wavelengths comparable
to cosmological scales [9]. Therefore, in this treatment, only superhorizon fluctuations have been
considered.

log(a)

Lo
g

of
(W

av
e)

Le
ng

th

RH

During
Inflation

After
Inflation

Reheating (3)

δφ

(1)

(2)

(4)

Figure 7: Diagrammatic representation of the evolution, as a function of scale factor a(t), of super-
horizon quantum fluctuations (red) during and after inflation. This is compared to the physical Hubble
radius RH = H−1 (blue). Diagram inspired by [9]. Quantum fluctuations are created as subhorizon
perturbations during inflation (1). They then grow to superhorizon scales (2). During reheating, they
decay into matter/radiation perturbations (3). They then rejoin the horizon after inflation (4).

2While reheating is an important aspect of inflation, its discussion goes beyond the scope of this research. However, a
brief discussion of the physics of reheating can be found in [25].



20 Chapter 3 QUANTUM FLUCTUATIONS AND THEIR STATISTICS

3.1.4 Sourced Quantum Fluctuations and The Mukhanov-Sasaki Equation

The Mukhanov-Sasaki equation is derived by excluding the effects of interactions. However, most
fields interact with themselves and other fields. As explained in Sec.3.1.1, these interactions can result
in additional (sourced) quantum fluctuations which manifest in the equations of motion as additional
”source” terms. while this idea is explored in more detail in Sec.4, in this section a treatment of
sourced quantum fluctuations is presented. To maintain this treatment as general as possible, an
unspecified source term J(τ, x⃗) is considered. It follows that the equations of motion in momentum
space can be written as follows:

ük(τ)+

(
k2 − 1

τ2

(
ν

2
φ −

1
4

))
uk(τ) = J⃗k (τ) (36)

The solution to the above equation contains the ”homogeneous” solution, which satisfies the equation
when the source term vanishes (Sec.3.1.2), and a ”particular” solution. In this case, the two solutions
correspond to vacuum and sourced quantum fluctuations. To find the particular solution, it is useful
to analyze the impulsive response of the system. Analogously to classical electrodynamics, one can
model the source term as a collection of various instantaneous sources, which are mathematically
described as Dirac Delta functions. The response of the system to such sources is described by
Green’s function G(τ,τ′), which satisfies the following equation:

G̈k(τ,τ
′)+

(
k2 − 1

τ2

(
ν

2
φ −

1
4

))
Gk(τ,τ

′) = δ(τ− τ
′) (37)

Physically, one can use the superposition principle to relate Green’s function to the particular solution.
This process is treated in detail in [27]. Here, a simplified version is reported. In particular, as the
partial derivatives in Eq.37 depend on τ only, it is possible to multiply by J⃗k (τ

′) both sides of the
equation. This results in the following expression:[

∂
2
τ +

(
k2 − 1

τ2

(
ν

2
φ −

1
4

))]
Gk(τ,τ

′)J⃗k (τ
′) = δ(τ− τ

′)J⃗k (τ
′) (38)

Therefore, by integrating with respect to τ′, the following integral solution satisfies Eq.36:

upart
k (τ) =

∫
dτ

′Gk(τ,τ
′)Jk(τ

′) (39)

The precise expression of the particular solution upart
k (τ) depends on the form of the source term

Jk(τ) and of Green’s function Gk(τ,τ
′). The latter can be derived using the following time-ordered

expectation value [22]:

G(τ,τ′) = ⟨0|T
(
δφ̃(τ, x⃗)δφ̃(τ′, x⃗)

)
|0⟩ (40)

The computation of the above expression is given in Sec.A.1.4. Discarding the advanced solution and
maintaining only the physically relevant retarded expression, the final expression for Green’s function
in momentum space reads:

Gk(τ,τ
′) =−iΘ(τ− τ

′)
[
uk(τ)u∗k(τ

′)−u∗k(τ)uk(τ
′)
]

(41)
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3.2 Field Statistics
The measured statistics of late-time observables are compared to predicted values to distinguish be-
tween various inflationary scenarios. Out of the many valuable quantities, the most important sta-
tistical measures are the 2-point and 3-point correlation functions. These observables quantify the
average relationship between the various fields evaluated at different points in spacetime [25, 28]. For
example, a zero correlation function means that the quantities are completely independent.

The n-point correlation function is defined mathematically as the ensemble average of the product
of one (or multiple) fields evaluated at n different points [9, 25, 28]. Classically, the term ensemble
average refers to the average, over multiple (fictitious) universes, of all possible realizations of the
aforementioned product (Fig.8) [28]. This interpretation can be expanded to quantum mechanics.
Cosmological observations cause the collapse of the universe’s wavefunction into one of its specific
realizations. Quantum averages of these observations are thus averages over all possible realizations
of the universe and are thus equivalent to ensemble averages [28]. This allows the following definition
of the n-point correlation function:

⟨δφ(τ1, x⃗1)δφ(τ2, x⃗2) . . .δφ(τn, x⃗n)⟩= ⟨0|δφ(τ1, x⃗1)δφ(τ2, x⃗2) . . .δφ(τn, x⃗n)|0⟩ (42)

Universe 1

P1

P2

P3

Universe 2

P1

P2

P3

Universe 3

P1

P2

P3

Figure 8: Diagrammatic representation of the ensemble average. In this example, the 3-point cor-
relation function is evaluated in three separate universes and the ensemble average is the average
between the three realizations.

3.2.1 (Non-)Gaussian Random Fields

Random fields are fields whose realizations are drawn from a probability distribution function. If the
probability distribution is Gaussian the field is known as a Gaussian random field [28]. Gaussian
random fields are entirely described by 2-point correlators [9, 28]. In fact, due to the nature of the
distribution, higher-order statistics either vanish (odd n) or can be written in terms of multiple 2-point
correlators (even n) [28]. This concept can be generalized to any random field f (τ, x⃗) by expressing
the n-point correlation functions as follows [23]:

⟨ f (τ1, x⃗1) . . . f (τn, x⃗n)⟩=λ
(
⟨ f (τ1, x⃗1) f (τ2, x⃗2)⟩⟨ f (τ3, x⃗3) f (τ4, x⃗4)⟩ . . . + combinations

)
+ (43)

+ ⟨ f (τ1, x⃗1) . . . f (τn, x⃗n)⟩c
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In the above equation, λ vanishes for odd values of n while it is unitary for even values. The product
⟨ f (τ1, x⃗1) . . . f (τn, x⃗n)⟩c is the connected part of the correlation function which contains terms that
cannot be expressed as products of 2-point correlators. If this last term is non-vanishing, the field
is non-Gaussian. It is thus clear that the 3-point correlation function is the lowest-order statistical
measure able to find deviations from Gaussian distributions.

3.2.2 Power Spectrum and Bispectrum

Correlation functions are often computed in momentum space. Therefore, it is common to look at the
Fourier transform of the 2-point and 3-point correlators of the random field f : the power spectrum
Pf (⃗k ,⃗k ′) and bispectrum B f (⃗k 1,⃗k 2,⃗k 3). From this definition it is possible to derive the more useful
results of Eq.44-45 [17, 25].

⟨ f⃗k (τ) f⃗k ′(τ)⟩= (2π)(3/2)
δ(⃗k + k⃗ ′)P(k) =

2π2

k3 δ(⃗k + k⃗ ′)Pf (k) (44)

⟨ f⃗k 1
(τ) f⃗k2

(τ) f⃗k3
(τ)⟩= (2π)3

δ(⃗k 1 + k⃗ 2 + k⃗ 3)B f (k1,k2,k3) (45)

In the context of this research, the random fields taken into consideration are the quantum fluctuations
δφ and the related density perturbation3 ζ =−(H/φ̄′)δφ, where φ̄ is the background value of the field.
In the absence of interactions, one can use the solutions to the Mukhanov-Sasaski equation (Sec.3.1.2)
to evaluate the power spectrum and bispectrum (Sec.A.2). This results in the following expressions:

Pζ(k) = ∆P(−kτ)(ns−1) Bζ(k1,k2,k3) = 0 (46)

where the spectral index is defined as ns = 1+ 3− 2ν ∼ 1 and the primordial amplitude is given by
∆

1/2
P = H2/(2π|φ̄′|). The vanishing bispectrum, like any other odd n-point correlator, vanishes as a

result of its dependency on the expectation value of an odd number of creation/annihilation operators.
On the other hand, the bilinearity of even n-point correlators allows for vanishing connected parts.
Therefore, vacuum fluctuations are Gaussian random fields. However, it is highly unlikely that the
inflaton was in a true vacuum. As such, self-interactions or interactions with auxiliary fields might
introduce additional terms that are relevant to the calculation of correlation functions. If these terms
are bilinear, the associated bispectrum might not vanish and the associated field is not Gaussian. The
extent of this non-Gaussianity is analyzed in Sec.4.

3.2.3 Characteristics of The Bispectrum

As three-point correlation functions are evaluated at three different points in spacetime, the momenta
associated with said points must form a triangle in the sky. This triangle condition is enforced by the
delta-function of Eq.45.

Even though bispectra have common domains, they vary in magnitude and differ based on their de-
pendency on the shape and size of the momentum triangle. These three characteristics are known as
the size, shape, and running of the bispectrum [24]. To analyze these three characteristics, it is useful
to reparametrize the momenta as in Eq.47. After setting x1 = 1, it is possible to define the shape
function S(k,x2,x3) which is shown below in Eq.48:

3The definition of the density perturbation ζ requires challenging expansions of the action and the metric. These
computations go beyond the scope of this research but are treated in the following papers [24, 29, 30]
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k1 = x1k k2 = x2k k3 = x3k (47)

S(k,x2,x3) =
1
N

k6(x2x3)
2B(k,x2,x3) (48)

In Eq.48 The factor N is an arbitrary normalization constant. Some examples of the possible bispec-
trum shape functions are presented in the next sections.

Equilateral Configuration
k1 ∼ k2 ∼ k3Squeezed Configuration

k1, k2 ≫ k3

Figure 9: Two examples of possible configurations of the momentum triangle. The equilateral con-
figuration is characterised by momenta of similar lengths (k1 ∼ k2 ∼ k3). On the other hand, the
squeezed configuration arises when two sides are much larger than the third (k1, k2 ≫ k3). For fur-
ther examples see [17, 18].

3.2.4 The Local and Equilateral Bispectrum

Depending on the physical nature of the model and the origin of the non-Gaussianity, the bispectra
can be broadly classified into two main categories: local, which peaks for the squeezed configuration,
and equilateral, which peaks for the equilateral configuration.

The local bispectrum is typical of models in which the non-Gaussianity arises on superhorizon scales
[31, 32]. This relates to the discussion presented in Sec.3.1.3. Superhorizon fluctuations are generally
the most relevant for late-time observables’ anisotropies and inhomogeneities and are thus expected
to greatly contribute to their non-Gaussianity. However, because of the triangle condition, not all
wavelengths can grow deep into the superhorizon regime. Therefore, the local bispectrum peaks for
configurations in which one wavelength is much larger than the other two. As such, wavevectors are
expected to produce the most non-Guassianity in the ”squeezed triangle” configuration (Fig.9) [31].
In this case, the superhorizon fluctuation acts as a background for the subhorizon fluctuations, which
are much smaller in size. Therefore, the non-Gaussianity is generated by the two smaller perturba-
tions over the superhorizon background. As such, the bispectrum can be decomposed into products
of the subhorizon power spectra.

Indeed, this is a feature of the most common model for the production of local bispectra. In this
model, the density perturbation ζ(τ, x⃗) is divided into two terms: a dominating Gaussian term ζL(τ, x⃗)
and a sub-leading non-Gaussian term ζNL(τ, x⃗), which can be expanded in terms of the first term. This
expansion, together with its equivalent in momentum space, is as follows [17, 28]:

ζ(τ, x⃗) = ζL(τ, x⃗)+ζNL(τ, x⃗) = ζL(τ, x⃗)+
3
5

f loc
NL
(
ζ

2
L(τ, x⃗)−⟨ζ2

L(τ, x⃗)⟩
)

(49)

ζ(τ,⃗k) = ζL(τ,⃗k)+
3
5

f loc
NL

(∫ d3 p
(2π)3/2 ζL(τ,⃗k)ζL(τ,⃗k − ∆⃗P)− (2π)3/2

δ(⃗k)⟨ζ2
L(τ, x⃗)⟩

)
(50)
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where f loc
NL is the non-linearity parameter which quantifies the amount of non-Gaussianity. Substitu-

tion of the above equation in Eq.45 gives the bispectrum and normalized shape function of Eq.52 [17,
28]. The shape is plotted in Fig.10a and in Fig.10d.

