
Lagrangian Particle Tracking in
Fluids Using Smart Devices

Bachelor Thesis

July 2024

Author:
Martin Opat

First Supervisor:
Dr. Christian Kehl

Second Supervisor:
Dr. Julian Köllermeier

Page 1 of 36

Abstract

The demand for fluid simulations is growing, driven by the need for advanced
solutions in climate adaptation, local water management, and economical-industrial
use cases. Such applications underscore the critical role of accurate and localized
fluid flow analysis in environmental and industrial scenarios.
This research aims to design and implement a fluid simulation using a compiled
language to enhance efficiency and scalability. The transition to compiled lan-
guages is motivated by the need to reduce the computational overhead associated
with interpreted languages, making the simulations more practical for various ap-
plications. Additionally, the emergence of powerful yet resource-constrained smart
devices, alongside the proliferation of wireless devices, further expands the scope of
these applications.
The subsequent software evaluation focuses on operational efficiency, examining pro-
cessing speed and effectiveness under resource-limited conditions typical of smart
devices with lower computational resources. This analysis demonstrates that fluid
simulations involving up to half a million particles are feasible at interactive frame
rates on such devices. The successful implementation underlines the potential for
deploying advanced simulation tools directly on mobile platforms, providing a ro-
bust tool for local decision-making in environmental and industrial scenarios.

Page 2 of 36

Acknowledgments

I would like to thank my supervisor, Dr. Christian Kehl, for his guidance and support
throughout the research process and for providing the necessary resources and feedback.
I would also like to thank my second supervisor Dr. Julian Köllermeier, for his insightful
feedback.
The use of Grammarly was employed to proofread this document.

Page 3 of 36

Data Privacy

This research involves the development and performance testing of a fluid simulation An-
droid application. All testing and data collection were conducted locally and without the
involvement of 3rd parties or 3rd party devices. Thus, no personal identifiable information
or sensitive data from other individuals was collected.

The data necessary to evaluate the performance of the application is only collected by a
version of the application that was tailored for testing purposes. The release version of
the application does not collect any data.

The application requires access to files stored on the device. The user is prompted to
manually pick the files and folders to which the application is granted read access. The
application does not access files that the user has not explicitly selected. The data read
from the files is used solely to run the fluid simulation and is not stored for any longer
than is strictly necessary.

This research complies with relevant data protection regulations, including GDPR and
the Data Privacy Policy of the University of Groningen.

For any concerns or questions regarding data privacy, please contact:
Martin Opat
m.opat@student.rug.nl
University of Groningen

Page 4 of 36

Contents

1 Introduction 6

2 Literature review 8

3 Methods 10
3.1 Data . 10
3.2 Simulation method . 10

3.2.1 Runge-Kutta 4th order . 10
3.2.2 Particle advection . 11

3.3 Taking measurements . 12

4 Implementation 13
4.1 Android Native C++ implementation 13
4.2 File input . 13
4.3 Graphics . 14

4.3.1 Shader setup . 14
4.3.2 Particle rendering . 14
4.3.3 Vector field rendering . 14

4.4 Simulation . 15
4.5 Third-party libraries . 16

5 Results 17
5.1 Performance comparison . 17

5.1.1 Render time . 17
5.1.2 Simulation compute time 18
5.1.3 File loading time . 19
5.1.4 Application cycle time . 19
5.1.5 Wall clock time . 20

5.2 Application cycle composition . 20
5.2.1 Sequential method . 21
5.2.2 Parallel method . 21
5.2.3 GPU method . 22

5.3 Memory usage . 22

6 Discussion 24
6.1 Performance comparison . 24
6.2 Application cycle composition . 25
6.3 Memory usage . 25
6.4 Bottlenecks . 26
6.5 Impact . 27
6.6 Future work . 28

7 Conclusion 29

8 References 30

Page 5 of 36

Appendix A 32
Implemented visualization techniques 32

Appendix B 35
Raw measured data . 35
Processed data . 35
Error Analysis . 35
Glossary . 35
Acronyms . 36

List of Figures

2.1 A simple example of a fluid simulation using the Smooth Par-
ticle Hydrodynamics algorithm [2]. Image from [12] 8

4.1 The communication between the Java-based implementation
and the native C++ implementation. 13

4.2 The rendering pipeline of the application. 15
5.1 The graph on the left shows the render time for all three meth-

ods, while the graph on the right shows the same data plotted
on a logarithmic scale. 17

5.2 The graph on the left shows the simulation time for all three
methods, while the graph on the right shows the same data
plotted on a logarithmic scale. 18

5.3 Simulation time per particle for the three methods plotted on
a logarithmic scale. 18

5.4 File loading time for the three methods plotted on a logarithmic
scale. 19

5.5 The graph on the left shows the application cycle time for all
three methods, while the graph on the right shows the same
data plotted on a logarithmic scale. 19

5.6 The graph on the left shows the wall clock time for all three
methods, while the graph on the right shows the same data
plotted on a logarithmic scale. The red dashed line represents
the 60 fps threshold. 20

5.7 Composition of the application cycle for the sequential method. 21
5.8 Composition of the application cycle for the parallel method. . 21
5.9 Composition of the application cycle for the GPU method. . . . 22
5.10 Memory usage for the GPU method for 250 000 particles. 22
7.1 Images of the fluid simulation Android application for 250 000

particles. 29
A.1 Simple vector field visualization technique where vectors are

rendered as straight lines colored based on the vector’s direction. 32
A.2 3D Texture slicing visualization technique. 33
A.3 Line integral convolution visualization technique. 34

Page 6 of 36

1 Introduction

In the 18th century, Joseph-Louis Lagrange developed a mathematical model to describe
the motion of fluids. This approach treats the fluid as a set of discrete particles, each car-
rying a certain amount of mass, velocity, and possibly other relevant physical properties.
Later, in the 19th century, Claude-Louis Navier and George Gabriel Stokes developed a
set of equations to describe the motion of fluids. These equations are now known as the
Navier-Stokes equations and are the basis for the Eulerian grid-based approach to fluid
simulation [1]. The scope of application of these models was expanded by the develop-
ment of computers in the 20th century. These applications include weather forecasting,
nuclear reactor cooling supplies modeling, and modeling oil spills in marine environments.
In the field of physics fluid simulations, many algorithms, such as Smoothed Particle Hy-
drodynamics [2], the Material Point Method[3], and Position-Based Fluids [4], have been
developed to simulate the motion of fluids [1].

Today’s technological landscape sees a widespread use of wireless, portable devices across
various fields. These devices often face constraints in computational resources, impacting
their ability to perform complex tasks such as fluid simulations in real-time. However,
the need to produce such simulations is increasingly sought after in today’s digital era.
In such situations where portability and real-time data are essential, especially when
precision is not vitally important, the ability to perform fluid simulations on portable
devices is crucial. More information on this topic and the current state-of-the-art is
provided in Section 2.

Smart device(s) typically have limited computational resources, which restrict the com-
plexity of data structures and processes they can handle. This limitation is inherent to
their design; unlike PCs, smart device(s)’ system-on-chip architecture integrates essential
components into one unit, preventing component upgrades. Therefore, addressing these
constraints requires innovative software solutions.

A substantial portion of physics simulation software is developed using Python due to the
language’s accessibility and convenience. However, this choice proves inefficient for use
in smart device(s) with low computational resources due to Python’s high computational
overhead and reduced performance [5].

