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Abstract

This thesis investigates the claim that the multiple equilibria found in large scale
ocean models are spurious. The investigation is carried out using finite volume dis-
cretizations, and numerical bifurcation analysis on two modified ocean convection
models. Phenomena responsible for coexistence states and pattern formation will
be of particular interest, such as fragmented tipping and the theory of Turing in-
stabilities. The main results are that at least some of the multiple equilibria in the
large scale model are likely due to fragmented tipping, and that a localized Turing
bifurcation occurs one of the conceptual models.
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1 Introduction

There has been a lot of debate recently within the field of oceanography and more broadly
climate science, over the effect that increased freshwater forcing will have on the Atlantic
Meriodional Overturning Circulation (AMOC). The question is whether there is multi-
stability or bistability. In more mathematical language: how many (stable) equilibria the
system has. Recent results [11] would in fact suggest that (depending on the freshwater
forcing) there can be up to 9 stable equilibria, which correspond to scenarios where the
AMOC weakens in some parts of the spatial domain and not in others. Skeptics on the
other hand, claim these multiple equilibria are in fact spurious [15].

In this thesis we will study two dimensional generalizations of two conceptual models
for the AMOC: one which we will refer to as the modified den Toom model [15], and
the other which we shall refer to as the modified Bastiaansen model [1]. The former,
in its one dimensional formulation, has been suggested (not proven) to have spurious
multiple equilibria, while the other exhibits fragmented tipping when studied in one spatial
dimension. While there is no formal mathematical definition of what fragmented tipping
is, roughly speaking this refers to the appearance of new fold bifurcations in the vicinity
of existing ones, due to the inclusion of diffusion and spatial heterogeneity in an otherwise
finite dimensional dynamical system. This phenomenon is caused by the appearance of
coexistence states, that is steady states where the domain lies in multiple states at once.
Intuitively one can think of equilibrium planetary ice-cover as solar radiation is varied: in
absence of diffusion a planet can be either entirely ice free or entirely covered in ice, while
when one adds diffusion it is also possible that part of the celestial body is covered in ice
and the remainder is ice free.

We will begin with the study of the two dimensional den Toom model, presented in
section 2, which we will discretize and then study, first analytically and then numerically.
We will then repeat the same process for the Bastiaansen model, finding a very similar
bifurcation pattern. Finally we will turn to spatial dynamics and Turing bifurcations to
attempt to explain our numerical findings.

2 Numerical methods

In this section we will discuss the discretization and continuation methods used throughout
this thesis.

2.1 Finite Volume method

Throughout this thesis we will discretize systems of PDE using the finite volume method
[4]. Suppose the PDE to be discretized has the form

ut = Lu− f, L = ∇ · (Mu)
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whereM is some operator which transforms a scalar function into a two or three-dimensional
vector function. Integrating both sides we have that

d

dt

∫
Ω

udΩ =

∫
Ω

∇ · (Mu)− fdΩ.

Application of the Guass theorem yields

d

dt

∫
Ω

udΩ =

∫
Γ

(Mu, n⃗)dΓ−
∫
Ω

fdΩ

where Γ = ∂Ω denotes the boundary of the domain. Note that if∫
Γ

(Mu, n⃗)dΓ−
∫
Ω

fdΩ = 0

then
∫
Ω
udΩ is conserved.

Next we cover the domain Ω by a number of volumes Ωi so that

d

dt

∫
Ωi

udΩ =

∫
Γi

(M̂u, n⃗)dΓ−
∫
Ωi

fdΩ

where Γi =
∑

j∈N (i) Γij and N (i) contains the indices of volumes neighbouring volume

i. It can be shown that using this method, if
∫
Ω
udΩ is conserved in the continuous case,

then it must also be conserved in the discrete case.

2.2 Modified Moore-Penrose continuation

Throughout this thesis we will be showing multiple bifurcation diagrams. These are com-
puted using a modified version of the Moore-Penrose continuation method [10]. This is a
predictor-corrector method, this means that the method consists of two steps: (tangent)
prediction and correction.

Consider a dynamical system of the form

ẋ = f(x, α), x ∈ Rn, α ∈ R

an equilibrium of this system is a value x∗(α) such that f(x∗(α), α) = 0. This defines a
(typically) smooth one-dimensional manifold M ⊂ Rn+1. Letting y = (x, α) and defining
F (y) = f(x, α), the continuation problem is then to find y such that

F (y) = 0, F : Rn+1 −→ R.

Using the Implicit Function Theorem, we know the above locally defines a smooth curve
M passing through a point y0 so long as the regularity condition:

rank(J(y0)) = n, J = Fy(y) ∈ Rn×(n+1).

To approximate the curve M we need to find a sequence of points (y0, y1, . . . yn) satisfying
F (yi) = 0. Note that y0 is often a known value, however there are continuation problems
where this might need to be computed using some kind of root-finding algorithm (as we
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shall do in most of this thesis). Suppose the point yi is known, then we can predict where
the next point yi+1 on M will be located by making a prediction yi as

yi = yi + sivi

where si ∈ R is called the step size which in principle can be chosen arbitrarily (however
there are better and worse ways of choosing it), while vi is the (normalized) nontrivial
solution to

J(yi)vi = 0, ||vi|| = 1

(equivalently: vi is the tangent to M at the point yi). When performing continuation,
it is convenient to proceed in the same direction along M . A good way to ensure that
⟨vi−1, vi⟩ = 1 (that is: the direction is preserved) is to compute vi as[

J
vTi−1

]
vi =

[
0
1

]
.

For the correction step, let X0 = yi, then define

Xn+1 = Xn − Fx(Xn)
+F (Xn)

where Fx(Xi)
+ denotes the Moore-Penrose Pseudoinverse of Fx(Xi). Finally let V0 = vi

and define Vn to be the solution to [
J

V T
n−1

]
Vn =

[
0
1

]
.

Then as soon as the conditions

||Xn −Xn−1|| < ε1, ||F (Xn)|| < ε2, vTi Vn > 0

are all verified, we set yi+1 = Xn and repeat the prediction step.
All of the above describes in detail the functioning of the Moore-Penrose continuation

scheme, the only difference with this scheme that we implemented is in the Newton iter-
ations that define Xn+1. For this we instead resort to a sixth order method [16], which
looks like this

Yn = Xn − Fx(Xn)
+F (Xn)

Zn = Yn − (2I − Fx(Xn)
+Fx(Yn))Fx(Xn)

+F (Yn)

Xn+1 = Zn − (2I − Fx(Xn)
+Fx(Yn))Fx(Xn)

+F (Zn).

The method is sixth-order in the sense that, letting α be the true solution to F (x) = 0
(i.e. F (α) = 0) and en = Xn − α be the true error at step n, then [16]

en+1 = (
1

2
Fx(α)

−1Fxx(α))
530e6n +O(e7).

This may not look like much as at each computation of Xn three Newton-like iterations
must be carried out, but when compared to three ordinary Newton iterations, this method
reduces the number of evaluations of the Jacobian by 1. There are other (perhaps com-
putationally simpler) methods to obtain a more accurate Moore-Penrose scheme, however
these often rely on higher order derivatives to be implemented, making computations by
hand far more complicated and requiring efficient solvers for nonlinear vector equations.
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3 Modified den Toom model

3.1 The model

In the first part of this project, we study a modified version of the model studied in [15].
The modified system is given by:

∂T∗

∂t∗
= KV

∂

∂z∗
([1 + CT (T∗, S∗)]

∂T∗

∂z∗
)− κ(iresT T∗ − T ∗(x∗, z∗)) +KH

∂2T∗

∂x2
∗

∂S∗

∂t∗
= KV

∂

∂z∗
([1 + CS(T∗, S∗)]

∂S∗

∂z∗
)− κ(iresS S∗ − S∗(x∗, z∗)) +KH

∂2S∗

∂x2
∗

with zero-flux boundary conditions across all boundaries (x = 0, L and z = 0, D).
By making the substitutions:

t = κt∗, z = D−1z∗, x = L−1x∗,

T = αT (T∗ − T0), S = αS(S∗ − S0)

the system can be nondimensionalized, giving:

∂T

∂t
=

1

Pv

∂

∂z
([1 + CT (T, S)]

∂T

∂z
)− (iresT T − T (x, z)) +

1

Ph

∂2T

∂x2

∂S

∂t
=

1

Pv

∂

∂z
([1 + CS(T, S)]

∂S

∂z
)− (iresS S − S(x, z)) +

1

Ph

∂2S

∂x2
.