Bloc
ζ

= 2 f loc
NL
[
Pζ(k1)Pζ(k2)+ cycl. perms.

]
=

3
10

(2π)(5/2)Pζ(k)
∑i ki

∏i ki
f loc
NL (51)

Sloc =
1
3

∑i k3
i

∏i ki
=

1
3

1+ x3
2 + x3

3
x2x3

(52)

The equilateral bispectrum and its shape (Eq.53-54 [17, 33]) are typical of models in which the non-
Gaussianity is produced at times of horizon crossing [17, 31, 32]. This is a result of inflationary
models in which spatial derivatives of quantum fluctuations have a relevant role. As these terms be-
come increasingly smaller as wavelengths grow, they quickly vanish outside the horizon. Therefore,
the maximum non-Gaussianity is expected for configurations with similar wavelengths, such that their
contributions vanish together. Because of this, the bispectrum and its shape peak for the ”Equilateral
Configuration” (Fig.9) as it can be seen in Fig.10b and Fig.10d. Similarly to its local counterpart, the
equilateral non-linearity parameter f equil

NL arises by dividing the bispectrum in its equilateral configu-
ration by the power spectrum squared [30]. This is made clearer in Sec.4.5.

Bequil
∝ f equil

NL

[(
− 1

k3
1k3

2
+ cyc. perms.

)
− 2

(k1k2k3)
2 +

(
1

k1k2
2k3

3 +5 perms .

)]
(53)

Sequil =
(k1 +k2 −k3)(k2 +k3 −k1)(k3 +k1 −k2)

k1k2k3
=

(1+ x2 − x3)(x2 + x3 −1)(x3 +1− x2)

x2x3
(54)

(a) 3D view of local shape function Sloc. (b) 3D view of equilateral shape function Sequil .

(c) Top-down view of local shape function Sloc. (d) Top-down view of equilateral shape function Sequil .

Figure 10: Three-dimensional and top-down view of two shape functions S as a function of x2, x3
(x1 = 1). The independent variables range from 0 to 1 but the shape function is plotted only for
combinations that satisfy the triangle condition. To avoid comparing the same configuration twice,
configurations with x3 ≥ x2 are considered.
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3.2.5 Self-Interaction Bispectrum

As discussed in earlier sections, the local and equilateral shapes are a common result for the computa-
tion of many bispectra. However, many inflationary models predict deviations from these two shapes.
One such case is Maldacena’s bispectrum [29], which is computed by introducing self-interactions in
single-field inflationary models.

To analyze the effects of self-interactions on the bispectrum, one has to Taylor-expand the scalar-field
action up to third-order while applying the expansions in Eq.29-30. This introduces interactions be-
tween three quantum fluctuations (Fig.5a), which allow for a non-zero bispectrum. The full expansion
can be found in [29] and parts of the third-order correction can be found in the following equation:

S3 =
∫

d4xa3(t)

[
−∂tφ

(0)

4H
δφ

(1)
((

∂tδφ
(1)
)2

−a−2(t)
(

∂µδφ
(1))2

))
+ . . .

]
(55)

The calculation of the self-interaction bispectrum requires finding the complete equation of motion
using the expansion in Eq.55. The subsequent determination of the source terms associated with
the quantum fluctuations allows the use of the particular solution (Eq.39) to compute the three-point
function. Even though the process appears to be simple, the computations are involved and the reader
is referred to [23, 29] for the full treatment. Nonetheless, the structure of the expansion (Eq.55)
provides valuable information about the bispectrum shape and size. In fact, as the third-order action
contains spatial-derivative interactions and other types of interactions, the final bispectrum shape
is expected to contain both local and equilateral features. Furthermore, the equilateral and local
contributions are expected to decrease by a factor proportional to the slow-roll parameters. These
predictions are confirmed by the complete shape function SMald [17]:

SMald (k1,k2,k3)≃ 2(3ε−η)Sloc (k1,k2,k3)+
5
3

εSequil (k1,k2,k3) (56)

Maldacena’s shape function (Eq.56) depends on the slow-roll parameters. These quantities determine
the shape of the bispectrum. For instance, as η→ 3ε, Maldacena’s shape becomes increasingly similar
to the equilateral case. This is visualized in Fig.11 for various combinations of slow-roll parameters
inconsistent with PLANCK constraints on ns [34] but chosen for the sake of simplicity. In addition,
the presence of slow-roll parameters leads to a considerable reduction of the size of the bispectrum,
resulting in an effective non-linearity parameter fNL ≪ 1 [17], for all possible configurations of Eq.56.
This conclusion arises directly from Maldacena’s calculation [29], which can be summarised by the
following formula:

f Mald
NL =

5
12

(
ns + f (⃗k 1,⃗k 2,⃗k 3)nT

)
(57)

where ns ∼ 1, nT ≃−2ε≪ 1 and the function f (⃗k 1,⃗k 2,⃗k 3) ranges between 0 (squeezed configuration)
and 5/6 (equilateral configuration).

3.2.6 The PLANCK Constraints On fNL

As discussed in previous sections, the size of the non-Gaussianity is often analyzed through mea-
surements of the non-linearity parameter fNL. The PLANCK collaboration [33] has compared vari-
ous shapes to the CMB spectrum to impose limits on the parameter. These constraints are: f loc

NL =

−0.9±5.1, f equil
NL =−26±47



26 Chapter 3 QUANTUM FLUCTUATIONS AND THEIR STATISTICS

(a) Contour plot of the Maldacena
Shape function in the limit it ap-
proaches the local shape of Fig.10. In
this example ε = η = 0.1. The shape
peaks at (x2, x3) = (0, 1).

(b) Contour plot of the Maldacena
Shape for ε = 0.1 and η = 0.295. The
shape function is mostly local with a
peak at (x2, x3) = (0, 1). However, mi-
nor deviations typical of the equilat-
eral shape are present. These mani-
fest themselves as a gradual increase
in value as (x2, x3) → (1, 1).

(c) Contour plot of the Maldacena
Shape for ε = 0.1 and η = 0.298. The
shape function is mostly equilateral as
can be seen from the steady increase in
value as (x2, x3) → (1, 1). However,
similarly to the local case, the shape
presents a (larger) peak at (x2, x3) =
(0, 1).

(d) Contour plot of the Maldacena
Shape function in the limit it ap-
proaches the equilateral shape of
Fig.10. In this example ε = 0.1 η =
0.2999. The shape peaks at (x2, x3) =
(1, 1).

Figure 11: Various contour plots of the Maldacena Shape as a function x2 and x3, for varying values
of the slow-roll parameters ε and η. The independent variables range from 0 to 1 but the shape
function is plotted only for combinations that satisfy the triangle condition. To avoid comparing the
same configuration twice, configurations with x3 ≥ x2 are considered. Note that the values of ε and η

chosen are not consistent with the PLANCK constraints imposed on the spectral index ns.
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4 Gauge-Interactions
Many inflationary models revolve around a single inflaton that governs the inflationary evolution of
the universe. Nonetheless, there might be auxiliary fields with negligible energy contributions. Even
when these fields do not affect the inflationary expansion, through interactions with the inflaton they
might contribute to its quantum fluctuations.

In the following sections, the particular case of Gauge fields as auxiliary fields is considered. In
particular, the model Action of Eq.58 [10] is used. This model combines the standard Lagrangians
analyzed in Sec.2 to the interaction Lagrangian density Lint between the two fields. The interaction
Lagrangian is given below:

S =
∫

dx4

(
M2

pR
2

+Lφ +LA⃗ +Lint

)
Lint =− α

4 f
ηµναβ

√
−g

φFαβFµν (58)

where Lφ and LA⃗ correspond to the Lagrangian densities given in Eq.9 and Eq.12 respectively. In
addition, ηµναβ is the Levi-Civita tensor in Minkowski space, α is the coupling constant, and f is the
axion constant. The term proportional to the Ricci Scalar R quantifies the minimal coupling of the
fields to gravity.

4.1 Mediator Effect of Gauge Fields
It is useful to expand Lint to first-order to analyze the interactions involving the quantum fluctuations
and the gauge fields. Such an expansion can be achieved by substituting the expanded metric and
scalar field (See Eq.29). This results in the following interaction Lagrangian:

Lint = . . .− α

4 f
ηµναβ

√
−g

δφ
(1)FαβFµν + . . . (59)

Eq.59 describes the cubic interaction of the gauge field with the inflaton’s fluctuations (Fig.12a). For
instance, the gauge particles can interact to form a ”sourced” quantum fluctuation (Sec.3.1.1). Vice
versa, a quantum fluctuation can decay into two gauge fields. For these reasons, this interaction is
known as inverse decay.

δφ

A⃗

A⃗

(a) Feynman diagram of the in-
verse decay interaction. By in-
verting the diagram, the opposite
interaction is possible, resulting
in sourced quantum fluctuations.

δφ δφ

(b) Feynman diagram of an in-
teraction between two inflaton’s
fluctuations. The interaction is
mediated by the gauge field A⃗
through virtual particles (loop).

δφ

δφ

δφ

(c) Feynman diagram of a triple
interaction between inflaton’s
fluctuations. The interaction is
mediated by the gauge field A⃗
through virtual particles (loop).

Figure 12: Feynman diagrams of the interactions in Eq.59.
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Due to its ability to source quantum fluctuations, the inverse decay interaction is highly relevant to the
analysis of the inhomogeneities and anisotropies of late-time observables. However, on its own, it has
no immediate relevance to the power spectrum or the bispectrum. As discussed in Sec. 3.2.2, these
quantities are computed from the 2-point and 3-point correlation functions which require interac-
tions between two and three quantum fluctuations respectively. These can be achieved by combining
several inverse decay interactions. Examples include the interaction depicted in Fig.12b where a fluc-
tuation decays into two gauge fields, producing a second quantum fluctuation. This concept can be
extended to Fig.12c in which the interaction is between three quantum fluctuations.

It is important to note that gauge fields appear as virtual particles in Fig.12b-12c. Therefore, they
mediate the interaction and provide a ”one-loop” correction to the tree-level diagrams. While these
corrections are negligible in the case of self-interactions between inflaton fluctuations [35], by ap-
propriate tuning of the interaction parameters in Eq.59 it is possible to achieve large contributions by
one-loop corrections arising from gauge-interactions. This idea is explored in the following sections.

4.2 The Modified Equations of Motion
The additional interaction term (Eq.59) modifies the equations of motion with respect to the case
where the gauge field Lagrangian is only made up of a kinetic term. By appropriately minimizing
the action, the modified equations of motion can be derived in terms of φ, A⃗, E⃗ = −a−2 ˙⃗A, and B⃗ =

a−2∇⃗× A⃗. the result is [10, 24]:

¨⃗A−∇
2A⃗− α

f
φ̇∇⃗× A⃗ = 0 (60)

φ̈+2H φ̇−∇
2
φ+a2

∂φV = a2 α

f
E⃗ · B⃗ (61)

Eq.61 can be expanded by direct substitution of Eq.29 (See Sec.A.1.3). To complete the task, the
source term’s background value is separated from its local deviations. The resulting equations are:

φ̈
(0)+2H φ̇

(0)+a2
∂φV (φ) = a2 α

f
⟨E⃗ · B⃗⟩ (62)[

∂
2
τ +2H ∂τ −∇

2 +a2m2
φ

]
δφ

(1) = a2 α

f

(
E⃗ · B⃗−⟨E⃗ · B⃗⟩

)
(63)

Eq.62 describes how the inflaton background is affected by the presence of Gauge fields and their
backreaction on the background inflaton field. On the other hand, Eq.63 describes how the evolution
of inflaton fluctuations is affected by the inverse decay interaction involving the Gauge field’s fluc-
tuations. To properly analyze these effects, it is useful to consider the evolution of scalar and gauge
field modes, which are governed by the following equations:

[
∂

2
τ + k2 − 1

τ2

(
ν

2
φ −

1
4

)]
uk(τ) = a(τ)J⃗k (τ) J⃗k (τ) = a2 α

f

∫ d3x
(2π)(3/2)

(
E⃗ · B⃗−⟨E⃗ · B⃗⟩

)
e−i⃗q ·⃗x

(64)[
∂

2
τ + k2

(
1−λ

2ξ

(−kτ)

)]
Aλ(τ,k) = 0 ξ =

α

2 f H
φ
′(0) ≃ O(ε)∼ const (65)
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4.3 Gauge Field Modes
The inflationary evolution of Gauge field modes can be partially understood by direct inspection of
Eq.65. For instance, it is possible to note that when 2|ξ| ≫ −kτ the modes can be described by the
(limiting) equation:

Äλ(τ,k)≃∓λ(2|ξ|k/τ)Aλ(τ,k)≫∓λAλ(τ,k) (66)

where ∓ depends on the sign of ξ. Therefore, in this particular limit, the λ = ± mode undergoes a
period of large growth while the remaining mode decays rapidly. If ξ > 0, this result can be achieved
for ξ ≥ 2 in the superhorizon limit (−kτ ≪ 1). On the other hand, in the subhorizon limit (−kτ ≫ 1),
Eq.65 reduces to its unmodified version (Eq.16) and thus initially reproduces its vacuum behavior.