This research aims to fill the gap between computational physics and computer science by
developing a high-performance fluid simulation in a compiled language suitable for devices
with limited resources. The main goal is to create such a fluid simulation application for
Android devices. The research seeks to determine the maximum number of particles
that can be accurately simulated at interactive framerates on these devices. In doing
so, the research aims to challenge the current limitations and expand the capabilities of
fluid simulations on smart device(s), thus impacting fields where real-time simulation on
portable devices is critical.
The research aims to answer the following research questions:

1. What is the maximum amount of traced particles that can be simulated in
a Double-Gyre model on a smart device(s), while maintaining 60 frames
per second?

2. What is the long-term operational efficiency of the Double-Gyre model
simulation on smart device(s)?

Page 7 of 36

Upon fully answering the research questions, the research aims to make the following
contributions to the field of fluid simulations:

1. A new perspective on the performance of Euler-Lagrange fluid simula-
tions on smart device(s).

2. A simulation and visualization software of fluid-suspended tracer parti-
cles deployable on Android platforms.

3. A conclusion on the computational feasibility, as well as the limits and
constraints of such simulations on smart device(s).

Page 8 of 36

2 Literature review

As the demand for real-time fluid simulations grows, so does the need to optimize com-
putational resources, especially in smart device(s). This section will discuss the current
practices and challenges in implementing fluid simulations on such devices, discussing the
transition from Python-based to more efficient compile language-based implementations.

Smart device(s) typically have lower computational power than modern PCs, which fea-
ture higher memory capacities and faster processors. Their system-on-chip architecture
integrates essential components like the CPU and memory, limiting upgrade possibilities
and affecting performance [6]. Despite these hardware limitations, there is an increasing
demand to run complex simulations, such as Lagrangian and Eulerian models, on such
devices for applications in emergency services, augmented reality, or hydroelectric power
plants. However, many existing simulation models are not optimized for mobile devices.
This lack of optimization is primarily due to using typical numerical programming lan-
guages like FORTRAN, MatLab, or Python. These languages are designed with principles
that assume the availability of substantial memory and compute resources, which often
conflict with the constraints of mobile platforms [5].

Attempts have been made to optimize the Python implementations, including Just-In-
Time (JIT) compilation into C [7][8] and vectorization [9]. While these methods help
significantly to improve performance, they are still less efficient than if the models were
developed in compiled languages such as C or C++. With the optimizations implemented,
the reduced efficiency can also be seen in the memory usage, which is still handled by the
Python runtime environment [10].

Regardless of whether a simulation is developed in Python or C++, the underlying al-
gorithms remain the same. Common algorithms used for fluid simulations are Smooth
Particle Hydrodynamics (SPH), the Material Point Method (MPM), and Position Based
Fluids (PBF) [11]. All three of these models are based on the Lagrangian approach to
fluid simulation. Figure 2.1 shows a simple example of such a simulation.

Figure 2.1: A simple example of a fluid simulation using the Smooth Particle Hydrody-
namics algorithm [2]. Image from [12]

In SPH, the fluid is modeled as a set of particles, each representing a fluid volume with
associated properties such as mass, position, and velocity. These particles interact based
on their relative distances, employing a smoothing kernel function to approximate phys-
ical quantities and their gradients [2]. This function ensures that the influence of each
particle decreases smoothly with distance, providing a mesh-free method to solve the
fluid dynamics equations [13]. SPH is particularly effective in simulating complex fluid
behaviors such as splashing and swirling motions.

Page 9 of 36

The MPM method integrates both Lagrangian and Eulerian frameworks, facilitating sim-
ulations that involve large deformations and interactions between multiple phases of mat-
ter. Particles represent material points carrying mass and velocity, while a background
Eulerian grid handles the computation of gradients and other properties. This dual ap-
proach leverages the advantages of particle dynamics for tracking material continuity and
an Eulerian grid for numerical stability and efficient handling of large deformations [3].

In PBF, the interaction mechanism among particles is similar to SPH but emphasizes
maintaining the correct density to enforce fluid incompressibility. Instead of integrating
forces, PBF adjusts particle positions directly based on density constraints. This approach
ensures that the simulated fluid maintains its incompressibility, making PBF particularly
effective in real-time applications where rapid computations and robust handling of com-
plex fluid interactions are crucial [4].

Another method, the Particle-In-Cell (PIC) method, combines the Lagrangian and Eule-
rian approaches by simulating a set of particles that interact with a spatially and tem-
porally varying vector field defined over a fixed Eulerian grid. The particles are treated
as entities possessing physical properties such as mass or electric charge. The particle’s
properties influence the vector field based on a specific weighting scheme, which helps de-
termine the field’s characteristics at each point. The PIC method is particularly effective
in simulating the behavior of plasmas, where the interactions between particles and fields
are essential to understanding the plasma’s dynamics [14]. Despite its primary applica-
tion in plasma simulations, the PIC method’s foundational principles equally apply to
fluid dynamics. This adaptability allows it to model various field values such as electric
currents, density distributions, or fluid velocities using the Eulerian grid while tracing
particles interacting with the grid in a Lagrangian frame.

The development and deployment of the above simulation methods on mobile devices rep-
resent a significant shift in computational science. Traditionally, the implementation of
these simulations for mobile platforms has already been developed in low-level program-
ming languages like C or C++ [15]. And yet, many of these implementation approaches
offload heavy computations to remote High-Performance Computing platforms, utilizing
the mobile device merely as a frontend [16]. Contrary to this common practice, the pri-
mary research goal of this thesis is to explore and develop methods that enable these
complex simulations to be conducted entirely on smart device(s).

The discussed simulation methods each provide unique advantages and need to be chosen
based on the specific requirements of the simulation task, such as the need for accuracy,
computational efficiency, or the ability to handle particular fluid or material behavior.
Furthermore, each method handles the physics of fluid and material interactions dif-
ferently, illustrating that these are distinct approaches and not interchangeable. These
distinctions make each method suitable for particular types of simulations, depending on
the goals and constraints of the project.

The domain of Lagrangian fluid simulations on smart device(s) using native languages is
underexplored and thus underdeveloped. However, existing open-source projects such as
Ocean Parcels [17] provide a reference or a starting point for own approaches.

Page 10 of 36

3 Methods

3.1 Data

The specific physics use case simulated in this research is the Double-Gyre model [18]. The
Double-Gyre model is a well-known test case in computational fluid dynamics consisting
of two counter-rotating gyres in a rectangular basin. It is commonly used to evaluate the
performance of fluid simulations. The model’s hydrodynamic velocity field is defined as
an Eulerian grid. The grid is precomputed and stored in a NetCDF [19] dataset format.
The dataset is loaded from files and used as input for the Lagrangian particle tracking
simulation.

The dataset comprises a 3D hydrodynamic velocity field derived from the analytical so-
lution of the Double-Gyre model [20], covering a period of one year. It is split into daily
files, each file encapsulating the velocity field along one of the axes (x, y, or z). The
spatial resolution of the dataset is specified at 539 × 269 × 28 grid vertices in the x, y,
and z directions, respectively, with uniform spacing between the grid points. Each data
point is stored as a 32-bit floating-point number in SI units.

3.2 Simulation method

The simulation relies on a Lagrangian-Eulerian approach. The fluid flow is represented
by tracer particles that move according to the velocity field defined on an Eulerian grid.
The velocity field is interpolated from the Eulerian grid to the particle positions using
trilinear interpolation. The particles advect through the fluid using the velocity field, and
their positions are updated at each time step.

The numerical method employed in this research is the Runge-Kutta 4th order (RK4)
method. RK4 is an iterative numerical method that offers higher accuracy in solving
differential equations compared to more straightforward, first-order methods like Euler’s
method. The choice of RK4 is driven by its superior precision and robustness in main-
taining stability under various simulation conditions. This method is particularly favored
in computational fluid dynamics for its effectiveness in rapidly changing dynamic systems
[21].