Finally, defining ρ = S − T (the density) and µ = S + T (the spiciness), one obtains:

∂ρ

∂t
=

1

Pv

∂

∂z
((1 + C(

∂ρ

∂z
))
∂ρ

∂z
)− (ires+ ρ+ ires− µ− ρ̄(x, z; γ)) +

1

Ph

∂2ρ

∂x2
(1a)

∂µ

∂t
=

1

Pv

∂

∂z
((1 + C(

∂ρ

∂z
))
∂µ

∂z
)− (ires− ρ+ ires+ µ− µ̄(x, z; γ)) +

1

Ph

∂2µ

∂x2
(1b)

where Pv = D2κ
KV

, Ph = L2κ
KH

can be interpreted to be the vertical and horizontal Péclet
numbers and

C(
∂ρ

∂z
) = F0G(

∂ρ

∂z
)

where we will treat separately the cases:

G(∂ρ
∂z

) =
1

2
(1 + tanh(ε

∂ρ

∂z
)) =: F1(

∂ρ

∂z
)

G(∂ρ
∂z

) = max(0, tanh3(ε
∂ρ

∂z
)) =: F2(

∂ρ

∂z
).

Further we have:

ρ = S − T = δ(x)(γ cos(πz)− cos(2πz))

µ = S + T = δ(x)(γ cos(πz) + cos(2πz))
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an we choose δ(x) = cos(πx2 ).
Finally also note that the steady state of system (1) is underdetermined when

ires+ + ires− = iresS = 0, or ires+ − ires− = iresT = 0

so whenever we make such a choice for these parameters we must also augment the system
with the integral constraints∫

Ω

TdΩ = 0, if ires+ − ires− = 0∫
Ω

SdΩ = 0, if ires+ + ires− = 0.

These constraints are not needed when solving for the transient case, as the initial condi-
tions specifies the levels of ρ and µ.

3.2 Discretization

3.2.1 Without Convective Adjustment

Figure 1: An example of the type of conservation cell used in the discretization, neighbor-
ing cell centers are labelled N, E, W, S. The center of the cell itself is labelled C.

Letting Sρ = −(ires+ ρ+ires− µ−ρ(x, y; γ)) and Sµ = −(ires− ρ+ires+ µ−µ(x, y; γ)), the system
without convective adjustment reads

∂ρ

∂t
=

1

Pv

∂2ρ

∂z2
+ Sρ +

1

Ph

∂2ρ

∂x2

∂µ

∂t
=

1

Pv

∂2µ

∂z2
+ Sµ +

1

Ph

∂2ρ

∂x2

6



by the Gauss theorem∫∫
1

Pv

∂2ρ

∂z2
+ Sρ +

1

Ph

∂2ρ

∂x2
dV =

∫
(
1

Pv

∂ρ

∂z
+

1

Ph

∂ρ

∂x
) · n⃗dS +

∫∫
SρdV

covering the domain in square cells like the one in figure 1, we can discretize the above as∫
Sc

(
1

Pv

∂ρ

∂z
+

1

Ph

∂ρ

∂x
) · n⃗dS +

∫∫
Vc

SρdV ≈

∆x

Pv
(
ρn − ρc
∆z

− ρc − ρs
∆z

) +
∆z

Ph
(
ρe − ρc
∆x

− ρc − ρw
∆x

) + Sρ
c∆x∆z

grouping the coefficients we obtain

ρc : − 2∆x

Pv∆z
− 2∆z

Ph∆x

ρn :
∆x

∆zPv
, ρs :

∆x

∆zPv

ρe :
∆z

∆xPh
, ρw :

∆z

∆xPh
.

As for the source term, this reads

Sρ
c = −ires+ ρc + ires− µc − ρ(xc, yc; γ).

Along the boundaries we have

∂ρ

∂z
= 0 ⇐⇒ ρn = ρc = ρs

∂ρ

∂x
= 0 ⇐⇒ ρe = ρc = ρw.

Thus the matrices corresponding to the x and z derivatives become

Dx =


− ∆z

Ph∆x
∆z

∆xPh
∆z

∆xPh
− 2∆z

∆xPh

∆z
∆xPh

. . .
. . .

. . .
∆z

∆xPh
− 2∆z

∆xPh

∆z
∆xPh

∆z
∆xPh

− ∆z
∆xPh

 ∈ Rnx×nx

and

Dz =


− ∆x

Pv∆z
∆x

∆zPv
∆x

∆zPv
− 2∆x

∆zPv

∆x
∆zPv

. . .
. . .

. . .
∆x

∆zPv
− 2∆x

∆zPv

∆x
∆zPv

∆x
∆zPv

− ∆x
∆zPv

 ∈ Rnz×nz

where nx (resp. nz) is the numbers of cell centers in the horizontal (resp. vertical)
direction. The discretized Laplacian is then obtained via Kronecker products:

L = Inz ⊗Dx +Dz ⊗ Inx.
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The discretization of the µ equation is analogous and the discretized system reads:

∆x∆z
d

dt

[
ρ
µ

]
=

[
L− Iires+ ∆x∆z −Iires− ∆x∆z
−Iires− ∆x∆z L− Iires+ ∆x∆z

] [
ρ
µ

]
+

[
ρ̄
µ̄

]
∆x∆z

where I denotes the identity matrix. In more compact form one can write

M
d

dt
u = Au+Mu.

with M = ∆x∆zI.

3.2.2 Finite Volume discretization of the Convective Adjustment

Note that the original system can be rewritten as

∂ρ

∂t
=

1

Ph

∂2ρ

∂x2
+

1

Pv

∂2ρ

∂z2
+ Sρ +

1

Pv

∂

∂z
(C(

∂ρ

∂z
)
∂ρ

∂z
)

∂µ

∂t
=

1

Ph

∂2µ

∂x2
+

1

Pv

∂2µ

∂2z
+ Sµ +

1

Pv

∂

∂z
(C(

∂ρ

∂z
)
∂µ

∂z
)

and that the only terms which are not included in the previous section are the rightmost
ones. By the Gauss theorem we again have∫∫

1

Pv

∂

∂z
(C(

∂ρ

∂z
)
∂ρ

∂z
)dV =

1

Pv

∫
(C(

∂ρ

∂z
)
∂ρ

∂z
)n⃗zdS∫∫

1

Pv

∂

∂z
(C(

∂ρ

∂z
)
∂µ

∂z
)dV =

1

Pv

∫
(C(

∂ρ

∂z
)
∂µ

∂z
)n⃗zdS

which can be discretized giving

1

Pv

∫
Sc

(C(
∂ρ

∂z
)
∂ρ

∂z
)n⃗zdS ≈ ∆xF0

Pv
(G(ρn − ρc

∆z
)
ρn − ρc
∆z

)− ∆xF0

Pv
(G(ρc − ρs

∆z
)
ρc − ρs
∆z

)

1

Pv

∫
Sc

(C(
∂ρ

∂z
)
∂µ

∂z
)n⃗zdS ≈ ∆xF0

Pv
(G(ρn − ρc

∆z
)
µn − µc

∆z
)− ∆xF0

Pv
(G(ρc − ρs

∆z
)
µc − µs

∆z
)

this (incl. boundary conditions) can be represented in matrix form by defining

cn =


0
1
∆z − 1

∆z
. . .

. . .
1
∆z − 1

∆z

 , cs =


1
∆z − 1

∆z
. . .

. . .
1
∆z − 1

∆z
0


so that

Cn := cn ⊗ Inx, Cs = cs ⊗ Inx.
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Finally rewriting

1

Pv

∫
Si

(C(
∂ρ

∂z
)
∂ρ

∂z
)n⃗zdS ≈ {∆xF0

Pv
(G(εCnρ)⊙ (Cnρ))

− ∆xF0

Pv
(G(εCsρ)⊙ (Csρ))}i

1

Pv

∫
Si

(C(
∂ρ

∂z
)
∂µ

∂z
)n⃗zdS ≈ {∆xF0

Pv
(G(εCnρ)⊙ (Cnµ))

− ∆xF0

Pv
(G(εCsρ)⊙ (Csµ))}i

where ⊙ denotes the Hadamard (elementwise) product and letting

CN =

[
Cn 0
Cn 0

]
, CS =

[
Cs 0
Cs 0

]
and

CNo =

[
Cn 0
0 Cn

]
, CSo =

[
Cs 0
0 Cs

]
the system in compact form now reads

M
d

dt
u = Au+Mu+ Ci(u) (2)

where

C1(u) =
∆xF0

2Pv
((⃗1 + tanh(εCNu))⊙ (CNou)− (⃗1 + tanh(εCSu))⊙ (CSou))

and

C2(u) =
∆xF0

Pv
(max(⃗0, tanh3(CNu))⊙ (CNou)−max(⃗0, tanh3(CSu))⊙ (CSou))

where the max(⃗a, b⃗) is taken elementwise. Finally, note that the continuous integral con-
straint now translates to

nxnz∑
i=1

1

2
(µi − ρi) =

nxnz∑
i=1

Ti = 0, if ires+ − ires− = 0

nxnz∑
i=1

1

2
(ρi + µi) =

nxnz∑
i=1

Si = 0, if ires+ + ires− = 0.