The solutions to Eq.65 are examined in detail in [10, 24] for the case ξ > 0. Ignoring the decaying
mode A−, the general solution for the A+ includes irregular Coulomb functions. As expected from
the inspection of Eq.65, the solution has the largest magnitude for values of −kτ ≪ 2ξ (Fig.13). More
specifically, the solution rapidly decays outside of the interval (8ξ)−1 <−kτ < 2ξ. Within this range,
the growing mode A+(τ,k) and its conformal time derivative can be approximated by the following
expressions:

A+(τ,k)≃
1√
2k

(
−kτ

2ξ

)1/4

eπξ−2
√

−kτ(2ξ) (67)

Ȧ+(τ,k)≃
√
−2kξ

τ
A+(τ,k) (68)

Figure 13: Graph of the Gauge field mode A+ (Eq.67) for k = 1 and ξ = 2, against −kτ. The largest
values of −kτ correspond to the earliest times during inflation. The mode is plotted in blue and the
region of largest contribution to observables is shaded. The mode rapidly decays outside the interval
(8ξ)−1 <−kτ < 2ξ.
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4.4 The Power Spectrum

Figure 14: Plots of the primordial amplitude ∆
Gauge
P (Eq.69) for various configurations of the param-

eters ξ and (α/ f ). The plot is restricted to regions of parameter space that produce values consistent
with PLANCK measurements [36]. Solid lines correspond to configurations that approximately match
∆

Gauge
P ∼ 2.101 ·10−9 while shaded regions correspond to amplitude values within the measured in-

terval. The width of these regions is increased by 10% for better readability. The gray-shaded area
corresponds to values satisfying ξ >> 1.

After finding the particular solution to the modified equations of motion one can derive the two and
three-point correlators. In this section, only the results of these calculations are reported and analyzed
while the computations are reported in detail in Sec.A.3. In the presence of Gauge interactions, the
power spectrum is modified according to the following equation:

Pζ(k) = ∆P

[
1+∆Pe4πξ f2(ξ)

]
(−kτ)ns−1 = ∆

Gauge
P (−kτ)ns−1 (69)

∆P =
H2

2π|φ′(0)|
=

H
4πξ

α

f
(70)

where the functions f2(ξ) is a convoluted combination of integrals that need to be numerically inte-
grated. Fits for this function have been performed by [24] and are reported in Tab.2. In addition, it can
be noted that Eq.69 can be written in power-law form (Eq.44) after the redefinition of the primordial
amplitude ∆P → ∆

Gauge
P . The value of ∆

Gauge
P depends on combinations of the ξ and H(α/ f )4 parame-

ters. However, not all combinations are allowed. The PLANCK constraint ∆
Gauge
P = 2.101+0.031

−0.034 ·10−9

[36] (0.005Mpc−1 ≤ k ≤ 0.2Mpc−1, −1/τ= 0.05Mpc−1) reduces the allowed configurations to a thin
region of parameter space (Fig.14). Therefore, only this region is taken into consideration for further
discussions.

4The three parameters H, α and f are considered as a single parameter to allow for a simpler analysis of the parameter
space. In addition, all three parameters lack distinct limits (except for the upper limit in some cases) while the ξ parameter
has the important condition ξ ≫ 1. It is thus natural to combine them and analyze ξ as a separate parameter.
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Function ξ Range Fit (×105)

f2(ξ)
ξ ≫ 1 7.5 ·ξ−6

2 ≤ ξ ≤ 3 3 ·ξ−5.4

Table 2: Fits of f2(ξ) for two relevant ranges of ξ. To avoid clutter, the fit functions are multiplied by
a factor of 105. The fits have been performed by [24].

4.5 The Bispectrum
Similarly to the power spectrum, the bispectrum is modified by the presence of sourced quantum
fluctuations. The details of how Gauge interactions affect the bispectrum can be found in Sec.A.3.
The calculations lead to the following expression:

Bζ(k,x2,x3) =
3

10
(2π)(5/2)

∆
3
P

e6πξ

k6
1+ x3

2 + x3
3

x3
2x3

3
f3 (ξ,x2,x3) (71)

where f3(ξ,1,1), just like f2(ξ), is a convoluted ensemble of integrals that need to be numerically
evaluated for appropriate results. The complexity of these integrals is further increased by the depen-
dence of f3 on the triangle configuration through the parameters x2 and x3.

Function ξ Range Fit (×107)

f3(ξ,1,1)
ξ ≫ 1 2.8 ·ξ−9

2 ≤ ξ ≤ 3 7.4 ·ξ−8.1

Table 3: Fits of f3(ξ,1,1) for two relevant ranges of ξ. To avoid clutter, the fit functions are multiplied
by a factor of 107. The fits have been performed by [24].

Because of the above-mentioned reasons, performing a numerical analysis of the shape and size of
the bispectrum (Eq.71) is difficult. Nonetheless, the task is greatly simplified by an analysis of the
mechanism at play. As discussed in Sec.4.3, Gauge field modes quickly decay outside the interval
(8ξ)−1 < −kτ < 2ξ. On the other hand, within this range, they can be approximated by Eq.67, and
thus contribute non-trivially to interactions. Therefore, modes appearing in the calculation for the
power spectrum and bispectrum must all satisfy the constraint −kτ ∈ ((8ξ)−1,2ξ) at the same time.
Physically, this means that Gauge modes are produced with similar wavelengths and thus leave the
horizon at similar times. However, as the modes exit the allowed interval, they rapidly decay. As this
behavior is typical of equilateral bispectra, the bispectrum of Eq.71 is expected to be (mostly) of such
a type. Indeed, this hypothesis was confirmed by [24], as the overlap between the two bispectrum
shapes was determined to be 0.94 (low ξ) and 0.93 (high ξ).

Having established the shape of the bispectrum as equilateral, the size of the non-Gaussianity can
be determined through f equil

NL . This parameter can be defined by dividing the equilateral bispectrum
(x2 = x3 = 1) by the square of the power spectrum [30]. Therefore, the parameter can be defined as
in Eq.72. Its behavior in the relevant regions of parameter space is shown in Fig.15.

f equil
NL =

f3(ξ,1,1)∆3
Pe6πξ

P2
ζ
(k)

(72)
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4.6 The Value Of f equil
NL and A Comparison With Maldacena’s Bispectrum

As discussed in Sec.4.4, applying the power spectrum PLANCK constraint [36] to the Gauge inter-
action correlators results in a shrinking of the allowed region of parameter space. This region shrinks
further once the PLANCK f equil

NL constraints [33] are imposed. This is shown, for two different val-
ues of −kτ, in Fig.15. From this figure, one can infer that, for most parameter configurations, the
non-Gaussianity is many times higher than the maximum allowed value of 21. This results from the
exponential factor in Eq.72.

It is useful to compare the behavior of f equil
NL for various values of −kτ to understand the impact of

the non-unitary spectral index ns = 0.9649± 0.0042 measured by the PLANCK Collaboration[36].
To emphasize these effects, Eq.72 has been plotted in Fig.15 using the lowest allowed value of ns and
two values of −kτ. These values are within the range used for the measurement of the primordial
amplitude [36], and include the smallest allowed value (−kτ ≃ 0.1). While Fig.15b and Fig.15c do
not present visible differences compared to the scale-invariant case (Fig.15a), it is possible to notice
that the change in spectral index and value of −kτ affect the maximum allowed parameters ξ and
H(α/ f ). More precisely, the lower spectral index increases both parameters, which increase further
as −kτ decreases. Even though this is not shown in Fig.15, these effects become stronger the lower
ns gets, as the effects of −kτ ≪ 1 become more important.

Considering the least restrictive option given by the combination proposed in Fig.15c, one can impose
upper limits on parameter values. In this particular case, both Planck constraints are met for ξ ≤ 2.5
and H(α/ f ) ≤ 1.44 ·10−3. In this allowed section of parameter space, the residual between the two
primordial amplitudes ∆

Gauge
P and ∆P is always less than 1.98%. This value suggests a sub-leading

effect of Gauge interactions and sourced quantum fluctuations on correlators and inflationary dynam-
ics. This is consistent with the inflationary assumption of a dominating inflaton energy density and
smaller, negligible contribution from other sources.

The previously treated results do not include additional sources of non-Gaussianity. For instance, the
non-Gaussianity arising from the non-linear gravitational evolution of density perturbations or the one
arising from reheating are ignored. These are often part of more advanced treatments. These contri-
butions are generally highly relevant and often increase the fNL parameter significantly. Therefore,
their contribution would make it possible to restrict the allowed parameters further. Their inclusion
would thus help validate or exclude the presence of Gauge interactions but, without a proper determi-
nation of the ξ and H(α/ f ) parameters, this cannot be done. For instance, a measured value ξ = 2.6
would allow for the exclusion of Gauge field effects while ξ = 2.4 would require the determination of
H(α/ f ). While these parameters can in principle be measured by matching the power spectrum for-
mula to PLANCK data, there currently are no precise limits on these two parameters. This, combined
with the narrow allowed region of parameter space, suggests that Gauge interactions were probably
irrelevant at the time of inflation.

It is interesting to compare the magnitude of the Gauge interaction non-Gaussianity with its self-
interaction counterpart. As previously discussed, Maldacena’s bispectrum predicts fNL ≪ 1 for both
local, equilateral, and mixed shapes. As this value is within the PLANCK constraints (Sec.3.2.6),
there is no additional information that can be extracted. In addition, current limits on slow roll pa-
rameters (ε < 0.0097, η = 0.032+0.009

−0.007 [34]) are not precise enough to accurately determine its shape.
However, the upper limit fNL ≪ 1 suggests that the effects of self-interactions on the bispectrum are
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many times smaller than the effects of Gauge interactions. Therefore, Maldacena’s bispectrum acts as
a minor correction to the Gauge interaction three-point correlator. While the shape of this correction
is highly sensitive to slow-roll parameters, the total bispectrum is expected to be equilateral because
of the dominance of the inverse-decay bispectrum. However, these conclusions can likely be extended
to comparisons between self-interaction and any other type of external interaction. As a result, it is
highly unlikely that Maldacena’s bispectrum will ever be measured. For these reasons, the presence
of self-interaction cannot be excluded from measurements with fNL > 1.
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(a) Contour plot of the scale-invariant f equil
NL .

(b) Contour plot of f equil
NL for −kτ = 0.2.

(c) Contour plot of f equil
NL for −kτ = 0.1.

Figure 15: Contour plot of f equil
NL in its parameter space for the scale invariant case (a) and for the

PLANCK measured non-unitary spectral index (b, c). The contour plot is restricted to configurations
for which the primordial amplitude agrees with PLANCK measurements (Fig.14). The purple region
of the contour plot agrees with PLANCK (−73 ≤ f equil

NL ≤ 21). The maximum allowed values of ξ

and H(α/ f ) are reported. For the plots (b) and (c), the pivot scale is chosen as k0 = (−1/τ)−1 =
0.05Mpc−1 and k is chosen to vary between 0.005Mpc−1 ≤ k ≤ 0.01Mpc−1[36]. The lowest allowed
value of the spectral index ns = 0.9607 [36] has been chosen to emphasize scale effects.
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5 Conclusion
FLRW Cosmology is based on the assumption that the universe is homogeneous and isotropic. How-
ever, accurate measurements of late-time observables show various inhomogeneities and anisotropies.
The statistics of these deviations, often determined through two- and three-point correlation functions,
tend to be of a Gaussian nature (Sec.3.2.2). This results in (almost) vanishing bispectra.