3.2.1 Runge-Kutta 4th order

The RK4 method addresses the initial value problem defined by:

dy

dt
= f(t, y), y(t0) = y0 (3.1)

where y is the unknown function to be approximated, f is a known function, t is the
independent variable, and y0 is the initial value of y at t0. The following equations define

Page 11 of 36

the Runge-Kutta 4th order method [21]:

k1 = hf(tn, yn) (3.2)

k2 = hf(tn +
h

2
, yn +

k1
2
) (3.3)

k3 = hf(tn +
h

2
, yn +

k2
2
) (3.4)

k4 = hf(tn + h, yn + k3) (3.5)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (3.6)

tn+1 = tn + h (3.7)

where h is the step size, and yn, and tn are the approximations of y and t at the n-th
time step, respectively. As we can see, in equations (3.2)-(3.7), this method aggregates
the increments from four intermediary steps, which significantly enhances the accuracy of
the solution.

3.2.2 Particle advection

Particle advection dictates the physics behind the movement of particles in a fluid. The
following equation gives the advection operator in Cartesian coordinates [22]:

u · ∇ = ux
∂

∂x
+ uy

∂

∂y
+ uz

∂

∂z
(3.8)

where u = (ux, uy, uz) is the velocity vector field. For a conserved quantity, we can
define a new operator A as follows:

A =
∂

∂t
+ u · ∇ (3.9)

We define the particles as simple points in space, i.e., tracer particles. With this assump-
tion, we can represent such a tracer particle using the Dirac delta function δ3(r−rp) where
rp is the position of the particle. Applying the operator A to the function δ3(r − rp),
results in the following advection equation:

Aδ3(r− rp) = 0 (3.10)

(3.11)

or equivalently:

∂δ3(r− rp)

∂t
+ u · ∇δ3(r− rp) = 0 (3.12)

To solve equation (3.12) numerically, we need to transform it into an initial value problem.
We rearrange equation (3.12) as follows:

∂δ3(r− rp)

∂t
= −u · ∇δ3(r− rp) (3.13)

applying the product rule to the LHS gives:

∇δ3(r− rp) ·
d

dt
(r− rp) = −u · ∇δ3(r− rp) (3.14)

∇δ3(r− rp) ·
drp
dt

= u · ∇δ3(r− rp) (3.15)

(3.16)

Page 12 of 36

Integrating both sides over all positions r and all volume yields:∫
(V)

∫
∇δ3(r− rp) ·

drp
dt

dp dV =

∫
(V)

∫
u · ∇δ3(r− rp) dp dV (3.17)∫

(V)

δ3(r− rp) ·
drp
dt

dV =

∫
(V)

u · δ3(r− rp) dV (3.18)

drp
dt

= u (3.19)

For some given initial condition rp(t0) = rp0 at time t0, we can use the RK4 method to
solve equation (3.19) numerically.

3.3 Taking measurements

A series of time measurements across various operations are used to evaluate the per-
formance of the Android application. These include frame rendering time (render time),
particle advection simulation time (compute time), data set file loading time (load time),
and wall clock time. We use OpenGL’s built-in timer queries for render time to leverage
the GPU’s internal clock, whereas the <time.h> C library is utilized for compute and load
times to monitor total CPU time. Wall clock time is obtained using the <chrono> C++
library, which measures the time spent in the application as measured by a stationary
clock in the same inertial reference frame as the application.

All measurements are conducted on a Samsung Galaxy S23 Ultra, equipped with a Snap-
dragon 8 Gen 2 CPU and an Adreno 740 GPU, running Android version 14. The screen
resolution of the device is set to 2 316px× 1 080px. The software is tested on the device
under various computational loads by adjusting the particle counts at multiple levels:
1 500, 3 500, 7 500, 17 000, 37 000, 85 000, 190 000, 420 000, 950 000, 2 200 000, and
5 000 000 particles.
For each particle count, time measurements span a 5-minute period, with each type of
time being sampled and averaged over all cycles within each second. This set of measure-
ments is taken for three different simulation method implementations: sequential particle
advection, parallel particle advection, and particle advection using the GPU. More about
the implementations will be discussed in the next section. Additionally, the memory us-
age of the application is monitored using the Android Profiler tool. The collected data
is processed and analyzed and, consequently, used to answer the research question by
comparing the application’s performance under different computational loads.

Page 13 of 36

4 Implementation

4.1 Android Native C++ implementation

The implementation consists of two main parts: the Android Java-based implementation
and the native C++ implementation. The Java-based implementation is a wrapper for
the native C++ implementation to make it compatible with the Android platform. It
extends the Android MainActivity class, which is the application’s entry point. This class
then handles the application’s user interface, permissions, file input, display surfaces, and
update calls. The native C++ implementation is the application’s core, handling the fluid
simulation, rendering, and data processing. The two parts communicate using the Java
Native Interface (JNI). The Java-based implementation calls the native C++ functions to
perform the fluid simulation and rendering. This communication is visualized in Figure
4.1.

(a) Initialization

(b) Application loop

Figure 4.1: The communication between the Java-based implementation and the native
C++ implementation.

4.2 File input

The application requires a vector field to define the particles’ movement. This vector field
is read from NetCDF files located on the device.

However, accessing files on Android devices directly from native code is not straightfor-
ward. Therefore, the application uses the Android Java-based implementation to request
permissions to access the file system and asks the user to select the files containing the
vector field. Subsequently, the Java-based implementation passes the file descriptors to
the native C++ implementation using JNI.

Page 14 of 36

Additionally, reading all the time steps of the entire vector field at once would require
a large amount of memory, which is unfeasible for smart device(s). Thus, the vector
field is loaded one time step at a time. Time-wise linear interpolation is then performed
between the two nearest time steps to obtain the vector field at the desired time. The
application thus requires two sets of files for each time step: the files containing the
time step before the desired time and the files containing the time step after the desired
time. However, to avoid lagging when switching files, a third set of files is loaded in
the background, containing the data that are two time steps ahead. Processing these
files in the background and uploading them to the GPU if necessary ensures that the
application can quickly switch between vector field files without having to wait for loading
and processing when requested.

4.3 Graphics

The application uses OpenGL ES 3.2. This version provides access to compute and
geometry shaders while still being compatible with most modern Android devices.

4.3.1 Shader setup

Two main shader programs are used in the rendering part of the application: the vector
field rendering shader program and the particle rendering shader program. A diagram of
the rendering pipeline is shown in Figure 4.2.

4.3.2 Particle rendering

The particle rendering shader program renders the particles as simple points in 3D space
of constant size and color. The particles are defined as a flat array of floats, where each
particle is represented by three consecutive floats - its position in 3D space. The particle
positions are stored in a GPU Vertex Buffer Object (VBO). The application uses a Vertex
Array Object (VAO) to store the VBO. The VAO is then used to render the particles.
However, with this setup, every time the particles are updated outside the GPU, the VBO
needs to be uploaded to the GPU again.

4.3.3 Vector field rendering

The vector field shader program renders the vector field as a set of lines in 3D space.
The lines are colored based on the vectors’ directions to make the directions visually
distinguishable. The color is calculated in the geometry shader by mapping the vector’s
direction to the HSV color space and converting it to RGB.

Displaying every vector in the vector field can be computationally expensive, especially
for large vector fields with millions of vertices. The application uses a downsampling
technique to display only a subset of the vectors in order to reduce the computational
cost. The subset, call it display vertices, is selected by only rendering every nx-th vector
in the x-direction, every ny-th vector in the y-direction, and every nz-th vector in the
z-direction. The downsampling factors nx, ny, and nz can be adjusted to balance the
visual quality and performance of the application.