3.3 Linearization

Consider (ρ, µ) = (ρ + ∆ρ, µ + ∆µ) where (ρ, µ) is an equilibrium and (∆ρ,∆µ) is an
arbitrarily small perturbation. The convective adjustment function can be approximated
by a Taylor series around ∂∆ρ

∂z = 0, giving

C(
∂ρ

∂z
) ≈ C(

∂ρ

∂z
) + C ′(

∂ρ

∂z
)
∂∆ρ

∂z
=: C + C

′ ∂∆ρ

∂z
,

9



where when using C(∂ρ∂z ) = F0F1(
∂ρ
∂z )

C =
F0

2
(1 + tanh(ε

∂ρ

∂z
))

C
′
=

F0

2
ε sech2(ε

∂ρ

∂z
)

and when using C(∂ρ∂z ) = F0F2(
∂ρ
∂z )

C = F0 max(0, tanh3(ε
∂ρ

∂z
))

C
′
= F0

{
3ε tanh2(ε∂ρ

∂z ) sech
2(ε∂ρ

∂z ) if ∂ρ
∂z ≥ 0

0 else.

The convection term in the ρ equation can be expanded out to give:

(1 + C)
∂

∂z
(ρ+∆ρ) ≈ (1 + C + C

′ ∂∆ρ

∂z
)
∂

∂z
(ρ+∆ρ)

= (1 + C)
∂ρ

∂z
+ (1 + C + C

′ ∂ρ

∂z
)
∂∆ρ

∂z
+ C

′
(
∂∆ρ

∂z
)2

= (1 + C)
∂ρ

∂z
+ (1 + C + C

′ ∂ρ

∂z
)
∂∆ρ

∂z
+O((

∂∆ρ

∂z
)2).

Doing the same for the µ equation yields:

(1 + C)
∂

∂z
(µ+∆µ) ≈ (1 + C + C

′ ∂∆ρ

∂z
)
∂

∂z
(µ+∆µ)

= (1 + C)
∂µ

∂z
+ (1 + C)

∂∆µ

∂z
+ C

′ ∂µ

∂z

∂∆ρ

∂z
+ C

′ ∂∆ρ

∂z

∂∆µ

∂z

= (1 + C)
∂µ

∂z
+ (1 + C)

∂∆µ

∂z
+ C

′ ∂µ

∂z

∂∆ρ

∂z
+O(

∂∆ρ

∂z

∂∆µ

∂z
).

Substitution of the above results in system (1) gives

∂∆ρ

∂t
=

1

Pv

∂

∂z
((1 + C + C

′ ∂ρ

∂z
)
∂∆ρ

∂z
)− (ires+ ∆ρ+ ires− ∆µ) +

1

Ph

∂2∆ρ

∂x2
(3a)

∂∆µ

∂t
=

1

Pv

∂

∂z
((1 + C)

∂∆µ

∂z
+ C

′ ∂µ

∂z

∂∆ρ

∂z
)− (ires− ∆ρ+ ires+ ∆µ) +

1

Ph

∂2∆µ

∂x2
(3b)

which is the linearized system. System (3) can be compared with the Jacobian matrix of
the discretized system, which reads

Df(u) = A+ C ′(u) (4)

where when using F1

C ′(u) =
∆xF0

2Pv
((1 + tanh(εCNu))⊙ CNo + ((ε sech2(εCNu)⊙ I)CN )⊙ (CNou)

− (1 + tanh(εCSu))⊙ CSo − ((ε sech2(εCSu)⊙ I)CS)⊙ (CSou)).
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and when using F2

C ′(u) =
∆xF0

Pv
(max(⃗0, tanh3(εCNu))⊙ CNo

− (H(CNu)⊙ tanh2(εCNu)⊙ sech2(εCNu))⊙ I ⊙ (CNou)

−max(⃗0, tanh3(εCSu))⊙ CSo

+ (H(CSu)⊙ tanh2(εCSu)⊙ sech2(εCSu))⊙ I ⊙ (CSou))

where H is the Heaviside step function which (together with the max(. . .) function) is
taken elementwise.

3.4 Eigenvalue Analysis

3.4.1 Decoupled case

Consider the case ires− = 0, the equations are then decoupled. Assuming a solution of
exponential form to (3a), we obtain:

λ∆ρ =
1

Pv

∂

∂z
((1 + C + C

′ ∂ρ

∂z
)
∂∆ρ

∂z
)− ires+ ∆ρ+

1

Ph

∂2∆ρ

∂x2
.

For an equilibrium to bifurcate it is necessary that the linear self-adjoint operator

L =
1

Pv

∂

∂z
(1 + C + C

′ ∂ρ

∂z
)
∂

∂z
+

1

Ph

∂2

∂x2
− ires+

be neither positive nor negative definite in the inner product∫
Ω

f̂gdΩ

on a space of functions which have zero flux through the boundary of Ω = [0, 1] × [0, 1].
We have

(λ+ ires+ )

∫
Ω

|∆ρ|2 dΩ =

∫
Ω

∆ρ∇ ·

([
1
Pv

(1 + C + C
′ ∂ρ
∂z ) 0

0 1
Ph

] [
∂∆ρ
∂z
∂∆ρ
∂x

])
dΩ

=

∫
Γ

∆ρ

([
1
Pv

(1 + C + C
′ ∂ρ
∂z ) 0

0 1
Ph

] [
∂∆ρ
∂z
∂∆ρ
∂x

])
· n⃗dΓ

−
∫
Ω

⟨

[
∂∆ρ
∂z
∂∆ρ
∂x

]
,

[
1
Pv

(1 + C + C
′ ∂ρ
∂z ) 0

0 1
Ph

] [
∂∆ρ
∂z
∂∆ρ
∂x

]
Ω

=−
∫
Ω

⟨

[
∂∆ρ
∂z
∂∆ρ
∂x

]
,

[
1
Pv

(1 + C + C
′ ∂ρ
∂z ) 0

0 1
Ph

] [
∂∆ρ
∂z
∂∆ρ
∂x

]
⟩dΩ

where we have used Green’s first identity together with the fact that due to zero-flux∫
Γ

∆ρ

([
1
Pv

(1 + C + C
′ ∂ρ
∂z ) 0

0 1
Ph

] [
∂∆ρ
∂z
∂∆ρ
∂x

])
· n⃗dΓ = 0.
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The spectrum of the matrix

U =

[
1
Pv

(1 + C + C
′ ∂ρ
∂z ) 0

0 1
Ph

]

is given by σ(U) =
{

1
Pv

(1 + C + C
′ ∂ρ
∂z ),

1
Ph

}
. The only eigenvalue which may vary in

sign is λ1 = 1
Pv

(1 + C + C
′ ∂ρ
∂z ). The analysis using F1 is already present in [15], that

is: the multiple equilibria (if any) are due to the feedback of self-sustaining diffusion (so

spurious). Using F2 we have that C is always non-negative and C
′
is zero when ∂ρ

∂z is
negative and positive elsewhere, therefore λ1 is always positive, and thus λ+ ires+ ≤ 0, so
λ ≤ −ires+ . Note that ires+ ∈ {0, 1

2 , 1}, so this implies there can be no bifurcations.

3.4.2 Coupled case

We now generalize the inner product to vector valued functions:∫
Ω

⟨f̂ , g⟩dΩ.

Proceeding analogously as before, we now obtain the equation:∫
Ω

λ(|∆ρ|2 + |∆µ|2)dΩ =

∫
Ω

∆ρ
1

Pv

∂

∂z
((1 + C + C

′ ∂ρ

∂z
)
∂∆ρ

∂z
)

−∆ρ(ires+ ∆ρ+ ires− ∆µ) + ∆ρ
1

Ph

∂2∆ρ

∂x2

+∆µ
1

Pv

∂

∂z
((1 + C)

∂∆µ

∂z
+ C

′ ∂µ

∂z

∂∆ρ

∂z
)

−∆µ(ires− ∆ρ+ ires+ ∆µ) + ∆µ
1

Ph

∂2∆µ

∂x2
dΩ

=

∫
Ω

∆ρ∇ · (Uρ∇∆ρ) + ∆µ∇ · (Uµ∇∆µ)

+ ∆µ∇ · (Uρ
µ∆ρ)− 2iresT |∆T |2 − 2iresS |∆S|2dΩ

where

Uρ =

[
1
Pv

(1 + C + C
′ ∂ρ
∂z ) 0

0 1
Ph

]

Uµ =

[ 1
Pv

(1 + C) 0

0 1
Ph

]
Uρ
µ =

[
1
Pv

C
′ ∂µ
∂z 0

0 0

]
.
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We can further integrate by parts (most of) the right hand side in the eigenequation to
obtain∫

Ω

λ(|∆ρ|2 + |∆µ|2)dΩ =

∫
Γ

(∆ρ(Uρ∇∆ρ) + ∆µ(Uµ∇∆µ) + ∆µ(Uρ
µ∇∆ρ)) · n⃗dΓ

−
∫
Ω

⟨∇∆ρ, Uρ∇∆ρ⟩+ ⟨∇∆µ,Uµ∇∆µ⟩+ ⟨∇∆µ,Uρ
µ∇∆ρ⟩

+ 2iresT |∆T |2 + 2iresS |∆S|2dΩ

= −
∫
Ω

⟨
[
∇∆ρ
∇∆µ

]
,

[
Uρ

1
2U

ρ
µ

1
2U

ρ
µ Uµ

] [
∇∆ρ
∇∆µ

]
⟩

+ 2iresT |∆T |2 + 2iresS |∆S|2dΩ

where again we’ve used Green’s first identity and zero-flux. The determinant of the block
matrix in the right hand side of the above equation is given by

det(U) =
1

P 2
hP

2
v

((1 + C)(1 + C + C
′ ∂ρ

∂z
)− (C

′ ∂µ

∂z
)2).