The origin of inhomogeneities and anisotropies can be traced back to the presence of quantum fluc-
tuations during inflation. As inflation progresses, these fluctuations evolve and ultimately affect later
stages of the cosmological evolution. In the case of vacuum scalar fluctuations, the evolution is gov-
erned by the Mukhanov-Sasaki equation (Sec.3.1.2). It predicts that the wavelength of the quantum
fluctuations produced during inflation suffers rapid growth. If inflation lasts for a long enough time,
fluctuations can grow to superhorizon scales, where their amplitude remains constant. Eventually, at
the end of inflation, they decay into matter and radiation perturbations. As the horizon grows, the per-
turbations re-enter the horizon and affect late-time observables. Fluctuations of this type are nearly
Gaussian and have small, slow-roll suppressed three-point correlators which are non-vanishing due to
the always-present self-interactions.

Self and external interactions may lead to the production of additional (”sourced”) quantum fluc-
tuations. The additional term in the Lagrangian modifies the Mukhanov-Sasaki equation, altering
the evolution of scalar fluctuations (Sec.3.1.4). In addition, sourced fluctuations might allow for
non-vanishing three-point correlators and thus introduce non-Gaussian features (Sec.4.1). This con-
cept has been analyzed for the case of Gauge interactions, which have been partially compared
to self-interactions. The resulting bispectrum, computed using Green’s functions, peaks for the
equilateral configuration. For this particular triangle, most parameter combinations predict a non-
Gaussianity many times larger than the values measured by the PLANCK collaboration. Nonethe-
less, PLANCK constraints are met for a narrow region of parameter space in which ξ ≤ 2.50 and
H(α/ f )≤ 1.44 ·10−3. In this region, the primordial amplitude ∆

Gauge
P deviates from the Gaussian ∆P

(Eq.44) by a maximum of 1.98%, suggesting a small contribution of sourced quantum fluctuations to
the inhomogeneities and anisotropies. In addition, comparisons with the self-interaction bispectrum
( fNL ≪ 1) suggest that this type of interaction is sub-dominant compared to the external Gauge inter-
actions.

In conclusion, these results do not entirely exclude the presence of inflaton-gauge field interactions
during inflation, as the exact values of the relevant parameters are unknown. However, the generally
large non-Gaussianity, combined with the narrow region of allowed parameters and the imprecise
limits on ξ and H(α/ f ), disfavor the model and majorly rule it out. Furthermore, these calcula-
tions do not include additional sources of non-Gaussianity (e.g. Gravitational evolution of density
perturbations and reheating) which are included in more complex treatments. These more accurate
calculations reduce the range of allowed parameters even further and, if performed, would help fal-
sify the model. Nonetheless, the exclusion of Gauge interactions does not necessarily exclude other
models that might produce non-Gaussianities within the measured constraints.
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Appendix
To improve clarity, many calculations and results have previously been reported without step-by-step
explanations. In this section, a detailed description of such calculations is provided. In particular,
Sec.A.2 discusses the power spectrum and bispectrum of vacuum fluctuations while Sec.A.3 concerns
the power spectrum and bispectrum arising from sourced quantum fluctuations. In addition, one can
find the source code for all the graphs and plots at the following link.

A.1 Equations of Motions
A.1.1 Scalar Field Dynamics

Eq.10 can be derived by minimizing the Lagrangian density L =
√
−gLφ with respect to the variations

in the scalar field φ(t, x⃗). This can be done by explicitly evaluating the Lagrange equations (Eq. 8).
The terms are computed as follows:

∂L
∂φ

=
√
−g

∂Lφ

∂φ
=−

√
−g∂φV (φ) (A.1)

∂L
∂
(
∂µφ
) =√

−g
∂Lφ

∂
(
∂µφ
) =−1

2
√
−ggαβ

[
δ

µ
α∂βφ+∂αφδ

µ
β

]
=−

√
−ggµα

∂αφ (A.2)

Combining the terms according to Eq.8 and diving by −
√
−g leads to the following equations of

motion:

1√
−g

∂α

(√
−ggαβ

∂βφ

)
−∂φV (φ) = 0 (A.3)

Using the FRLW metric in its conformal time definition, the first term can be expanded into:

1√
−g

∂α

(√
−ggαβ

∂βφ

)
= (−g)−1/2

∂µ

[
(−g)1/2 (gµ0 (∂0φ)

)
+(−g)1/2 (gµ j (

∂ jφ
))]

=

= (−g)−1/2
{

∂0

[
(−g)1/2 (g00 (∂0φ)+g0 j (

∂ jφ
))]

+

+∂i
[
(−g)1/2 (gi0 (∂0φ)+gi j (

∂ jφ
)]}

=

= (−g)−1/2
{

∂0

[
(−g)1/2g00

∂0φ

]
+(−g)1/2a2

γ
i j

∂i∂ jφ
}

(A.4)

In flat space (K = 0), this reduces to:

− 1√
−g

∂α

(√
−ggαβ

∂βφ

)
= a−4 [−∂0

(
a2

φ̇
)
+a2

δ
i j

∂i∂ jφ
]
=

= a−4 [−∂0
(
2aȧφ̇+a2

φ̈
)
+a2

∇
2
φ
]
=

=−a−2 [
φ̈+2H φ̇−∇

2
φ
] (A.5)

Putting everything together leads to the following equation:

φ̈+2H φ̇−∇
2
φ+a2

∂φV (φ) = 0 (A.6)

https://github.com/giacomobelleri/Bsc-Thesis-2024.git
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A.1.2 Gauge Field Dynamics

As in Sec.A.1.2, the equations of motion of the gauge field can be derived by appropriately minimizing
the Lagrangian. As there is no explicit dependence on Aµ but only on ∂µAν, it enough to compute the
∂L/∂(∂µAν) term. The process is reported below:

FαβFαβ = gαρgβσ
(
FρσFαβ

)
=

= gαρgβσ
(
∂ρAσ∂αAβ +∂σAρ∂βAα −∂ρAσ∂βAα −∂σAρ∂αAβ

) (A.7)

The first term can be computed in the following way:

gαρgβσ
∂µ

∂

∂(∂µAν)

(
∂ρAσ∂αAβ

)
= gαρgβσgσλgβω

∂

∂(∂µAν)

(
∂ρAλ

∂αAω

)
=

= gαρgβσgσλgβω

(
δ

µ
ρδ

λ
ν∂αAω +δ

µ
αδ

ω
ν∂ρAλ

)
=

= gαρgβσ
(
gσλ∂ρ∂αAβ +gβν∂ρ∂αAσ

)
=

= gαρgβσ

(
gαρ

δ
β

ν∂ρ∂αAβ +gαρ
δ

σ
ν∂ρ∂αAσ

)
(A.8)

By permutation of the indices, one can use the result of Eq.A.8 to compute the fully minimized
Lagrangian density. The result is as follows:

∂µ
∂L

∂(∂µAν)
=−gαβ

∂αFβν = 0 (A.9)

The equations of motion can be simplified by choice of the FLRW metric (Eq.2) and of the Coulomb
Gauge which sets A0 = 0 and ∇⃗ · A⃗ = ∂iAi = 0. The simplifications are detailed below:

−
√
−ggαβ

∂αFβν =−a4
(

gβ0
∂0Fβν +gβi

∂iFβν

)
=

=−a4 (g00
∂0F0ν +g ji

∂iFjν
)
=

=−a4 [g00
∂0∂0Aν +g ji (

∂i∂ jAν −∂ν∂iA j
)]

=

=−a2 (−∂0∂0Aν +∂0∂νA0 +∂
i
∂iAν −∂ν∂iAi)=

= a2
(

∂
2
τA⃗−∇

2A⃗
)
= 0

(A.10)

The equations of motion can thus be expressed as:

∂
2
τA⃗−∇

2A⃗ = 0 (A.11)
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A.1.3 The Mukhanov-Sasaki Equation

One can solve Eq.A.5 for the field φ̃ = aφ. Direct substitution leads to the following final expression
(Eq.A.12):

1√
−g

∂α

(√
−ggαβ

∂βφ

)
+∂φV = a−3

(
¨̃
φ− ä

a
φ̃−∇

2
φ̃

)
+∂φV (A.12)

The Mukhanov-Sasaki equation can be derived by Taylor expanding φ̃(τ, x⃗) around the background
value φ̃(0)(τ). The first order corrections are the quantum fluctuations δφ̃(τ, x⃗). The Taylor expansion
up to first order is the following:

φ̃(τ, x⃗) = φ̃
(0)(τ)+δφ̃(τ, x⃗) ∂φV = a∂

φ̃
V = a

(
∂

φ̃
V |0 +∂

2
φ̃
V |0δφ̃

)
(A.13)

Substituting the Taylor expanded values in Eq.A.12 produces the Mukhanov-Sassaki equation in po-
sition space. Defining mφ = ∂2

φ̃
V |0, the equation reads:

Background Equation: ¨̃
φ

0 − ä
a

φ̃
(0)+a4

(
∂

φ̃
V |0
)
= 0 (A.14)

MS Equation: δ̈φ̃− ä
a

δφ̃+a4mφδφ̃ = 0 (A.15)

By substituting the Fourier transform δφ̃⃗k(τ) of δφ̃(τ, x⃗), the Mukhanov-Sasaki equation can be ex-
pressed in momentum-space. The result is the following:

ük(τ)+

(
k2 +m2

φ −
ä
a

)
uk(τ) = ük(τ)+

(
k2 − 1

τ2

(
ν

2
φ −

1
4

))
uk(τ) = 0 (A.16)

ν
2
φ =

(
9
4
−

m2
φ

H2

)
(A.17)

A.1.4 Green’s Function

To compute the time-order expectation value of Eq.40, it is useful to exploit Wick’s theorem together
with the definition of the Feynman propagator ∆F , which are extensively discussed in [21, 22]. Wick’s
theorem allows for the following expansion of Eq.40:

G(τ,τ′, x⃗ , x⃗ ′) = ⟨0|T
(
δφ̃(τ, x⃗)δφ̃(τ′, x⃗ ′)

)
|0⟩=

= ⟨0| : δφ̃(τ, x⃗)δφ̃(τ′, x⃗ ′) : |0⟩+∆F =

= ⟨0| : δφ̃(τ, x⃗)δφ̃(τ′, x⃗ ′) : |0⟩− iΘ(τ− τ
′)⟨[δφ̃(τ, x⃗),δφ̃(τ′, x⃗ ′)]⟩+

+ iΘ(τ′− τ)⟨[δφ̃(τ′, x⃗ ′),δφ̃(τ, x⃗ ′)]⟩

(A.18)

The advanced solution, in which contributions from later times are considered, is not physically rel-
evant. In addition, the normal ordered product ⟨0| : δφ̃(τ, x⃗)δφ̃(τ′, x⃗ ′) : |0⟩ vanishes. Therefore, in
momentum space, the (retarded) Green’s function is given by:
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∫ d3xd3x′

(2π)3 G(τ,τ′, x⃗ , x⃗ ′)e−i(⃗k ·⃗x−⃗k ′ ·⃗x ′) =

= iΘ(τ− τ
′)
∫ d3xd3x′

(2π)3 ⟨[δφ̃(τ, x⃗),δφ̃(τ′, x⃗ ′)]⟩ei(⃗k ′−⃗k)·⃗x−i⃗k ′·(⃗x−⃗x ′) =

=−iΘ(τ− τ
′)
∫ d3xd3r
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∫ d3xd3rd3q
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[
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]

ei(⃗k ′−⃗k)·⃗x−i(⃗q−⃗k ′)·⃗r =
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[
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′)
]

δ(⃗k − k⃗ ′) =

= G⃗k (τ,τ
′)δ(⃗k − k⃗ ′)

(A.19)

As discussed in Sec.3.1.3, the most physically relevant fluctuations are the ones that grow to super-
horizon scales. Therefore, it is safe to assume that τ satisfies the superhorizon limit condition
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A.2 Vacuum Statistics
A.2.1 The Vacuum Power Spectrum

The two-point correlation function in momentum space can be evaluated in the following manner:

⟨ζ⃗k (τ)ζ⃗k ′(τ
′)⟩=

∫ d3xd3x′

(2π)3 ⟨ζ(τ, x⃗)ζ(τ′, x⃗ ′)⟩exp
[
−i
(⃗

k · x⃗ + k⃗ ′ · x⃗ ′
)]