The vector field is defined as a flat array of floats, where each vector is represented by
six consecutive floats - the position of the two points that define the vector in 3D space.
Before rendering the vector field, the application linearly interpolates each vector in the

Page 15 of 36

display vertices to obtain the vectors’ positions at the desired time step. The interpolated
vectors are then sent to the GPU for rendering.

Figure 4.2: The rendering pipeline of the application.

4.4 Simulation

The application implements three distinct methods for simulating the particles. Sorted as-
cendingly by complexity, these methods are sequential particle advection, parallel particle
advection, and particle advection using the GPU.
From equation (3.19), and equations (3.2) to (3.7), we can see that to perform a particle’s
advection, we only need to know the particle’s position and the value of the velocity field
at the particle’s position. This means that the advection of each particle is independent of
the advection of other particles. Thus, the advection of particles can easily be performed
in parallel - the main idea behind the parallel particle advection method and the particle
advection using the GPU method.

The sequential particle advection method uses the CPU to perform the advection of par-
ticles sequentially. The method iterates over all particles and calculates the new position
of each particle one by one. It is the simplest and most straightforward method to imple-
ment.

The parallel particle advection method uses the CPU to perform the advection of particles
in parallel. The method divides the particles into batches and assigns each batch to a
separate CPU thread. Each thread then calculates the new position of the particles
in its batch, and after all threads have finished, the new positions are updated. The
application uses a thread pool to manage the threads and their tasks to avoid the overhead
of constantly creating and destroying threads

The particle advection using the GPU method uses the GPU, instead of the CPU, to
perform the advection of particles. Updating the particles’ positions means performing
the same arithmetic operations on each particle. Thus, the particle advection is a perfect
use case for Single Instruction, Multiple Data (SIMD) parallel processing. The GPU is
designed to handle SIMD parallelism efficiently, making it an ideal candidate for this task.
Therefore, the particle advection in this method is implemented using the OpenGL ES
compute shader. The compute shader is executed in a grid of workgroups, where each
workgroup contains multiple threads that execute the same code on different data.
A Shader Storage Buffer Object (SSBO) is used to mediate the reading of old particle

Page 16 of 36

positions and the writing of new particle positions. The SSBO is a VBO that stores the
particles’ positions but allows for both read and write operations in the compute shader.
Since the SSBO stores the particles’ positions in this method, they can be directly used
to render the particles. The implementation uses an updated VAO that stores the SSBO
on top of the VBO. As before, the VAO is then used to render the particles. This setup
eliminates the overhead of CPU-GPU communication at every simulation time step.

4.5 Third-party libraries

The application uses the OpenGL Mathematics (GLM) library for linear algebra oper-
ations. The library provides a wide range of vector and matrix operations functions,
making it ideal for the application’s needs. The application also uses the NetCDF C++
library to read the vector field from NetCDF files. The library provides functions to read
and write NetCDF files, making accessing the vector field data easy. Additionally, the ap-
plication adapts a popular thread pool library to manage threads efficiently. The library
provides functions to create and manage a thread pool as well as assign tasks to threads.
The functionality to wait for all threads to finish their tasks had to be implemented.

The application uses the Android Native Development Kit (NDK) to compile the C++
code and the third-party libraries. Header-only libraries like GLM are included directly
in the C++ code, while the NetCDF C++ library and its dependencies were compiled
separately as shared libraries and linked to the application.

Page 17 of 36

5 Results

5.1 Performance comparison

In this section, the performance of the three simulation methods is compared. The per-
formance is measured in terms of render time, simulation compute time, file loading time,
application cycle time, and wall clock time, as described in the section 3.3

5.1.1 Render time

Figure 5.1: The graph on the left shows the render time for all three methods, while the
graph on the right shows the same data plotted on a logarithmic scale.

The render time across three computational methods is depicted in Figure 5.1, with each
graph representing the average time per application cycle over numerous cycles.
Notably, the graph on the right illustrates minimal variation in render times across meth-
ods for smaller particle counts, i.e., fewer than 215 particles. All three methods show a
direct proportionality between render time and particle count. However, the GPU method
outperforms the others at higher particle counts, as highlighted by the left graph in Figure
5.1. This graph also indicates that all methods’ initial render time (y-intercept) is nearly
zero.

Page 18 of 36

5.1.2 Simulation compute time

Figure 5.2: The graph on the left shows the simulation time for all three methods, while
the graph on the right shows the same data plotted on a logarithmic scale.

Figure 5.3: Simulation time per particle for the three methods plotted on a logarithmic
scale.

Figure 5.2 examines the simulation compute time for the same three methods, further
detailed per particle in Figure 5.3. The GPU method consistently achieves the fastest
simulation times, surpassing both the parallel and sequential methods. While the sequen-
tial and parallel methods exhibit a linear increase in compute time, the GPU method
maintains a nearly constant time across different particle counts. Additionally, the slope
of the trend for the parallel method is considerably lower than that of the sequential
method. As particle counts increase, both the sequential and parallel methods show a
slight reduction in simulation time per particle, which then stagnates beyond 217 parti-
cles. Conversely, the GPU method reduces its simulation time per particle as the count
increases and continues to decrease without stagnating.

Page 19 of 36

5.1.3 File loading time

Figure 5.4: File loading time for the three methods plotted on a logarithmic scale.

The graph in Figure 5.4 shows the time it takes to load, process, and upload the data for
all (three) files necessary for preparing the next simulation day. As we can see, the value
constantly remains at around 29 milliseconds for all three methods, and does not change
with the number of simulated particles.

5.1.4 Application cycle time

Figure 5.5: The graph on the left shows the application cycle time for all three methods,
while the graph on the right shows the same data plotted on a logarithmic scale.

The graphs in Figure 5.5 display the application cycle time for the three methods. This
time is the average time for a single application cycle as measured by the CPU and GPU
internal timers. We can see from both graphs that all three methods experience a linear
increase in application cycle time as the number of particles increases. However, the rate
of this increase is different for each method - lowest for the GPU method, followed by the
parallel method, and then the sequential method.

Page 20 of 36

5.1.5 Wall clock time

Figure 5.6: The graph on the left shows the wall clock time for all three methods, while
the graph on the right shows the same data plotted on a logarithmic scale. The red
dashed line represents the 60 fps threshold.

Figure 5.6 presents the average wall clock time measurements for completing a single
application cycle across the three methods. In both graphs, we observe that the overall
trends for large particle counts mirror those noted in the previous subsection, where CPU
and GPU internal timers were used. However, the right graph shows that the wall clock
time remains constant for the initial data points, with each method diverging at different
particle thresholds: the sequential method at approximately 215 particles, the parallel
method at about 216 particles, and the GPU method not until roughly 218 particles.
This graph also highlights the maximum particle counts at which each method maintains
an interactive frame rate of 60 fps, translating to a wall clock time of approximately less
than 16.67 milliseconds. The GPU method sustains this up to 219 particles, significantly
higher than the parallel method at 216 and the sequential method at 215.

5.2 Application cycle composition

This section shows the composition of the application cycle for the three methods. The
application cycle is divided into the following parts: render time, simulation compute
time, and file loading time. All times were measured by the CPU and GPU internal
timers and averaged over many cycles.

The graphs in Figures 5.7, 5.8, and 5.9 illustrate the composition of the application cycle
for the sequential, parallel, and GPU methods, respectively. Across all methods, while
file load time initially impacts the application cycle, it decreases in significance as particle
counts increase. This trend allows other components to influence the cycle’s composition
more prominently at higher particle counts.