The above will be negative if

(1 + C)(1 + C + C
′ ∂ρ

∂z
) < (C

′ ∂µ

∂z
)2

or if

(1 + C + C
′ ∂ρ

∂z
) < 0.

When using F1 both of the above may hold, while when using F2 only the former condition

is possible. The situation where bifurcation occur due to the term C
′ ∂µ
∂z is called convective

feedback [15].

3.5 Numerical Results

3.5.1 Analytical Verification of Numerical Results

We tested the correctness of our numerical approximations by setting δ(x) = 1, this
returns the original system found in [15] plus x-direction diffusion. Due to the Neumann
boundary conditions in the horizontal direction, the solution will in fact be independent
of x. Suppose the convective adjustment functions are inactive (we’ll soon see this is in
fact possible within a certain domain of the parameter space when using F2), the system
in temperature-salinity formulation then reads:

∂T

∂t
=

1

Ph

∂2T

∂x2
+

1

Pv

∂2T

∂z2
− (iresT T − T (z))

∂S

∂t
=

1

Ph

∂2S

∂x2
+

1

Pv

∂2S

∂z2
− (iresS S − S(z)).
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Where T (z) = cos(2πz) and S(z) = γ cos(πz). To find the steady state solution we first
turn to the associated homogeneous system, which is given by the equations:

0 =
1

Ph

∂2T

∂x2
+

1

Pv

∂2T

∂z2
− iresT T

0 =
1

Ph

∂2S

∂x2
+

1

Pv

∂2S

∂z2
− iresS S.

The weak formulation of the temperature problem is given by

0 =

∫
Ω

T̂

Ph

∂2T

∂x2
+

T̂

Pv

∂2T

∂z2
− iresT T̂ TdΩ =

∫
Ω

− 1

Ph

∂T

∂x

∂T̂

∂x
− 1

Pv

∂T

∂z

∂T̂

∂z
− iresT T̂ TdΩ

= −(
1

Ph
⟨∂T
∂x

,
∂T̂

∂x
⟩+ 1

Pv
⟨∂T
∂z

,
∂T̂

∂z
⟩+ iresT ⟨T, T̂ ⟩).

Since this has to hold for any T̂ it also must hold for T̂ = T and thus we have

1

Ph
⟨∂T
∂x

,
∂T

∂x
⟩+ 1

Pv
⟨∂T
∂z

,
∂T

∂z
⟩+ iresT ⟨T, T ⟩ = 0

notive that all the terms in the above equation have the same sign, it then follows that

Thom(x, z) =

{
0 if iresT ̸= 0

αT if iresT = 0.

We can analogously derive that for the salinity

Shom(x, z) =

{
0 if iresS ̸= 0

αS if iresS = 0.

For the particular solution, notice that cos(πz) and cos(2πz) both satisfy the boundary
conditions, we then guess a solution of the form

Tpart(x, z) = βT (x) cos(2πz)

Spart(x, z) = βS(x) cos(πz)

and upon substitution in the original system’s steady state equation we find that

1

Ph
β′′
T − (

4π2

Pv
+ iresT )βT + 1 = 0

1

Ph
β′′
S − (

π2

Pv
+ iresS )βS + γ = 0

which can readily be solved and, after application of the boundary conditions, gives

βT (x) =
Pv

iresT Pv + 4π2

βS(x) =
γPv

iresS + π2
.
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The analytical solution in the case of zero-convective adjustment (∂ρ∂z < 0) is thus given
by

T (z) =

{
Pv cos(2πz)
iresT Pv+4π2 if iresT ̸= 0
Pv cos(2πz)

4π2 + αT else
, S(z) =

{
γPv cos(πz)
iresS Pv+π2 if iresS ̸= 0
γPv cos(πz)

π2 + αS else.

There are two solutions because when iresS = 0 (resp. iresT = 0) the system is underdeter-
mined. The two solutions can in either case be made to coincide by adding the previously
used integral constraint, in which case we get

T (z) =
Pv cos(2πz)

iresT Pv + 4π2
, S(z) =

γPv cos(πz)

iresS Pv + π2

or, in the density-spiciness formulation

ρ(z) =
γPv cos(πz)

(ires+ + ires− )Pv + π2
− Pv cos(2πz)

(ires+ − ires− )Pv + 4π2

µ(z) =
γPv cos(πz)

(ires+ + ires− )Pv + π2
+

Pv cos(2πz)

(ires+ − ires− )Pv + 4π2
.

At this stage it is worth noting that

∂ρ

∂z
= − γπPv sin(πz)

(ires+ + ires− )Pv + π2
+

2πPv sin(2πz)

(ires+ − ires− )Pv + 4π2

so we notice that the activation of the convective adjustment depends both on the bifur-
cation parameter γ and on the vertical Peclèt number Pv (the only exception being when
iresT = iresS = 0). In fact, when using F2 the analytical solution holds in the domain given
by

γ ≤
2(ires+ + ires− )Pv + π2

(ires+ − ires− )Pv + 4π2

sin(2πz)

sin(πz)
, ∀ z ∈ [−1, 0].

The right hand side obtains its extrema at the boundaries, in particular its minimum is
located at z = −1 where

2π cos(−2π)

π cos(−π)
= −2,

thus the validity of the analytical solution (when using F2) is restricted to the domain

γ ≤ −2
2(ires+ + ires− )Pv + π2

(ires+ − ires− )Pv + 4π2
.

With all of this information at hand we can check the correctness of our numerical solutions
by comparing them with the analytical solution (see figure 2). Note that we should expect
second order convergence, which is indeed reflected in figure 3. A further confirmation
that everything is in fact correct comes from repeating a bifurcation diagram given in [15]
for F2, see figure 4.
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Figure 2: Analytical and numerical so-
lutions for γ = −10 and Pv = 10, using
F2.

Figure 3: Log plot of the (true) error
behaviour for γ = −10 and Pv = 10,
using F2.

Figure 4: A bifurcation diagram for
the coupled modified den Toom sys-
tem (no x-heterogeneity), using F2.
This structure is also present in the
one-dimensional version of the system,
treated in [15]. Here Pv = 103, nx = 5
and nz = 20. Note that the summation
was performed only over the vertical di-
rection.

Figure 5: A bifurcation diagram for the
uncoupled modified den Toom system
(no x-heterogeneity), using F1. This
structure, although present in the one-
dimensional system, is not shown in [15].
Here Pv = 103, nx = 5 and nz = 20.
Note that the summation was performed
only over the vertical direction.

3.5.2 Numerical Results when using F1

Throughout this subsubsection we treat the decoupled system (i.e. ires− = 0) with nx =
nz = 10 and as specified in section 2.1 we will use δ(x) = cos(πx2 ). Numerical continuation
for a value of Pv = 1 (small enough that no bifurcations occur in the one dimensional
system), reveals that in fact the addition of horizontal spatial heterogeneity and diffusion
causes no new bifurcations to occur, in spite of how large Ph is made. This is shown in
figure 6.

However when one increases Pv to 103, for Ph = 1 horizontal diffusion acts as a
smoothing factor: the bifurcations that would otherwise be present in the one dimensional
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model disappear and are instead replaced by sudden near-discontinuities (these are in fact
not proper discontinuities, in spite of appearing as such). See figure 7 for a comparison of
these scenarios.

Finally, using Ph = 100 and as before Pv = 103 we do observe some fragmented tipping
(see figures 8-9).

Figure 6: Bifurcation diagram for Pv = 1 = Ph (left) and Pv = 1, Ph = 103 (right). The
plot shows the values of both ρ and µ in the center of the domain (i.e. at x = −z = 1

2 ).
Notice the absence of bifurcations, this tells us that horizontal spatial heterogeneity and
diffusion alone creates no new bifurcations.