=

=
∫ d3x′d3r

(2π)3 ⟨ζ(τ, x⃗ ′+ r⃗ )ζ(τ′, x⃗ ′)⟩exp
[
−i
((⃗

k + k⃗ ′
)
· x⃗ ′+ k⃗ · r⃗

)]
=

=
∫ d3r

(2π)(3/2)
⟨ζ(τ,⃗r )ζ(τ′,0)⟩e−i(⃗k ·⃗r)

∫ d3x′

(2π)(3/2)
e−i(⃗k+⃗k ′)·⃗x ′

=

= (2π)(3/2)
δ(⃗k + k⃗ ′)P(⃗k) =

2π2

k3 δ(⃗k + k⃗ ′)Pζ(⃗k) (A.20)

where the variable r⃗ = x⃗ − x⃗ ′ has been introduced and the integrals have been separated by exploiting
statistical isotropy. Using the expression above, it is possible to find the power spectrum associated
with vacuum fluctuations. To do so one has to calculate the two-point correlation function using the
solutions to the Mukhanov-Sasaki equation (Eq.35). This can be done as follows:

⟨ζ⃗k (τ)ζ⃗k ′(τ)⟩=
(

H
φ̄′

)2

⟨
2

∏
j=1

[
b⃗k j

v⃗k j
(τ)+b†

−⃗k j
v∗−⃗k j

(τ)

]
⟩=

=
(
H/φ̄

′)2 ⟨b⃗k b†
−⃗k ′⟩v⃗k (τ)v

∗
−⃗k ′(τ) =

= δ(⃗k + k⃗ ′)
(
H/φ̄

′)2 a−2(τ)u⃗k (τ)u
∗
−⃗k ′(τ) =

= δ(⃗k + k⃗ ′)(4π
2
∆P)(−τ)2u⃗k (τ)u

∗
−⃗k

(τ) =

= δ(⃗k + k⃗ ′)(4π
2
∆P)(−τ)2|u⃗k (τ)|

2

(A.21)

The equation above can be further simplified by considering only the superhorizon fluctuations, which
are the only ones that are relevant for late-time observables anisotropies, and inhomogeneities. If
−kτ,−k′τ′ ≪ 1, H(1)

νφ
(−kτ) and H(1)

νφ
(−k′τ′) approach similar, fully imaginary, values (See Fig.6c.

This allows the use of Eq.35 to obtain the following result:

⟨ζ⃗k (τ)ζ⃗k ′(τ)⟩= δ(⃗k + k⃗ ′)(4π
2
∆P)(−τ)2|u⃗k (τ)|

2 =

≃ 2π2

k3 ∆P(−kτ)(3−2νφ)δ(⃗k + k⃗ ′)
(A.22)

Combining this expression with Eq.44 leads to the following final expression for the scale-invariant
power spectrum Pζ(k):

Pζ(k) = ∆P(−kτ)(3−2νφ) = ∆P(−kτ)(ns−1) (A.23)



44 APPENDICES

A.2.2 The Vacuum Bispectrum and Higher-Order Correlators

Similarly to the power spectrum, the vacuum bispectrum is computed using the solutions to the
Mukhanov-Sasaki equation (Eq.35), which are employed in the calculation of the three-point cor-
relator in momentum space. Ignoring expectation values that vanish because of the properties of the
creation/annihilation operators, the three-point correlation function is computed as follows:

⟨ζ⃗k 1
(τ1)ζ⃗k 2

(τ2)ζ⃗k 3
(τ3)⟩=−

(
H
φ̄′

)3

⟨δφ(τ1,⃗k 1)δφ(τ2,⃗k 2)δφ(τ3,⃗k 3)⟩=

=−
(

H
φ̄′

)3

⟨
3

∏
j=1

[
b⃗k j

v⃗k j
(τ j)+b†

−⃗k j
v∗−⃗k j

(τ j)

]
⟩=

=−
(

H
φ̄′

)3 [
⟨b⃗k1

b⃗k 2
b†
−⃗k 3

⟩v⃗k 1
v⃗k2

v∗−⃗k3
+ ⟨b⃗k 1

b†
−⃗k 2

b†
−⃗k 3

⟩v⃗k 1
v∗−⃗k2

v∗−⃗k 3

]
To find the full expression for the three-point correlators one has to evaluate the expectation values.
However, because of the action of creation and annihilation operators on vacuum states, the expec-
tation values of strings of an odd number of operators vanish. This can be seen in the following
calculation:

⟨b⃗k1
b⃗k2

b†
−⃗k3

⟩= ⟨b⃗k 1
b†
−⃗k 3

b⃗k2
⟩+[b⃗k2

,b†
−⃗k 3

]⟨b⃗k1
⟩= 0 (A.24)

⟨b⃗k1
b†
−⃗k2

b†
−⃗k3

⟩= ⟨b†
−⃗k 2

b⃗k 1
b†
−⃗k 3

⟩+[b⃗k 1
,b†

−⃗k 2
]⟨b†

−⃗k 3
⟩= 0 (A.25)

Using the above results, it becomes clear that the three-point correlator is zero and that the vacuum
bispectrum vanishes. However, this does not entirely exclude traces of non-Gaussianity. Higher-order
statistics may be characterized by a non-vanishing connected component. To check the presence
of such a term, it is useful to consider the four-point correlation function. By following a similar
procedure to the one employed to compute the three-point correlation function, it is clear that the
four-point correlator will depend on the following expectation values:

⟨b⃗k1
b⃗k 2

b⃗k3
b†
−⃗k4

⟩= [b⃗k3
,b†

−⃗k4
]⟨b⃗k1

b⃗k 2
⟩+ ⟨b⃗k 1

b⃗k 2
b†
−⃗k 4

b⃗k3
⟩= 0 (A.26)

⟨b⃗k 1
b⃗k2

b†
−⃗k3

b†
−⃗k4

⟩= [b⃗k2
b†
−⃗k3

]⟨b⃗k 1
b†
−⃗k 4

⟩+ ⟨b⃗k 1
b†
−⃗k 3

b⃗k 2
b†
−⃗k 4

⟩=

= [b⃗k 2
b†
−⃗k 3

]⟨b⃗k 1
b†
−⃗k 4

⟩+[b⃗k 1
b†
−⃗k 3

]⟨b⃗k2
b†
−⃗k4

⟩= (A.27)

= ⟨b⃗k 2
b†
−⃗k 3

⟩⟨b⃗k 1
b†
−⃗k4

⟩+ ⟨b⃗k1
b†
−⃗k3

⟩⟨b⃗k2
b†
−⃗k4

⟩

⟨b⃗k1
b†
−⃗k2

b⃗k3
b†
−⃗k4

⟩= ⟨b⃗k 1
b†
−⃗k 2

⟩[b⃗k3
,b†

−⃗k 4
]+ ⟨b⃗k 1

b†
−⃗k 2

b†
−⃗k 4

b⃗k3
⟩ (A.28)

= ⟨b⃗k 1
b†
−⃗k 2

⟩⟨b⃗k3
,b†

−⃗k 4
⟩

⟨b⃗k1
b†
−⃗k2

b†
−⃗k3

b†
−⃗k4

⟩= [b⃗k 1
,b†

−⃗k 2
]⟨b†

−⃗k 3
b†
−⃗k 4

⟩+ ⟨b†
−⃗k2

b⃗k 1
b†
−⃗k 3

b†
−⃗k 4

⟩= 0 (A.29)

These expressions show that the four-point correlation function can be entirely written using two-
point correlators. This procedure yields similar results for all even n-point correlation functions.
These results, combined with the previous discussion on odd n correlators, demonstrate that vacuum
quantum fluctuations are a Gaussian random field.
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A.3 Gauge Interaction Statistics
A.3.1 ”Electric” And ”Magnetic” Fields

In Sec.4.2, the ”electric” (E⃗ = −a−2 ˙⃗A) and ”magnetic” (B⃗ = a−2∇⃗× A⃗) fields have been introduced
to simplify the notation in various equations of motion. The general formula for these fields can be
derived as follows:

∇⃗× A⃗ = ∑
λ

∫ d3k
(2π)3/2

[
aλ(⃗k)Aλ(τ,⃗k)

(
∇⃗× ei⃗k·⃗x

ε̂λ(⃗k)
)
+a†

λ
(−⃗k)A∗

λ
(τ,−⃗k)

(
∇⃗× ei⃗k·⃗x

ε̂
∗
λ
(−⃗k)

)]
= ∑

λ

∫ d3k
(2π)3/2

[
aλ(⃗k)Aλ(τ,⃗k)+a†

λ
(−⃗k)A∗

λ
(τ,−⃗k)

](
∇⃗× ei⃗k·⃗x

ε̂λ(⃗k)
)

= ∑
λ

∫ ∫ 3 k
(2π)3/2

[
aλ(⃗k)Aλ(τ,⃗k)+a†

λ
(−⃗k)A∗

λ
(τ,−⃗k)

][
ei⃗k·⃗x

(
∇⃗× ε̂λ(⃗k)

)
+
(

∇⃗ei⃗k·⃗x
)

ε̂λ(⃗k)
]
=

= ∑
λ

∫ d3k
(2π)3/2

[
aλ(⃗k)Aλ(τ,⃗k)+a†

λ
(−⃗k)A∗

λ
(τ,−⃗k)

][(
∇⃗× ε̂λ(⃗k)

)
+
(

i⃗k× ε̂λ(⃗k)
)]

ei⃗k·⃗x =

= ∑
λ

∫ d3k
(2π)3/2 λk

[
aλ(⃗k)Aλ(τ,⃗k)+a†

λ
(−⃗k)A∗

λ
(τ,⃗k)

]
ε̂λ(⃗k)e

i⃗k·⃗x

∂τA⃗ = ∑
λ

d3k
(2n)3/2

[
aλ(⃗k)Ȧλ(τ,⃗k)+a†

λ
(−⃗k)Ȧλ(τ,−⃗k)

]
ε̂λ(⃗k)e

i⃗k·⃗x

The above expressions lead to the following final formulas:

E⃗ =− 1
a2 ∂τA⃗ =− 1

a2 ∑
λ

∫ d3k
(2π)3/2

[
aλ(⃗k)Ȧλ(τ,⃗k)+a†

λ
(−⃗k)Ȧλ(τ,−⃗k)

]
ε̂λ(⃗k)e

i⃗k·⃗x (A.30)

B⃗ =
1
a2 ∇⃗× A⃗ =

1
a2 ∑

λ

∫ d3k
(2π)3/2 λk

[
aλ(⃗k)Aλ(τ,⃗k)+a†

λ
(−⃗k)A∗

λ
(τ,⃗k)

]
ε̂λ(⃗k)e

i⃗k·⃗x (A.31)

Eq.A.30-A.31 can be used to compute the inner product between the electric and magnetic field which
is a relevant quantity for the source term associated with gauge interactions (Eq.65). Its Fourier
transform can be computed in the following manner:

∫ d3x
(2π)(3/2)

(
E⃗ · B⃗

)
e−i⃗q ·⃗x =− 1

a4 ∑
λ,λ′

∫ d3xd3kd3k′

(2π)(9/2)

(
λ
′k′
)[

aλ(⃗k)Ȧλ(τ,⃗k)+a†
λ
(−⃗k)Ȧλ(τ,−⃗k)

]
[
aλ′ (⃗k ′)Aλ′(τ,⃗k ′)+a†

λ′(−⃗k ′)A∗
λ′(τ,⃗k′)

]
(ε̂λ(⃗k ) · ε̂λ′ (⃗k ′))ei(⃗k +⃗k ′−q⃗)·⃗x =

=− 1
a4 ∑

λ,λ′

∫ d3k
(2π)(3/2)

(
λ
′ |⃗q − k⃗ |

)[
aλ(⃗k)Ȧλ(τ,⃗k)+a†

λ
(−⃗k)Ȧλ(τ,−⃗k)

]
[
aλ′ (⃗q − k⃗ )Aλ′(τ, q⃗ − k⃗ )+a†

λ′ (⃗k − q⃗)A∗
λ′(τ,⃗k − q⃗)

]
(ε̂λ(⃗k ) · ε̂λ′ (⃗q − k⃗ ))
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A.3.2 Gauge Modes And Their Derivative

To derive Eq.65 one has to substitute the Gauge field’s Fourier transform (Eq.20) in Eq.60. Using the
calculations of Sec.A.3.1 for the conformal time derivative and the curl of A⃗, the substitution yields
the following result: [