Page 21 of 36

5.2.1 Sequential method

Figure 5.7: Composition of the application cycle for the sequential method.

The graph in Figure 5.7 showcases the composition of the application cycle for the se-
quential method. We can see that the compute time is the most significant part of the
application cycle. We can observe that the render time’s fraction keeps growing for as
long as the load time’s fraction keeps decreasing. However, after the load time becomes
negligible, the render time’s fraction begins to decline while the compute time’s fraction
keeps increasing.

5.2.2 Parallel method

Figure 5.8: Composition of the application cycle for the parallel method.

The graph in Figure 5.8 shows the composition of the application cycle for the parallel
method. The compute time forms a significantly smaller part of the application cycle

Page 22 of 36

compared to the sequential method. The render time dominates the application cycle for
particle counts between 3 700 and 420 000. For particle counts larger than 420 000, the
compute time and the render time are approximately equal in size. The render time’s
fraction grows and declines similarly to the sequential method, but the compute time’s
fraction grows at a slower rate.

5.2.3 GPU method

Figure 5.9: Composition of the application cycle for the GPU method.

The composition of the application cycle for the GPU method is displayed in the graph
in Figure 5.9. For large particle counts, the render time forms the most significant part of
the application cycle. The compute time is the smallest fraction of the application cycle
for all measurements and is practically negligible in comparison. We also observe that the
render time’s fraction keeps growing for all particle counts measured.

5.3 Memory usage

Figure 5.10: Memory usage for the GPU method for 250 000 particles.

Page 23 of 36

Overall memory utilization of the application over time is depicted in Figure 5.10. The
graph shows the memory consumption associated with the GPU method when simulating
250 000 particles. Memory usage is divided into multiple components, with Native allo-
cations, Graphics, and Other allocations being the most significant. From the graph in
Figure 5.10, we see that initial memory usage is minimal; however, it rapidly increases, ex-
hibiting four distinct peaks. Subsequently, the memory usage stabilizes at approximately
1 GB with perpetual peaks in the memory of the Native allocations. The memory usage
of the other categories remains stable with negligible fluctuations.

Page 24 of 36

6 Discussion

6.1 Performance comparison

As depicted in Figure 5.1, the render time demonstrates a linear relationship with particle
count, being directly proportional to the number of displayed vertices. The constant
number of displayed vectors ensures that increasing render times are solely attributed
to the particle count. From the graph on the left in Figure 5.1, we observed that the
y-intercept is near zero. This can be attributed to the constant overhead of OpenGL ES
draw calls being negligible compared to the time it takes to render all objects. The time it
takes to render the vector field is also insignificant, especially for large particle counts, due
to the vector field’s reduction of display vertices. Particularly for the testing, the vector
field grid was reduced from 539 × 269 × 28 = 4 059 748 vertices to 36 × 18 × 6 ≈ 3 609
vertices. This reduction is the reason why the render and compute times are very similar
for small particle counts, where the number of rendered vertices for the vector field is
comparable to those for the particles. The GPU method becomes more efficient for large
particle counts due to another factor: advecting the particles on the GPU means that
the particle data does not need to be uploaded from the CPU to the GPU, lowering
CPU-GPU communication time.

Figure 5.2 illustrates that the GPU method outperforms both parallel and sequential
methods, with nearly constant simulation times across varying particle counts. This is
attributed to the GPU’s capacity for efficient SIMD operations. In contrast, the sequential
method, lacking such optimizations, shows the poorest performance. The graph on the
right in Figure 5.2 shows that the GPU method’s simulation time is almost constant for all
particle counts. Figure 5.3 also nicely demonstrates this phenomenon, as the simulation
compute time per particle decreases as the number of particles increases. Unfortunately,
the efficiency of the GPU method is limited by the bottleneck discussed in section 6.4.

Load times remain constant regardless of particle count, as demonstrated by the data
in Figure 5.4. This consistency is expected given that the vector field data loading and
processing is not dependent on the number of simulated particles.

Application cycle time, represented in Figure 5.5, affirms the overall efficiency of the GPU
method, which exhibits the lowest times across all particle counts. The parallel method
ranks second, followed by the sequential method. The application cycle time displayed
in Figure 5.5 is the sum of the render time and the simulation time. Thus, the results
are consistent since the GPU method performed the best in both render and simulation
times.

Lastly, the graph in Figure 5.6 shows that the GPU method is the most efficient for all
measured particle counts also in terms of wall clock time. This time covers all operations,
including those unrelated to the test application, due to the nature of the wall clock timer,
which captures the globally-elapsed system time, including background system activities.
During the measurements, efforts were made to keep the number of background processes
to a minimum, but eliminating all other processes completely is unachievable.

In order to maintain a 60 fps frame rate, each of the three simulation modes has a distinct
limit in particle count. These limits are approximately 219 particles (around half a million)
for the GPU method, 216 particles (between 50 000 and 100 000) for the parallel method,

Page 25 of 36

and 215 particles (below 50 000) for the sequential method. Particle counts smaller or
equal to these limits ensure the application can handle the computational load within the
desired frame rate.

The application cycle’s wall clock time measurements are also affected by v-sync, which
limits the refresh rate to 120 Hz. This limitation means that the application cycle’s wall
clock time can not be lower than 1

120 Hz
≈ 8.33 milliseconds, as even if the application

cycle is shorter, the next update call will not be issued earlier than 8.33 milliseconds after
the previous one. This delay explains why the wall clock time measurements in Figure
5.6 appear constant for small particle counts.
Decoupling the application cycle and refresh rate does not make sense for a real-time
application for devices with limited computational resources, as pre-computing frames
ahead of time is not feasible.

6.2 Application cycle composition

The sequential method’s application cycle composition in Figure 5.7 shows that the sim-
ulation compute time is the most significant part of the application cycle for all measured
particle counts. This observation is expected, as the sequential method performs all cal-
culations in a naive sequential manner.
Further analysis of Figure 5.7 reveals that the render time’s fraction increases as long as
the load time’s fraction decreases. This behavior is expected, as the render time is directly
proportional to the number of particles while the load time is constant. However, when
the load time’s fraction becomes negligible, the render time’s fraction starts to decrease
since the render time grows slower than the simulation time.

In contrast, the application cycle composition for the parallel method, illustrated in Figure
5.8, reflects a reduced fraction of the simulation compute time due to the method’s parallel
processing capabilities.

Lastly, for the GPU method’s application cycle composition depicted in Figure 5.9, the
fraction of the simulation compute time remains negligible for all measured particle counts.
This observation is expected since we saw the simulation time being constant in Figure
5.2. The constant value of the simulation time also explains why the fraction of the render
time only increases with the number of particles. The overwhelming dominance of the
render time in the application cycle composition for large particle counts demonstrates
how the render time and its related operations are the main bottleneck for the GPU
method.