Figure 7: Bifurcation diagrams with Ph = 1, Pv = 103 and nx = nz = 10. The left hand
side plot has horizontal spatial heterogeneity, while the right hand side one doesn’t. It
is evident that in this scenario the horizontal spatial heterogeneity acts as a damping,
preventing bifurcations from occuring.
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Figure 8: Bifurcation diagram with Ph = 100 and Pv = 103 with horizontal spatial
heterogeneity (left). Detail of the first (fragmented) fold of the left hand side bifurcation
diagram (right). The latter can be compared with figure 9.

Figure 9: Detail of the first (leftmost) fold in the right hand side plot of figure 7 (i.e. for
a system with no horizontal spatial heterogeneity and Pv = 103). Note that we multiply
the summation by 10 due to the fact that we are comparing with a summation over the
entire domain rather than just the vertical dimension.

3.5.3 Numerical Results when using F2

In the coupled system (ires+ = −ires− = 1
2 ) when using F2, upon fixing Pv = 1 we again

observe the same results as for the decoupled system, that is: the addition of horizontal
spatial heterogeneity and diffusion results in no new bifurcations. See figure 10.

Setting Ph = 1 and subsequently Ph = 50 we repeat the continuation with nx = nz =
10 see figures 11 and 12. While the horizontal Peclet number is small, we get the same
bifurcation diagram (qualitatively) as in [15] (the number of back to back folds again
depends on the number of grid points), however we also notice that when the horizontal
Peclet number is large enough, a number of new bifurcations occur between the pre-
existing bifurcations. These may be spurious or they may be fragmented tipping, however
the key argument for the spuriousness of the bifurcations seen in figures 4 and 11 is the
dependence of their number on the number of grid points. We see no clear pattern in
the exact number of bifurcations between the pre-existing bifurcations, thus leading us to
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believe that this is in fact fragmented tipping.

Figure 10: Bifurcation diagram for the coupled system with horizontal spatial heterogene-
ity using Pv = 1, Ph = 1 (left) and Ph = 103 (right). Again this shows that no bifurcations
are caused by the simple addition of horizontal spatial heterogeneity and diffusion.

Figure 11: Bifurcation diagram for the
coupled system, using nx = nz = 10,
Ph = 1 and Pv = 103. We notice
no qualitative difference from the one-
dimensional case [15].

Figure 12: Bifurcation diagram for the
coupled system, using nx = nz = 10,
Ph = 50 and Pv = 103. Notice the ap-
pearance of several new folds between
the ones in figure 11.
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Figure 13: Detail of the bifurcations occur-
ring in figure 12 between the first and third
folds (starting from the top) in figure 11.

3.5.4 Discussion

We have seen that both the coupled and decoupled den Toom systems can exhibit frag-
mented tipping under appropriate choices of diffusion coefficients, when horizontal spatial
heterogeneity and diffusion is added to the system. This tells us that if any one pair of
fold bifurcations in either system are non-spurious, then we can expect non-spurious frag-
mented tipping to occur. This would then suggest that the multiple equilibria which are
found in e.g. the Veros global ocean model [11], would then also be non-spurious. It just
so happens that there is a model due to Bastiaansen [1], which has non-spurious multiple
equilibria. We will study a modification of this model in the next section.

4 Modified Bastiaansen model

In a recent article [1], Bastiaansen et al. propose a model for thermohaline circulation
based on a simpler ODE model due to Welander [17]. The model is derived starting from
the equations:

∂T

∂t
= Dh

∂2T

∂x2
+ kT (TA(x)− T )− κ(∆ρ)(T − T0(x))

∂S

∂t
= Dh

∂2S

∂x2
+ kS(SA(x)− S)− κ(∆ρ)(S − S0(x)).

Where T and S are now the temperature and salinity of the mid ocean, while TA (resp. SA)
represent the temperature (resp. salinity) of the atmosphere and T0 (resp. S0) represent
the temperature and salinity of the deep ocean. In the article, the function representing
the rate of exchange with the deep ocean used is

κ(∆ρ) =
κ

2
(1 + tanh(∆ρ− 1

2
))

where κ = 100. The system is then expressed in terms of ∆T = T −T0 and ∆S = S−S0,
and subsequently subtracted (resp. added) to obtain a system in terms of ∆ρ = ρ − ρ0

20



(resp. ∆µ = µ− µ0). We instead perform the subtraction and addition only, obtaining

∂ρ

∂t
= Dh

∂2ρ

∂x2
+ kρ(ρA(x)− ρ)− κ(ρ− ρ0)(ρ− ρ0(x))

∂µ

∂t
= Dh

∂2µ

∂x2
+ kµ(µA(x)− µ)− κ(ρ− ρ0)(µ− µ0(x)).

Next we discard the spiciness equation, and notice that when introducing a three-point
vertical grid, the non-diffusive terms in the density equation can in fact be rewritten as

kρ(ρA(x)− ρ)− κ(ρ− ρ0)(ρ− ρ0(x)) = ∆z[kρ(
ρA(x)− ρ

∆z
)− κ(

ρ− ρ0
∆z

∆z)(
ρ− ρ0(x)

∆z
)]

≈ ∆zD̃v
∂

∂z
(κ(

∂ρ

∂z
∆z)

∂ρ

∂z
) =: Dv

∂

∂z
(C(

∂ρ

∂z
)
∂ρ

∂z
)

where the vertical diffusion coefficient Dv = D̃v∆z = ∆z and using the boundary condi-
tions

C(
∂ρ

∂z
)
∂ρ

∂z

∣∣∣∣
z=0

= kρ(ρA(x)− ρ)

∣∣∣∣
z=0

, ρ

∣∣∣∣
z=−1

= ρ0(x).

We thus rewrite the equation as

∂ρ

∂t
=

1

Pv

∂

∂z
(C(

∂ρ

∂z
)
∂ρ

∂z
) +

1

Ph

∂2ρ

∂x2

where we have relabelledDh = 1
Ph

andDv = 1
Pv

, and notice finally that in fact we obtained
the same system as the modified den Toom system, except for the spatial heterogeneity
term, with ires+ = 0 and with zero z-diffusion. We thus add these back into the equation
and obtain the full model:

∂ρ

∂t
=

1

Pv

∂

∂z
(ires∆ + C(

∂ρ

∂z
)
∂ρ

∂z
)− (ires+ ρ− ρ(z)) +

1

Ph

∂2ρ

∂x2
(5)

where ires∆ ∈ {0, 1}. This system is nearly identical to the uncoupled system of the previous
section, but now with boundary conditions given by

∂ρ(x = −1, z)

∂x
=

∂ρ(x = 1, z)

∂x
= 0

C(
∂ρ(x, z = 0)

∂z
)
∂ρ(x, z = 0)

∂z
= kρ(ρA(x)− ρ(x, z = 0))

ρ(x, z = −1) = ρ0(x)

Similarly to what was done in the previous section (resp. in [1]) we take

ρ0(x) = 0

ρ(z) = δres(γ1 cos(πz)− cos(2πz))

ρA(x) =
1

2
(2 + γ2(1 + cos(

πx

2
))).

where also δres ∈ {0, 1} now serves merely as a means to remove the den Toom spatial
heterogeneity from the system.
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4.1 Discretization

It may at first seem unnecessary to provide a discretization of equation (5) as we derived
this from a ”discretized” system, however it is worth noting that what we have so far
interpreted as a discretization is a very rough one. As in the previous section we will
again first consider the system without convective adjustment and discretise the convective
adjustment separately. We will also use a non-uniformly spaced grid, since conceptually
this resembles the Bastiaansen system more closely. The grid will be stretched via the
map

ξ(z) = −e−αz − 1

eα − 1

(recall that z ∈ [−1, 0]). One can easily check that in fact ξ(0) = 0 and ξ(−1) = −1. The
parameter α, responsible for the intensity of the stretching will henceforth be referred to
as the stretching factor.

4.1.1 Without Convective Adjustment

Figure 14: An example of the type of stretched grid used in the discretization. The vertical
volume contribution to the horizontal discretization is labelled ∆zi, the vertical volume
contribution to the vertical discretization is labelled ∆zi while the horizontal contribution
is equal in both cases and labelled ∆x.

In absence of convective adjustment, system (5) reads

∂ρ

∂t
=

ires∆

Pv

∂2ρ

∂z2
− (ires+ ρ− ρ(z)) +

1

Ph

∂2ρ

∂x2
.
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Again using the Gauss theorem one obtains∫∫
ires∆

Pv

∂2ρ

∂z2
− (ires+ ρ− ρ(z)) +

1

Ph

∂2ρ

∂x2
dV =

∫
(
ires∆

Pv

∂ρ

∂z
+

1

Ph

∂ρ

∂x
) · n⃗dS

−
∫∫

(ires+ ρ− ρ(z))dV

which can be discretized giving∫
Sc

(
ires∆

Pv

∂ρ

∂z
+

1

Ph

∂ρ

∂x
) · n⃗dS −

∫∫
Vc

(ires+ − ρ(z))dV ≈

ires∆

∆x

Pv
(
ρn − ρc
∆zn

− ρc − ρs
∆zs

) +
∆zc
Ph

(
ρe − ρc
∆x

− ρe − ρc
∆x

)− (ires+ ρc − ρ(zc))∆x∆zc

where we choose a non-uniform grid in the z-direction and ∆zc = 1
2 (∆zn + ∆zs). The

matrices are then

Dx =


− 1

Ph∆x
1

∆xPh
1

∆xPh
− 2

∆xPh

1
∆xPh

. . .
. . .