∂
2
τ + k2

(
1−λk

α

f
φ̇
(0)
)]

Aλ(τ,k) = 0 (A.32)

As φ
′(0) = a−1φ̇(0), it is useful to define the parameter ξ = 2(α/ f )Hφ

′(0) such that φ̇(0) = −2(ξ/τ).
Therefore, by the substitution of the parameter ξ, Eq.65 is recovered. As discussed in [10, 24], the
solutions to this equation can be approximated by Eq.67-68 within the range (8ξ)−1 <−kτ < 2ξ. The
use of this result allows us to discard the A− modes, leading to the following simplifications of the
Fourier transform of the dot product between the electric and magnetic fields:

∫ d3x
(2π)(3/2)

(
E⃗ · B⃗

)
e−i⃗q ·⃗x =− 1

a4

∫ d3k
(2π)(3/2)

|⃗q − k⃗ |
[
a+(⃗k)Ȧ∗

+(τ,⃗k)+a†
+(−⃗k)Ȧ+(τ,−⃗k)

]
[
a+(⃗q − k⃗ )A+(τ, q⃗ − k⃗ )+a†

+(⃗k − q⃗)A∗
+(τ,⃗k − q⃗)

]
(ε̂+(⃗k ) · ε̂+(⃗q − k⃗ )) =

=− 1
a4

∫ d3k
(2π)(3/2)

k|⃗q − k⃗ |

√
2ξ

(−kτ)

[
a+(⃗k)A+(τ,⃗k)+a†

+(−⃗k)A∗
+(τ,−⃗k)

]
[
a+(⃗q − k⃗ )A+(τ, q⃗ − k⃗ )+a†

+(⃗k − q⃗)A∗
+(τ,⃗k − q⃗)

]
(ε̂+(⃗k ) · ε̂+(⃗q − k⃗ ))

Similarly, the Fourier transform of the average of the dot product can be computed as follows:

∫ d3x
(2π)(3/2)

⟨E⃗ · B⃗⟩e−i⃗q ·⃗x = ⟨
∫ d3x

(2π)(3/2)

(
E⃗ · B⃗

)
e−i⃗q ·⃗x ⟩=

=− 1
a4

∫ d3k
(2π)(3/2)

|⃗q − k⃗ |⟨a+(⃗k)a†
+(⃗k − q⃗)⟩Ȧ+(τ,⃗k)A∗

+(τ,⃗k − q⃗)(ε̂+(⃗k ) · ε̂+(⃗q − k⃗ )) =

=−δ(⃗q)
1
a4

∫ d3k
(2π)(3/2)

kȦ+(τ,⃗k)A∗
+(τ,⃗k )
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A.3.3 Gauge-Interaction Power Spectrum

The two-point correlation function in momentum space is defined as the expectation value of the prod-
uct between two density perturbations (ζ⃗k (τ) and ζ⃗k ′(τ)) evaluated at two different points. As δφ⃗k (τ)
can be separated into a homogeneous and a particular solution, the two-point correlator depends on
four separate terms. However, as evidenced by Eq.63 and Eq.41, the particular solution depends on
pairs of gauge field modes and their operators. On the other hand, the homogeneous solution depends
on single scalar modes and operators. As a result, expectation values containing an odd number of
homogeneous solutions will disappear. Therefore, the correlator simplifies to:

⟨ζ⃗k (τ)ζ⃗k ′(τ)⟩=
(

H
φ′(0)

)2 [
⟨δφ

homo
k⃗

δφ
homo
k⃗ ′ ⟩+ ⟨δφ

part
k⃗

δφ
part
k⃗ ′ ⟩

]
(A.33)

⟨δφ
part
k⃗

δφ
part
k⃗ ′ ⟩=

∫
dτ

′dτ
′′a(τ

′)a(τ′′)
a2(τ)

G⃗k (τ,τ
′)G⃗k ′(τ,τ

′′)⟨J⃗k (τ
′)J⃗k ′(τ

′′)⟩ (A.34)

The first term of Eq.A.33 is computed in Sec.A.2.1. Therefore, the evaluation of the power spectrum is
reduced to the computation of ⟨δφ

part
k⃗

δφ
part
k⃗ ′ ⟩ (Eq.A.34). The latter can be separated into two separate

calculations: the computation of the expectation values and the computation of the product of Green’s
functions. The latter is shown below:

G⃗k (τ,τ
′)G⃗k ′(τ,τ

′′) =−Θ(τ− τ
′)Θ(τ− τ

′′)
[
uk(τ)u∗k(τ

′)−u∗k(τ)uk(τ
′)
][

uk′(τ)u
∗
k′(τ

′′)−u∗k′(τ)uk′(τ
′′)
]
=

= 4Θ(τ− τ
′)Θ(τ− τ

′′)
[
Im [uk(τ)] Im [uk′(τ)]Re

[
uk(τ

′)
]

Re
[
uk′(τ

′′)
]

+

−Re [uk(τ)]Re [uk′(τ)] Im
[
uk(τ

′)
]

Im
[
uk′(τ

′′)
]
+

− Im [uk(τ)]Re [uk′(τ)]Re
[
uk(τ

′)
]

Im
[
uk′(τ

′′)
]
+

−Re [uk(τ)] Im [uk′(τ)] Im
[
uk(τ

′)
]

Re
[
uk′(τ

′′)
]]

The expression above can be simplified by considering the behavior of the real and imaginary parts
of uk(τ) separately. For instance, in the case ν = (3/2), the two parts can be expressed as follows:

Re [uk(τ)] =

√
π

2
√
−τ

[
Re
[
ei(ν+ 1

2)
π

2

]
Re
[
H(1)

ν (−kτ)
]
− Im

[
ei(ν+ 1

2)
π

2

]
Im
[
H(1)

ν (−kτ)
]]

=

=

√
π

2
√
−τRe

[
H(1)

ν (−kτ)
]

(A.35)

Im [uk(τ)] =

√
π

2
√
−τ

[
Re
[
ei(ν+ 1

2)
π

2

]
Im
[
H(1)

ν (−kτ)
]
+ Im

[
ei(ν+ 1

2)
π

2

]
Re
[
H(1)

ν (−kτ)
]]

=

=

√
π

2
√
−τIm

[
H(1)

ν (−kτ)
]

(A.36)

In addition, only fluctuations that grow to superhorizon scales are physically relevant. As a result, it
is possible to substitute the superhorizon limit of uk(τ) (Eq.35) in the expression for the product of
Green’s functions. In this situation, uk(τ) is purely imaginary (See Fig.6c). Therefore, the product of
Green’s functions simplifies to:

G⃗k (τ,τ
′)G⃗k ′(τ,τ

′′) = 4Θ(τ− τ
′)Θ(τ− τ

′′)uk(τ)uk′(τ)Re
[
uk(τ

′)
]

Re
[
uk′(τ

′′)
]
= (A.37)

=
π

2
a2(τ)H2 [(−kτ)(−k′τ)]

1
2 (ns−1)

(kk′)(3/2)
Θ(τ− τ

′)Θ(τ− τ
′′)
√

(−τ′)(−τ′′)Re
[
H(1)

ν (−kτ
′)
]

Re
[
H(1)

ν (−k′τ′′)
]
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To complete the calculation, the expectation value ⟨J⃗k (τ
′)J⃗k ′(τ

′′)⟩ must be computed. As can be seen
from Eq.63, this product can be divided into four smaller terms. However, three out of four will de-
pend on the Fourier transform of ⟨E⃗ · B⃗⟩. According to the results of Sec.A.3.2, these terms are only
relevant when momenta are zero and thus they provide small contributions to the final results. There-
fore, they can safely be discarded. The resulting formula for the expectation value is the following:

⟨J⃗k (τ
′)J⃗k ′(τ

′′)⟩ ≃ a2(τ′)a2(τ′′)

(
α

f

)2〈[∫ d3x
(2π)(3/2)

(
E⃗(τ′, x⃗) · B⃗(τ′, x⃗)

)
e−i⃗k ·⃗x

]
×
[∫ d3x′

(2π)(3/2)

(
E⃗(τ′′, x⃗ ′) · B⃗(τ′′, x⃗ ′)

)
e−i⃗k ′ ·⃗x ′

]〉 (A.38)

Substitution of the results of Sec.A.3.2 separates the expression into 16 different terms. However, the
expectation value of a string of operators that start with a creation operator always vanishes. The same
applies to strings of operators that end with an annihilation operator. Therefore, only four expectation
values are not necessarily zero. These are the following:

⟨a+(⃗q)a+(⃗k − q⃗)a+(⃗q ′)a†
+(⃗q

′− k⃗ ′)⟩= ⟨a+(⃗q)a+(⃗k − q⃗)a†
+(⃗q

′− k⃗ ′)a+(⃗q ′)⟩+
+[a+(⃗q ′), a†

+(⃗q
′− k⃗ ′)]⟨a+(⃗q)a+(⃗k − q⃗)⟩=

(A.39)

= 0

⟨a+(⃗q)a+(⃗k − q⃗)a†
+(−q⃗ ′)a†

+(⃗q
′− k⃗ ′)⟩= ⟨a+(⃗q)a†

+(−q⃗ ′)a+(⃗k − q⃗)a†
+(⃗q

′− k⃗ ′)⟩+
+[a+(⃗k − q⃗), a†

+(−q⃗ ′)]⟨a+(⃗q)a†
+(⃗q

′− k⃗ ′)⟩=
(A.40)

= [a+(⃗q), a†
+(−q⃗ ′)][a+(⃗k − q⃗), a†

+(⃗q
′− k⃗ ′)]+

+[a+(⃗k − q⃗), a†
+(−q⃗ ′)][a+(⃗q), a†

+(⃗q
′− k⃗ ′)] =

= δ(⃗q + q⃗ ′)δ(⃗k + k⃗ ′− q⃗ − q⃗ ′)+δ(⃗k ′+ q⃗ − q⃗ ′)δ(⃗k − q⃗ + q⃗ ′)

⟨a+(⃗q)a†
+(⃗q − k⃗)a+(⃗q ′)a†

+(⃗q
′− k⃗ ′)⟩= + ⟨a+(⃗q)a†

+(⃗q − k⃗)a†
+(⃗q

′− k⃗ ′)a+(⃗q ′)⟩
+[a+(⃗k − q⃗), a†

+(−q⃗ ′)]⟨a+(⃗q)a†
+(⃗q

′− k⃗ ′)⟩=
(A.41)

= δ(⃗k)δ(⃗k ′)

⟨a+(⃗q)a†
+(⃗q − k⃗)a†

+(−q⃗ ′)a†
+(⃗q

′− k⃗ ′)⟩= ⟨a†
+(⃗q − k⃗)a+(⃗q)a

†
+(−q⃗ ′)a†

+(⃗q
′− k⃗ ′)⟩

+[a+(⃗q), a†
+(⃗q − k⃗)]⟨a†

+(−q⃗ ′)a†
+(⃗q

′− k⃗ ′)⟩=
(A.42)

= 0
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Eq.A.40 is the only term that is non-vanishing and that does not require momenta to be zero. It is
associated with the following product of Gauge modes:

Ȧ+(τ
′, q⃗)A+(τ

′ ,⃗k − q⃗)Ȧ∗
+(τ

′′,−q⃗ ′)A∗
+(τ

′′, q⃗ ′− k⃗ ′) =

= 2ξ

√
|⃗q ||⃗q ′|

(−τ′)(−τ′′)
A+(τ

′, q⃗)A+(τ
′ ,⃗k − q⃗)A∗

+(τ
′′,−q⃗ ′)A∗

+(τ
′′, q⃗ ′− k⃗ ′) (A.43)

=
1
4

(
|⃗q ||⃗q ′|

|⃗k − q⃗ ||⃗q ′− k⃗ ′|

)(1/4)

e
[
4πξ−2

√
2ξ[(−|⃗q |τ′)(1/2)+(−|⃗k−q⃗ |τ′)(1/2)+(−|⃗q ′|τ′′)(1/2)+(−|⃗q ′−⃗k ′|τ′′)(1/2)]

]

Using Eq.A.40 and Eq.A.43, one can compute the expectation value of the product of the source terms
(Eq.A.38). The calculation is shown below:

⟨J⃗k (τ
′)J⃗k ′(τ

′′)⟩= 1
a2(τ′)a2(τ′′)