6.3 Memory usage

The memory usage of the application is measured only for the GPU method, as it is the
most performant of the three methods. Additionally, the most significant contributor to
memory consumption is vector field data, which is handled with minor differences across
the three methods. Consequently, the memory usage of the GPU method serves as a rep-
resentative indicator of the application’s overall memory characteristics. The associated
graph in Figure 5.10 illustrates this usage pattern. At the beginning of the measurement,
the app was not yet fully initialized, waiting for the user to select the vector field files.
This initialization process is the reason for the initial memory usage spike. We can ob-
serve that four sharp increases in memory usage constitute this initial memory spike. The

Page 26 of 36

first three correspond to the loading process, as detailed in section 4.2, where the sharp
increases correlate with loading three distinct sets of vector field files into memory. After
the data is loaded, the application instantiates all the classes and objects needed for the
simulation, creating the fourth spike. Following this, memory consumption stabilizes at
approximately 1 GB. Additional periodic spikes are noted throughout the simulation’s
duration, coinciding with the loading of subsequent vector field files. The memory con-
sumption data indicates that the application’s memory usage remains consistent with
time. Thus, looking back at the secondary research question, the application has good
long-term operational efficiency.
The composition of the application’s memory usage can be categorized into three main
components: Graphics, Native, and Others. The Graphics component includes mem-
ory used for rendering the vector field and particles, which are managed by the GPU and
OpenGL ES directly. The Native component includes memory used for running the actual
simulation and its associated data, which are managed outside the Java Virtual Machine
and directly utilize system-level resources. The ’Others’ category captures miscellaneous
or unclassified memory usages, such as temporary data buffers and system caches not
immediately related to Java or Native operations.

6.4 Bottlenecks

A discrepancy can be observed between the application cycle time measured by the inter-
nal CPU and GPU timers shown in Figure 5.5 and the application cycle’s wall clock time
measurements shown in Figure 5.6. This discrepancy is partially caused by the exclusion
of the load time from the measurements in Figure 5.5. However, since the loading happens
asynchronously with the rest of the application, the load time is distributed over many
application cycles. It thus cannot be the sole cause of the discrepancy.
One particular bottleneck was observed, which is the leading cause of the discrepancy.
This bottleneck is the synchronization and swapping between the different types of buffers
used by the GPU. The bottleneck is especially noticeable in the GPU method, which in-
herently utilizes more buffers. Thus, while only synchronization and swapping between
the display and surface buffers are needed for the sequential and parallel methods, the
GPU method requires more steps. Specifically, the GPU method necessitates synchro-
nization and swapping between the SSBO, which the compute shader writes into the
updated particle positions, and the VBO read by the vertex shader for rendering. Even
though the SSBO and the VBO are physically the same data blocks, they are used in a
different context by the two shader programs, and thus synchronization is needed. This
intensive memory swapping and synchronization requirement essentially make the simu-
lation on the GPU an I/O-bound computing problem rather than purely compute-bound.
This bottleneck is also the main reason the GPU method’s performance degrades with
increasing particle counts, highlighting the critical impact of internal I/O operations on
the overall performance.

Additionally, one more bottleneck is observed in the GPU method. The bottleneck is
especially noticeable when the particles are randomly distributed in a dense grid. In this
case, two major factors contribute to the bottleneck.
Firstly, the particles in the thread groups are far apart in memory. The GPU utilizes
peak memory bandwidth when multiple SIMD unit threads, i.e., warps, access consec-
utive memory locations simultaneously. When threads in a warp access data far apart
in memory, the memory controller might need to issue multiple memory transactions to
gather the data for all threads in the warp instead of a single transaction for aligned,

Page 27 of 36

consecutive memory accesses.
Secondly, the grid interpolation is performed on the GPU, which requires a lot of different
vector field vertices to be accessed for each particle when the particles in the thread groups
are far apart. If a warp accesses data points that are spread far apart, the likelihood of
these data points being in the same cache line is low, leading to poor utilization of the
cache. This increases cache misses, where the GPU looks for data in the cache but does
not find it and thus has to go back to slower, global memory reads. There is no simple
way to fix this bottleneck, as the particles would need to be sorted in a way where nearby
particles are in the same thread group. For example, an efficient tree-like data structure
on GPU architectures would need to be implemented to sort the particles in linear or
sublinear time. Otherwise, the fix becomes the new bottleneck. Such a data structure,
however, does not exist [23].

Unfortunately, with the current implementation, the time impact of either of the bottle-
necks cannot be measured directly using the internal CPU and GPU timers. The current
implementation uses the MainActivity class with JNI to call the native C++ function.
This means the Java code creates and manages the EGL context responsible for the
buffer synchronization and swapping. However, the internal CPU and GPU timers are
only available in the native C++ code, which does not provide a way to measure the GPU
execution time of Java function calls. A potential solution is to use the NativeActivity
class, which moves the total control of the app to the native C++ code. However, with
this solution, not only would the EGL context need to be explicitly handled by the na-
tive C++ code, but all event handling and other Android-specific features also need to
be handled explicitly. This switch is not arbitrary; the resulting project would suffer in
maintainability and expandability.

6.5 Impact

The application allows the user to load different vector fields. The only conditions to be
met are for the data to be in a glsNetCDF format and split into separate files per velocity
component per timestep. Due to this flexible implementation, many different kinds of
vector fields can possibly be displayed and used for simulation.

The user can interact with the application by touching the device’s screen. Currently,
camera rotation and zooming are supported. These simple interactions allow the user to
view the simulation from different angles and distances. This way, the application can
visually represent the vector field and simulate the particle movement in this vector field.
The application can also be used to study the behavior of particles in different vector
fields or to observe how the particles behave in the vector field over time.

The application supports adding UI elements like menu bars or modal dialogs by defin-
ing these components in the XML layout files. The behavior and functionality of these
elements can be developed within the Java context, which can further mediate the func-
tionality to the native C++ code if required. Additionally, the application provides the
implementation basis for the UI, enabling users to configure simulation parameters, such
as the number of particles, the displayed vector field density, or the simulation accuracy.
Parameters entered by the user into the UI elements could be read by the application and
passed to the appropriate class constructors. This setup shows the simplicity of integrat-
ing functions like ’Make Screenshot’ and ’Toggle Vector Field’ into broader applications.

Page 28 of 36

However, the implementation of the UI itself is out of the scope of this project, as the
specific requirements for the UI will vary depending on the application scenario.

6.6 Future work

Possibly the most crucial future work is to minimize the bottlenecks described in section
6.4. Some optimization of these bottlenecks has already been done, such as reducing the
number of buffer swaps and synchronizations by efficiently handling buffer data and draw-
ing calls. However, further optimization would improve the application’s performance. Es-
pecially for the bottleneck affecting the most efficient GPU method, the application could
be extended to handle better the uneven load distribution caused by non-consecutive data
accesses in the compute shader in the case of chaotic particle distributions in dense vector
fields.

Different types of vector field visualization methods were experimented with during the
project. These include line integral convolution and 3D texture slicing. Details about the
individual experimental visualization methods are located in Appendix A. Ultimately, the
measurements were taken using the simplest method - displaying both the vector field and
the particles using OpenGL ES primitive types.
Instanced rendering is not beneficial for a simplistic approach like this, as rendered ob-
jects do not share many of the same attributes across instances. However, instanced
rendering could become beneficial for future, more complex visualization methods. Fur-
ther experimentation on the feasible vector field visualization methods needs to be done.
The application could even be extended to support multiple visualization methods simul-
taneously, allowing the user to switch between them. These might include the already
mentioned methods and other methods, such as direct volume rendering.

Page 29 of 36

7 Conclusion

This research project focused on developing a fluid simulation Android application opti-
mized for smart device(s), addressing the growing requirement for on-demand accessible
fluid simulations across various applications and fields. By bridging the gap between
computational physics and computing science, an efficient fluid simulation was created
using a compiled language, C++, and leveraging the OpenGL ES graphics API. Example
images of the developed application are shown in figure 7.1.

The simulation employs a Lagrangian-Eulerian approach, solving the particle advection
numerically as defined by equation 3.19 within a vector field defined as an Eulerian grid.
The advection equation is numerically solved using the Runge-Kutta 4th order method,
and the simulation is implemented via three distinct approaches: sequential particle ad-
vection, parallel particle advection, and GPU-based particle advection.