. . .
1

∆xPh
− 2

∆xPh

1
∆xPh

1
∆xPh

− 1
∆xPh

 ∈ Rnx×nx

where we have used that along the horizontal boundaries ∂ρ
∂x = 0 =⇒ ρe = ρc = ρw, and

Dz = ires∆


d1

∆x
∆z1Pv

∆x
∆z1Pv

d2
∆x

∆z2Pv

. . .
. . .

. . .
∆x

∆znz−2Pv
dnz−1

∆x
∆znz−1Pv
∆x

∆znz−1Pv
dnz

 ∈ Rnz×nz

with di = (− ∆x
Pv∆zi−1

− ∆x
Pv∆zi

), dnz = (− ∆x
Pv∆znz−1

− 2∆x
Pv∆znz

) and where we have used that

at the south boundary ρ = 0 =⇒ ρc+ρs

2 = 0 =⇒ ρs = −ρc. We left the north boundary
condition out as it is nonlinear, this will be added later as an equation to the system.
Again the discretized Laplacian is then

L̃ = (∆z ⊙ Inz)⊗Dx +Dz ⊗ Inx.

In order to include the north face’s boundary conditions we define

i0N =


1 0 . . . 0

0 0
...

...
. . . 0

0 . . . 0 0

 , i1N =


0 0 . . . 0

0 1
...

...
. . . 0

0 . . . 0 1


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so that
I0N = i0N ⊗ Inx, I1N = i1N ⊗ Inx.

Finally redefining
L = I1N · L̃

the discretized system without the convective adjustment and in absence of the northern
boundary condition then reads

∆x∆Z
d

dt
ρ = Lρ− (I1N ⊙∆z∆x)(ires+ ρ+ ρ).

with ∆Z = (∆z ⊙ Inz)⊗ Inx.

4.1.2 Discretization of the Convective Adjustment

Again as for the modified den Toom system we note that∫∫
1

Pv

∂

∂z
(C(

∂ρ

∂z
)
∂ρ

∂z
)dV =

∫
1

Pv
C(

∂ρ

∂z
)
∂ρ

∂z
dS

which we can discretize again as

1

Pv

∫
Sc

C(
∂ρ

∂z
)
∂ρ

∂z
dS ≈ ∆x

Pv
(C(

ρn − ρc
∆zn

)
ρn − ρc
∆zn

− C(
ρc − ρs
∆zs

)
ρc − ρs
∆zs

)

=
κ∆x

2Pv
((1 + tanh(

ρn − ρc
∆zn

− 1

2
))
ρn − ρc
∆zn

− (1 + tanh(
ρc − ρs
∆zs

− 1

2
))
ρc − ρs
∆zs

).

Ignoring the north boundary condition and again using that at the southern boundary
ρc+ρs

2 = 0 =⇒ ρc = −ρs, we define the matrices

cn =


− 1

∆z0
1

∆z1
− 1

∆z1
. . .

. . .
1

∆znz−1
− 1

∆znz−1

 , cs =


1

∆z1
− 1

∆z1
. . .

. . .
1

∆znz−1
− 1

∆znz−1
2

∆znz


so that

Cn = cn ⊗ Inx, Cs = cs ⊗ Inx.

Finally define

K̃(ρ) =
∆xκ

2Pv
((⃗1 + tanh(Cnρ−

1

2
1⃗))⊙ (Cnρ)− (⃗1 + tanh(Csρ−

1

2
1⃗))⊙ (Csρ))

K(ρ) = I1N · K̃(ρ).

As for the north boundary condition, at each point in the x direction, this can be written
as

kρ(ρA(xc)−
ρn + ρc

2
)− κ

2
(1 + tanh(

ρn − ρc
∆z0

− 1

2
))
ρn − ρc
∆z0

= 0
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so, defining

cavg =


1
2

1
2
0 0

. . .
. . .

0 0
0

 ∈ Rnz×nz, Cavg = cavg ⊗ Inx

in matrix form this would translate to

kρ(ρA(x)− Cavgρ)−
κ

2
(⃗1 + tanh(Cnρ−

1

2
1⃗))⊙ (Cnρ) = 0

where clearly now ρA(x) = (ρA(x1), . . . , ρA(xnx), 0, . . . , 0)
T . Define

N(ρ) = kρ(ρA(x)− Cavgρ)−
κ

2
I0N (⃗1 + tanh(Csρ−

1

2
1⃗))⊙ (Csρ),

then the system in matrix form is given by

M
d

dt
ρ = Lρ− I1N∆x∆Z(ires+ ρ+ ρ) +K(ρ) +N(ρ)

where the mass matrix is now

M =

[
0 0
0 I(nx−1)·(nz−1)

]
∆x∆Z.

The discrete Jacobian matrix is now

Df(ρ) = L− I1N∆x∆Zires+ +K ′(ρ) +N ′(ρ)

where

K ′(ρ) = I1N
∆xκ

2Pv
((⃗1 + tanh(Cnρ−

1

2
1⃗))⊙ Cn + (sech2(Cnρ−

1

2
1⃗)⊙ Cn)⊙ (Cnρ)

− (⃗1 + tanh(Csρ−
1

2
))⊙ Cs − (sech2(Csρ−

1

2
1⃗)⊙ Cs)⊙ (Csρ))

and

N ′(ρ) = −kρCavg −
κ

2
I0N ((⃗1 + tanh(Csρ−

1

2
1⃗))⊙ Cs

+ (sech2(Cnρ−
1

2
1⃗)⊙ Cs)⊙ (Csρ)).

4.2 Linearization and Eigenvalue Analysis

Repeating the analogous steps as in section 2.2, we may obtain the linearized system as

∂∆ρ

∂t
=

1

Pv

∂

∂z
((ires∆ + C + C

′ ∂ρ

∂z
)
∂∆ρ

∂z
)− ires+ ∆ρ+

1

Ph

∂2∆ρ

∂x2
.
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The boundary conditions however are different now, at the south boundary

ρ+∆ρ

∣∣∣∣
z=−1

= 0

so that

∆ρ

∣∣∣∣
z=−1

= 0,

while at the north boundary we have that

C(
∂ρ

∂z
+

∂∆ρ

∂z
)(
∂ρ

∂z
+

∂∆ρ

∂z
)

∣∣∣∣
z=0

= C
∂ρ

∂z
+ (C + C

′ ∂ρ

∂z
)
∂∆ρ

∂z

∣∣∣∣
z=0

= kρ(ρA(x)− ρ)− kρ∆ρ

∣∣∣∣
z=0

so that

(C + C
′ ∂ρ

∂z
)
∂∆ρ

∂z

∣∣∣∣
z=0

= −kρ∆ρ

∣∣∣∣
z=0

, =⇒ ∂∆ρ

∂z

∣∣∣∣
z=0

=
−kρ∆ρ

C + C
′ ∂ρ
∂z

∣∣∣∣
z=0

(recall in particular that kρ = 1). Similarly to what was done for the modified den Toom
system we again assume a solution of exponential form and check definiteness of the linear
self-adjoint operator

L =
1

Pv

∂

∂z
(ires∆ + C + C

′ ∂ρ

∂z
)
∂

∂z
+

1

Ph

∂2

∂x2
− ires+

under the inner product
∫
Ω
f̂gdΩ on a space of functions which now have zero-flux bound-

ary conditions in the horizontal direction and the above boundary conditions in the vertical
direction. We then have

(λ+ ires+ )

∫
Ω

|∆ρ|2 dΩ =

∫
Ω

∆ρ∇ ·

([
1
Pv

(ires∆ + C + C
′ ∂ρ
∂z ) 0

0 1
Ph

] [
∂∆ρ
∂z
∂∆ρ
∂x

])
dΩ

=

∫
Γ

∆ρ

([
1
Pv

(ires∆ + C + C
′ ∂ρ
∂z ) 0

0 1
Ph

] [
∂∆ρ
∂z
∂∆ρ
∂x

])
· n⃗dΓ

−
∫
Ω

([
1
Pv

(ires∆ + C + C
′ ∂ρ
∂z ) 0

0 1
Ph

] [
∂∆ρ
∂z
∂∆ρ
∂x

])
·

[
∂∆ρ
∂z
∂∆ρ
∂x

]
dΩ

= − 1

Pv

(ires∆ + C + C
′ ∂ρ(x,0)

∂z )

(C + C
′ ∂ρ(x,0)

∂z )
|∆ρ(x, 0)|2

−
∫
Ω

([
1
Pv

(ires∆ + C + C
′ ∂ρ
∂z ) 0

0 1
Ph

] [
∂∆ρ
∂z
∂∆ρ
∂x

])
·

[
∂∆ρ
∂z
∂∆ρ
∂x

]
dΩ.