(
α

f

)2∫ d3qd3q′

(2π)3

[
|⃗k − q⃗ ||⃗q ′− k⃗ ′|⟨a+(⃗q)a+(⃗k − q⃗)a†

+(−q⃗ ′)a†
+(⃗q

′− k⃗ ′)⟩

× Ȧ+(τ
′, q⃗)A+(τ

′ ,⃗k − q⃗)Ȧ∗
+(τ

′′,−q⃗ ′)A∗
+(τ

′′, q⃗ ′− k⃗ ′)

× (ε̂+(⃗q) · ε̂+(⃗k − q⃗))(ε̂+(⃗q ′) · ε̂+(⃗k ′− q⃗ ′))
]
=

=
1

4a2(τ′)a2(τ′′)

(
α

f

)2∫ d3qd3q′

(2π)3

[
δ(⃗q + q⃗ ′)δ(⃗k + k⃗ ′− q⃗ − q⃗ ′)+δ(⃗k ′+ q⃗ − q⃗ ′)δ(⃗k − q⃗ + q⃗ ′)

×
(
|⃗q ||⃗q ′||⃗k − q⃗ |3|⃗q ′− k⃗ ′|3

)(1/4)

× e
[
4πξ−2

√
2ξ[(−|⃗q |τ′)(1/2)+(−|⃗k−q⃗ |τ′)(1/2)+(−|⃗q ′|τ′′)(1/2)+(−|⃗q ′−⃗k ′|τ′′)(1/2)]

]
× (ε̂+(⃗q) · ε̂+(⃗k − q⃗))(ε̂+(⃗q ′) · ε̂+(⃗k ′− q⃗ ′))

]
=

=
1

4a2(τ′)a2(τ′′)

(
α

f

)2

δ(⃗k + k⃗ ′)
∫ d3q

(2π)3

[(
|⃗q |(1/2)|⃗k − q⃗ |(3/2)+ |⃗q ||⃗k − q⃗ |

)
× e

[
4πξ−2

√
2ξ(|⃗q |(1/2)+|⃗k−q⃗ |(1/2))((−τ′)(1/2)+(−τ′′)(1/2))

]
× (ε̂+(⃗q) · ε̂+(⃗k − q⃗))(ε̂+(−q⃗) · ε̂+(⃗q − k⃗))

]
=

=
1

4a2(τ′)a2(τ′′)

(
α

f

)2

δ(⃗k + k⃗ ′)
∫ d3q

(2π)3

[
|ε̂+(⃗q) · ε̂+(⃗k − q⃗)|2

(
|⃗q |(1/2)|⃗k − q⃗ |(3/2)+ |⃗q ||⃗k − q⃗ |

)
× e

[
4πξ−2

√
2ξ(|⃗q |(1/2)+|⃗k−q⃗ |(1/2))((−τ′)(1/2)+(−τ′′)(1/2))

]]
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By direct substitution in Eq.A.34 of the above expression, the two-point correlator can be computed
in the manner shown below:

⟨δφ
part
k⃗

δφ
part
k⃗ ′ ⟩=

∫
dτ

′dτ
′′a(τ

′)a(τ′′)
a2(τ)

G⃗k (τ,τ
′)G⃗k ′(τ,τ

′′)⟨J⃗k (τ
′)J⃗k ′(τ

′′)⟩=

= δ(⃗k + k⃗ ′)
α2H2π

8 f 2k3(2π)3 (−kτ)ns−1e4πξ×

×
∫

τ

−∞

dτ
′dτ

′′d3q

{√
(−τ′)(−τ′′)

a(τ′)a(τ′′)
Re
[
H(1)

ν (−kτ
′)
]

Re
[
H(1)

ν (−kτ
′′)
]

×
[
|ε̂+(⃗q) · ε̂+(⃗k − q⃗)|2

(
|⃗q |(1/2)|⃗k − q⃗ |(3/2)+ |⃗q ||⃗k − q⃗ |

)
× e−2

√
2ξ(|⃗q |(1/2)+|⃗k−q⃗ |(1/2))((−τ′)(1/2)+(−τ′′)(1/2))

]}
=

= δ(⃗k + k⃗ ′)
H4π

8k3(2π)3

(
α

f

)2

(−kτ)ns−1e4πξ×

×
∫

τ

−∞

dτ
′dτ

′′d3q

{(
(−τ

′)(−τ
′′)
)(3/2)Re

[
H(1)

ν (−kτ
′)
]

Re
[
H(1)

ν (−kτ
′′)
]

×
[
|ε̂+(⃗q) · ε̂+(⃗k − q⃗)|2

(
|⃗q |(1/2)|⃗k − q⃗ |(3/2)+ |⃗q ||⃗k − q⃗ |

)
× e−2

√
2ξ(|⃗q |(1/2)+|⃗k−q⃗ |(1/2))((−τ′)(1/2)+(−τ′′)(1/2))

]}
=

= δ(⃗k + k⃗ ′)
H2π

8k3(2π)3 ∆P(4πξ)2(−kτ)ns−1e4πξ×

×
∫

τ

−∞

dτ
′dτ

′′d3q

{(
(−τ

′)(−τ
′′)
)(3/2)Re

[
H(1)

ν (−kτ
′)
]

Re
[
H(1)

ν (−kτ
′′)
]

×
[
|ε̂+(⃗q) · ε̂+(⃗k − q⃗)|2

(
|⃗q |(1/2)|⃗k − q⃗ |(3/2)+ |⃗q ||⃗k − q⃗ |

)
× e−2

√
2ξ(|⃗q |(1/2)+|⃗k−q⃗ |(1/2))((−τ′)(1/2)+(−τ′′)(1/2))

]}
=

=
2π2

k3 δ(⃗k + k⃗ ′)
H2

4π2
ξ2

8π
∆P(−kτ)ns−1e4πξ π

2
×

×
∫ 0

−kτ

dx′dx′′d3 p

{(
(x′)(x′′)

)(3/2)Re
[
H(1)

ν (x′)
]

Re
[
H(1)

ν (x′′)
]

×
[
|ε̂+(p⃗) · ε̂+(k̂− p⃗)|2

(
4|p⃗ |(1/2)|k̂− p⃗ |(3/2)+ |p⃗ ||⃗k − p⃗ |

)
× e−2

√
2ξ(|p⃗ |(1/2)+|k̂−p⃗ |(1/2))((x′)(1/2)+(x′′)(1/2))

]}
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In the last line of the expression above the substitution p⃗ = q⃗/k, x′ =−kτ′ and x′′ =−kτ′′ have been
made. The power spectrum can thus be expressed as follows:

Pζ(k) = ∆P(−kτ)ns−1
[
1+∆Pe4πξ f2(ξ,⃗k)

]
(A.44)

f2(ξ,⃗k) =
ξ2

8π

∫
d3 p

(
4|p⃗ |(1/2)|k̂− p⃗ |(3/2)+ |p⃗ ||k̂− p⃗ |

)
×

×I2
(
−2
√

2ξ

[
|p⃗ |(1/2)+ |k̂− p⃗ |(1/2)

]) (A.45)

I(z) =
√

π

2

∫
∞

−kτ

dx(x)3/2Re
[
H(1)

ν (x)
]

ezx(1/2)
(A.46)
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A.3.4 Gauge-Interaction Bispectra

The three-point correlation function in momentum space is defined as the expectation value of the
product between three density perturbations (ζ⃗k1

(τ), ζ⃗k 3
(τ), and ζ⃗k 3

(τ)) evaluated at three different
points. As δφ⃗k (τ) can be separated into a homogeneous and a particular solution, the two-point
correlator depends on eight separate terms. Similarly to the power spectrum (Sec.A.3.3), the terms
involving odd numbers of homogenous solutions vanish. In addition, the terms containing a single
particular solution vanish. For example, consider the case of ⟨δφhomo

k⃗ 1
δφhomo

k⃗ 2
δφ

part
k⃗3

⟩. The expectation
value is evaluated as follows:

⟨δφ
homo
k⃗ 1

δφ
homo
k⃗2

δφ
part
k⃗3

⟩= ⟨δφ
homo
k⃗ 1

δφ
homo
k⃗2

⟩⟨δφ
part
k⃗3

⟩=

= ⟨δφ
homo
k⃗ 1

δφ
homo
k⃗2

⟩
∫

dτ
′a−1(τ)G⃗k 3

(τ,τ′)⟨J⃗k3
(τ′)⟩

= a(τ)
α

f
⟨δφ

homo
k⃗1

δφ
homo
k⃗ 2

⟩
∫ dτ′d3x

(2π)(3/2)
G⃗k 3

(τ,τ′)
[
⟨E⃗ · B⃗⟩−⟨E⃗ · B⃗⟩

]
e−i⃗q ·⃗x =

= 0

Therefore, the three-point correlator is entirely described by a single term:

⟨ζ⃗q1(τ)ζ⃗q2(τ)ζ⃗q3(τ)⟩=−
(

H
φ′(0)

)3

⟨δφ
part
q⃗1

δφ
part
q⃗2

δφ
part
q⃗3

⟩= (A.47)

=−
(

H
φ′(0)

)3∫
dτ1dτ2dτ3

a(τ1)a(τ2)a(τ3)

a3(τ)

[
Gq⃗1(τ,τ1)Gq⃗2(τ,τ2)Gq⃗3(τ,τ3)×

×⟨J⃗q1(τ1)J⃗q2(τ2)J⃗q3(τ3)⟩
]

To simplify expressions, these substitutions are often made in the next calculations:

ν =
3
2

zn =−|⃗qn|τn p⃗ = k⃗/|⃗q1| xn = |⃗qn|/|⃗q1| (A.48)

Similarly to the calculation of the power spectrum, one has to compute the product of Green functions.
This results in the following expression:

Gq⃗1(τ,τ1)Gq⃗2(τ,τ2)Gq⃗2(τ,τ3) = 8Θ(τ− τ1)Θ(τ− τ2)Θ(τ− τ3)

(
a(τ)H

√
π

2

)3

×

× 1√
8|⃗q1|3|⃗q2|3 |⃗q3|3

[(−τ1)(−τ2)(−τ3)]
(1/2)×

× [(−|⃗q1|τ1)(−|⃗q2|τ2)(−|⃗q3|τ3)]
1
2 (ns−1)×

×Re
[
H(1)

ν (−|⃗q1|τ1)
]

Re
[
H(1)

ν (−|⃗q2|τ2)
]

Re
[
H(1)

ν (−|⃗q3|τ3)
]

= Θ(τ− τ1)Θ(τ− τ2)Θ(τ− τ3)a3(τ)H3
(

π

2

)(3/2)
×

× 1
|⃗q1|6x2

2x2
3
(z1z2z3)

1
2 ×

×Re
[
H(1)

ν (z1)
]

Re
[
H(1)

ν (z2)
]

Re
[
H(1)

ν (z3)
]

(A.49)
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The second step of the calculation involves the computation of the product of source terms and its
expectation value. While the procedure is similar to the one used for the power spectrum, the number
of terms is four times larger. Thankfully, out of the 64 terms, 60 can be ignored as they are vanishing
due to the properties of creation/annihilation operators or are irrelevant at non-zero momenta. Out of
the four remaining terms, two evaluate to zero. Therefore, only the following two expectation values
survive:

⟨a+
(⃗

k1

)
a+
(⃗

q1 − k⃗1

)
a+
(⃗

k2

)
a†
+

(⃗
k2 − q⃗2

)
a†
+

(
−⃗k3

)
a†
+

(⃗
k3 − q⃗3

)
⟩=

= δ(⃗q1 − k⃗ 1 + k⃗ 3)δ(⃗q2 − k⃗ 2 + k⃗ 1)δ(⃗q3 − k⃗ 3 + k⃗ 2)+

+δ(⃗q1 + q⃗2 − k⃗ 1 − k⃗ 2)δ(⃗q3 − k⃗ 3 + k⃗ 2)δ(⃗k 1 + k⃗ 3)+

+δ(⃗q1 + q⃗3 − k⃗ 1 − k⃗ 3)δ(⃗q3 − k⃗ 3 + k⃗ 2)δ(⃗k 2 + k⃗ 3)+

+δ(⃗q1 + q⃗2 − k⃗ 1 − k⃗ 2)δ(⃗q3 − k⃗ 3 + k⃗ 1)δ(⃗k 2 + k⃗ 3)

(A.50)