The performance evaluations for all implementations under various computational loads
revealed that GPU-based particle advection is the most effective method. Utilizing com-
pute shaders enables efficient simulation of approximately up to 219 ≈ 500 000 particles
on a Samsung Galaxy S23 Ultra. Moreover, the memory usage evaluation demonstrates
that the GPU method maintains a consistent memory footprint of approximately 1 GB af-
ter initialization, thereby demonstrating the application’s long-term operational efficiency
in managing resources on smart device(s). Nonetheless, challenges remain, particularly
with the rendering phase and the necessary buffer swapping and synchronization, which
continue to act as bottlenecks.

In summary, simulating particles on smart device(s) is feasible and shows promising re-
sults, especially when compute shaders are utilized.

(a) Perlin noise vector
field.

(b) Double gyre vector
field.

Figure 7.1: Images of the fluid simulation Android application for 250 000 particles.

Page 30 of 36

8 References

[1] J. Blazek, Computational Fluid Dynamics: Principles and Applications, 3rd. Butterworth-
Heinemann, 2015, isbn: 9780128011720. doi: 10.1016/C2013-0-19038-1.

[2] L. Moubin and L. Gui-rong, Smoothed particle hydrodynamics: A meshfree particle
method., 2003. [Online]. Available: http://search.ebscohost.com.proxy-ub.ru
g.nl/login.aspx?direct=true&db=nlebk&AN=134095&site=ehos

t-live&scope=site.

[3] C. Jiang, The Material Point Method for the Physics-Based Simulation of Solids
and Fluids. UCLA, 2015. [Online]. Available: https://escholarship.org/uc/it
em/8090m32r.

[4] D. Kim, Fluid Engine Development. CRC Press, 2016, isbn: 9781498719933.

[5] F. Zehra, M. Javed, D. Khan, and M. Pasha, Comparative analysis of c++ and
python in terms of memory and time, Preprints, 2020. doi: 10.20944/preprints2
02012.0516.v1.

[6] M. P. Singh and M. K. Jain, Evolution of processor architecture in mobile phones,
International Journal of Computer Applications, vol. 90, no. 4, pp. 34–39, 2014.
doi: 10.5120/15564-4339.

[7] S. Park, S. An, and B. So, Boosting the performance of python-based geodynamic code
using the just-in-time compiler, Geophysics and Geophysical Exploration, vol. 24,
no. 2, pp. 35–44, 2021. doi: 10.7582/GGE.2021.24.2.35.

[8] C. Kehl, E. van Sebille, and A. Gibson, Speeding up python-based lagrangian fluid-
flow particle simulations via dynamic collection data structures, 2021. arXiv: 2105
.00057.

[9] P. Mora, G. Morra, and D. A. Yuen, A concise python implementation of the lat-
tice boltzmann method on hpc for geo-fluid flow, Geophysical Journal International,
vol. 220, no. 1, pp. 682–702, 2020, issn: 0956-540X. doi: 10.1093/gji/ggz423.

[10] J. Akeret, L. Gamper, A. Amara, and A. Refregier, Hope: A python just-in-time
compiler for astrophysical computations, Astronomy and Computing, vol. 10, pp. 1–
8, 2015, issn: 2213-1337. doi: 10.1016/j.ascom.2014.12.001.

[11] R. Bridson, Fluid simulation for computer graphics. CRC press, 2015. doi: 10.120
1/9781315266008.

[12] M. Kelager, Lagrangian fluid dynamics using smoothed particle hydrodynamics, De-
partment of Computer Science. University of Copenhagen, p. 59, 2006. [Online].
Available: http://glowinggoo.com/sph/bin/kelager.06.pdf.

[13] J. Monaghan, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys,
vol. 543, p. 74, 1992. doi: 10.1146/annurev.aa.30.090192.002551.

[14] S. Markidis, P. Henri, G. Lapenta, et al., The fluid-kinetic particle-in-cell method
for plasma simulations, Journal of Computational Physics, vol. 271, pp. 415–429,
2014, Frontiers in Computational Physics, issn: 0021-9991. doi: https://doi.org
/10.1016/j.jcp.2014.02.002.

[15] J. Lu, J. Piao, and S. Kim, Optimizing on real-time fluid 3d effect in mobile environ-
ment, in Proceedings of the 9th International Conference on Ubiquitous Information
Management and Communication, Bali, Indonesia: Association for Computing Ma-
chinery, 2015, isbn: 9781450333771. doi: 10.1145/2701126.2701147.

https://doi.org/10.1016/C2013-0-19038-1
http://search.ebscohost.com.proxy-ub.rug.nl/login.aspx?direct=true&db=nlebk&AN=134095&site=ehost-live&scope=site
http://search.ebscohost.com.proxy-ub.rug.nl/login.aspx?direct=true&db=nlebk&AN=134095&site=ehost-live&scope=site
http://search.ebscohost.com.proxy-ub.rug.nl/login.aspx?direct=true&db=nlebk&AN=134095&site=ehost-live&scope=site
https://escholarship.org/uc/item/8090m32r
https://escholarship.org/uc/item/8090m32r
https://doi.org/10.20944/preprints202012.0516.v1
https://doi.org/10.20944/preprints202012.0516.v1
https://doi.org/10.5120/15564-4339
https://doi.org/10.7582/GGE.2021.24.2.35
https://arxiv.org/abs/2105.00057
https://arxiv.org/abs/2105.00057
https://doi.org/10.1093/gji/ggz423
https://doi.org/10.1016/j.ascom.2014.12.001
https://doi.org/10.1201/9781315266008
https://doi.org/10.1201/9781315266008
http://glowinggoo.com/sph/bin/kelager.06.pdf
https://doi.org/10.1146/annurev.aa.30.090192.002551
https://doi.org/https://doi.org/10.1016/j.jcp.2014.02.002
https://doi.org/https://doi.org/10.1016/j.jcp.2014.02.002
https://doi.org/10.1145/2701126.2701147

Page 31 of 36

[16] J. R. Wilson and K. C. Gramoll, Viscous fluid dynamics app for mobile devices using
a remote high performance cluster, in 2015 ASEE Annual Conference & Exposition,
Seattle, Washington: ASEE Conferences, 2015. doi: 10.18260/p.25042.

[17] P. Delandmeter and E. van Sebille, The parcels v2.0 lagrangian framework: New field
interpolation schemes, Geoscientific Model Development, vol. 12, no. 8, pp. 3571–
3584, 2019. doi: 10.5194/gmd-12-3571-2019.

[18] E. Simonnet, M. Ghil, and H. Dijkstra, Homoclinic bifurcations in the quasi-geostrophic
double-gyre circulation, English, Journal of Marine Research, vol. 63, no. 5, pp. 931–
956, 2005, issn: 0022-2402. doi: 10.1357/002224005774464210.

[19] R. K. Rew and G. P. Davis, Netcdf: An interface for scientific data access, IEEE
Computer Graphics and Applications, vol. 10, no. 4, pp. 76–82, 1990. doi: 10.110
9/38.56302.

[20] S. C. Shadden, F. Lekien, and J. E. Marsden,Definition and properties of Lagrangian
coherent structures from finite-time Lyapunov exponents in two-dimensional aperi-
odic flows. 2005, vol. 212, pp. 291–292. doi: 10.1016/j.physd.2005.10.007.

[21] W. H. Press, Numerical recipes 3rd edition: The art of scientific computing. Cam-
bridge university press, 2007, pp. 907–915, isbn: 9780521880688.