The mechanism which is responsible for any potentially new bifurcations is thus again self
sustaining diffusion. Notice that in this case the choice of ires∆ is nontrivial: if ires∆ = 0 we
should expect more or less the same structure as seen in the decoupled den Toom system,
whereas if ires∆ = 1 the self sustaining diffusion can cause new bifurcations to appear, due
to the north boundary condition term.
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4.3 Numerical Results

Using γ2 as continuation parameter, we first perform the continuation on an unstretched
grid. Again we notice that the exact number of back to back fold bifurcations depends on
the number of grid points. In this case the dependence is in the horizontal rather than
the vertical direction. See figures 15-17.

Figure 15: Bifurcation diagram for the
modified Bastiaansen system using 10
points in the horizontal direction and 3
points in the vertical direction.

Figure 16: Bifurcation diagram for the
modified Bastiaansen system using 6
points in the horizontal direction and 3
points in the vertical direction.

Figure 17: Bifurcation diagram for the
modified Bastiaansen system using 6
points in the horizontal direction and 6
points in the vertical direction.

Next, we fix the number of gridpoints to nx = 6, and nz = 3 for ease of continuation,
we then stretch the grid to see if this is of any help in obtaining a bifurcation diagram more
similar to that found in [1]. See figures 18-21. Observe that the greater the stretching
factor the closer the equilibrium curves become, however they don’t exactly approach
the bifurcation diagram we were looking for and this ends up making the continuation
unnecessarily difficult: the Newton iterations in the Moore Penrose scheme take a much
longer time to converge due to the closeness of other equilibria. The opposite is true when
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the stretching factor is taken to be very negative. Either way, stretching the grid does not
seem to have a qualitative effect on the system.

Figure 18: Bifurcation diagram for the
modified Bastiaansen system using a
grid stretched by a factor of 1.

Figure 19: Bifurcation diagram for the
modified Bastiaansen system using a
grid stretched by a factor of 10.

Figure 20: Bifurcation diagram for the
modified Bastiaansen system using a
grid stretched by a factor of −1.

Figure 21: Bifurcation diagram for the
modified Bastiaansen system using a
grid stretched by a factor of −10.

Finally, using ires∆ = 0.1 and (nx, nz) = (10, 6) on an unstretched grid, we turn on
the diffusion in the vertical direction. Figures 22 and 23 show the appearance of new
bifurcations, as expected from the analytical eigenvalue analysis.
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Figure 22: Bifurcation diagram for
the modified Bastiaansen with diffusion
turned on in the vertical direction.

Figure 23: Detail of the new bifurcations
(the rest of the bifurcation diagram is
not plotted).

4.4 Discussion

Firstly we would like to attempt to explain the dependancy of the number of folds on the
number of grid points. To that aim, note that a change of coordinates

ρ 7→ 10ρ+
z

2

transforms the convective adjustment function of this system back into the convective
adjustment function used in the decoupled den Toom system. For this (one-dimensional)
system a discrete version of the weak formulation was derived [15], this is

n2
z

Pv

nz−1∑
k=1

([1 + C + nzC ′ · (ρk+1 − ρk)][∆ρk+1 −∆ρk]
2) = (−ires+ + λ)

nz∑
k=1

|∆ρk|2.

From this equation it was argued that the diffusion feedback may operate at the level of
the interfaces and that the value of C would strongly depend on the resolution. In our
case the same mechanism is likely at play, however given the grid dependency is in the
horizontal direction, it would seem less likely that the resolution-dependency of C is what
is causing the multiple folds, as seen in figure 26 it is much more plausible that these are
due to the diffusion feedback acting at the interface level.

We have thus seen that a system which in one-dimension exhibits no spurious multiple
equilibria can in fact present what may be spurious equilibria when considered in two
spatial dimensions. This would suggest that in fact the analytical system may have some
bifurcations, which could then fragment as discussed in section 2.
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Figure 24: Three solution profiles at z = 0 (left) corresponding to the equilibria dotted in
red in the bifurcation diagram (right).

5 Spuriousness of the multiple equilibria in the origi-
nal den Toom models

The bifurcation structure we have seen so far is referred to in the literature as snaking.
The most typical form of these is due to a homoclinic orbit (see e.g. [7, 9]) forming in the
spatial dynamics of the system, however sometimes this has to do with Turing bifurcations
destabilising travelling fronts [2] or with localised Turing patterns that grow increasingly
larger in the spatial domain [12]. We thus check the den Toom systems in their original
formulation for the possibility of homoclinic orbits in the spatial dynamics and Turing
instabilities.

5.1 Spatial Dynamics of the den Toom model

Note that, dropping horizontal diffusion from system (1), we can rewrite its steady state
equation as

∂2ρ

∂z2
=

ires+ ρ+ ires− µ− ρ

1 + ∂ρ
∂zC

′(∂ρ∂z ) + C(∂ρ∂z )
Pv

∂2µ

∂z2
= −

∂µ
∂z

∂2ρ
∂z2C

′(∂ρ∂z )

1 + C(∂ρ∂z )
+

ires− ρ+ ires+ µ− µ

1 + C(∂ρ∂z )
Pv.

Now let x1 = ρ and x2 = µ, the above system can then be written as

ẋ1 = y1

ẏ1 =
ires+ x1 + ires− x2 − γ cos(πz) + cos(2πz)

1 + y1C ′(y1) + C(y1)
Pv

ẋ2 = y2

ẏ2 = −y2ẏ1C
′(y1)

1 + C(y1)
+

ires− x1 + ires+ x2 − γ cos(πz)− cos(2πz)

1 + C(y1)
Pv.
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This system is non-autonomous, however it is equivalent to the autonomous system given
by

ẋ1 = y1 (6a)

ẏ1 =
ires+ x1 + ires− x2 − γ cos(πz) + cos(2πz)

1 + y1C ′(y1) + C(y1)
Pv (6b)

ẋ2 = y2 (6c)

ẏ2 = −y2ẏ1C
′(y1)

1 + C(y1)
+

ires− x1 + ires+ x2 − γ cos(πz)− cos(2πz)

1 + C(y1)
Pv (6d)

ż = 1. (6e)

5.1.1 Decoupled case

Choosing ires+ = 1 and ires− = 0 in system (6) and discarding equations (6c) and (6d), we
obtain

ẋ = y =: f1(x, y, z)

εẏ =
x− γ cos(πz) + cos(2πz)

1 + y sech2(10y) + 50(1 + tanh(10y))
=: f2(x, y, z)

ż = 1 =: f3(x, y, z),

where we are again using F1, we have dropped the indices for notational simplicity, and
we have relabelled 1

Pv
=: ε since it is possible to interpret the vertical Peclet number as a

time scale parameter.
In the multiple time scales approach [8], the layer problem is found by changing the

time scale to τ = 1
ε t and taking the singular limit (ε → 0). This gives

ẋ = 0

ẏ =
x− γ cos(πz) + cos(2πz)

1 + y sech2(10y) + 50(1 + tanh(10y))

ż = 0.

from which we can obtain the critical manifold, given by

S = {(x, y, z) ∈ R3 | x = γ cos(πz)− cos(2πz)}.

However when one looks at the eigenvalue

∂

∂y
f2(x, y, z) =

(20y tanh(10y)− 501) sech2(10y)(x− γ cos(πz) + cos(2πz))

(1 + y sech2(10y) + 50(1 + tanh(10y)))2

it becomes clear that for (x, y, z) ∈ S, ∂f2
∂y = 0 and so

L = S.

That is: the subset of fold points of the critical manifold (i.e. L) is in fact the entire critical
manifold. Thus the lens of multiple time scales can say nothing about the dynamics of
the system.
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5.1.2 Coupled case

Using ires+ = 1
2 and ires− = − 1

2 in system (6) and again interpreting 1
Pv

=: ε as a time scale
parameter the layer problem is given by the system

ẋ1 = 0

ẏ1 =
1
2x1 − 1

2x2 − γ cos(πz) + cos(2πz)

1 + y1C ′(y1) + C(y1)

ẋ2 = 0

ẏ2 = −y2ẏ1C
′(y1)

1 + C(y1)
+

− 1
2x1 +

1
2x2 − γ cos(πz)− cos(2πz)

1 + C(y1)

ż = 0.

which has for equilibria

(x1, x2, y1, y2, z) = (x1, x1 − 2 cos((n+
1

2
)2π), y1, y2, n+

1

2
), n ∈ Z.