⟨a+
(⃗

k1

)
a+
(⃗

q1 − k⃗1

)
a†
+

(
−⃗k2

)
a+
(⃗

q2 − k⃗2

)
a†
+

(
−⃗k3

)
a†
+

(⃗
k3 − q⃗3

)
⟩=

= δ(⃗q1 − k⃗ 1 + k⃗ 2)δ(⃗q2 − k⃗ 2 + k⃗ 3)δ(⃗q3 − k⃗ 3 + k⃗ 1)+

+δ(⃗q1 + q⃗3 − k⃗ 1 − k⃗ 3)δ(⃗q2 − k⃗ 2 + k⃗ 3)δ(⃗k 1 + k⃗ 2)+

+δ(⃗q2 + q⃗3 − k⃗ 2 − k⃗ 3)δ(⃗q1 − k⃗ 1 + k⃗ 3)δ(⃗k 1 + k⃗ 2)+

+δ(⃗q2 + q⃗3 − k⃗ 2 − k⃗ 3)δ(⃗q1 − k⃗ 1 + k⃗ 2)δ(⃗k 1 + k⃗ 3)

(A.51)

In addition to the constraint q⃗1 + q⃗2 + q⃗ = 0, the δ-functions enforce the following conditions:

δ(⃗q1 − k⃗ 1 + k⃗ 3)δ(⃗q2 − k⃗ 2 + k⃗ 1)δ(⃗q3 − k⃗ 3 + k⃗ 2)→ k⃗ 2 = q⃗2 + k⃗ 1 k⃗ 3 = q⃗3 + k⃗ 2 (A.52)

δ(⃗q1 + q⃗2 − k⃗ 1 − k⃗ 2)δ(⃗q3 − k⃗ 3 + k⃗ 2)δ(⃗k 1 + k⃗ 3)→ k⃗ 2 =−(⃗k 1 + q⃗3) k⃗ 3 = −⃗k 1 (A.53)

δ(⃗q1 + q⃗3 − k⃗ 1 − k⃗ 3)δ(⃗q3 − k⃗ 3 + k⃗ 2)δ(⃗k 2 + k⃗ 3)→ k⃗ 2 = q⃗2 + k⃗ 1 k⃗ 3 = −⃗k 2 (A.54)

δ(⃗q1 + q⃗2 − k⃗ 1 − k⃗ 2)δ(⃗q3 − k⃗ 3 + k⃗ 1)δ(⃗k 2 + k⃗ 3)→ k⃗ 2 = q⃗1 + q⃗2 − k⃗ 1 k⃗ 3 = −⃗k 2 (A.55)

δ(⃗q1 − k⃗ 1 + k⃗ 2)δ(⃗q2 − k⃗ 2 + k⃗ 3)δ(⃗q3 − k⃗ 3 + k⃗ 1)→ k⃗ 2 = k⃗ 1 − q⃗1 k⃗ 3 = k⃗ 2 − q⃗2 (A.56)

δ(⃗q1 + q⃗3 − k⃗ 1 − k⃗ 3)δ(⃗q2 − k⃗ 2 + k⃗ 3)δ(⃗k 1 + k⃗ 2)→ k⃗ 2 = −⃗k 1 k⃗ 3 = −⃗k 1 − q⃗2 (A.57)

δ(⃗q2 + q⃗3 − k⃗ 2 − k⃗ 3)δ(⃗q1 − k⃗ 1 + k⃗ 3)δ(⃗k 1 + k⃗ 2)→ k⃗ 2 = −⃗k 1 k⃗ 3 = k⃗ 1 − q⃗1 (A.58)

δ(⃗q2 + q⃗3 − k⃗ 2 − k⃗ 3)δ(⃗q1 − k⃗ 1 + k⃗ 2)δ(⃗k 1 + k⃗ 3)→ k⃗ 2 = k⃗ 1 − q⃗1 k⃗ 3 = −⃗k 1 (A.59)

The terms of Eq.A.50-A.51 are associated with the products of modes shown in Eq.A.60 and Eq.A.61.

|⃗q1 − k⃗ 1||⃗q2 − k⃗ 2||⃗q3 − k⃗ 3|
[
Ȧ+(τ1 ,⃗k 1)A+(τ1, q⃗1 − k⃗ 1)Ȧ+(τ2,⃗k 2)×
×A∗

+(τ2 ,⃗k 2 − q⃗2)Ȧ∗
+(τ3,−⃗k 3)A∗

+(τ3,⃗k 3 − q⃗3)
] (A.60)

|⃗q1 − k⃗ 1||⃗q2 − k⃗ 2||⃗q3 − k⃗ 3|
[
Ȧ+(τ1 ,⃗k 1)A+(τ1, q⃗1 − k⃗ 1)Ȧ∗

+(τ2,−⃗k 2)×
×A+(τ2, q⃗2 − k⃗ 2)Ȧ∗

+(τ3,−⃗k 3)A∗
+(τ3,⃗k 3 − q⃗3)

] (A.61)
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Applying these results, one can compute ⟨J⃗q1(τ1)J⃗q2(τ2)J⃗q3(τ3)⟩. The expectation value can be ex-
pressed as follows:

⟨J⃗q1(τ1)J⃗q2(τ2)J⃗q3(τ3)⟩=
8π3ξ3e6πξ

a(τ1)a(τ2)a(τ3)

z1z2z3

|⃗q1|3x2x3
∆
(3/2)
P δ(⃗q1 + q⃗2 + q⃗2)× (A.62)

×
∫ d3 p

(2π)(9/2)

{
γ(p⃗, q⃗3)|q̂1 − p⃗|

[
|p⃗|(1/2)||q̂1 − p⃗|(1/2)|x3q̂3 + p⃗|+ |p⃗|(1/2)||x3q̂3 + p⃗|(3/2)+

+ |p⃗|||q̂1 − p⃗|(1/2)|x3q̂3 + p⃗|(1/2)+ |p⃗|(3/2)||x3q̂3 + p⃗|(1/2)
]
×

×e−2
√

2ξ[(|p⃗|(1/2)+|q̂1−p⃗|(1/2))(z1)
(1/2)]×

×e−2
√

2ξ

x2
[(|q̂1−p⃗|(1/2)+|x3q̂3+p⃗|(1/2))(z2)

(1/2)]×

×e−2
√

2ξ

x3
[(|p⃗|(1/2)+|x3q̂3+p⃗|(1/2))(z3)

(1/2)]
+

+γ(p⃗, q⃗2)|q̂1 − p⃗|
[
|p⃗|(1/2)||q̂1 − p⃗|(1/2)|x2q̂2 + p⃗|+ |p⃗|(1/2)||x2q̂2 + p⃗|(3/2)+

+ |p⃗|||q̂1 − p⃗|(1/2)|x2q̂2 + p⃗|(1/2)+ |p⃗|(3/2)||x2q̂2 + p⃗|(1/2)
]
×

×e−2
√

2ξ[(|p⃗|(1/2)+|q̂1−p⃗|(1/2))(z1)
(1/2)]×

×e−2
√

2ξ

x2
[(|p⃗|(1/2)+|x2q̂2+p⃗|(1/2))(z2)

(1/2)]×

×e−2
√

2ξ

x3
[(|q̂1−p⃗|(1/2)+|x2q̂2+p⃗|(1/2))(z3)

(1/2)]
}

where γ(p⃗, q⃗n) is defined as:

γ = [ε̂+(p⃗) · ε̂+(q̂1 − p⃗)]
[
ε̂
∗
+(p⃗) · ε̂+(xnq̂n + p⃗)

][
ε̂
∗
+(q̂1 − p⃗) · ε̂∗+(xnq̂n + p⃗)

]
(A.63)
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By substitution of Eq.A.49 and Eq.A.62 in Eq.A.47 it is possible to get the following expression:

⟨ζ⃗q1(τ)ζ⃗q2(τ)ζ⃗q3(τ)⟩= (2π)(3/2) ξ3e6πξ

|⃗q1|6x4
2x4

3
∆

3
Pδ(⃗q1 + q⃗2 + q⃗3)× (A.64)

×
∫ 0

−|⃗q1|τ

∫ 0

−|⃗q2|τ

∫ 0

−|⃗q3|τ

∫
dz1dz2dz3d3 p

{
(z1z2z3)

(3/2)Re
[
H(1)

ν (z1)
]

Re
[
H(1)

ν (z2)
]

Re
[
H(1)

ν (z3)
]
×{

γ(p⃗, q⃗3)|q̂1 − p⃗|
[
|p⃗|(1/2)||q̂1 − p⃗|(1/2)|x3q̂3 + p⃗|+ |p⃗|(1/2)||x3q̂3 + p⃗|(3/2)+

+ |p⃗|||q̂1 − p⃗|(1/2)|x3q̂3 + p⃗|(1/2)+ |p⃗|(3/2)||x3q̂3 + p⃗|(1/2)
]
×

×e−2
√

2ξ[(|p⃗|(1/2)+|q̂1−p⃗|(1/2))(z1)
(1/2)]×

×e−2
√

2ξ

x2
[(|q̂1−p⃗|(1/2)+|x3q̂3+p⃗|(1/2))(z2)

(1/2)]×

×e−2
√

2ξ

x3
[(|p⃗|(1/2)+|x3q̂3+p⃗|(1/2))(z3)

(1/2)]
+

+γ(p⃗, q⃗2)|q̂1 − p⃗|
[
|p⃗|(1/2)||q̂1 − p⃗|(1/2)|x2q̂2 + p⃗|+ |p⃗|(1/2)||x2q̂2 + p⃗|(3/2)+

+ |p⃗|||q̂1 − p⃗|(1/2)|x2q̂2 + p⃗|(1/2)+ |p⃗|(3/2)||x2q̂2 + p⃗|(1/2)
]
×

×e−2
√

2ξ[(|p⃗|(1/2)+|q̂1−p⃗|(1/2))(z1)
(1/2)]×

×e−2
√

2ξ

x2
[(|p⃗|(1/2)+|x2q̂2+p⃗|(1/2))(z2)

(1/2)]×

×e−2
√

2ξ

x3
[(|q̂1−p⃗|(1/2)+|x2q̂2+p⃗|(1/2))(z3)

(1/2)]
}}

=
3

10
(2π)5/2

∆
3
Pe6πξ δ(⃗q1 + q⃗2 + q⃗3)

|⃗q1|6
1+ x3

2 + x3
3

x3
2x3

3
f3 (ξ,x2,x3) = δ(⃗q1 + q⃗2 + q⃗3)Bζ (A.65)
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where f3(ξ,x2,x3) is defined as in Eq.A.66:

f3(ξ,x2,x3) =
5

3π

ξ3

x2x3 [1+ x2 + x3]
(A.66)

×
∫

d3 p

{
γ(p⃗, q⃗3)|q̂1 − p⃗|

[
|p⃗|(1/2)||q̂1 − p⃗|(1/2)|x3q̂3 + p⃗|+ |p⃗|(1/2)||x3q̂3 + p⃗|(3/2)+

+ |p⃗|||q̂1 − p⃗|(1/2)|x3q̂3 + p⃗|(1/2)+ |p⃗|(3/2)||x3q̂3 + p⃗|(1/2)
]
×

×I
(
−2
√

2ξ

[
|p⃗|(1/2)+ |q̂1 − p⃗|(1/2)

])
I

−2

√
2ξ

x2

[
|q̂1 − p⃗|(1/2)+ |x3q̂3 + p⃗|(1/2)

]×

×I

−2

√
2ξ

x3

[
|p⃗|(1/2)+ |x3q̂3 + p⃗|(1/2)

]+

+γ(p⃗, q⃗2)|q̂1 − p⃗|
[
|p⃗|(1/2)||q̂1 − p⃗|(1/2)|x2q̂2 + p⃗|+ |p⃗|(1/2)||x2q̂2 + p⃗|(3/2)+

+ |p⃗|||q̂1 − p⃗|(1/2)|x2q̂2 + p⃗|(1/2)+ |p⃗|(3/2)||x2q̂2 + p⃗|(1/2)
]
×

×I
(
−2
√

2ξ

[
|p⃗|(1/2)+ |q̂1 − p⃗|(1/2)

])
I

−2

√
2ξ

x2

[
|p⃗|(1/2)+ |x2q̂2 + p⃗|(1/2)

]×

×I

−2

√
2ξ

x3

[
|q̂1 − p⃗|(1/2)+ |x2q̂2 + p⃗|(1/2)

]}
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