[22] D. R. Durran, Numerical methods for fluid dynamics: With applications to geo-
physics. Springer Science & Business Media, 2010, vol. 32, pp. 12–13, 358–390. doi:
10.1007/978-1-4419-6412-0.

[23] N. Fauzia, L.-N. Pouchet, and P. Sadayappan, Characterizing and enhancing global
memory data coalescing on gpus, in 2015 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), San Francisco, CA, USA, 2015, pp. 12–
22. doi: 10.1109/CGO.2015.7054183.

[24] J. R. Taylor and W. Thompson, An introduction to error analysis: the study of
uncertainties in physical measurements. Springer, 1982, vol. 2, pp. 45–154, isbn:
9780935702750.

https://doi.org/10.18260/p.25042
https://doi.org/10.5194/gmd-12-3571-2019
https://doi.org/10.1357/002224005774464210
https://doi.org/10.1109/38.56302
https://doi.org/10.1109/38.56302
https://doi.org/10.1016/j.physd.2005.10.007
https://doi.org/10.1007/978-1-4419-6412-0
https://doi.org/10.1109/CGO.2015.7054183

Page 32 of 36

Appendix A

Implemented visualization techniques

The different vector field visualization techniques implemented for the fluid simulation
Android application are presented in this appendix. Figure A.1 shows the simple vector
field visualization technique that is used to measure the performance (see section 4.3.3).
In contrast, Figure A.2 presents a visualization technique where the outline of the vector
field is displayed as an opaque cuboid. In both methods, the colors are based on the
vectors’ directions and mapped using an HSV mapping.

(a) Double gyre field
x-y plane view.

(b) Double gyre field
rotated.

(c) Double gyre field
z-y plane view.

(d) Perlin noise field
x-y plane view.

(e) Perlin noise field
rotated.

(f) Perlin noise field
z-y plane view.

Figure A.1: Simple vector field visualization technique where vectors are rendered as
straight lines colored based on the vector’s direction.

Page 33 of 36

The visualization method depicted in Figure A.2 performs a 3D texture interpolation on
the graphical fragments to render the opaque cuboid. The cuboid can be sliced using
clipping planes orthogonal to the x and y axes. The position of the clipping planes can
be adjusted using the sliders on the bottom and right sides of the screen.

(a) Double gyre field
x-y plane view.

(b) Double gyre field
rotated.

(c) Double gyre field
z-y plane view.

(d) Perlin noise field
x-y plane view.

(e) Perlin noise field
rotated.

(f) Perlin noise field
z-y plane view.

Figure A.2: 3D Texture slicing visualization technique.

Additionally, line integral convolution visualization is shown in Figure A.3. This method
integrates a grey-scale Perlin noise texture over the vector field’s Eulerian vertices, result-
ing in the rendered images.

Page 34 of 36

(a) Double gyre field
x-y plane view.

(b) Double gyre field
rotated.

(c) Double gyre field
oblique z-y plane view.

(d) Perlin noise field
x-y plane view.

(e) Perlin noise field
rotated.

(f) Perlin noise field
oblique z-y plane view.

Figure A.3: Line integral convolution visualization technique.

Page 35 of 36

Appendix B

Raw measured data

The data gathered during the measurements is too large to be included in this document.
However, the raw data is available upon request or can be found in the measurements
branch in the repository of this project: https://github.com/MartinOpat/Lagrangian
-fluid-simulation-for-Android/tree/measurements

Processed data

Similarly to the raw data, the processed data can be requested or found in the measure-
ments branch in the repository of this project: https://github.com/MartinOpat/Lagr
angian-fluid-simulation-for-Android/tree/measurements

Error Analysis

This section outlines the error analysis formulas used during data processing. For further
detail, see [24].

Error Propagation

For error propagation, Gauss’ Law of Error Propagation was used:

∆f(x1, x2, ..., xn) =

√(
∂f

∂x1

∆x1

)2

+

(
∂f

∂x2

∆x2

)2

+ ...+

(
∂f

∂xn

∆xn

)2

(B.1)

where f is the function of the variables x1, x2, ..., xn, and ∆x1,∆x2, ...,∆xn are the errors
in the variables x1, x2, ..., xn respectively.

Standard Error in the Mean

The standard error in the mean was calculated using the following formula:

Standard deviation : σ =

√∑n
i=1(xi − µ)2

n
(B.2)

Standard error in the mean: SE =
σ√
n

(B.3)

where n is the number of measurements, xi is the i-th measurement, and µ is the arithmetic
mean of all the measurements.

Glossary

Android Is a mobile operating system based on open-source software such as a modified
Linux kernel version. 5, 6, 7, 12, 13, 14, 27, 29, 32, 36

GLM Is a header-only C++ mathematics library for graphics software based on the
OpenGL Shading Language (GLSL) specifications. 16

JNI Is a framework that allows Java code running in the Java Virtual Machine to call
and be called by native applications and libraries written in other languages such
as C or C++. 13, 27

https://github.com/MartinOpat/Lagrangian-fluid-simulation-for-Android/tree/measurements
https://github.com/MartinOpat/Lagrangian-fluid-simulation-for-Android/tree/measurements
https://github.com/MartinOpat/Lagrangian-fluid-simulation-for-Android/tree/measurements
https://github.com/MartinOpat/Lagrangian-fluid-simulation-for-Android/tree/measurements

Page 36 of 36

NDK Is a set of tools that allow for the use of native languages, like C or C++, in
Android applications. 16

NetCDF The Network Common Data Form is a data abstraction for storing and re-
trieving multidimensional data. It provides a machine-independent format for rep-
resenting scientific data [19]. 10, 13, 16

OpenGL API Is a cross-language, cross-platform application programming interface for
rendering 2D and 3D graphics. 36

OpenGL ES Is a subset of the OpenGL API designed for embedded systems. 14, 15,
24, 26, 28, 29

smart device(s) Is a device implementing a system-on-a-chip architecture, integrating
essential components into one unit, preventing component upgrades. 6, 7, 8, 9, 14,
29

SSBO Is a buffer object that allows for read and write operations in a shader program.
15, 16, 26

VAO Is an object that encapsulates the state needed to render geometry. 14, 16

VBO Is a buffer object that stores an array of data in the GPU’s memory. 14, 16, 26

Acronyms

CPU Central Processing Unit. 8, 12, 15, 16, 19, 20, 24, 26, 27

fps Frames Per Second. 5, 20, 24

GPU Graphics Processing Unit. 4, 5, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26,
27, 28, 29, 36

MPM Material Point Method. 8, 9

PBF Position Based Fluids. 8, 9

PIC Particle-In-Cell. 9

RK4 Runge-Kutta 4th order. 10, 12

SIMD Single Instruction, Multiple Data. 15, 24, 26

SPH Smoothed Particle Hydrodynamics. 8, 9

	Introduction
	Literature review
	Methods
	Data
	Simulation method
	Runge-Kutta 4th order
	Particle advection

	Taking measurements

	Implementation
	Android Native C++ implementation
	File input
	Graphics
	Shader setup
	Particle rendering
	Vector field rendering

	Simulation
	Third-party libraries

	Results
	Performance comparison
	Render time
	Simulation compute time
	File loading time
	Application cycle time
	Wall clock time

	Application cycle composition
	Sequential method
	Parallel method
	gpu method

	Memory usage

	Discussion
	Performance comparison
	Application cycle composition
	Memory usage
	Bottlenecks
	Impact
	Future work

	Conclusion
	References
	
	Implemented visualization techniques

	
	Raw measured data
	Processed data
	Error Analysis
	Glossary
	Acronyms