We henceforth consider z ∈ R/2Z for simplicity. The critical manifolds are then

S1 = {(x1, x2, y1, y2, z) ∈ R4 × R/2Z | x1 = x2 − 2, and z =
1

2
}

S2 = {(x1, x2, y1, y2, z) ∈ R4 × R/2Z | x1 = x2 + 2, and z =
3

2
}.

Next we have that

∂f2
∂y1

=− y1C
′′(y1) + 2C ′(y1)

1 + y1C ′(y1) + C(y1)
f2

∂f2
∂y2

=0

∂f4
∂y1

=− y2
(C ′(y1)

2 − (C(y1) + 1)C ′′(y1))f2 − (C(y1) + 1)C ′(y1)
∂f2
∂y1

C(y1) + 1

−
1
2 (x2 − x1)− (γ cos(πz) + cos(2πz)

1 + C(y1)
C ′(y1)

∂f4
∂y2

=− C ′(y1)

1 + C(y1)
f2,

note that for (x1, x2, y1, y2, z) ∈ Si we have that

∂f2
∂y1

=
∂f2
∂y2

=
∂f4
∂y1

=
∂f4
∂y2

= 0

and thus again
L1 = S1, L2 = S2.

So the analysis using geometric singular perturbation theory is invalid also in the coupled
case.
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5.2 Localized Turing Instability

Consider a reaction diffusion system of the form

∂U

∂t
= DU∇2U + f(U, V )

∂V

∂t
= DV ∇2V + g(U, V )

(where f and g are nonlinear). Suppose that (U, V ) is an equilibrium, the linearization of
the above system around this equilibrium is then

∂∆U

∂t
= DU∇2∆U + fU (U, V )∆U + fV (U, V )∆V

∂∆V

∂t
= DV ∇2∆V + gU (U, V )∆U + gV (U, V )∆V.

To this system, we guess a solution of the form (∆U,∆V ) = eλt+ikx. Substituting this in
the above, we may obtain a dispersion relation of the form

λ = h(k).

It then follows that the eigenvalue λ may be of different sign for different wavenumbers
k, implying that it is possible that only some eigenmodes (i.e. solutions to the linearized
system) may bifurcate. This situation defines a Turing bifurcation [14], which is often
responsible for pattern formation in the solutions of the original reaction-diffusion model.

In this section we explore the possibility of the presence of a localized Turing bifurcation
in the coupled den Toom system. This kind of situation can occur in reaction diffusion
systems with spatially varying coefficients, where some eigenmodes lose stability only
within a finite region of the spatial domain. This typically results in localized patterns
within that region. To this aim, let us define

J(z) =

[
−ires+ −ires−
−ires− −ires+

]
D(z) =

[
1 + C + C

′ ∂ρ
∂z 0

C
′ ∂µ
∂z 1 + C

]

M(z) =

[
(∂ρ∂z + ∂ρ2

∂z2 )C
′
+ (∂ρ∂z )

2C
′′

0
∂2µ
∂z2 C

′
+ C ∂µ

∂z
∂ρ
∂z C

′ ∂ρ
∂z

]
N(z) = 0

we may then write (∆ρ,∆µ) =: w, 1
Pv

=: ε2 and the linearized system (3) as

∂w

∂t
= ε2(D(z)

∂2w

∂z2
+M(z)

∂w

∂z
+N(z)w) + J(z)w. (7)

Further define B0(z) = D(z)−1J(z). Throughout this section we will use the following
theorem [5]:
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Theorem 5.1. Let 0 < ε ≪ 1 and assume that tr(B0(x))
2− 4 det(B0(x)) has only simple

zeros for all x ∈ [0, 1]. Further, assume stability to homogeneous perturbations, i.e.

tr(J(x)) < 0, det(J(x)) > 0 ∀x ∈ [0, 1]

Then, subject to a wave selection constraint, which can always be satisfied by sufficiently
small diffusion scale, there exists a non-homogeneous, bounded and nontrivial solution w
to equation (7) and homogeneous Neumann boundary conditions at x ∈ {0, 1} that grows
exponentially in time only within the interval T0 if

tr(B0(x)) > 0, [tr(B0(x))]
2 − 4 det(B0(x)) > 0, for all x ∈ T0, (8)

where T0 is the largest subset of [0, 1] where conditions (8) hold.

Note that Turing bifurcations have sofar only been observed in systems of 2 equations,
thus we can only check the coupled den Toom system. In this case det(J(x)) = 0, since
we picked ires+ = −ires− = 1

2 , however for the sake of argument we will pick

ires+ =
1

2
+ α

ires− = −1

2
+ α

for α ≪ 1. In this case we have

det(J(x)) = (
1

2
+ α)2 − (−1

2
+ α)2 = 2α > 0.

Figure 27 shows a bifurcation diagram for the aforementioned choice of ires+ and ires− , we
see that this is in fact qualitatively equivalent to the bifurcation diagram in section 2.4.1.
Finally, note that

cos(πz) = cos(−πz), cos(2πz) = cos(−2πz)

so in principle we could switch the domain to z ∈ [0, 1] and obtain the same results. Now
we have that

B0(z) = D(z)−1J(z) =

 1

1+C+C
′ ∂ρ
∂z

0

− C
′ ∂µ
∂z

(1+C+C
′ ∂ρ
∂z )(1+C)

1
1+C

[−ires+ −ires−
−ires− −ires+

]

=

 − ires+

1+C+C
′ ∂ρ
∂z

− ires−

1+C+C
′ ∂ρ
∂z

ires+ C
′ ∂µ
∂z −ires− (1+C+C

′ ∂ρ
∂z )

(1+C+C
′ ∂ρ
∂z )(1+C)

ires− C
′ ∂µ
∂z −ires+ (1+C+C

′ ∂ρ
∂z )

(1+C+C
′ ∂ρ
∂z )(1+C)


so that

det(B0(z)) =
((ires− )2 − (ires+ )2)

(1 + C)(1 + C + C
′ ∂ρ
∂z )

tr(B0(z)) =
ires− C

′ ∂µ
∂z − ires+ (2 + 2C + C

′ ∂ρ
∂z )

(1 + C)(1 + C + C
′ ∂ρ
∂z )

.
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Figure 25 shows the points at which condition (8) is verified for the perturbed system,
when using Cn to numerically approximate the condition.

Figure 25: Bifurcation diagram for the perturbed coupled den Toom system with nz = 20
and α = 10−3 (left). Points at which condition (8) is verified when using Cn (right, red).

Note that for γ > 1 the localized instability is considerably small and thus the condition
is likely only verified due to numerical accuracy. The same holds on the lower side of the
fold bifurcations. The localized instability seems to only really occur at a point. This
explains the absence of visible patterns in the solutions. This pointwise instability travels
(as γ is varied) at each successive fold a distance 1

nz from z = −1 to z = 0, and regains
stability along the stable branches of the fold bifurcations. The localized Turing instability
would however seem to overlap with the area in the bifurcation diagram where the system
(in absence of horizontal diffusion) has a persistent Hopf bifurcation, this could suggest
that the snaking is due to the destabilisation of a yet undetected travelling wave (see e.g.
[3, 6]). The structure of the snaking however is particular: the equilibrium leaves the
snaking region in the opposite direction from where it came, this has been observed near
codimension 3 bifurcations [13] and is dubbed twisted snaking.

6 Conclusion

In section 3, we have shown that if there are any non-spurious bifurcations in the den
Toom models, these may exhibit fragmented tipping if more than one spatial dimension
(with relative heterogeneity and diffusion) is accounted for. Next, in section 4 we observed
how a related system which in one dimension does not exhibit spurious bifurcations, in
two dimensions exhibits a very similar bifurcation structure to that of the den Toom
models, which following the arguments made in [15] would also seem to be spurious. It
is worth noting at this stage that an analytical solution was found in [15] when using
the Heaviside step function as convective adjustment, so in principle fragmented tipping
could be causing some of the multiple equilibria observed in [11]. In section 5.1 have also
attempted to check if there is any bifurcations in the spatial dynamics, as these may cause
the snaking we observe, however this route proves to be inconclusive as it requires insight
from the theory of non autonomous dynamical systems. Finally in section 5.2 we found
what would appear to be a localised (pointwise) Turing bifurcation, which further study
may show is responsible for the occurrence of the snaking.
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From an Oceanographic standpoint however, it still holds that the multiple equilibria
are due to the convective adjustment. This is an artificial implementation in large scale
ocean circulation models to prevent an unstable stratification from occurring. Perhaps
a better representative conceptual model to study the physics underlying the effects of
increased freshwater forcing on the AMOC would come from modifying a differentially
heated lid-driven cavity [4] to include salinity and freshwater forcing.
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